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CONVERGENCE PERFORMANCE OF ADAPTIVE DETECTORS,
PART 2

1.0 INTRODUCTION

The general problem of detecting signals in a background of Gaussian noise for an adaptive
array was addressed by using the techniques of statistical hypothesis testing [1]. In Ref. 1, the prob-
lem is formulated as a binary hypothesis test where one hypothesis is noise only and the other is sig-
nal plus noise. A given input data vector (called the primary data vector) is tested for signal pres-
ence. Another set of signal-free data vectors (called the secondary data vectors) is available that
shares the unknown covariance matrix M of the noise in the primary data vector. A likelihood ratio
decision rule is derived, and its performance is evaluated for the two hypothesis.

Kelly's detector [1] uses the maximum likelihood (ML) estimates for the unknown parameters of
the likelihood ratio test kLRI). Tne unknown parameters are the spatial covariance matrix and the
unknown signal's complex amplitude (assumed in Kelly's analysis to be a nonrandom constant). This
detection scheme is commonly referred to as the generalized likelihood ratio test (GLRT) and is
referred to here as such.

Convergence results for PD and PF are presented in Ref. 1. Expressions for PD and PF are
derived that are a function of the number of statistically independent secondary data vectors; the
number of input channels N; the detector threshold; and the input signal-to-noise (S/N) power ratio.
Note that PA did not depend on Al (a statitisal meansire nf the externnl nnise envirninmornt\ T-ire-rA

this detector exhibited the desirable constant-false-alarm-rate (CFAR) property of having the PF be
independent of the covariance matrix. Additional research in the area is contained in Refs. 2 through
5.

A mean level adaptive detector (MLAD) is a more easily implementable adaptive detection
scheme. The MLAD is essentially an adaptive matched filter (AMF) followed by a mean level detec-
tor (MLD) [6,7]. Input samples used in determining the MLD threshold are derived from a block of
data passing through the AMF. The squared magnitude of each of these same samples as processed
through the AMF is used as a test statistic and is compared against an MLD threshold (an average of
the instantaneous powers) that does not contain the given test statistic sample. We further clarify .the
implementation terminology by calling this an MLAD with concurrent data samples. In Part 1 of this
report [8], an analysis is performed for an MLAD with nonconcurrent data; i.e., the MLD test
statistic is derived from a set of data that are statistically independent of the test statistic of the pri-
mary data vector.

Here we compare the detection performance of the two detection schemes: GLRT vs MLAD.
ror this analysis, we assume that the complex, desired signal amplitude is a complex, zero-mean
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Gaussian random variable (RV) of unknown variance with independent and identically distributed real
and imaginary parts (the magnitude of this amplitude is Rayleigh distributed). Under the GLRT, we
would have had to reformulate Kelly's detector with the variance of the unknown signal amplitude as
an unknown parameter and find the ML estimate of this quantity. This is mathematically tedious. In
lieu of implementing this new GLRT, we chose to evaluate Kelly's GLRT as it is defined in his
paper. As noted by Kelly, no optimality properties are claimed for this test. The form of the test is,
however, reasonable.

2.0 GENERALIZED LIKELIHOOD RATIO TEST (GLRT)

2.1 Detector Form

Kelly [1 gives a mathematical formulation of the adaptive detection problem that leads to the
GLRT. We now summarize that formulation. Two sets of input data-primary and secondary-are
used. We assume that the secondary inputs do not contain the desired signal. Set

X = N x K matrix of secondary input data. The nth row represents the K samples of data on
the nth channel, where n = 1, 2, ... , N. The samples in the kth column are assumed
time-coincident, where

x is the primary data vector of length N and

s is the desired steering vector of length N.

Consider the two hypothesis

Ho : x = n

HI: x = n + a s,

where H0 is the noise only hypothesis, n is a noise vector of length N, and H, is the signal-plus-
noise hypothesis, where a is the unknown, complex signal amplitude. We assume the following:

(1) Input noises are complex, zero-mean stationary Gaussian RVs. The real and imaginary
parts of a given input noise sample are independent and identically distributed (1ID) with
respect to each other. An RV with these characteristics is called a circular Gaussian pro-
cess.

(2) Input noise samples are temporally statistically independent.

(3) The secondary data is statistically independent of the primary data.

(4) The desired signal is present in the primary data vector. It is not in the secondary data.

The GLRT is formulated as follows. Find the probability density function (PDF) under each
hypothesis over all measured data. For this problem, this is straightforward since the sample vectors
are assumed to be independent and each vector has an associated N-dimensional Gaussian PDF. If

2
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there are any unknown parameters, maximize he PUiF of Lhe Inputs UverIl dli UIJilUWL paiailluiwtc iui

each of the two hypothesis. The maximizing parameter values are, by definition, the ML estimators
of the parameters. Hence, obtain the maximized PDFs by replacing the unknown parameters by their
ML estimates. Find the ratio of the resultant maximum of PDFs (the ratio of the PDF under HI to
the I LDA And- ) Uflen thLis ratio to see if it exceeds a preassicgnen threshold tg

Kelly shows that the GLRT for the adaptive detection problem is given by

|sH l XI 2 HI

where

K= X H (2)

and H denotes the conjugate transpose matrix operation. We recognize Rt as proportional to the ML
estimate of the input covariance matrix. We note also that the desired signal's unknown complex
amplitude a has been estimated and is accounted for in Eq. (1).

2.2 Statistically Equivalent GLRT

Here we derive a statistically equivalent GLRT that allows us to formulate simply the detection
and false alarm probabilities of the adaptive detector. As in Refs. 1 and 9, we can matrix transform
the input vectors by an N x N matrix A, which has the properties that the input noise vectors are
spatially whitened, each input element has noise power normalized to one, and

As = (0,0, * 0, (sH M' s)1/2) = so, (3)

where all of the desired signal has been placed into Nth channel (note in Ref. 1, the signal was placed
into the first channel; for analysis purposes, we place the signal into the Nth channel).

In addition, set

z = Ax, and (4)

Z = AX. (5)

The elements of vector z (under Ho) and the elements of the vectors representing the columns of Z
(each column represents the transformed secondary data across the array at a given instant of time),
are now spatially independent with each element having power equal to one. As shown by Ref. 1,
the transformed GLRT is given by

3
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ISH ^' ZI 2

H -I H +Z (so R, so)(I+ FR~z )

RZ = ZgH

HI

Ho
(6)

(7)

We note that if Q is any K x K unitary matrix (i.e., QQH = 1K where 1K is the K x K iden-
tity matrix), then

= H QZQQH ZH (8)

In the forthcoming development, we will transform Z by a series of unitary matrix transforms that
zero many of the elements of Z. This development is similar to that of Rader and Steinhardt [101.

Set Z = (4>- Z0 . We can show by construction that there exists a K x K unitary matrix
*0 such that

Zo * 0 = Z, -

Y51

ZWl

ZW}l

0

Ziy

Z W?

... 0

.,. ZDl

... zW,

4B z%

(9)

where *0 is a function of only zrk) k = 1, 2, . . ., K, and

11= Ll I zlq) I12 (0)

Note that after this transformations Rz is dependent only on the RVs, YtB, zn) n = 2, ... � N,7
k = 1, 2, . . , K. Hence, we have reduced the total number of RVs on which RZ is dependent by
K - 1. In addition, yii is statistically independent of the zVU and the elements of the second
through Nth rows are statistically independent with each element having a power equal to one. (This
follows because a vector of lID-complex, circular Gaussian RYs is the same statistically after
transformation by a unitary matrix). We note that y has a X PDF of the order 2(K - 1) with
C = 0.5.

4
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Furthermore, there exists a K x K unitary matrix *I such that

Z2 = Z[8;}

1 0

81 O t1 ,

0 0
Y22 0

Z2W zAw

Z%zWŽ z2 ... 

(1 1)

(12)

(13)

where 4E is a (K- 1) x (K-1)
k 2, 3, ... K, and

unitary matrix whose elements depend only on z212

Y, = 1i2

Y22 = ~yI-

Again, note that we have reduced the number of RVs on which Rz depends
of Z2 are independent. The z}', i = 1, 2 are IDI) circular Gaussian RVs
and Y22 is a X PDF of the order 2(K - 2) with 92 = 0.5.

Also, all of the elements
with power equal to one

This procedure can be reiterated so that the final, transformed matrix is given by

ZN = [ZN Io,

where ZN is an N x N matrix defined as

ZN =

Y11

Zyi)

0

Y22

z 22

0

0

Y33

ZN&1 z% z$% YNIV

5
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(15)
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We note that the N + I through Kth columns of ZN1 are zero-filled and are denoted bY 0. Hence. RZ
only depends on theN(N + 1)/2 RVs. All of the elements of ZN are statistically independent. The
z(, i = 1. 2, ... , N - 1 are 1ID circular Gaussian RVs with power equal to one and
yh,,n = 17 2, 2. - . N is a X PDF of the order2(K - n) with/ o = 0.5. Thus,

kz ZI = Z NZN. (17)

We perform one last matrix
matrix transform B, such that

transform on the input data. We multiply z by an N x N unitary

B' O
B O I ,

Bz =

0

0

A

VI

V2

e ZB7

(18)

(19)

(20)

= [It : ~ zn~/2

VI = i iZnl 7

and

V2 = ZN, (21)

where B' is an (N - 1) X (N - 1)
then

unitary matrix. We note that Bsg = so, and if we set 4 = BZ,

and

zH k )Z = ZH R Zfl

6

o P2 _S = 12H SIZ_ ._O(J "Z Z
0

- 00 ARz6 ZB,

OH iz Z= I h B'Z (22)
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where RZB = ZB Z1. The statistical properties of Z8 are identical to Z and, hence, ZB can be
reduced as given by Eqs. (15) and (16). We point out that v1 and V2 are independent and that v, is a
circular Gaussian RV with its power depending on the given hypothesis (under Ho, the power equals
one), and v t is a X PDF of order 2(N - 1) with a2 0.5.

As a result of the transformations of the input data, we see that Eq. (6) can be rewritten as

SH ( _" Ht
s (ZNZ)1 ZB I2 >H3

H (N IH - CH -I <
[SO (ZN Zt' SOl [1 + Z4 (ZN ZN) Z1] H2

Define uII = YN - 1,N-l U 22 YNN,U21 = ZX(N&)I'

U= 2 [:: £22]'

v (v 1 , v2 )T, and 10 = (0, 1)T. It is straightforward to show that Eq. (23) is equivalent to

I lI (UUH)- VI 12 HI

(1& (UUH) lo) [1 ± vH (UUH)-I vi < (24)
Ho

In going from Eq. (23) to Eq. (24), we have taken advantage of the fact that if C is a nonsingu-
lar N x N lower triangular matrix that is partitioned as

(-I . U12
-= C2 I C2 2 j

where C22 is a n x n matrix, and

C-i= C1 C22

where C22 is a n x n matrix, tnen c C= 22'.

Now

TUH)-I I01(UU) lo = 2j-,(25)
U22

1 R /rT l U)V - 2 [ 1 U21 V <IJ 1 Q LjJU ) Vj 2I IU4 1V2(26)

7
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and

V (UU2 2 -UIV2 - V21 VI 2 + u 2 V1] * (27)

By inserting Eqs. (23) through (27) into Eq. (24), we show that the GLRT is equivalent to

HI

luII v 2 - v 2 u2 1 2 > (U21 + vj2) u 22T, (28)

Ho

where

T= l . (29)

2.3 Probability of Detection

Under the HI hypothesis, we assume that the desired signal's amplitude (or magnitude) is Ray-
leigh distributed and that the signal's phase is uniformly distributed between (0, 27r). This implies
that the desired signal itself is a complex circular Gaussian RV; therefore, let the desired signal's
input power-per-channel before any matrix transformation be equal to a,. After the A matrix
transformation (whitening and placing the signal into the Nth channel), the signal power in the Nth

channel is as = , sH M-1 s. Thus under HI, v2 is a complex circular Gaussian RV with power
equal to a 2 + 1, where the 1 represents the noise power-level-per-channel after the A matrix transfor-
mation. Also, u2 1 is a complex circular Gaussian RV with power equal to one. We can rewrite Eq.
(28) as

HI

x T', (30)
Ho

where

Ull V2 - VI U2 1

(u 12 (2 + ) + vI(31)

u21 + V2

u2 2 1)+ 2 (32)

It is straightforward to show that a, when conditioned on u l and v , is a complex circular Gaussian
RV with power equal to one. It is well known [11] that the conditional probability of detection is
given by

8
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p(fl 17 .i 2 1) = e - T = exp + 21 + Tir 1ut 12+l) +vf T
l II ((Ys + 1) + Y2J

where P(D I - ) denotes the conditional probability of detection.

We set

U- 2 2 ,22 

tt == U 1 12

v = 7, and

r =-.

P(D I r,) = exp IT 2 + rT

The PDFs of -q,A, and N are X2 of order 2(K - N + 1), 2(K - N +
,nithn2 -= o R. znd zr g I. - V.D, UWIG MCL IVCII Uy

P, (-q) = (K- I 7 K-N e -

2), and 2(N - 11, respectively

, 7 Ž 0, (39)

PRt(tL) = - 1 K K-N+1 e - 0 (40)

and

p (V) = (N - 2)! PN2e-" v > O. (41)

By using the elementary probability theory, it is straightforward to show that

p,(r) = 1 2 P5v0)P . F< dO.0 r ~~~~rI ~K
(42)

By inserting expressions for p,, and p , as given by Eqs. (40) and (41), respectively, and by simplify-
ing results in

9
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(34)

(35)

Then Eq. (33) becomes

(36)

(37)

(38)
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p (r) = - 1! !_ N-2 1 ,r >Ž O
(N -h 2)! {K N t 1)! (I + r)K+' (43)

If we set q = I/ (I+ r), it is straightforward to show that

p(N-q2= -! -) (_!)N2 qK N +1 op() N - 2)? (K - N + 1 lq)-q , q•1 (44)

which is the PDF derived by Reed et al., [91 for the normalized instantaneous S/N power ratio that
results if the sampled matrix inversion (SMI) algoriffim is used. By substituting q for r in Eq. (38)?
we obtain

p(D t q,) = exp I j + 1T. (45)

P(Diq) = I 
0

I j K-iV exp - I + T
(K -N)! L qu ±

-(K-+i)

(46)= 01+ -T
q qa2 + I[ iS

or

r I -(K-N+I)

PD = 1N- -K! I1+ T t N-ty-2 qK-N0 ldA

opt

(47)

where u2 = (S/N)0 ,t. We note in Eq. (47) that we have replaced a2 with (S/N) 0Pt, where (S/N).,t
is the optimal (S/N) output power ratio of the matched filter (K = co). We can write this in this way
because the output noise power of the Nth channel has been normalized to one and the output of the
Nth channel is the optimal matched filter output.

2.4 Probability of False Alarm

The probability of false alarm PF is easily found from Eq. (47) by setting (S/N)0 ,, = 0. It is
found that

I
PF=(T +l)KN + 1

An equivalent expression for PF as given by Eq. (48) was also derived by Refs. 1 and 4.

10
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2 aSVANJ TCLJVT A nAPTTVF nDREWTflTR (MTAf)

3.1 Detector Form

An intuitive form of adaptive detection is found by implementing MLAD. Figure 1 shows that
the MLAD is essentially an AMF followed by an MLD. The MLAD is designed to perform detec-
tions over a block of data by using just this block of data in determining the AMF weights and the
MLD threshold. The MLAD works as follows. Let there be N channels and K + 1 samples per
channel. Define

x as the primary N-length data vector,

Xk as the secondary N-length data vectors, k = 1, 2, .. ., K,

Xaug as the (x I X) augmented N x (K + 1) matrix of input data, and

Ro as the Xaug X 8ug

SENSORS

W 2H *X) .. . WN I ADAPTIVE
MATCHEDI ; r _ . _ I . FILTER

Fig. I - Mean level adaptive detector

11
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The N-length weighting vector w for the AME is found by the SMI algorithm and is given by

w =R 0 S. (49)

This weight is used in the detection rule given by

HI

W x < E TX12 (50)
k -I

Ho

where To is chosen to control the false alarm probability. We see that Eq. (49) is the algorithmic
representation of the AMF and Eq. (50), the MLD.

1NoUe that we a14-ve p11el.UU theLC Ptiltlty Uiata VCLtoU Itlt LJAO CetiJtatL ttu, Ihen iLL tMr Wv esti-
mate. In a practical situation, this might be done since it is more numerically efficient to compute
one weighting vector over the entire data block than it is to compute a distinct weighting vector for
each point in the block. However, the presence of the desired signal (under HI) will affect detection.
lin E4. u), the priUary UWIL4 VecLtoU is Varicu acrotssth 1C T I U414 Na pmluou, wihcir LIJC )k ubvu Ulf

the right side of Eq. (50) does not include a selected primary data vector.

It is straightforward to show that

ToE w Xk + To j Xlz=To sRo s. (51)
k =I

Thus Eq. (50) is equivalent to

HI

, L'' C< To I T1, (52)
H0Ho

where we note that 0 s T1 s 1.

Now we can write

Ro = R, + xx', (53)

where RI XXTM . By using the matrix inversion lemma [121 and after some simplification, we can
show that

12
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ISH A; I I1

5 H 4 S - 1S Rx S - - k x- (54)

SH Ro x l -7 (55)

and

1 +x'R (56)

By substituting Eqs. (54) through (56) into Eq. (52), the equivalent detection rule becomes

H1

|H 1xX 2 > [(SHRXIS)(1 +FXHRX)2 + sHRXX2(1 +xHRxx)]. (57)

Ho

3.2 Statistically Equivalent MLAD

We make the same assumptions on the input distributions and statistics as given for the GLRT
discussed in section 2. Hence, we can use the matrix transformations here that were used to
transform the GLRT analysis into a simpler problem. Specifically, we can show that the test given
by Eq. (57) is statistically equivalent to

H1

I IT (UUH) I v 12 > T1 l', (UUf) 1 lo (1 + v14 (UU 1 1 iv)

Ho

+ l(UU) v 1 2 (I + VH (UH v)2] (58)

where in Eq. (57) we have replaced sH 14 x with 1R (UU)v, s' s with 1o (UUH7I 1o,
and x1 RX x with x" (UUAy v. The quantities U and v are defined in section 2. Equations (25)
through (27) give expressions for Io (UU") ' lo, [Io (UUH)- vi 2, and vH (UUu)- 1 v, respec-
tively. If these are substituted into Eq. (58), after somewhat extensive simplification, the following
detection rule results

H1

UIV2 - V 1 U21 2 - T1 I I + IC + J U i2 TI. (59)

13
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We note for T1 > 0, that if

I - T Lt + + • 0,
then Ho is declared.

3.3 Probability of Detection

Again under the HI hypothesis, we assume that the desired signal is a complex, circular Gaus-
sian RV (the amplitude is Rayleigh distributed). As in our analysis of the GLRT,

or2 - SI .1 Assume E. (60) is not true. We can write the decision rule given by E. (59)
as

HI

1at < T

Ho

where
a =

ttjl V 2 - VI U2 1

(61)

(62)
(UII (c S + 1) + VIt) I

(60)

AT = (q-T- )(- 41. -.',
(q - TI) (q o,, + 1)

(613)(I-,

-q is defined by Eq. (34), and q (1 + rf 1 . As before under H1 , v1 is a complex, circular Gaus-
star fL.v wiLi power equal] to U + 1, Ind £421 is U11 3aLiI0 WiuI PUWer VMu'a tu uneu. iuiu'Lzi£±L, I

is the same with power equal to one. Thus

ro if q •T 1P(D aq. = ) if q
--e otherwise.

(64)

The PDFs of q and q are given by Eqs. (39) and (44), respectively. After some simplification, we
find that

PD = J J' P(lD q,i?)p,1 (I)p9(q)dqdq

r

= i ~ K! 1

IT, (N-2)!(K--N+D)!

L

1 -(XK-N+1)

\.2 - ' C LNJ o j

(1qN-2qX-N+Idq, (65)

where L N

opt

and

= a2

14
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I2 A 0 .C Un1-. Alnr-n,
o.Y I ouuauulify 'fJ ralse Alna xi

The PF is found by setting (S /N) 0 p, = 0 in Eq. (65). The following equation results:

I VK F = ] -(K-N+4)(N -2)!(K- N +1)! [1 q-TIj (1 - q)N-2 qK-N+dq.

If we change the integration dummy variable to Q0 = (q - T,)i(1 - TI), Eq. (66) reduces to

P= (1 - T ). (67)
iA D l'CtkTT TT

Here, we present results on the detection probability PD for the GLRT and MLAD vs the
independent parameters: the probability of false alarm PF; the steady state (K = co) S/N output
power ratio of the matched filter (S/N).: the number of independent samnles ner channel K of the
secondary data; and the number of input channels N. We set K = MN, where M is a positive
integer, and M is an independent parameter called the degrees of freedom (DOF) factor. Figures 2
through 17 show plots of PD vs (S/N),pt for PF = 10-6, 1t-' 0 , N = 2, 5, 10, 30, and the two
detection schemes.
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Kelly [11 defines the (S/N) loss of an adaptive detector as the difference required to obtain a

given PD between a steady-state (M = o) detector and the transient state with all other independent

parameters being equal. We note that as K - oo (or M - oo), the GLRT and MLAD are identical
and, hence, their PD performance is identical. We define M3 dB to be the DOF factor such that the

(S/N) loss is nearest to 3 dB. For both the GLRT and MLAD, we make the following observations
from Figs. 2 through 17.

(1) Both detectors are slower to
ordered matched filters.
Pns (0,1 - 0.9), PF = 10-6,

converge to their optimal
For example, for

if N 2, then M3dB =6,

value (M = Xo) for the lower
the GLRT for most

if N=30, M ds = 2.

(2) There is a diminishing return in convergence by using a larger DOF factor, i.e., there is

more improvement in performance in going from M to M + 1 than M + 1 to M + 2.

(3) Convergence slows for decreasing PF. For example, for the MLAD for most
PF (0.1 - 0.9) and N = 5, if pF = 10-6, then M3d = 5; if PF = 1010, then
M3dB = 6.

We note that these trends were also observed by Kelly 111 for the GLRT, where the signal is modeled
as having a constant amplitude.
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In comparing the GLRT with the MEAD, we make the following observations from Figs, 2
through 17:

(4) The PD performance for the GLRT is always superior to the P1 performance of the
MLAD with all independent parameters being equal between the two detectors.

(5) For low DOF factor (M - 2, 3), the GLRT has much better Pa performance than the
MLAD with all other independent parameters being equal between the two detectors. For
example, if N - 2, PF -10-, (S/N)0o = 30 dY, and M = 2 for the two detectors,
then for the GLRT, P, - 027 and for the MLAD, PD= 0.09.

(6) The M3 dB for the GLRT and MLAD are approximately the same with the greatest differ-
ence occurring for low DOF factors (N = 2)W For example, for most
PDS (0.1 - 0.9), pF = 10-6, if N 2,then M3d = 6 for the GLRT and M3 =-7
for the MLAD. For the same case but N = 30, the M 3 d is identical for both the GLRT
and MLAD.

The GLRT outperforms the MLAD because the MLAD's MLD samples w xk, k = 1, 2, . , K are
being contaminated by the desired signal in x since w is computed by using a sampled covariance
matrix R 0, which contains the desired signal in some form. This results in an increased average
power in the MLD's samples, which results in an increase in the MLD's threshold, which results in
fewer detections. The increase in the residue power in the range cells (for the radar problem) around
the primary range cell because of signal contamination was also reported in Lewis and Kretschmer
[13j and Gerlach 1141.

Of the three comparisons between the GLRT and the MLAD, observation (6) above is possibly
the most significant. As we will show in section :5 the OLRT reqnirepr mnre numerical conrmpruti.ons ton
implement than the MLAD. However, as we note from the observation (6), the required number of
samples will be approximately the same for both detector schemes in order to have only a 3 dB S/N
detection loss.

5.0 COMPUTATIONAL CONSIDERATIONS

Here we briefly compare the computational requirements for the MLAD and GLRT detection
schemes. FiRt we considier the ll PT We mntdifv thi fnrrm oivpn ho, E I (1X Me-%,

, = O X X H) Ro + _ I (68)
1 -sx Ro x

If the expression on the right-hand side of Eq. (68) is substituted into Eq. (1) for R , after some
simplification, the GLRT detection rule becomes

= I s-k-xw __ I ._ _ __>_1 H k-1 t~~ C, (69)
sR 0 NH1- R0 x)11 o
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where t' = t/(l -t). If we compare this equivalent form of the GLRT to the MLAD form as given
by Eq. (52), we see that the GLRT test statistic is merely the MLAD test statistic multiplied by
(1 - xH R 0 X)-. It is straightforward to show that 0 s 1 - xH Ro x c 1, and thus the GLRT's
test statistic is always greater than the MLAD's test statistic under Ho or H1 .

We see that it is the additional computation of 1 - xH0 x for the GLRT that is the major
computational difference between the two detection schemes. There are many schemes for imple-
menting the adaptive matched filter in open-loop fashion: SMI, Gram-Schmidt, Givens rotation,
Householder, etc., combined with a block processing or sliding-window technique (of which there are
many variations). No efficient method has been proposed in implementing the GLRT, although a
variant that uses the normalized, fast orthogonalization network described in Refs. 15 and 16 could be
used to compute R0 x and, thus, V' 1% x. However the implementation complexity of this
scheme is significantly greater than that of the AMF. The efficient implementation of the GLRT is
left as a topic of future research.

6.0 SUMMARY

Two schemes for adaptive detection have been analyzed and compared: Kelly's GLRT and the
MLAD. Detection performance P,, was predicted for the two schemes under the assumptions that the
input noises were Gaussian random variables that were temporally independent but spatially corre-
lated, and the desired signal was Rayleigh distributed. PF, was computed as a function of the false
alarm probability, the number of input channels, the number of independent sampies-per-channel, and
the matched filtered output S/N power ratio.

In this analysis, the GLRT was shown to have better detection performance than the MLAD.
The difference in detection performance increases as one uses fewer input samples. However, the
required number of samples necessary to have only a 3 dB detection loss for both detection schemes
is approximately the same. This is significant since for the present, the MLAD is considerably less
complex to implement than the GLRT.
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