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NON-GAUSSIAN NOISE MODELS AND COHERENT DETECTION
OF RADAR TARGETS

1. INTRODUCTION

The detection of radar targets against a background of unwanted clutter due to echoes from the
sea, land, or weather is a problem of fundamental interest in the radar community. Attacking the prob-
lem generally requires an understanding of the statistics of clutter echoes. Insight into the possible
structure of the optimal (or quasi-optimal) detector can be gained only after the statistics are under-
stood. Hence, the task of formulating optimal detection processors separates naturally into two funda-
mental steps: 1) formulation of a statistical model for the noise from which the desired target is to be
discriminated, and 2) application of the results of detection theory to determine the structure of the
detector for the type of noise modelled in step 1. (Although noise often refers to the ubiquitous ther-
mal noise in the receiving equipment, here it refers to any unwanted background disturbance, including
clutter echoes.)

For many years, radar systems had relatively low resolution capabilities such that clutter echoes
were thought to comprise a sum of responses from a very large number of elementary scatterers. From
the Central Limit Theorem (CLT) of probability theory, workers in the field were led to conclude that
the appropriate statistical model for clutter was the Gaussian model. With this model in hand,
researchers were able to attack and solve the detection problem. The optimal detection structure was
discovered to be the now well-known matched filter. The importance of this result for the radar detec-
tion problem should not be underestimated. The structure of the matched filter may be viewed as that
of a whitening filter followed by a correlator that maximizes the output signal-to-noise ratio. The
structure of the frequently used coherent detection processor, which is composed of a moving target
indication (MTI) filter followed by a bank of Doppler filters, is essentially a suboptimal implementation
of a bank of matched filters. The MTI filter fulfills the role of the whitening filter, whereas the bank
of Doppler filters plays the role of a bank of correlators. In a sense, this coherent detection processor
may be said to have been derived according to the two-step approach described earlier.

In the quest for better performance, the resolution capabilities of radar systems have steadily
improved. For detection performance, the belief originally was that a higher resolution radar system
would intercept less clutter than a lower resolution system, thereby increasing detection performance.
However, as resolution has increased, the statistics of the noise have no longer been observed to be
Gaussian, and the detection performance of the traditional detection processor has not necessarily
improved. The radar system is now plagued by target-like "spikes" that give rise to non-Gaussian
observations. These spikes are passed by the detection processor as targets at a much higher false
alarm rate than the system is designed to tolerate. The reason for the poor performance can be traced
to the fact that the traditional radar detection processor is designed to operate against Gaussian noise.
New detection processors are required to reduce the effects of the spikes and to improve detection
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performance. According to the two-step paradigm described above, the detection problem cannot be
addressed, though, until the statistical nature of the non-Gaussian statistics is understood. These prob-
lems, i.e., the development of a model for the non-Gaussian statistics and the subsequent development
of a detection processor, are the focus of this report.

Although at first glance the approach to solving these problems appears to be straightforward, the
solution to the problem in step 1, i.e., determining an appropriate statistical model, is quite difficult.
This problem is complicated by the fact that it is not sufficiently well-defined to ensure a unique solu-
tion. As stated, the goal is to determine a model for non-Gaussian statistics, yet this problem undoubt-
edly has an infinity of solutions. Which of these solutions is proper for the radar problem? To answer
this question, one could attempt to measure the statistics by fitting empirical models to data collected
with high-resolution radar systems. This approach is actually quite reasonable for determining first-
order statistics of the non-Gaussian clutter, i.e., the amplitude probability density function (PDF), and
much work has been devoted to this effort. However, two problems arise. First, if one group of
experimentalists measures Weibull statistics, and a second group measures K statistics, which results
should be accepted as correct? Second, the pulse-to-pulse clutter returns are usually correlated with
one another and, hence, require a multidimensional model for the proper description of their statistics.
Measurement of multidimensional statistics is prohibitively difficult. Moreover, even if the measure-
ment of multidimensional statistics were feasible, very few closed-form expressions for non-Gaussian
multidimensional PDF's of correlated random variables are available to describe the measurements.
For those models that are available, no useful criteria for deciding among them are known. Note that
this latter problem also arises for Gaussian statistics. Even if the first-order statistics are Gaussian,
modelling the multidimensional statistics by the multivariate Gaussian PDF must be justified in any
particular problem. Fortunately, as indicated earlier, the choice of the multivariate Gaussian PDF in
the radar problem appears to be justified by the multidimensional form of the CLT. An analogous
theorem is needed in the non-Gaussian case.

The appropriate multidimensional non-Gaussian model for use in radar detection studies must
thus incorporate the following features: a) it must account for the measured first-order statistics, b) it
must incorporate pulse-to-pulse correlation between data samples, and c) it must be chosen according
to some criterion that clearly distinguishes it from the multitude of multidimensional non-Gaussian
models satisfying a) and b). This problem forms the focus of Sections 2 through 5 of this report.

The resolution of the problems listed above is found in an extension of the CLT to incorporate
number fluctuations, i.e., fluctuations in the instantaneous number of elementary scatterers contributing
to the scattered echo. This result gives rise to a class of first-order statistics sufficiently general to
encompass the Rayleigh, K, and Weibull distributions, as well as mixtures of these distributions.
These distributions are among the most prevalent distributions used in empirical studies. The result
also allows for pulse-to-pulse correlation between the samples. Most importantly, since the result
arises from a reexamination of the scattering problem itself, it gives a natural criterion for selecting the
appropriate multidimensional model.

The availability of a multidimensional model for the non-Gaussian noise allows one to attack the
problem of detecting radar targets against such noise. This problem is the subject of Section 6. The
goal of this aspect of the problem is an understanding of the structure of the optimal (and possibly
suboptimal) processor for detecting radar targets. Although the structure is described by the likelihood
ratio of classical detection theory, one seeks greater insight into this structure, with the ultimate goal of
deriving a detection processor that is implementable yet close to optimal in the same sense that the
current processor based on the MTI filter followed by the Doppler filter bank is an implementable but
suboptimal version of a bank of matched filters.
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Section 2 presents a general limit theorem for a sum of a random number of random vectors.
This theorem represents an extension of the classical CLT and as such may have application in areas
other than the problem of interest here. An essential feature of this new result is that it incorporates
fluctuations in the number of random vectors being summed; this feature gives rise to limiting statistics
that may be non-Gaussian in nature. Along with this theorem, the notion of a canonical model for the
probability mass function (PMF) describing the number fluctuations is also introduced.

Section 3 then applies the new theorem to the study of scattering of electromagnetic waves. This
work leads to the idea of modelling the radar clutter amplitude statistics by the class of Rayleigh mix-
ture distributions. Previous investigators have modelled amplitude statistics by special cases of Ray-
leigh mixtures, and a brief review of their work is presented. Because identifying a given distribution
as a Rayleigh mixture distribution is a problem of interest, necessary and sufficient conditions for a
given cumulative distribution function (CDF) to be a Rayleigh mixture are also presented in this sec-
tion. These conditions are then used to show several examples of Rayleigh mixture distributions.
These examples include the Weibull distribution for the range of its parameters that are generally of

interest in the radar problem. This demonstration is important because it offers a physical interpreta-

tion for the appearance of certain distributions, such as the Weibull distribution, in radar clutter studies.
These distributions appear to be justifiable otherwise only on empirical grounds. It also unifies the

approach to modelling amplitude statistics and clarifies the distinction between modelling clutter by the
K distribution or the Weibull distribution; both models arise from the same underlying physical picture
with the difference between them occurring because they have different underlying number fluctuation
models.

The Rayleigh mixture distribution is defined by a certain CDF, F,(t), X > 0, and the determina-
tion of this CDF both analytically and empirically is important for the successful application of Ray-
leigh mixture distributions to radar studies. Section 4 presents results on both of these problems. A
particularly interesting result is that the K distribution, which has been applied to empirical fits of radar
clutter data with success, appears as the first term in a particular type of infinite series expansion of the
general Rayleigh mixture distribution. This result would seem both to explain the appearance of the K
distribution in empirical studies of scattering problems and to offer an approach to achieving a data fit
better than the fit of the K distribution by including more terms in the series. Several examples illus-
trating this latter idea are presented.

Because many radar scenarios involve making detection decisions based on multiple pulse data
that is correlated from pulse to pulse, the development of a theory of target detection for these types of
problems is necessary. The development of such a theory requires models for the multidimensional
statistics of correlated, non-Gaussian clutter, the formulation of such a multidimensional model is the
focus of Section 5. Based on a physical interpretation of the theorem presented in Section 2, a mul-
tidimensional model in the form of a Gaussian mixture is presented. This model can incorporate first-
order statistical information about the amplitude of the clutter as well as information about the correla-
tion between pulses. It also has the advantage of being motivated by a physical picture and, hence, is
not an arbitrary construction of a multidimensional model. However, the model is based on an ideal-
ized physical picture, and the problem of incorporating a more realistic physical picture is briefly dis-
cussed. This particular problem is quite difficult and will form the focus of future research.

Based on the model for the multidimensional statistics of the correlated clutter, Section 6 explores
the problem of detecting a signal against a background of such clutter. Previous work on this problem
by the present authors is briefly reviewed. The problem of detecting a signal of known Doppler struc-
ture but unknown complex amplitude is then attacked using the generalized likelihood methodology.

3
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The structure of the detector is shown to be that of a square law detector whose output is processed
through a nonlinearity. The structure may also be interpreted as a matched filter compared to a data-
dependent threshold. Section 6 closes by presenting performance results for several cases of interest.

Although the report is long and heavily oriented towards mathematics and statistics, the results
are nonetheless useful to the average radar engineer who may not have an interest in the mathematics
but who is interested in either the modelling of non-Gaussian statistics or the detection of targets in
non-Gaussian noise. For the worker interested in applying these results but not interested in the
theory, Section 4.2 presents a methodology for fitting data to a Rayleigh mixture distribution, whereas
Section 6.4 provides both closed form expressions and curves for the detection performance of the
detection processor derived in this report. For the worker interested solely in the problem of modelling
non-Gaussian statistics in scattering problems, Section 2 is particularly pertinent. The results of Sec-
tion 2 also suggest that a possible physical mechanism for non-Gaussian statistics is a fluctuation in the
number of scatterers contributing to the scattered field. This observation in turn suggests that dynami-
cal models that could give rise to these fluctuations be studied further. Furthermore, as discussed in
Section 6, the availabilty of such dynamical models would engender further results in the multidimen-
sional modelling problem. For the worker interested in the structure of the detection processor derived
herein, both Sections 6.1 and 6.3 give simple interpretations of this detection structure; these interpreta-
tions could form the starting points for deriving implementable structures that would be advances over
the current MTVIDoppler filter bank processors.

2. A PHENOMENOLOGICAL MODEL FOR SCATTERING

In many propagation and scattering problems, the electric field at a given point may be
represented by the phasor relationship

E (F, t) = eij' ai (F, t)ej¢('t (1)

where co is the carrier frequency of the incident radiation, ai (F, t) is a form factor that determines the
angular distribution of the radiation from the ith scatterer and O(F, t) is a phase factor for the ith
scatterer. Generally, the individual contributions to the sum are assumed to be statistically indepen-
dent. For example, this kind of expression forms the starting point for Chapter 7 of Beckmann and
Spizzichino (1963) on the probability distribution function of a wave scattered from a rough surface.
This type of expression is also implied in the work of Dashen (1979) and Flatte et al. (1987) in which
propagation through random media is treated via the path integral formalism; Eq. (1) would be valid in
the so-called saturation regime. If the physics of the problem indicates that N is "large," then often
the CLT is invoked to conclude that E has Gaussian statistics. However, in many cases, the physics
of the problem also indicates that N fluctuates, a case to which the CLT does not apply. For example,
in the work cited above, Dashen states that in the saturation regime, N fluctuates. As the notion of
large N is meaningless if N is a random variable, a parameter that may become large is the mean of
N, denoted N. However, as indicated in the work of Jakeman and Pusey (1978), the statistics of E as
N -* oc need not be Gaussian. They studied a modification of Eq. (1), namely

E'(F, t) a _(F, .e t) (2)

4
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in which N has a negative binomial distribution. (In the standard development of the CLT, Eq. (1) is
normalized by I/-t-. The normalizations there and in Eq. (2) are necessary to ensure that the mean
intensity remains finite.) Under the assumption that the al's and Oi's are mutually independent, the
ai's independent and identically distributed (i.i.d.), and the Xi's i.i.d. and uniformly distributed on
[0, 211], they showed that the distribution of A = IEVI as N - 0°, is given by the K distribution, not
the Rayleigh distribution predicted by the CLT. On the other hand, they also performed this calcula-
tion with N being a Poisson random variable instead of a negative binomial random variable and
showed that the asymptotic statistics are Rayleigh. Thus, inclusion of number fluctuations enriches the
problem considerably, and a general limit theorem appropriate to this problem is needed. A first step
towards such a theorem is given below.

A conclusion that may be drawn from the theorem given here is that the distribution of amplitude
statistics predicted by this type of random walk model is a member of the general class of Rayleigh
mixture distributions. The K distribution studied by Jakeman and Pusey (1978) is a member of this
class. It is also shown below that the Weibull, gamma, and Nakagami-m distributions are also
members of this class for suitably restricted domains of their respective parameters. These results sug-
gest that the general Rayleigh mixture distribution be considered a model for amplitude statistics of
scattering problems and that the role of number fluctuations in these problems be further studied.

2.1 A Limit Theorem for a Random Sum of Random Vectors

As is well-known, if X1 , X2 , ... , XN are i.i.d. random variables with zero mean and finite
variance a 2 , then the random variable

1NSN= z i(3)
NFN i-1

converges in distribution, as N ° -0, to a Gaussian random variable Y with zero mean and variance
Ca2. If, however, N is also considered to be a random variable, the classical results are no longer
applicable. Theorems for random N in which convergence to a Gaussian random variable occurs
(hence, these theorems are called CLT's) are presented by Chow and Teicher (1978) and the references

therein. In this report, the problem is defined in a natural way, and it is shown that convergence to a
non-Gaussian random variable can occur.

Let N be a random variable defined on the nonnegative integers, and let (p (n; N), N > 0) be a
collection of PMF's associated with N such that E [N] = N, where E [N] is the expected value of N.
Let k 2 1 be an integer and let X1 , X2, . . . be a sequence of i.i.d. random vectors- defined in Rk
with zero mean and finite second-order moments given by the matrix E [Xi XiT] = Q for all i (where
T denotes transpose.) For each N > 0, define a random vector by

N (

1W i = I

5
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where an empty sum (i.e., N = 0) is set equal to zero. Finally, for each N > 0, define a function by

G (z; j)=X (1 Z)'p(n; N), O<z <N. (5)
n=0 N

The following theorem may now be stated:

THEOREM: If G(Z) = lim G (z; N) converges for z e [0, o-), then SN converges in distribu-

tion as NO- -0 to a random vector Y with characteristic function given by

uTQ- t

Cy(u) = e 2 dF (t), (6)
0

where Ft (t) is a CDF of a positive random variable. Moreover, Ft (t) may be obtained by Laplace
inversion of G (z , i.e.,

G(z) = f e-ztdFt(t). (7)
0

PROOF: The proof is presented in two parts. First, under the conditions of the theorem, the
characteristic function of Y is shown to be G (uTQu / 2). G (z ) is then shown to have the represen-
tation given in Eq. (7), which will complete the proof.

Conditioned on N = n, the characteristic function of Sff is given by

CN-(u I N = n) = E[exp (jSNu) I N = n

= (CX U ))n, (8)

where the i.i.d. property of the Xi 's has been used and Cx (u ) is the common characteristic function of
the Xi 's. From the following asymptotic expansion as Iu 1- 0,

CX(u) =1- Q + °U), (9)Xc2 2

(cf Cramer 1970), the unconditional characteristic function of Sff becomes

6
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C(U) = Y [ 1 - Q +
n=O- 21V

o( u_ )]" p(n;N),
N

as U - -0,

UTU-No( - ); N) if0< uOQu

From the definition of G(z; N) it follows that for 0 < z1 < Z2 <N, then G(z 2 ; N) • G(z 1; 1).
Fix u. Since No (UTU /I )- 0 asN W- cc, then given e > 0, a number K e R exists such that

UTQU

2
UTQU 2UTU UTQU<2 NV 2

(11)

for all N 2 K, from which it follows

G(uQu +e;N)<G(u QU NO(UU);N)<G( UQU ;).
2 2 N 2-;1) (12)

Taking the limit as No- c- yields

G(Q + E) < lim G( uQu -No( UU)
2 sn £ w 2 N1

Finally, since e was arbitrary, then by Eqs. (10) and (13),

Cy (u) = lim G (TQj

TQ
= G(2)

2

- UTQU;,W) < G-E).
2

uTu-No( - );N)
N

UTQU<

2: < * -2~~~~~~~~~~~ 

This completes the first part of the proof.

The second part of the proof follows from theorem 3 of Schoenberg (1938), which states that
C(u) = g(lu 12) is the characteristic function of a radially symmetric random vector in R k for all
integers k 2 1 if and only if g (t) is a completely monotonic (c.m.) function for t 2 0. A function
g(t) is said to be c.m. for t > 0 if (-1)'g(')(t) 2 0, 1 = 0, 1, 2, .... The function g(t) is furth-
ermore said to be c.m. for t 2 0 if it is c.m. for t > 0 and g (0) = g (0+) < c. To apply this result
here, let Q = 21 in Eq. (14). This choice of Q has no effect on the structure of the function G (z),
which depends only on the collection (p (n; N1), N > 0). With this choice, Eq. (14) becomes

C(u) = G(lu 12), (15)

7
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SANGSTON AND GERLACH

which shows that C(u) is a radially symmetric characteristic function in Rk, k 2 1. Hence, by
Schoenberg's theorem, G (z) is a c.m. function for t > 0. It follows immediately now from a theorem
of Bernstein (1929) and Widder (1931) (cf Tamarkin 1931) that

G (z) f e-zt dFt (t) (16)
0

where Ft (t) is a bounded nondecreasing function. Without loss of generality, we may assume
Ft (0-) = 0, (if not, simply add a constant, -Ft (0-)). Since G (0; 17) = 1, N > 0, it follows immedi-
ately that Ft(-) = 1. Finally, since e't is continuous, the value of Ft(t) at any discontinuities, of
which there can be at most a countable number (Kolmogorov and Fomin 1970), may be chosen so as
to make Ft(t) right-continuous without affecting the value of G(z). Hence, F (t) is a CDF of a
positive random variable, and the theorem is proved.

2.2 Canonical Point Mass Functions

The limit theorem given above is predicated on the convergence of the functions G (z; N) to
G (z). Therefore, it is of interest to study under what conditions convergence occurs. To investigate
the structure of the collections of PMF's, (p (n; N), N > 0), that yield convergence in the above
development, the following corollary to a theorem of Boas (1939) appears to be useful.

COROLLARY: Let A an be a convergent series. Then there exists a function
n =0

3: [0, cc] - R of bounded variation such that

0an =J|-Bet d3(at) n =0O.1, 2, ............ (17)

PROOF: By Boas' theorem, it is permissible to write

an= f t- dF(t) n = 0, 1, 2,..., (18)
0 n!

N tn
where F (t) is a function of bounded variation. Define fN (t) = n -! - t £ [0, cc] Then fN (t)

increases with N to et and by the monotone convergence theorem

00

I = | et dF(t) = C, (19)
n =0 0

which is finite by hypothesis.

8
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Define

t

,8(t) = | ea dF(a)
0

t t

= ea dFIc(a) - | ea dF2(a)
o o

= 1(t) - f,8(t), (20)

where FI(t) and F 2(t) are monotonic nondecreasing functions of t. It follows immediately that Pi(t)
and f32(t) are monotonic nondecreasing functions of t, and since by Eq. (19)

lim ((t) = C <, (21)
t->oo

it follows that PI(t) and 32(t) are bounded; hence 3(t) is a function of bounded variation.

Now examine

t

13(t) = |ea dF (c), (22)
0

where without loss of generality we may assume that F (t) is a monotonic nondecreasing function of
t. Also let {3(t) = 0, t < 0. Let gp and lr, be the Lebesgue-Stieltjes measures associated with D and
F, respectively. Finally, let F0 be the field consisting of finite disjoint unions of left-open, right-
closed intervals, (a, b], a < b, a, b £ R. By straightforward computation, one may easily show
that

p,(A) = f ea dF(a) (23)
A

for all sets A £ F0. Since each side of Eq. (23) is a measure on F0, and each of these measures has a
unique extension to the minimal a-field over F0 , which in this case consists of the Borel sets, it fol-
lows that Eq. (23) holds for all Borel sets. By the Radon-Nikodym theorem,

11F(A) = | e d gp (a), (24)
A

9
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and hence from Eq. (18)

an f- n,-e' d D(t) n =0, 1,2 .... (25)
0

This completes the proof of the corollary.

In particular, the corollary states that any PMF, p (n; N), n = 0, 1, 2, . . ., has the representa-
tion given by Eq. (17), i.e., any random variable with such a PMIF is a "mixture" of Poisson random
variables. Use of this representation in the definition of G (z) and G (z; N) now yields in a straight-
forward manner

G(z) = firn f e2 t d (f(Nt), (26)
Nff 4O

where ANg(t) is a function of bounded variation associated with the representation of p (n; N ). Little

may be said about the existence of G (z) as defined by Eq. (26) without better knowledge of @3g(t).
However, it appears possible to define a set of parameterized PMF's that yield convergence of G(z)
and that are canonical in the sense that if all collections of PMF's that yield convergence to the same
function are identified in an equivalence class, then this canonical set of parameterized PMF's contains
one representative of each possible equivalence class. In that sense, the canonical set represents all
collections of PMF's that yield convergence.

In the theorem, let k = 1 and let a2 be the variance of the X 's. The result above becomes
Cy(u) = G(a 2 u 2 / 2). From the relation a2 = -CY(2)(0) is easily found the relation G(l)(0) = -1,
which implies

00J zdFt(t)= 1. (27)

Thus, any CDF satisfying Eq. (27) yields, through Eq. (16), an admissible G (z ) for this problem. On
the other hand, if Ft(t) does not satisfy Eq. (27), the resulting G(z) obtained by Eq. (16) is not
admissible for this problem. For each CDF Ft such that Ft(-) = Ft (O-) = 0, Ft(cc) = 1, and Ft
satisfies Eq. (27), define a collection of PMF's parameterized by IV > 0 by

PC(n; N) = | --e' dF,(t IN) n = 0, 1, 2, (28)
0 n!

The canonical set PM (N) (for Poisson mixture with mean N) is defined to be the set of all such
parameterized PMF's as defined by Eq. (28). It follows from Eq. (26) that if PC e PM (N), then
G (z ) associated with Pc is given by Eq. (16).

10
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2.2.1 Examples

Let N be a Poisson random variable with PMF

p (n;N (N)n e, >0. (29)

It is immediately evident that this parameterized PMF is a member of the canonical set with
Ft(t) = U(t - 1), where U(t) is the Heaviside step function. Hence, G(z) = eZ, and SN con-
verges to a normal random variable. To exhibit other members of the equivalence class represented by
the Poisson distribution, examine the degenerate case, with PMF given by

p(n; f) = 1, n =IN > 0, (30)

and the binomial distribution, with PMF given by

p (n;N = INn) pnqNn n =, 01,t 2,***,I N. (31)

where 0 < p = 1 - q < 1, and N = Np. That the degenerate case is a member of this equivalence
class is merely a statement of the classical form of the CLT. It is straightforward to show that
G (z) = e-_ in this case. To see that the binomial distribution is also in this equivalence class, exam-
ine G (z; N). After a simple computation, one finds

G(z; N) = (1 - P Z)N. (32)
N

For a fixed p > 0,N -o if and only if N - 0 It follows then that

lim G (z; N)=lim (1 - Z )Nv
NN-0 N

= e~Z, (33)

which shows that the binomial distribution is also in this class.

As a second example, let N be a negative binomial random variable with PMF

p(n; N) = F(n+1)r(v) (3+r)4+v v)

where r = NI/v. This PMF is also a member of the canonical set with

11
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Ft (t)= VV xv-le`vx , (35)

as may be verified directly. Hence G (z) converges for the negative binomial distribution and is given
by

G(z) = (36)

The attributes of the canonical PMF's that are of interest in this problem are: a) they form a set
of parameterized PMF's for which convergence always occurs, b) they represent all collections of
PMF's for which convergence occurs and c) they are related to the limiting CDF's Ft (t) in a straight-

forward way.

3. CLUTTER MODELLING: RAYLEIGH MIXTURE DISTRIBUTIONS

If the random vectors in the theorem are defined in R2 , the limiting random variable denoted as
Y = (Y1 Y2) and the matrix Q = cr2I where ay2 > 0 is a constant and I is the 2 x 2 identity matrix,
then the problem being discussed here takes the form of a spherically symmetric random walk in the
plane with a random number of steps. Typically in applications involving narrowband signals (or
noise), the two components Y1 and Y2 are interpreted as the inphase and quadrature components of a
complex random variable. The relationship with the phasor approach used in formulating Eqs. (1) and
(2) is established by transforming Y1 and Y2 to polar coordinates, say R and 4. The assumption that
Q = cT2I is tantamount in this problem to assuming that R and 0 are independent and that 0 is uni-
formly distributed on [0, 27c]. If the resultant (or amplitude), R, of the limiting case of this random
walk as N -* o is defined by R2 = - 2 + Y2

2, then inversion of the characteristic function yields

00 ~~X2

fR,(x) f X eatd() (37)
o a 2 t

where Ft(t) is defined in the theorem. The choice of Ft(t) obtained from the negative binomial dis-
tribution yields the result given by Jakeman and Pusey (1978). Evidently, the only permissible distri-
butions for this resultant are mixtures of Rayleigh distributions. Use of this type of model for the
amplitude statistics of clutter has been proposed by previous investigators, whose work is discussed
below. The derivation of this model that is presented here, however, is new.

After studying the problem of sea clutter modelling, Trunk (1972; 1976) concluded that some
types of non-Rayleigh sea clutter may be modelled as a locally homogeneous Rayleigh process whose
Rayleigh parameter (which represents clutter power in this case) is modulated by the radar's large scale
spatial sampling of the environment. The amplitude PDF of such a model is given by Eq. (37). In the
remainder of this report, the model described by Eq. (37) is referred to as a Rayleigh mixture model.
Prior to this work, Valenzuela and Laing (1971) had argued that the scattering of a radar pulse from
the surface of the sea modelled by the so-called composite surface model yields amplitude statistics
whose PDF, although complicated in form, may be described as a Rayleigh mixture model. Jakeman
and Pusey (1976) used the phenomenological model described by Eq. (1) to study radar sea clutter

12



NRL REPORT 9367

modelling. Specifically, they assumed the al's to be i.i.d. according to a K distribution, the Di's to be

i.i.d. according to the uniform distribution on [0, 2ic], and the ai's to be mutually independent of the

Oi's. From these assumptions, they showed that the amplitude of the scattered field E is statistically

described by a K distribution, which is also an example of a Rayleigh mixture model. Note that in the
1976 work, the number of scatterers N was a deterministic, nonfluctuating quantity; hence, the need

for a specific model of the statistics of the individual scatterers ai arose. In the 1978 work cited

above, they presented an alternative derivation of K distributed amplitude statistics by introducing

number fluctuations into the model and relaxing the requirement that the individual ai's have K distri-

buted statistics. Since the introduction of the K distribution, it has been used with qualitative success

in empirical fits to clutter data (Ward 1981, 1982).

In addition to the models described above, the Weibull distribution has also yielded qualitatively

accurate empirical fits to clutter data (Skolnik 1980; Olin 1982; Trizna 1988, 1989) and has emerged as

a candidate model for sea clutter statistics. Its effectiveness as a model appears to have been strictly

empirical; it does not appear to have the physical appeal of the K distribution or other Rayleigh mix-
ture models. Conte and Longo (1987) addressed this issue through an analysis that strongly suggests

that the Weibull distribution is also a Rayleigh mixture distribution and, hence, would have the same

physical interpretation as the K or other Rayleigh mixture models. Unfortunately, they were not able

to reach a definitive conclusion. A demonstration based on an early result of Bochner (1937a) is

presented below and shows rigorously that the Weibull distribution is in fact a Rayleigh mixture distri-

bution for a limited range of the shape parameter (i.e., b < 2; see Eq. (47).)

Thus, as first suggested by Conte and Longo, almost all of the major statistical models that have

been proposed for the amplitude statistics of sea clutter (the log-normal being an exception) may be
represented as a Rayleigh mixture model. This observation coupled with the result that
physical/phenomenological models that have been proposed to model the scattering process also lead to

the Rayleigh mixture model suggests that the model described by Eq. (37) be considered a unified
model for sea clutter amplitude statistics. A study of the properties of such distributions, especially to

determine if any of the previously proposed models for amplitude statistics of scattering problems are

examples of Rayleigh mixture distributions, is therefore warranted and is given below.

3.1 Conditions for Rayleigh Mixture Distributions

A CDF defined on the positive real line will be said to be the distribution of a Rayleigh mixture

if this CDF, F. (x ), may be represented in the form

200 ~~X
Fx(x) = |(1 - e 21) dFr(C), (38)

0

where X (i.e., the Rayleigh parameter) is a random variable defined on the positive real line, and FX(t)
is the CDF of a. The problem of interest here is to determine necessary and sufficient conditions on
Fx(x) to ensure that it has the representation given in Eq. (38) for some CDF, Fl(r). These condi-

tions follow as a corollary of the Bernstein-Widder theorem for c.m. functions that was referred to ear-
lier in the proof of the theorem presented herein.

COROLLARY: A CDF Fx (x) defined on the positive real line is a Rayleigh mixture distribution
if and only if the associated function K (y ) = 1 - Fx ('y ) is c.m. in the interval 0 < y < oo.

13
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PROOF: Assume K (y) is c.m. in the interval 0 < y < oo . Then by the Bernstein-Widder
theorem,

K(y) =f e~y' dJo(a), (39)
0

where P(a) is nondecreasing. Without loss of generality, P(0) may be chosen to be equal to 0. This
choice has no effect on the value of K (y). Since K(0) = 1, it follows that P(oc) - N(0) = 3(oc) = 1.
0(cx) is seen to be bounded and, therefore, has at most countably many points of discontinuity. Since
eCa is continuous, the value of 5((a) at each point of discontinuity may be assigned to be an arbitrary
finite value without affecting the value of K(y). Therefore, the values of 5(a) at its points of discon-
tinuity can be chosen so as to make 53(a) right-continuous.

Clearly, y = x2 yields

Fx(x) f (1 -eaX 2) d3(a). (40)
0

The substitutions a = 1/2X and FX(c) = 1 - ,1(1/2X) yield

00 ~~x2

FX (X) =f (I - e 21) dFT(c). (41)
0

It remains only to show that FX(TS) is a CDF. To this end,

1. FN(t) is nondecreasing, since P(a) is nondecreasing.
2. lim F,(T) = lim F,(c) = 0 since lim 5((a) = 1.

T-o t-40 a-s-
Similarly, Urn FC(t) = 1.

3. F,,(c) is right-continuous, since P(a) is right-continuous.

Therefore, F,(t) is a CDF, and the proof in one direction is complete.

Conversely, assume Fx (x) is a Rayleigh mixture distribution. Then, from the substitutions

a = 1/2, (42)

and

D(a) = 1 - Fc(1/2a), (43)

14
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it follows that

K(y) - f e-Y d13(a)
0

(44)

where 5(a) is nondecreasing. Therefore, by the Bernstein-Widder theorem, K (y ) is c.m. in the inter-
val 0 < y < o. Because K(0) = K(0+) = 1, K(y) is also c.m. in the interval 0 < y <oc* The
proof is complete.

This corollary fully characterizes Rayleigh mixture distributions and establishes a one-to-one rela-
tionship between Rayleigh mixture CDF's and functions, K (y), that are c.m. in the interval
0 < y < o and normalized to K(0) = 1. Given a CDF Fx, one may establish that it represents a
Rayleigh mixture distribution by establishing that the associated function K is c.m.. Although this task
requires examination of an infinite number of derivatives, some techniques are presented below that
make this problem tractable in some instances. Further conditions that ensure dF,(c) = f T(t) d X fol-
low from the work of Widder (1931) and Hille and Tamarkin (1933, 1934). The interested reader is
referred to the references for details.

3.2 Examples of Rayleigh Mixture Distributions

To assess if a given distribution is a Rayleigh mixture, two previously obtained results relating to
the class of c.m. functions are useful. First, let C be the class of functions that are c.m. on
0 < y < o. Bochner (1937a) shows that

1.Iff1,f2 £ C,thenafj+bf2 EC fora,b >0.

2. Iff1f 2 £ C, thenf 1 f2 £ C-

The second result is a lemma also due to Bochner (1937a, pp. 498-499):

LEMMA: If XV(p) is c.m. on 0 < p < o- and %(p) is such that X(0) = 0, and
0 < p < o, then the composition XV(X(p)) is c.m. on 0 < p < o-.

As stated earlier, a well-known example of a Rayleigh mixture distribution is
with PDF defined by

f (x) = (x)`1 vK i(2 x)
2v1lF(v)

x(l)(p) is c.m. on

the K distribution

X, V, Ti >0, (45)

from which the following representation may be obtained (Watson 1944, p.1 83)

00 X2 V

fx(x) = f e -(rvI Vle 1 dc.
0 IC F(v)

(46)
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A second example is given by the Weibull distribution with PDF

fx(x) = abxb le ax x,a,b >0.

If the parameter b is restricted to the range 0 < b < 2, Bochner's lemma may be applied to show that

this PDF is a mixture of Rayleigh PDF's (Bochner 1937b). To see this result, examine

K(y) = 1- G(4F)

= e-aY (48)

In Bochner's lemma, let yr(p) = e-'P, which is easily seen to be c.m. on 0 < p < o for any a > 0,

and let X(y) = ybI2. Clearly, %(O) = 0 and %(l)(y) = (b/2)yb12-l, which for b < 2 may be written

b /21 - T b(/2 f e-y't`" 2 dt.
(49)

By the Bernstein-Widder theorem, Eq. (49) shows that (b / 2 )yb /2-1 is c.m. on O<y <- for
0 < b < 2. By Bochner's lemma, then, K (y) is c.m. on 0 < y < o. It follows that the Weibull dis-

tribution is a Rayleigh mixture distribution for the range 0 < b < 2. (The case b = 2 is obvious.)

To apply the results presented in this report to a lesser known case, consider as a third example

the gamma distribution with PDF

f,, (X ) = ab xb-a-ax
FRb)x e

x, a, b >0. (50)

Clearly, the following relations hold:

K(y) = 1 - Fx(4y) 2 0,

-K(l,(y) - f=( 1 > 0.
2457

Also, since

dyn-l

-( 1 ) dy [2 25 1]'
16

(47)

(51)

(52)

(53)



NRL REPORT 9367

to show (-1)nK(n)(y) 2 0, it suffices to show

( 1 d") 1f[ 57 1 Ž0 n 1, (54)
(-) dy n 1 [2457 j

i.e., that the function f. (4i) / 2457 is c.m. on 0 < y < o. To show the complete monotonicity of
this function, examine

_f__F__ ab byb/2 1 a eat. (55)
2457_ bF(b) 2

It suffices to show that the functions ea Y and (b/2)y b2-1 are each c.m. and to use the closure pro-

perties of c.m. functions. But these functions have already been shown above to be c.m. for
0 < b < 2. If b = 2, then (b12)yb 12-1 = 1, which is c.m. because all of its derivatives are equal to 0
(indeed, any positive constant is c.m. for the same reason). Therefore, by the closure property of c.m.
functions, the gamma PDF is also a mixture of Rayleigh PDF's for the case 0 < b < 2.

As a final example, consider the Nakagami-m distribution with PDF given by

2m-1 m X2
fX(x)=2( l)m r e '1 x,m, i>0. (56)

A computation similar to the one above for the gamma distribution shows that this distribution is a
Rayleigh mixture distribution for m < 1.

3.3 Exponential Mixture Distributions

As it is sometimes of interest to study the distribution of intensity rather than the distribution of
amplitude, let I = R2 in Eq. (37). In radar applications, I represents the radar cross-section. The
CDF of intensity becomes

FI(y) = | (1-e 2t) dFr(c), (57)
0

where X = u 2t and Fj(c) = Ft (r/a 2). Distributions of this form will be called exponential mixture
distributions.

In problems of propagation through random media, previous investigators have sometimes studied
the moments of intensity rather than its distribution. From Eq. (57), the moments of intensity predicted
by this model are given by

V4> =2"n!E[X"] . (58)

This model is consistent with models presented by previous investigators (Dashen 1984). From Eq.
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(58), one immediately obtains for the scintillation index S.

S = j <2> (59)
<1 >2

with equality if and only if Fjcr) is a unit step function. For application to problems of propagation

through continuous random media, this model is thus only applicable in the saturation regime. But this

region is precisely the region in which Dashen (1979) indicates that the phasor interpretation described

by Eq. (2) is applicable.

4. METHODOLOGIES FOR DETERMINING F,(t)

4.1 Theoretical Inversion of a Rayleigh Mixture Distribution

Thus far the results concerning Rayleigh mixtures have ascertained only the existence of the CDF

Fj(t). Once the Rayleigh mixture property is established for a given fx (x), the natural question to

ask is what is the form of the associated Fj()? The general problem appears to be quite difficult. As

a result, the discussion in this section is limited to suggestions for attacking the problem.

A general result for the inversion of Eq. (39), i.e., obtaining 5(a) for a given K (y), is presented

by Widder (1934). Note that Fl(t) may be obtained directly from 53(a) by a simple change of vari-

able. For the problem of interest here, the result becomes

(a) = lir (-l)'f I -n-K (u ) du. (60)
no n n!

a

Although general, the result requires knowledge of the derivatives of all orders of K (y ) in a neighbor-

hood as y - oc . Since the actual computation of these derivatives can be difficult for some choices

of K (y ) , this method can be intractable. The interested reader is referred to the reference for details.

A second, quite general result for the inversion of Eq. (39) is also given by Widder (1935). This

method requires knowledge of the derivatives of all orders of K(y) at the point y = 1 and yields the

following series solution for 13(a) in terms of Laguerre polynomials:

0a n (k)(1)

P(a) = | Ln(Y) dy Z a k! (61)
n =00 k_ 

This approach may be illustrated by an application to determine the inversion for the Weibull distribu-

tion. In this case, K(y) = e'ayc where c = b/2. To apply Widder's result, knowledge of K(n)(l) is
necessary. These derivatives do not appear to be obtainable in closed form. However,

K (ny) -dy n- [K 1 )(y)], (62)
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and

K(l)(y) = -acyc-le-ay'. (63)

Application of the Leibniz rule for the differentiation of a product then yields

K(n)(y) =-acyc-n A, 2n - 11K(k)(y)ckyk - acyc-lK(n-l)(y), n 2 1, (64)
k =O

where ck = (c - 1) (c - 2) . . . (c - n + k + 1). This computation is a recursive computation
for the derivatives of K(y). It therefore may be used in conjunction with Widder's result to give a
recursive scheme for computing 13(a) and, thus, F,(t). The drawback, of course, is that this approach
does not result in a closed form solution for F1(t).

For many cases of interest, X will be a continuous random variable and dFj() = f 1(X) d t will
hold. In cases for which this relationship does hold, Eq. (39) is an ordinary Laplace transform, and
f r(t) may be obtained (at least conceptually) from the inverse Laplace transform of Eq. (39). This
inversion result is given by

1 1 J0 fxeU)s f
f (0 )e 2'C ds cr > 0. (65)

However, in some cases inversion via the standard contour integral approach may be difficult. For
example, for the Weibull distribution, Eq. (65) becomesGy + joS

if J- ) = 1 f abS. c eIs e 2t ds a > 0, (66)

where c = b/2. The multivaluedness of the integrand renders this approach quite difficult (see, how-
ever, Pollard (1946)).

Under the assumption that f 1(X) is piecewise continuous, an alternate approach for computing
f ,r() based on the Mellin transform (Courant and Hilbert 1953) is as follows.

Consider the function

FxN(2p + 1) =f x 2Pfx(x) dx. (67)
0

If the integral converges for Re (p ) > a, then

F.,' (2p + 1) = f x2 f X e 2 Tf,(c) drdx Re(p ) > a. (68)
0 
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The integrals on the right-hand side may be interchanged to obtain

Fx,m( 2p + 1) = 2PF(p + 1)f cPfc(t) dc
0

= 2P r(p + 1)Fm (p + 1) (69)

where FM (p) is the Mellin transform of f (t) and is convergent for Re (p) > a. Since f ('r) is
piecewise smooth by assumption, it follows that

CY + j 00

f (-) = f F M(P + 1)X-P-1 dp. (70)

Substitution for F.EM (p + 1) yields

=f 2) = +1) dp. (71)27rjy CYjo 2P rt + 1)

This result indicates that under the appropriate conditions (i.e., the piecewise continuity of f (c) and
the convergence of FxM (2p +1)), f (t) as defined by Eq. (71) is an inversion integral for this prob-
lem. This inversion integral may also be intractable, but it does provide an alternative approach to the
inversion integral of Eq. (65).

For an application of this approach, let fx (x ) be the PDF of the K distribution. For this case, X

is known to be a continuous random variable, and

JFXM (2p + 1) = ( 2 )2p r(v + p~r(+) (72)

This integral converges for Re (p) > (1/2)(IRe (v - 1)1 - v - 1). Inserting this expression into Eq.
(71) and letting z = V + p yields

fl(t) = Ti)V 2 1 i I(z)(v/rj)-z dz a > (1/2)(lRe(v - 1)1 + v - 1). (73)

Note that the contour lies in the right half-plane for any choice of v > 0. The singularities of the
integrand are simple poles due to the presence of 1'(z ) and occur at z = -n, n = 0, 1, 2, ... . The
residues of the gamma function at these points are equal to (-1)"/n!. Closing the contour to the left
by a semicircle of radius RN that encloses N poles and taking the limit as N - o- yields
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fN(' r( )v (v)i(V T)i

F(v) i =0 

V
= (v/ri)V tv-'e n X (74)

F(v)

which is known to be correct.

An application of this same method to the case in which fi (x) is the PDF of the Weibull distri-
bution yields

2p + 1)

FXM( 2 P + 1) = b (75)

a b

The computation proceeds similarly to the one just given and yields

f l(l) = ab (2*c)2 0 (-a(42)b)i O< b <2. (76)

i 0i! (= - (i +
2

This result agrees with a result obtained independently by Pollard (1946) and by Grosjean et al. (1989),
and, in contrast to the result obtained earlier herein, is a closed-form solution. (The issue as to
whether this result is more desirable from a computational point of view than the previous result is not
addressed here.)

Formal application of this approach to the case in which f., (x ) is the gamma PDF yields

Fx'M (2p + 1) = IF(2p + b) (77)
a 2pr'(b)

Again, the computation proceeds similarly to the one given above and yields

ab _1 0a (2) 2 X (-a1 0 <b •<2. (78)
1(b ) i= 0 F(l- I (i + b))

2

For b = 1 and b = 2, this series sums to

a2

fl(T)= e 2 , (79)
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and

(IC) =a 33l\F e (80)

respectively (Prudnikov et al. 1986, p. 707). The results in Eqs. (79) and (80) may be ascertained to
be correct inversions by direct computation via Eq. (65), or by inserting them in Eq. (37) with X =2t

and performing the integration.

Finally, formal application of this approach to the Nakagami-m distribution proceeds analogously
to the above derivations and yields

2__n (2tc)m-l 0 (-2tcm InY 1 (1
fT(t) = 2( rn Am F(r) z i!F~l - (m + i)) (81)

4.2 Fitting a Rayleigh Mixture to Data

If the Rayleigh mixture model is to used to model data, the problem of empirically fitting data to
a distribution becomes a problem of finding the FC(r) that yields the closest fit to the data. Moreover,
since in this case an entire function rather than a limited number of parameters (usually two) is chosen
during the fitting process, this model should give closer empirical fits to the data. For this approach to
be effective, however, a methodology for obtaining F.(t) from a given set of data is required. This
section of the report presents such a methodology. If an estimate for FT(t) can be obtained from a
given set of data, then the PDF of the clutter amplitude can be estimated from Eq. (37) with T = cr2t.

For fR (x) described by Eq. (37) it can be shown that

J X2PfR (X) dx = 2P F(p + 1)| X P dF,(t), (82)
0 0

where p = a + j co and F(p ) is the gamma function, provided the left-hand side exists. For the prob-
lem of interest here, let p = n. Then Eq. (82) yields

g,,2n = 2nn ! F-n (83)

where

Lx,2n = 2n th moment of x,

On = n th moment of t

As the moments of the amplitude x can be determined directly from experimental data, the moments of
X can be calculated from Eq. (83).
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To illustrate this idea, consider in place of real data a model distribution for which the moments
can be written in closed form. For fR (x) modelled by the K distribution, the moments are given by

(2Tj1)f (V + n)n!
X,2f = ( 2)n v) ! (84)

which yields for the moments of X

(1i I F(v + n) (5On= (ll)n ( ) *(85)

These moments are the moments of the gamma distribution, which is known to be the correct F,(r)
for g (x) given by the K distribution.

The problem, therefore, is to find a distribution Fj(t) that is consistent with a set of moments
[n obtained as described above. This problem is of classical origin, and many approaches are avail-
able. One approach, based on an orthogonal polynomial expansion, will be examined here. In this
approach, it is assumed that the distribution of X admits a probability density function f T(t). Although
this assumption seems rather arbitrary, the empirical results obtained in the past, namely the success of
the K and Weibull distributions, suggest that this assumption is valid for modelling sea clutter. With
this assumption, Eq. (37) (with X - a2 t) becomes

fR(x) = | e 2 tf T() dc, (86)

and the task is to determine f J() from the moments zTn, n =0, 1, . . ., N.

To determine this PDF, it is now assumed that f r(c) may be expanded in an infinite series of
Laguerre polynomials

T

f(0)= n cne b(-)aLn a( ) a > -1, b >0, (87)
n=0 b '~b

where Lna(x) is the generalized Laguerre polynomial of order n and a and b are constants to be
determined later. Since these polynomials are orthogonal on the interval [0, cc) (which is the interval
of interest for this problem) with respect to the weight xa eX, they are an attractive choice as basis
functions for the expansion of the unknown f z(t). This orthogonality condition implies

Cn= n f +L a( + ) of i) dc, (88)
][(a +I+ n) 0 'b b
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which, upon substitution of the formula for the Laguerre polynomial, becomes

(89)c a = n! ) (_ mL f +ma kbm
nr'(a + I + n) =0 m! - abm+"

The coefficients in the expansion are seen from Eq. (89) to be directly obtainable from knowledge of
the moments of I. Once this expansion has been obtained, it may be substituted into Eq. (86) to
obtain

CO n -l)m ! +am ( X,2- )a +m (x- )fR x)= 2X 1Cfl I , ,zm(2 bK-(~ 2
n=0 M~o M. 2

(90)

The parameters a and b are arbitrary parameters that define the Laguerre polynomials used in the
expansion and may be advantageously chosen as follows. Knowledge of the moments up through the
second order implies that the expansion has three terms with the coefficients co through c2 depending
on these three moments (note that Po = 1 is considered a moment). Because a and b are arbitrary, it
is possible to choose these parameters so that c 1 = = 0. This choice is

a = 2 - 1,
Rr,2 - 21

b = s'k2 - i%12
k1

(91)

(92)

Note that in Eq. (91) the denominator is the variance of r, whereas in
variance. Denote this variance by Car2 and let

a22

and

Eq. (92) the numerator is this

(93)

(94)L1 1 =n

With these choices, the expression for the expansion coefficients becomes

VV 

= - M = 0

24
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4.2.1 Examples

As real clutter data was not available for this study, the application of the methodology developed
herein will be illustrated with models for which closed form expressions for the moments are available.
First consider clutter for which the amplitude is K distributed. In this case, the moments of T are
given by Eq. (85), and substitution in Eq. (95) yields

V

Cn = r(V) E ( ) 1 (96)

The sum in Eq. (96) equals 1 for n = 0 and equals 0 for n > 0. Thus, based on knowledge of
moments of the K distribution up through at least second order, the approach described herein yields

f WX) = !/71 ( 42 )V/1X vK _/) (97)

which is the correct PDF for the K distribution.

Consider now a case in which the clutter is not exactly K distributed but instead is distributed
according to the Weibull distribution. Specifically, for the PDF

g(x) = abxb le b, a, b > 0, (98)

the related moments of X for use in Eq. (95) are

2n
rF(-n+ 1)

b1
= (n + 1) (2a2 /b)n (99)

Figures 1 through 3 compare the exact distributions with the distributions obtained from the expansion
method described herein. In all cases, the series approximation converges to the actual distribution
function with only a small number of terms.

As a second example, consider the case in which the true distribution of the clutter is a mixture
of Weibull distributions of the form

G(x) = (1- p)W(x; a,, bl) + pW(x; a2, b2), (100)

where W(x; a, b) represents a Weibull distribution with parameters a and b. For concreteness, let
a, = a2 = 1, b, = 1, b2 = 2, and p = 0.7. Physically, this distribution corresponds to Rayleigh
clutter (b = 2) that is corrupted by spikes (b = 1) 30% of the time. Figure 4 compares the exact mix-
ture distribution with the distributions obtained by the expansion method.
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5. MULTIDIMENSIONAL NON-GAUSSIAN CLUTTER MODELS

Conte and Longo (1987) present the idea of modelling the radar sea clutter process as a spheri-
cally invariant random process. This idea is attractive as it leads to a multidimensional model of the
clutter, namely a multidimensional PDF, that includes correlation and need not be Gaussian. More-
over, they also show that most of the major models for non-Rayleigh amplitude statistics may be
included in the framework of this model. As was discussed earlier in this report, the Weibull distribu-
tion, for which Conte and Longo only gave a partial result, is also consistent with this framework.
This model, therefore, has merit as a multidimensional model of non-Gaussian clutter and deserves
further investigation. In this section, application of the theorem presented in Section 2 is shown to
lead to the same multidimensional PDF that is suggested by Conte and Longo. Since the theorem can
be interpreted in a physical sense, this result gives a physical motivation for this approach. In addition,
the shortcoming of the model in terms of the physical modelling of the problem emerges clearly from
applying the theorem and suggests the next step to be taken to derive an even more realistic model.

To apply the phasor approach of Eq. (2) to the problem of modelling the scattered return from m
pulses, consider the following phasor model:

E'- (,t) = e Nk t)e= 1 e , k=,. . . m, (101)

where E 'k is the scattered field for the k th of m pulses. The aspect of the problem that should be
noted is that in general each pulse arises from a different instantaneous number of scatterers. To
proceed further in the development of a statistical model for this situation, one would need a multidi-
mensional model for the dynamics of the number fluctuations from pulse to pulse. Note, however, that
if one assumes that the radar samples the environment much more rapidly than the timescale on which
the number of scatterers changes, then each pulse return consists of the same number of scatterers, and
the Nk's in Eq. (101) may be replaced by a single N. This situation may then be accommodated
within the framework of the theorem as follows: Assemble the m elementary scatterer contributions
from each of the N elementary scatterers into a random vector of length 2m (in which the polar
representation of the phasor approach has been converted to an inphase and quadrature representation).
The total return (i.e., from all m pulses) then will consist of the sum of these N random vectors,
which is precisely the situation addressed in the theorem. If this vector of length 2m is represented as
a complex random vector of length m, then the PDF of the random vector Y after application of the
theorem may be written

fy(y) 1 j -e X dFC(t), (102)

where () represents the normalized correlation matrix that describes the pulse-to-pulse correlation
between the pulses. (This matrix has been assumed to be invertible. For practical scenarios, this
assumption is justified.) Note that in the application of the theorem, this quantity is assumed to be
known. This assumption is consistent with the idea of measuring this quantity for application to practi-
cal problems.

Although the model described by Eq. (102) is the same model as described by Conte and Longo,
the motivation for using this model here differs from the motivation of Conte and Longo, who sought
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to develop a model for the radar clutter process. They did seek to interpret the random process giving
rise to such a multidimensional PDF physically in terms of a locally Gaussian process whose power
level is modulated because of the radar's large-scale sampling of the environment. Their use of this
model, nonetheless, was somewhat arbitrary. Herein, the problem was approached from the basic
phenomenological picture of the scattering process with minimal assumptions about the statistics of the
scatterers involved. The model then emerges as the end product of the limit theorem presented in Sec-
tion 2. This approach complements the work of Conte and Longo by returning to basic physical prin-
ciples to obtain the model; it is fully analogous to the classical approach of justifying the multivariate
Gaussian model on the basis of the CLT. Unlike in the work of Conte and Longo, though, nothing is
stated here about clutter as a random process. The result here is limited to the description of the statis-
tics of a random vector of pulse returns. For this work to be extended to a description of the random
process describing clutter returns, a dynamical model of the number fluctuations included in this
modelling approach is needed. Because investigation of the role of number fluctuations in scattering
problems would seem to be a new area of research, much more work in this area is needed before an
accurate model of radar clutter as a random process can be formulated.

6. DETECTION OF TARGETS IN NON-GAUSSIAN NOISE

6.1 Structure of the Optimal Detector

In this section, the optimal detection structure for detecting a signal in additive noise modelled as
above is studied. The resulting structure is a function of an optimal estimator of a random quantity.
This structure reveals an intimate relationship between optimal detection and optimal estimation for this
class of processes.

Consider the following hypothesis test:

Ho:x =y

H1 :x =y +s (103)

where

x = observed m -dimensional complex data vector

y = m -dimensional complex noise vector

s =' known m -dimensional complex signal vector

= P9, P = ye jo = complex number.
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If the noise is modelled as indicated above, then x has the following PDF under hypothesis
i (i =0, 1):

to -qi

fi(X) = f 1 |me XdF.(t), (104)

where

= (X - S)H -l(X - S) i = 1

= XHO-QX, i = 0

D = normalized correlation matrix (assumed to be invertible)

X = variance of underlying Gaussian vector

F'C(' = CDF of X

I I = matrix determinant

H = complex conjugate transpose.

Equation (104) may be interpreted as the PDF of a conditional Gaussian random vector with variance t
averaged over the variation in 1. Then

M = EE[yyH] (105)
E [Ic]

where E denotes expected value.

The Neyman-Pearson likelihood ratio (LR) statistic is given by

(x) =f (106)

Define a function Fm as

F.m(1) = | 1 e X dF.(). (107)
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Then the LR statistic is given by

W(x) = (108)
FM(XHcJ-lX)

This structure forms the starting point for the analysis of detection performance given later in this
report. First, however, an interpretation of the LR statistic as a so-called estimator-correlator (Schwartz
1975) is briefly reviewed. This interpretation is interesting as it reveals the LR statistic presented
above to be equivalent to a matched filter compared to a data-dependent threshold.

6.1.1 Optimal Detector as an Estimator-Correlator

This section presents a brief review of a result previously given by Sangston and Gerlach (1989).
It is known that the conditional Gaussian PDF is a multivariate member of the exponential family, i.e.,
the PDF is of the form

fi(x I) = c(l) h(x) ex{X j (t)T1 (x)} (109))

where in this case

c (X) = 1
(Kg)m 10z 1;cm

h(x) = 1

I = 1

T1 1 (X) = I
iC

Tl(x) = sufficient statistic for - = -qi-
IC

Reparameterize the conditional Gaussian PDF by setting a = 1/t to obtain

fi(x) = ( 1 fc | ameaq, dFa(za).
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Define a function g (z) for z 2 0 by

g (Z ) = ~ f( )t RN urn en dFa(W).

From Eq. (111) may be obtained

dlng(z) - -1 f ame-az dF (a)
dz (t)m 1(1) Ig (z )O

Since the minimum mean-square estimate of a under hypothesis i is given
estimate (CME) (Poor 1988),

Ei[u(xlx = 1 -f ocm+1mi dFa(x))

by the conditional mean

(113)

where qj is as defined above, Eq. (112) combined with Eq. (113) yields

Ejdxj =_ 1 dg(qj)
g (qj ) dqj

dIng (qj)

dqj
(114)

Since

Infi (x) = Ing (qj) = | d z dz + Ing (0),
0 d

(115)

then, with the. obvious notation suggested by Eq. (115), the structure of the likelihood ratio is given by

f I(x) [qO 

W ) = -= exn f E[aXlzJ dz-f E[uxlzJ z'X ~ ) = f ( x r { J d z { (116)

where E [etlz] = -dlng (z)/dz. Equation (116) shows explicitly the relationship between optimal
detection and optimal estimation for this type of noise.
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Define a function F(q) as

q

F(q)=fE[asz] dz,q >0.
0

Because E [alz] is nonnegative for positive z and q is positive, F(q) is a monotonically increasing
function of q. In this new notation, the log-likelihood ratio may be rewritten as

H1

F(qo)- F(ql)< T (118)

Ho

or equivalently,

H1

F(qo)- T F(ql).

Ho

Now, since F (q ) is monotonically increasing,

H1

F-'(F(qo) - T) > q 1-

Ho

Finally, since

q1 =xHO lx -2Re(SHO-lX) + sHO-lS

= q- 2Re(sH4-lx) + sHVls (121)

substitution in Eq. (120) yields

H1

2Re(S H IX) > q0 - F-'(F(qo) - T) + sH4r-ls.
Ho

(122)

The optimal test is seen to be equivalent to a matched filter compared to a data-dependent threshold.
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6.2 Generalized Likelihood Ratio Detector

Normally for the radar detection problem, the complex signal amplitude of the desired signal vec-
tor is unknown to the detector. If unknown parameters are present in the LR detector, a scheme
known as the generalized likelihood ratio test (GLRT) is commonly used whereby the unknown param-
eters are replaced by maximum likelihood (ML) estimates under each hypothesis (Van Trees 1968). In
this section, the GLRT for detection of a signal with unknown complex amplitude in additive noise
modelled as described earlier is derived.

Set s = as 0, where a is the unknown complex amplitude of the desired signal s and so is
known and has magnitude one, i.e., I Is0 11 = s H s0 = 1. The GLRT for this problem is thus given by

X ) FM m((X s O) 4 1 (X -as O)) (123)

where

d = arg max F.((x - as O)H -1 (x - as0)) (124)
a

is the maximum likelihood estimate of the complex amplitude a. As usual, the maximum of Fm with
respect to a can be found by setting dFm Ida = 0 and solving for a. With

= (x - aso)Hblr 1 (x - aso), this derivative may be written as

dFm dFm d 1 (125)

da dp da

From Eq. (107), one may show

dFm 0

(13) =-fI e t dFI(c). (126)

dF~
Because Fx(t) is nondecreasing it follows easily that d < 0. Thus, the solutions of interest here

require d = 0. Only one such solution exists and is given by
da

a(X) = -1 *(127)
Soo-'so,

An interesting aspect of this particular result is that it does not depend on the nature of the CDF
F,(t). Substitution of this result into the GLRT in place of a yields
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X(X) F F(XF 1 -lX (1 - Ip 12)) (128)

Fm (xH rIiX)

where I I denotes magnitude, and

JpJ2 ~IsO H Oz-1X 12
IpI2- (XH-lx)(SoH 1> 50)(129)

It follows from the Schwartz Inequality that 0 < Ip I < 1.

If this estimate of the unknown complex signal amplitude is substituted into the matched filter
interpretation of the LR test, the result is easily shown to be

Is 0Hor-lx 12H,

HIO -i < qO - F1(F(qo) - T). (130)s 0H4s 0 H0

This structure is again seen to be a relatively simple structure compared to a data-dependent threshold,
where this same simple structure is compared to a fixed threshold if the noise is Gaussian. In this
interpretation, the effect of deviating from Gaussian noise is to induce a variability in the setting of the
threshold.

6.3 Equivalent GLRT

If (I is nonsingular, then there exists a nonsingular matrix A such that the effect of processing
the input vector x by A is to whiten the input noise vector, normalize the input noise power of each
element in the input noise vector to one and

Aso = ((sOct) sO)112, 0, . O)T = go (131)

(Horn and Johnson 1985). Note that all of the desired signal energy has been placed into the first ele-
ment by the matrix transform. Thus if u = Ax, then under Ho

E[uuH] =Im (132)

where Im is the m x m identity matrix. Transforming the input vector by the nonsingular matrix A
does not change the statistical properties of the GLRT of the preceding section. Under this transforma-
tion, the GLRT becomes

X - ., ( ( - ) (133)
Fm (U1 U)
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where

-= I2Ilu 1
2 (134)

(UHu)(9 0 No) £=n 12

n=1

The GLRT finally becomes

m 1u,2 )
Fm( ' unl2

X(U) = (135)

Fm( mIUn 12)
n=1

Figure 5 shows a functional block diagram of the equivalent GLRT. In this figure, T is the detector
threshold.

PLACE ALL
x WHITEN Y SIGNAL u * EISION

> I N PUT , _ ENERGY A(U)
INTO

FIRST CHANNEL

Fig. S - Equivalent Detector

6.4 Performance Assessment of Detector

This section presents closed-form solutions for the probabilities of detection PD and false alarm

PF associated with the GLRT presented earlier. The desired signal amplitude is assumed to fluctuate
statistically as a complex circular Gaussian process with input power equal to aY2 (Helstrom 1968).
As a result, the desired signal magnitude is Rayleigh distributed with variance as2. Under the H,
hypothesis, the signal after the A matrix transformation is contained entirely in the first element or
channel and is also a complex circular Gaussian process with power equal to 6S2 = so Ho-lSo S 2

Note that at this point in the processing (after the A matrix transformation), the output of the first
channel is the matched filter output. The signal-to-noise (SIN) ratio associated with the matched filter,
denoted (S/N)opt, can be expressed as

(S/N)0 ,P = as2 so0 H as 0 . (136)
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and

We now analyze the statistically equivalent GLRT presented earlier. Let

w = 1u1 12

v = M iUn 12.

n=2

(137)

(138)

Note that the random variables u 1 12 , Iu2 12, . . ., lUm I2 when conditioned on IC are statistically
independent. Thus, w and v when conditioned on X are statistically independent. Furthermore, under
Ho or H 1, un (n = 2, . . . , m) are i.i.d. circular Gaussian random variables with variance equal to
'C. It is straightforward to show that v when conditioned on 'C under Ho and H1 has a 2(N - 1) chi-
square PDF (Papoulis 1965) with a2 = 0.5 and is given by

V

(139)fV r(V I NC) = 1 VN 2 e -)
,N'N- 2)!

where f ( 1X) denotes that the PDF is conditioned on T.

Under Ho, U1 is a complex circular Gaussian random variable with variance equal to IC , and
under H1 , it is the same except the variance equals i + C. Thus, w has an exponential PDF with

fw l(w 1XC) =

w:1 

1 e 1+ 
As2 +

Ho
(140)

H1 .

The decision rule in terms of w and V is

H1

Fm(V) > T. (141)XFm(w +v) <0
Ho

It was shown earlier that Fm is strictly monotonically decreasing. As a result, T 2 1. Since Fm is
also a one-to-one function, an equivalent decision rule is

H>

Ho
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where Fm.- is the inverse function of Fm. Define P (D Iv, C) to be the probability of detection when
conditioned on v and IC. It is well-known (DiFranco and Rubin 1980) that the conditional probability
of detection of a random variable with exponential PDF and variance AS + C is

To

2+

From Eqs. (136), (142), and (143), it follows that

-- 0 [ Fm-1(Fm(v) / T" -v
PD f f 1J IOf c)expL (SIN)Opt + J dvd'c, (144)

where f (Xc) is specified and fV l(v 1X) is given by Eq. (139).

The PF is found by setting (SIN)opt = 0 in Eq. (144):

Fm-1(Fm(v) / T)-v
PF = | |f0000 (V "of ) expI -vj (145)

0 0

6.4.1 Results

In this section, we present some performance curves of PF and PD for a specific Rayleigh mix-

ture model. The underlying mixing distribution is chosen to be the gamma distribution with PDF
given by

V

fr v)' e (146)

where F is the gamma function, T1 determines the mean of the distribution, and v controls the devia-
tion from Rayleigh statistics. Figure 6 shows curves that describe the behavior of the gamma PDF for
different values of v. As may be seen from the figure, the statistics of the Rayleigh mixture approach
pure Rayleigh statistics as v approaches c. Without loss of generality, 11 is set equal to 1, which
merely normalizes the elemental noise power to a specific value. With this mixing PDF, the statistics
of the univariate magnitude of x under the Ho hypothesis, i.e., the Rayleigh mixture statistics, are

described by the K distribution

f IOx 1x)= 2vlI (lv/)v-'Kv- (2 Ix1) (147)

where Kv is a modified Bessel function of the second kind.
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Fig. 6- The gamma PDF

The PF results are a function of m, v, and T; the PD results are a function of m, v, (SIN)0 pt ,
and PF* In the latter case, m, V, and PF are specified, and a unique threshold T is determined from
Eq. (145). This threshold is then used in Eq. (144) in conjunction with m, v, and (S/N)0 ,P to deter-
mine PD.

For v = cc, this corresponds to fr(c) = 8(r - 1) where 8 is the Dirac delta function. For this
case, the complex input random variables are unconditionally Gaussian, and it is known (DiFranco and
Rubin 1980) that

P= e-T (148)

and

T

PD= e ((SIN),, + 1)

pF ((SIN),, + 1) (149)

Figures 7 and 8 present curves of PF vs In T for V = 1, 2, 10, 30, cc, and m = 2 and 5,
respectively. As expected, PF' is monotonically decreasing in T but the threshold must increase to
maintain a constant PF for an increase in the variance of IC (or equivalently, a decrease in v.) Also
comparison of Figs. 7 and 8 show that for constant PF and v, the threshold decreases for increasing
m.
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Figures 9 and 10 present curves of PD vs (S/N)0 pt for V = 1, 2, 10, 30, cc, PF = 10 , and

m = 2 and 5, respectively. For constant (S/N)opt PD decreases as the variance of C increases. For

m = 2 and for a constant level of PD (in the range 0.1 to 0.9), there is approximately 7 dB difference

in (S/N) 0 ,P from V = 1 to V = co. For m = 5 and for a constant level of PD (in the range 0.1 to

0.9), there is approximately 4.5 dB difference in (S/N) 0 pt from V = 1 to v = -o.
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7. SUMMARY AND CONCLUSIONS

To summarize, the problem of the detection of targets against a background of non-Gaussian,

correlated clutter was studied. The investigation began by returning to the underlying phenomenologi-
cal picture of the physical scattering process and deriving the required statistical model from that start-

ing point. The statistics were obtained through the application of a new limit theorem from probability

theory that was presented and proven herein. This theorem is an extension of the CLT to the situation

in which the number N of random vectors being added together is itself a random variable. Since the

case of nonrandom N may be viewed as a degenerate case of fluctuations, this new theorem includes

the CLT. This theorem was then used to study the problem of modelling the one-dimensional statistics

of clutter amplitude statistics and to formulate a multidimensional model of clutter statistics that incor-
porates correlation between pulse returns. This multidimensional model formed the starting point for

an investigation into the problem of radar target detection against a background of non-Gaussian, corre-
lated clutter.
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The work presented herein raises a number of interesting questions. First, further justification of
this type of analysis to scattering and propagation problems requires

a. rigorous demonstration that number fluctuations occur,
b. demonstration that N is large, and
c. a methodology for determining the PMF of the number

fluctuations from the physics of the problem.

Limited results along these lines are available. For propagation of waves through continuous random
media, Dashen (1987) uses the path integral formalism to draw some conclusions about a and b. With
respect to c, Jakeman (1980) has shown that a birth-death-immigration process for number fluctuations
leads to the negative binomial distribution. In a study of wave propagation through a turbulent atmo-
sphere, Gochelashvili and Shishov (1978) assume the exponential mixture form for the distribution of
intensity. They then obtain the form of Ft (t) from considerations of the spectrum of turbulence.
Through the mechanism of canonical PMF's presented above, a model for Ft (t) may be used to obtain
a model for the PMF of the number fluctuations. Thus the work of Gochelashavili and Shishov sug-
gests that models for the number fluctuations may be obtainable from knowledge of the spectrum for
problems of propagation through random media. Further work is needed for all three questions.

Further work on the limit theorem itself is also suggested. In particular, one would like to know
if the assumption of identically distributed random vectors can be dropped (but still assume indepen-
dence) or if the assumption of independence can be dropped (but still assume identically distributed
random vectors.) Both of the assumptions have been relaxed in the case of the classical CLT, so the
possibility exists that they may also be relaxed here. These results would greatly extend the applicabil-
ity of these ideas to scattering problems.

Finally, an investigation into dynamical models for number fluctuations is needed if the model is
to be extended to describe the radar clutter process, as opposed to the description only of the statistics
of clutter as a random vector, as was done here.

For the detection problem, the interpretation of the optimal detector in terms of the estimator-
correlator structure suggests various approaches to suboptimal implementation of the detector. These
problems are as yet unexplored. Also, the structure of the optimal detector with the proper dynamics
of number fluctuations taken into account remains an open question. Intuitively, one expects the struc-
ture to continue to be that of the estimator-correlator, although at this point this idea is only a conjec-
ture. The detection structure for this problem appears to be a very interesting question.
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