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CONVERGENCE PERFORMANCE OF ADAPTIVE DETECTORS,
PART 2

1.0 INTRODUCTION

The general problem of detecting signals in a background of Gaussian noise for an adaptive
array was addressed by using the techniques of statistical hypothesis testing [1]. In Ref. 1, the prob-
lem is formulated as a binary hypothesis test where one hypothesis is noise only and the other is sig-
nal plus noise. A given input data vector (called the primary data vector) is tested for signal pres-
ence. Another set of signal-free data vectors (called the secondary data vectors) is available that
shares the unknown covariance matrix M of the noise in the primary data vector. A likelihood ratio
decision rule is derived, and its performance is evaluated for the two hypothesis.

Kelly’s detector {1] uses the maximum likelihood (ML) estimates for the unknown parameters of
the likelihood ratio test (LRT). The unknown parameters are the spatial covariance mairix and the
unknown signal’s complex amplitude (assumed in Kelly’s analysis to be a nonrandom constant). This
detection scheme is commonly referred to as the generalized likelihood ratio test (GLRT) and is

referred to here as such.

Convergence results for P and Pp are presented in Ref. 1. Expressions for Pp and Py are
derived that are a function of the number of statistically independent secondary data vectors; the

number of input channels N; the detector threshold; and the input signal-to-noise (S/N) power ratio.
Note that Py did not depend on M (a statistical measure of the external noise environment). Herice

LR e o8 L) R 2lallallibnl AT VR AR sheanadaa AaRFASL ARV RAVallx A LAy

this detector exhibited the desirable constant-false-alarm-rate (CFAR) property of having the Py be

independent of the covariance matrix. Additional research in the area is contained in Refs. 2 through
5.

A mean level adaptive detector (MLAD) is a more easily implementable adaptive detection
scheme. The MLAD is essentially an adaptive matched filter (AMF) followed by a mean level detec-
tor (MLD} [6,7]). Input samples used in determining the MLD threshold are derived from a block of
data passing through the AMF. The squared magnitude of each of these same samples as processed
through the AMF is used as a test statistic and is compared against an MLD threshold (an average of
the instantaneous powers) that does not contain the given test statistic sample. We further clarify the
implementation terminology by calling this an MLAD with concurrent data samples. In Part 1 of this
report [8], an analysis is performed for an MLAD with nonconcurrent data; i.e., the MLD test
statistic is derived from a set of data that are statistically independent of the test statistic of the pri-
mary data vector.

Here we compare the detection performance of the two detection schemes: GLRT vs MLAD.
For this analysis, we assume that the complex, desired signal amplitude is a complex, zero-mean
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KARL GERLACH

Gaussian random variable (RV) of unknown variance with independent and identically distributed real
and imaginary parts (the magnitude of this amplitude is Rayleigh distributed). Under the GLRT, we
would have had to reformulate Keliy’s detector with the variance of the unknown signal amplitude as
an unknown parameter and find the ML estimate of this guantity. This is mathematically tedious. In
lieu of implementing this new GLRT, we chose to evaluate Kelly’'s GLRT as it is defined in his
paper. As noted by Kelly, no optimality properties are claimed for this test. The form of the test is,
however, reasonable.

2.0 GENERALIZED LIKELIHOOD RATIO TEST (GLRT)
2.1 Detector Form

Kelly 1] gives a mathematical formulation of the adaptive detection problem that leads to the
GLRT. We now summarize that formulation. Two sets of input data—primary and secondary—are

used, We assume that the secondary inputs do not contain the desired signal. Set

X = N x K matrix of secondary input data. The nth row represents the K samples of data on
the nth channel, where n = 1, 2, ... , N. The samples in the kth column are assumed
time-coincident, where

x is the primary data vector of length N and
5 is the desired steering vector of length N.

Consider the two hypothesis

Hy:x=n+as,

where Hy is the noise only hypothesis, n is a noise vector of length ¥, and H is the signal-plus-
noise hypothesis, where a is the unknown, complex signal amplitude. We assume the following:

(1) Input noises are compiex, zero-mean stationary Gaussian RVs. The real and imaginary
parts of a given input noise sample are independent and identically distributed (11D} with
respect to each other. An RV with these characteristics is called a circular Gaussian pro-
cess.

{2) Input noise samples are temporally statisticaily independent.

{3) The secondary data is statistically independent of the primary data.

(4) The desired signal is present in the primary data vector. It is not in the secondary data.

The GLRT is formulated as follows. Find the probability density function (PDF) under each
hypothesis over all measured data. For this problem, this is straightforward since the sample vectors
are assumed to be independent and each vector has an associated N-dimensional Gauvssian PDF. If
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there are any unknown parameters, maximize the PDF of the inputs over all unknown parameters for
each of the two hypothesis. The maximizing parameter values are, by definition, the ML estimators
of the parameters. Hence, obtain the maximized PDFs by replacing the unknown parameters by their

ML estimates. Find the ratio of the resultant maximum of PDFs (the ratio of the PDF under H; to
nad thrachnld ¢

tha DYE nymdar IF 0 Thanly thic ratia tn cea iF it avepade 2 nraaccio
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Kelly shows that the GLRT for the adaptive detection problem is given by

~ H
-1 1
|SHRx x|2 >

Hp~! Hp ! <
("R, 8)[1l +x" R, x| Hy

t, 1)

where

~
n v H

R, = XX~

—
[\
p—

and H denotes the conjugate transpose matrix operation. We recognize R, as proportional to the ML
estimate of the input covariance matrix. We note also that the desired signal’s unknown complex
amplitude @ has been estimated and is accounted for in Eq. (1).

2.2 Statistically Equivalent GLRT

Here we derive a statistically equivalent GLRT that allows us to formulate simply the detection
and false alarm probabilities of the adaptive detector. As in Refs. 1 and 9, we can matrix transform
the input vectors by an N X N matrix A, which has the properties that the input noise vectors are
spatially whitened, each input element has noise power normalized to one, and

As = (0,0, - - - 0, " M1 51/ = g, (3)

where all of the desired signal has been placed into Nth channel (note in Ref. 1, the signal was placed
into the first channel; for analysis purposes, we place the signal into the Nth channel).

In addition, set

z = Ax, and 4)
Z = AX. (5)

The elements of vector z (under Hy) and the elements of the vectors representing the columns of Z
(each column represents the transformed secondary data across the array at a given instant of time),

are now spatially independent with each element having power equal to one. As shown by Ref. 1,
the transformed GLRT is given by
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"_ H
!SE})i Rz 1 z|2 >l
H [ | H ~—1 < t’ (6}
(SO RZ So) (} + z Rz 1) HQ
where
R, = ZZH, (M

We note that if Q is any K X K unitary matrix {i.e., oot = Iy where Iy is the K x K iden-
tity matrix), then

R, = ZZ¥ = ZQQH z® (8)

In the forthcoming development, we will transform Z by a series of unitary matrix transforms that
zero many of the elements of Z. This development is similar to that of Rader and Steinhardt [10].

Set Z = (z0) = Z,. We can show by construction that there exists a K X K unitary matrix
¥y such that :

r

yiy 0 L.
Ay 2 ... R
A 2 .. R

ZU ?0 = Z] = . . > (9)

{d&% W ... 2Nk

where ¥ is a function of only 2%, k = 1, 2, ..., K, and
X 12
yu = [2 | 2R 12} ; (10)

Note that after this transformation, R, is dependent only on the RVs, yi;, z&% . n=2 ... N,

k=1,2,..., K. Hence, we have reduced the total number of RVs on which R, is dependent by

K — 1. In addition, y,;; is statistically independent of the z{¥, and the elements of the second

through Mth rows are statistically independent with each element having a power equal to one. (This

follows because a vector of IID-complex, circular Gaussian RVs is the same statistically after

Egansformation by a unitary matrix). We note that v,; has a x PDF of the order 2(X — 1) with
= 0.5.
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Furthermore, there exists a K x K unitary matrix ¥, such that

22 = ZI\FI! (11)
10 1
‘I’l = 0 ‘I’i s ( )
and
_)711 0 0 ... 0 1
2 yn 0 ... 0

Y 2 R .. R

Zy = . ) (13)

—

a2 . i

where W] is a (K~1) X (K—1) unitary matrix whose elements depend only on z5¥,
k=2 3,.. K, and

21 1/2

L . (14)
A

Again, note that we have reduced the number of RVs on which ﬁz depends. Also, all of the elements
of Z, are independent. The z{¥, i = 1, 2 are IID circular Gaussian RVs with power equal to one
and y,y is a x PDF of the order 2(K — 2) with o* = 0.5.

This procedure can be reiterated so that the final, transformed matrix is given by

Zy = [Zy| 0, (15)
where éN is an N X N matrix defined as
i 00 ]
& yp 0
Zg? 2522) Y33
Zy=1 . . . .. (16)

o) 2 N L v

5
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We note that the N + 1 through Kth columns of Zy are zero-filled and are denoted by 0. Hence, I}z
only depends on theN (¥ + 1)/2 RVs. Al of the elements of Zy are statistically independent. The

Z4, i=1,2,...,N—1 are IID circular Gaussian RVs with power equal to one and
Yo = 1,2, ..., Nis a x PDF of the order 2(K — n) with o = 0.5. Thus,
R, =2Zy2Zy = ZyZy. (17

We perform one last matrix transform on the input data. We multiply z by an ¥ X N unitary
matrix transform B, such that

B’ 0
B= g (| (18)
07
.
Bz = = Ip, {19
0
Vi
Y2
N -1 , 1/2
vi= 1Y |z ) 20
n=1
and
Vo = Iy, 21)

where B’ is an (N — 1) x (N — 1) unitary matrix. We note that Bsy = sq, and if we set Zg = BZ,
then

S,':[ i;_l g£. — <H p_l Q..

U ‘I‘Z ﬂU DU ‘\ZB JU’

Hp~! Hp !

4] Rz Z = S8y Rzﬂ Zg, 22

and
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where R; = Zp Z8. ‘The statistical properties of Zgz are identical to Z and, hence, Zp can be
reduced as given by Egs. (15) and (16). We point out that v, and v, are independent and that v; is a
circular Gaussian RV with its power depending on the given hypothesis (under H,, the power equals
one), and v is a x PDF of order 2(N — 1) with 0 = 0.5.

As a result of the transformations of the input data, we see that Eq. (6) can be rewritten as
- o~ H
H _ 1

|s§ (Zn Zy)~" 2g|* >

- oH = oH o
8 @ Zw) ™' sl 11+ 28 @y Zn) 7 sl g

t. (23)

P Vo Y

penine iy = Yn—_1,N—-1s U220 = Yun.U21 = ZW N,

U= .
U3z 30

v = (vq ,v2)T, and 1, = (0,17, Itis straightforward to show that Eq. (23) is equivalent to

15 Ut v)? .~
A5 UH™ Loy [+ vF U~y = ’ @9
0

In going from.Eq. (23) to Eq. (24), we have taken advantage of the fact that if C is a nonsingu-
lar N X N lower triangular matrix that is partitioned as

where Cy; is a n X n matrix, and

R R ) S . L. " —~
WHCTC C 7 15 a 1 X R matrix, then C

= Ln
Now

_ i
1wuhH "1 = —, (25)

U3

T1H srrrsHA-1 12 1 rl 1")1-

| 1g (U ) V)T = Upvy — Uy vy |[©f, 26
2, b LJ 21 IIJ (26)
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and

- 1
VH (UUH) lV= —2—T []u“vz — V71 V]lz +u%2v2:l. (27)

Uy U

By inserting Eqgs. (23) through (27) into Eq. (24), we show that the GLRT is equivalent to

H,
>
Ui vy — vy ug |? < wh + v} ubT, (28)
Hg
where
T = __t_ (29)
1—¢t

2.3 Probability of Detection

Under the H| hypothesis, we assume that the desired signal’s amplitude (or magnitude) is Ray-
leigh distributed and that the signal’s phase is uniformly distributed between (0, 27). This implies
that the desired signal itself is a complex circular Gaussian RV; therefore, let the desired signal’s

. . . ~2 .

input power-per-channel before any matrix transformation be equal to o,. After the A matrix

transformation (whitening and placing the signal into the Nth channel), the signal power in the Nth
) ) _ . . . .

channel is o2 = 5, s" M~!s. Thus under H,, v, is a complex circular Gaussian RV with power

equal to o2 + 1, where the 1 represents the noise power-level-per-channel after the A matrix transfor-

mation. Also, u,, is a complex circular Gaussian RV with power equal to one. We can rewrite Eq.
(28) as ‘

H,
laf? 2 T, (30)
H,
where
Uy vy — vy Uy

o = , and 31
W (62 + 1+ vH7? GD

poo Mt i T (32)
fd 22 .
uf (@2 + 1) +v?

It is straightforward to show that o, when conditioned on u; and v, is a complex circular Gaussian
RV with power equal to one. It is well known [11] that the conditional probability of detection is
given by

e
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u%l + V%

=g = &x - "2

P(Dluy.. n .
SN g L Hel
U dhi@? + D+

B oan -
= s ¥ii» ¥V 1/

T} : (33

where P(D | -,-) denotes the conditional probability of detection.

We set
— 2
N = U7, (34)
ro= uzlj-l! (33)
» = v}, and (36)
r=2 37
I3
Then Eq. (33) becomes
1+ r
PD|rg) =exp { - ——L __ .T%. 38
|r.g p{ 0§+1+rn} (38)
The PDFs of n,4, and N are x* of order 2(K ~ N + 1), 2(K — N + 2), and 2(N — 1), respectively
with 42 = N8 and are givan hy
Wil & v.J, dniG aiC givall oy
| - -
Pyl = K =N " Nem =0, (39)
_ 1 K-N+1 ,—p
Pu) = TN T A e u=z0, (40)
and
P =~ N2 s @n
(N = 2)! o

By using the elementary probability theory, it is straightforward to show that

r) =" L p@p, ( ﬂ 4. “2)
‘ A

By inserting expressions for p p and p, as given by Egs. (40) and (41), respectively, and by simplify-
ing results in
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e N2
i r

N-DE-N+D 4+

piry = = 0. (43)

If weset ¢ = 1/(1+r), it is straightforward to show that

K!
N -2 &K -N + 1)

p,q) = -V 2 g8V 0<q <1, (44)

which is the PDF derived by Reed et al., [9] for the normalized instantaneous S/N power ratio that
results if the sampled matrix inversion (SMI) algorithm is used. By substituting g for r in Eg. (38),
we obtain

1
Dlgy) =exp - | —3— T (45)
p(D\g,q) p [qof—i—[}n
Now
P(DiQ‘):j‘m —J"—“—nxgwexp~— [I+—-—I-—- d
o (K - N)! g+ 1
—(K-+1)
q a5
or
—(K~N+1)
~(' K. T N2 K-N+1
D_Sﬂ N—=—2(K—-N+1) 1+ [Sj 1 (1-¢)" "¢ dg. 47)
=1 +
TN
opt

where 07 = ($/N)o,. We note in Eq. (47) that we have replaced o2 with (S/N)qy, where (§/N)oy
is the optimat {S/N} output power ratio of the matched filter (K = o). We can write this in this way
because the output noise power of the Nth channel has been normalized to one and the output of the
Nth channel is the optimal matched filter output.

2.4 Probability of False Alarm

The probability of false alarm Pr is easily found from Eg. (47) by setting (S/N)y, = 0. Tt is
found that

_ i
(T+ I)K—N-!'l.

Pr (48)

An equivalent expression for Pp as given by Eq. (48) was also derived by Refs. 1 and 4.

10
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3.0 MEAN LEVEL ADAPTIVE DETECTOR (MLAD)
3.1 Detector Form

An intuitive form of adaptive detection is found by implementing MLAD. Figure 1 shows that
the MLAD is essentially an AMF followed by an MLD. The MLAD is designed to perform detec-
tions over a block of data by using just this block of data in determining the AMF weights and the
MLD threshold. The MLAD works as follows, Let there be N channels and X + 1 samples per
channel. Define

x as the primary N-length data vector,
X, as the secondary N-length data vectors, £k =1, 2, ..., K,
X 85 the (x| X) = augmented N x (K + [) matrix of input data, and

Ry as the Xy, Xglg.

SENSORS
¥ 1
X, , X2 XN
""""""""""" I == 1 H

A A A

W, W, <o Wy ADAPTIVE
MATCHED

FILTER
a _ A
{w=R,, s}
-+
1
|
2
fol Loan 2
‘lﬁ-;lw X!
COMPARE
[
//
CFAR IF GREATER, CHOOSE H1
ELSE, CHOOSE H,
Fig. 1 — Mean level adaptive detector
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The N-length weighting vector w for the AMF is found by the SMI algorithm and is given by

~ ~—1
W =R, s (49)

This weight is used in the detection rule given by
H,

~H > L <
W x{? _ Tg T W x(% (50)
k=1

Hy

where Ty is chosen to control the false alarm probability. We see that Eg. (49) is the algorithmic
representation of the AMF and Eq. (5G), the MLD.

M. | RO

s Aot < modienta ool s dan bl wmr ekl
o Ssumazt ang, nence, in ine W Csii-

Note that we bave included the primary data vector in
mate. In a practical sitvation, this might be done since it is more numerically efficient to compute
one weighting vector over the entire data block than it is to compute a distinct weighting vector for

each point in the block. However, the presence of the desired signal {under H;) will affect detection.

~
[LE 0 ]
UIC IR

the right side of Eq. (50) does not include a selected primary data vector.

It is straightforward to show that

K ~H 3 ~H 3 H ~—1
To o [w x{° +Tp |w x{°=Tgs" Ry s. {51
k=1

Thus Eq. (50) is equivalent to

H,
MR x2 > T
= =T (52)
=1 1
SRy s < To+l ’
Hy
where we note that 0 = T; < 1.
Now we can write
Ry = R, + xxH, (53)

where R, = XX". By using the matrix inversion lemma {12} and after some simplification, we can
show that

12
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Hp~ 1,2
A sTR, x|
sT Ry s =s"R, S——l"——g—'tj—, (54)
1+x" R, x

H 5! '
~_ s R, x
st Rol X = ———‘—l:'_—l—“, (55)
1+x" R, x
and
HA'-'I
~_ xR, x
MRy x = — (56)

1+ xR x
By substituting Eqs. (54) through (56) into Eq. (52), the equivalent detection rule becomes

H,

~ > ~ - ~—1 n 1
ISHRxlxlz < T [(SHR;' s)(1+xHRx[x)2 + Isf R, x| +x"R, x):l. (57)
Hy

3.2 Statistically Equivalent MLAD

We make the same assumptions on the input distributions and statistics as given for the GLRT
discussed in section 2. Hence, we can use the matrix transformations here that were used to
transform the GLRT analysis into a simpler problem. Specifically, we can show that the test given
by Eq. (57) is statistically equivalent to

H)

>
|15 WUH™ V)2 _ Ty [13 (UUH ! 15 (1 + vB (U ly)
Hy

+ 11§ wuh v|? a + v wuth! v)z] , (58)

where in Eq. (57) we have replaced s R x with 1§ (U™~ ly, H R, s with 13 (UUM™! 1,,
and xH R, x with x1 (UUM)~! v. The quantities U and v are defined in section 2. Equations (25)
through (27) give expressions for 15 (VU™ ™1 15, [ 1§ U™ v|?, and vi (UUM)~! v, respec-
tively. If these are substituted into Eq. (58), after somewhat extensive simplification, the following
detection rule results

H,
v > v? 2
vy — vy dn l2 1 - T] 1+ 5 < 1+ TJ u%l M%Z Tl' (59)
Uiy by
Hy

13
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We note for Ty > 0, that if
vi
1-T7T, |I+—1 =0, (60)

then H is declared.
3.3 Probability of Detection

Again under the H, hypothesis, we assume that the desired signal is a complex, circular Gaus-
sian R2V (the amplitude is Rayleigh distributed). As in our -analysis of the GLRT,

of =g, st M~ ls. Assume Eq. (60) is not true. We can write the decision rule giver by Eq. (59)
as

H,
tat? g 7{ (61)
<
Hg
where gy Vo — Vi
a = ——— ST (62)
(uyy (os + 1) + v}
and
T} = : o, - (63)

(@ -Tlgei +1)

n is defined by Eg. (34}, and ¢ = (1 + r)”!. As before under H,, v is a complex, circular Gaus-

ot TINT e itle tmen o ascin al ¢~ [ e R, ip tha camaa v th mAwar amaal ta Ana Thirfharmara
Sictil FR¥Y Wikl pUWCL UK}UCU (LN US — 1, allua le I UG AaLlilic vwWitil PUW";-\ 'G\iuQL Wws i, LTULLUICL LIV W, WL
is the same with power equat to one. Thus
I 0 if ¢gq=T,
PDlg.m =14 _p . (64)
Le : otherwise.

The PDFs of 4y and g are given by Eqgs. (39) and (44), respectively. After some simplification, we
find that

I . ®
Pp =iy, 50 P(D | q,m)p,(np.{q)dndyg
v T -K-N+1)

T
=£Ti (N—2)'{I;(!-—N+1)' T ( (1 (1-gV 2% N *dg, (65)

where {%} = g2.
opt
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The Pr is found by setting (8§ /N),,, = 0 in Eq. (65). The following equation results:

, % r T, | &N+
— : F3 ) 1 + I
P =i (N - 2K — N + 1)! { q—_TIJ

(1= "2 g"~"*ldg. (66)

If we change the integration dummy variable to go = (g ~ T1)/(1 ~ T,), Eq. (66) reduces to
Pr = (1 - TpK (67)

4.0 RESULTS

Here, we present results on the detection probability Pp for the GLRT and MLAD vs the
independent parameters: the probability of false alarm Pp; the steady state (K = o) S$/N output
power ratio of the matched filter (S/N)y,; the number of independent samples per channel K of the
secondary data; and the number of mput channels N. We set K = MN, where M is a positive
integer, and M is an independent parameter called the degrees of freedom (DOF) factor. Figures 2
through 17 show plots of Pp vs (S/N)op for Pp = 107%, 10719 N = 2, 5, 10, 30, and the two
detection schemes.
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Kelly [1] defines the (S§/N) loss of an adaptive detector as the difference required to obtain a
given Pp between a steady-state (M = oo) detector and the transient state with all other independent
parameters being equal. We note that as K — o (or M — o0), the GLRT and MLAD are identical
and, hence, their P;, performance is identical. We define M3, to be the DOF factor such that the
(8/N) loss is nearest to 3 dB. For both the GLRT and MLAD, we make the following observations
from Figs. 2 through 17.

@

@

3)

Both detectors are slower to converge to their optimal value (M = oo) for the lower
ordered  matched filters. For example, for the GLRT for most
Pps (0.1 = 0.9), Pr = 1075, if N = 2, then M34p = 6, if N=30, M34s = 2.

There is a diminishing return in convergence by using a larger DOF factor, i.e., there is
more improvement in performance in going from Mto M + 1 thanM + 1 to M + 2.

Convergence slows for decreasing Pr. For example, for the MLAD for most
Pp (0.1 —0.9) and N =5, if Py = 107%, then Mg =5; if Pr = 107", then
M3qp = 6.

We note that these trends were also observed by Kelly [1] for the GLRT, where the signal is modeled
as having a constant amplitude.

23



KARL GERLACH

In comparing the GLRT with the MLAD, we make the following observations from Figs. 2
throngh 17:

(4y The Pp performance for the GLRT is always superior to the Pp performance of the
MLAD with ali independent parameters being equal between the two detectors.

(3) For low DOF factor (M = 2, 3), the GLRT has much better Py performance than the
MLAD with all other independent parameters being equal between the two detectors. For
example, if N = 2, Pp = 107%, (§/N),, = 30 dB, and M = 2 for the two detectors,
then for the GLRT, Py = 0.7 and for the MLAD, P, = 0.09.

(6) The Myqp for the GLRT and MLAD are approximately the same with the greatest differ-
ence occurring for low DOF  factors (N =2). For example, for most
Pps (0.1 ~ 0.9), Pr = 1076, if N =2, then My = 6 for the GLRT and Mygp =7
for the MLAD. For the same case but N = 30, the M 34z is identical for both the GLRT
and MLAD,

The GLRT outperforms the MLAD because the MLAD’s MLD samples ﬁH X, k=1,2,.., Kare
being contaminated by the desired signal in X since W is computed by using a sampled covariance
matrix Ry, which contains the desired signal in some form. This resulis in an increased average
power in the MLD’s samples, which results in an increase in the MLD’s threshold, which results in
fewer detections. The increase in the residue power in the range cells (for the radar problem) around
the primary range cell because of signal contamination was also reported in Lewis and Kretschmer
[13] and Gertach {14}

Of the three comparisons between the GLRT and the MLAD, observation (6) above is possibly
the most significant. As we will show in section 5, the GLRT requires more numerical computions to
implement than the MLAD. However, as we note from the observation (6), the required number of
samples will be approximately the same for both detector schemes in order to have only a 3 dB $/N
detection loss.

5.0 COMPUTATIONAL CONSIDERATIONS

Here we briefly compare the computational requirements for the MLAD and GLRT detection

schemes. First we consider the GLRT. We modify the form given by Eq. (1). Now

~ o~ ~—1
._ - ol Ry xx% R
R = (Ro ~xx)~l =Ryl + 22 =2 20 (68)
1-xP Ry x

If the expression on the right-hand side of Eq. (68) is substituted into Eq. (1) for fi,: 1 , after some
simptification, the GLRT detection ruie becomes

n H

| s R x)? ! N

H ! ' Hp~! < 2 (69)
§" Ry s {1 -x"Ry x) H
0
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where ¢’ = r/(1—¢). If we compare this equivalent form of the GLRT to the MLAD form as given
by Eq. (52), we see that the GLRT test statistic is merely the MLAD test statistic multiplied by

(1 — xH R(; : x)~!. It is straightforward to show that 0 < 1 — x" Ry x = 1, and thus the GLRT’s
test statistic is always greater than the MLAD’s test statistic under Hg or H,.

We see that it is the additional computation of 1 — x* Ry ! x for the GLRT that is the ‘major
computational difference between the two detection schemes. There are many schemes for imple-
menting the adaptive matched filter in open-loop fashion: SMI, Gram-Schmidt, Givens rotation,
Householder, etc., combined with a block processing or sliding-window technique (of which there are
many variations). No efficient method has been proposed in implementing the GLRT, although a
variant that uses the normalized, fast orthogonalization network described in Refs. 15 and 16 could be

T =1 . . . . .
used to compute Rol x and, thus, x! Ry x. However the implementation complexity of this
scheme is significantly greater than that of the AMF. The efficient implementation of the GLRT is
left as a topic of future research.

6.0 SUMMARY

Two schemes for adaptive detection have been analyzed and compared: Kelly’s GLRT and the
MLAD. Detection performance Pp, was predicted for the two schemes under the assumptions that the
input noises were Gaussian random variables that were temporally independent but spatially corre-
lated, and the desired signal was Rayleigh distributed. Pp was computed as a function of the false
alarm probability, the number of input channels, the number of independent sampies-per-channel, and
the matched filtered output S/N power ratio.

In this analysis, the GLRT was shown to have better detection performance than the MLAD.
The difference in detection performance increases as one uses fewer input samples. However, the
required number of samples necessary to have only a 3 dB detection loss for both detection schemes
is approximately the same. This is significant since for the present, the MLAD is considerably less
complex to implement than the GLRT.
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