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THEORY AND APPLICATION OF THE WAVELET
TRANSFORM TO SIGNAL PROCESSING

1. INTRODUCTION

Most scientists and engineers are familar with the Fourier representation of a func-
tion. In most cases of practical interest, it is well known that a piecewise continuous
periodic function gT(t) can be equated almost everywhere with a weighted countably in-
finite sum of exponential functions, i.e.,

co

gT(t) -EgneJ~n/ 1
n=-Do

where gn is the nth Fourier coefficient, and is given by

gn= 1 jT (t)e 32 dt. (2)

This is the classic Fourier series. The Fourier representation for a piecewise continuous
nonperiodic function g(t) has the integral formulation

9(t) -|(~~ f 3

where G(f) is the Fourier transform of g(t), and is given by

G(f) = J (t)e- 2 ,1rftdt. (4)
_00

The development of Fourier theory constitutes a significant portion of classical mathemat-
ical analysis. It has also been a valuable tool in physics and engineering by contributing to
the solution of problems in linear system theory, thermodynamics, and quantum physics,
to name a few.

Despite their wide use, some problems arise in the interpretation of the classic Fourier
representations. For example, if g(t) is a function that is nonzero only in an interval (it
has compact support), then the Fourier transform implies that this time-limited function
is a summation of complex exponential functions, each having support over the entire
real line. Furthermore, one cannot associate features of the time function g(t) with any
specific value, or range of values, of f of the transform G(f). In other words, the transform
exhibits no locality of time; a transient feature in g(t) contributes to G(f) at all values of
f-

Manuscript approved March 4, 1991.
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DAVID M. DRUMHELLER

In light of these observations, researchers have sought alternatives to the Fourier
representations that display some sense of locality in time. It was recently discovered that
certain functions, those whose amplitude is significant over a finite interval, can serve as a
transform kernel for square summable functions, provided they obey a regularity condition
[1-5]. These functions are defined as a time-dilated and time-shifted version of a specified
function +(t) called a wavelet. Thus, the transform kernel is V;(s(t - T)), where s E [0, oo),
and r E (-oo, oo). If we integrate the function g(t) with respect to this kernel, the result
is the wavelet transform q09 (sTr), which is analogous to the Fourier transform since it has
an integral representation for both the forward and inverse transform. There is also a
version of it analogous to the Fourier series in that it represents a function as a countable
sum of wavelets.

Many uses for the wavelet transform have been proposed [1]. Among them are
the identification and localization of transients in time series and the compact coding
of images if the concept of a wavelet is extended to two dimensions. In this report we
are concerned with the application of the wavelet transform in signal theory and signal
processing. The first part of the report presents several theorems, some of which are
results that have either been left unproven in other references or have only been alluded
to by other authors. Others are new, and present a deliberate attempt to reformulate
some standard signal theory in the context of the wavelet transform. The last part of the
report presents the application of the wavelet transform to two common signal processing
problems: filtering and deconvolution.

Throughout this report we maintain the following notational conventions: time sig-
nals are represented by lower case italic as in g(t), and their associated Fourier transforms
are always written with the same letter but in upper case italic as in G(f). Vectors are
written in bold lower case italic as in w, and matrices are written in bold upper case italic
as in A. Finally, it is assumed that the reader has some familiarity with real analysis.

2. THE WAVELET TRANSFORM

As the Fourier transform does, the wavelet transform also provides a representation
of the elements in the set of all square summable functions. This is the space L2(R),
where R denotes the real line. The wavelet transform of the function g(t) is given by

)WV {o(t)} = 6kg(sxr) = .s|f g(t)4,*(s(t - 7))dt, (5)

where Ob(t) is referred to as the analyzing wavelet, s is the dilation variable, and r is the
delay variable. This defines a mapping from the one-dimensional (1-D) time domain, to
the two-dimensional (2-D) dilation/delay space defined by the (s,T) plane. The factor V
appears because

sJ: I'+b(S(t -T))1 2dt = f II(t)1 2dt, (6)

2



NRL REPORT 9316

thereby acting as a normalization factor. This implies the relative amplitudes, or powers
(square magnitude), of the wavelet transform at two different points in the (sr) plane
can be compared meaningfully.

Note in the mathematical literature that the time-dilated and time-shifted version
of the analyzing wavelet is defined as

1 At- r
V/a_. a )'(7)

where a = 1/s, and a E [0, oo). We choose the definition by using s rather than a since
it is often interpreted as the time-dilation diue to the Doppler effect caused by a moving
point reflector. That is, if a transmitter is stationary and a reflector is moving with a
positive radial velocity of v, then

1-v/ 1 2v (8)
1 V/C c

where c is the propagation speed. Thus, if we transmit the signal g(t), then we receive
Vsg(st). Adopting the convention of modeling time-dilation by the variable s will make

Athe results presented in this report immediately applicable to those working in the field
of wideband echo-location systems.

Given the definition of a forward transform in Eq. (5), we naturally seek a formula
for transforming from the (sr) plane back to the time domain. If the wavelet's Fourier
transform T(f) meets a regularity condition, namely

Co = j -) 12df < oo, (9)
fo f

and JI'(f)l = K9(-f)j, then an inversion formula for the wavelet transform exists, and
g(t) can be recovered from q,(s, T) through the formula

g(t) vfc. Cg(alT)Ik(s(t - T))drds. (10)
*,6 =O r=-DO

For completeness, a proof of this result is given below since most published versions of it
can only be found in obscure references.

Proof of the Inversion Formula - We begin by substituting Eq. (5) into Eq. (10) to
get

|~ [| g(y)(s(y - r))dy] ib(s(t --r))dTds. (11)CO f.=MO r=oo Ic

However, it can be shown that the Fourier transform of 'k(s(t - r)) is given by
- 3b~s~t-- r))e 2 -7ft dt=- IWI'(f/s

F{iP(s(t-) - | ______e
3(S(t -- 7'))e- e- (12)

s
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Therefore, by invoking Parseval's Theorem, using Eq. (12), and defining G(f) to be the
Fourier transform of g(t) (G(f) exits since g(t) E L2(R)), one finds that

I- = -| I all G(f) S e(f/ e32TJdf] [ '' e 27))d]drds
Gt, J=O r=-co J-oo I5 I 

= 1 j j s-lG(f)p*(f /s) [J | Gw/s)e32i(fr+e(t-T))dd] dfds. (13)

The bracketed factor in the integrand of the last line of Eq. (13) can be reduced as follows:

J°° L°° r/S)e327(+e(t-+r))dd 1 [1°° e2 (t- ) ] 2_f

= Jo s4,s(s(t - r))e_2"rfrdr

= J z/,(z)e3 2 7(f/a)zdz en27rft

= tIr(f /s)e 2 Irft (14)

Thus, substituting Eq. (14) into Eq. (13) yields

10 I 00I= [ /~i: slG(f)i)I(fI/s)I e: ~ftdfds

= -| ~ G(f)[j s 1I(f/s)j2da] ed 2 f tdf. (15)

Concerning the bracketed factor in the integrand of Eq. (15), if f :A 0, then the change of
variable 77 = s/f yields

L S- llq(f/.5)2d5 = j q v)12 d7 = CA. (16)

Note that this is true regardless of the sign of f since IFI(f)I = If(-f)l by hypothesis.
We now consider the value of the bracketed factor as f -+ 0. In this case

limT S-'Ijp(f/s)12 ds = lim 7M 1ir S-1a (f1S)2ds

= M I'I(f/d)l dz]f-~~~~O o ~~~f-*+O faJ

= lim Cm
f-Oo

= CO,^ (17)

This result can also be deduced by noting that for any If I > 0, however small, Eq. (16)
always holds. Hence, the value of the limit of the integral in Eq. (16) is CA. Regardless
of its value at f = 0, we at least know that

|' l'(fl/s)1 2ds = C, for almost all f. (18)

4
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In light of Eq. (18), Eq. (15) reduces to

I = J°° G(f)e 2 wftdf a g(t), (19)

which proves the inversion formula in Eq. (10). This completes the proof.

3. PROPERTIES OF THE WAVELET TRANSFORM

We now state and prove three properties of the wavelet transform. The first property
concerns the wavelet transform of a time-dilated and time-shifted signal.

Theorem 1: Let Og(s, r) be the wavelet transform of the function g(t). Then for
so > 0,

W {V18g(so(t -ro))} (= g(, -So(T -TO))* (20)

Proof of Theorem 1: Equation (20) follows directly from the definition of the wavelet
transform by substituting V/ g(so(t - -r)) for g(t) in the integrand of Eq. (5), and by
invoking the change of variable y = so(t -To). This completes the proof.

The theorem above shows how distortion in the time domain affects the wavelet
transform. For example, if so > 1, we see that the support of the wavelet transform in the
(sr) becomes wider in s and narrower in T. Delaying a function in time merely delays its
wavelet transform along the r axis.

As in the case of the Fourier transform, one is often concerned about how rapidly
the transform G(f) decays as If I -l 0. This 'decay rate' is related to the continuity of
g(t). The following theorem describes the decay rate of the wavelet transform (0,(s, T) at
points of continuity, and at points of a jump discontinuity for the function g(t), providing
g(t) is of bounded variation.

Theorem 2: Let g(t) E L2 (R) and 'b(t) E L'(R) n L2(R). Suppose g(t) is of bounded
variation in a neighborhood of to, then the wavelet transform of g(t) with respect to the
wavelet 36(t) has the property

(i) Og(sto) 0 as s oo.

Furthermore, if for all 6 > 0,

s | k?,b(z)12dz -4 0 as s -- oo, (21)

then if g(t) has a finite jump discontinuity at to, then

(ii) vl- 0g(sto) g(tO-)V* + g(t'),O as s -A 0,

5
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where

-+ = jb(t)dt,= o

If g(t) is continuous at to, then

(iii) -V/S4g(sto) + 0 as s oo.

Proof of Theorem 2: We note that for any E > 0,

Og (Sto) = s f/ g(t)ap*(s(t-to))dt

I- t o >s I t-to 1<6

= - 1 + I2-

-g(t)?k*(s3(t - to))dt

(23)

Consider I, and I2, one at a time.

We first show that I1 -4 0 as s -+oo. By the Schwartz inequality

0 < 11112 < IIgII2 skb(s(t - to))1 2 dt

= IIgII2 | 0 k(z)I 2dz. (24)

But since E > 0,

[(P (Z) 12dz = i +j (Z)I2dZ J += k(z)I 2dz = 0+0 = 0. (25)

(This could also have been proved by using the density of the step functions in L2(R).)
Thus, by applying the squeeze theorem for limits to Eq. (24) one finds that

jim II,12 =O •[ jim I1 = 0.
8 +00 8J 00

(26)

Furthermore, if Eq. (21) is true, then by a similar development

sIb(z)I2dz -+ 0 as s 0o, (27)

which proves
-FsIj -- 0 as s -400. (28)

Now consider 12. It is sufficient to consider the case where g(t) and 0b(t) are real
valued. Because g(t) is of bounded variation in a neighborhood of to, say [to -8, to + 6], we

6

(22)

lr °°
&--+O kJ~>5 8s

0 < IV/S-1112 < IIgIj2
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know g(t) is the difference of two increasing function (that are also of bounded variation).
Therefore, it is also sufficient to consider the case of g(t) increasing, and with a finite
jump discontinuity at to.

Using the second mean value theorem for integrals, we note that for some
77 e (toto + a61,

| g(;)s'7(s(t-to))dt = + J| g(t)sob(s(t - to))dt

- g(tgj)jItts -t(s(to-)ottd
sog(tO - to) | s)dt~ -o)to +6

- g~~t~ ~ ip Jodz+ g(to + 6)1 O(z)dz

g(tO+)V)+ + g(to + 61) O&(z)dz

= g(t+),b+ as 8 -+ oo, (29)

where we have used the definitions of 0b and ib+ given in Eq. (22). Similarly,

to

g(t)s(s(t - to))dt --. g(t-- as s -+oo. (30)

Together Eqs. (29) and (30) show that

-I g(tO-)b_ + g(t'-)Ob+ < oo as s -+oo. (31)

This, in turn, implies that
120 as s-0oo. (32)

For if I2-4 K 34 0 as s -4oo, then 2 -4oo as s oo, which contradicts Eq. (31).

Equations (26) and (32) prove property (i), and Eqs. (28) and (31) prove property
(ii). If g(t) is continuous at to, then g(t-) = g(t+), and property (iii) follows immediately.
This completes the proof.

Properties (ii) and (iii) imply that at t = to the wavelet transform falls off to 0
less rapidly along the s axis if g(t) has a jump discontinuity at to. In other words, any
discontinuous jump of the function g(t) at t = to implies the value of qg(s, to) is significant
for large values of s. In a practical sense, this means that the wavelet transform can be
used for transient detection, since any abrupt change or short term feature of the function
should cause (Ps(ato) to be significant for large values of s. Also, because of the assumed
regularity of the wavelet, we know 1T(0) = 0, hence

0 = qf (0) 0 (t)dt = ?P-_ + sb+ =- 0+ = -0-_ (33)

7
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Furthermore, the condition '(P E L'(R) implies ,0+ and '0 are finite since

kt0b+I, kvb-I < i: |kb(t)Idt = I|kbI|i < 00. (34)

Finally, almost any function encountered in practice modeling a physical phenomenon will
be a well behaved, bounded, piece-wise continuous function. Thus, requiring g(t) to be of
bounded variation is not overly restrictive.

Theorem 3: Suppose g(t) and the wavelet '(P(t) are members of L2 (R), then

I 0 (S' 7)12 < IIg11 l2 11,0112. (35)

Proof of Theorem 3: Equation (35) follows directly from the application of the
Schwartz inequality to Eq. (5):

I1bg(sr)|2 = |Vs-J g(t)7,*(s(t - 7))dt2

< [| Ig(t)12dt] [L"- |b((t- T)I2dt]

-[1- Ig(t)I1dt] [:J (Z)12dz]

= ll~ll2 {lw~bl2' (36)

4. LINEAR SYSTEMS AND THE WAVELET TRANSFORM

In this section we state and prove three results of the wavelet transform as applied
to linear system theory.

Theorem 4: Let x(t) be the deterministic input to a linear system whose known
impulse response is g(t), and whose output is y(t) = x(t) * g(t), where * denotes the
convolution operator. Furthermore, let the wavelet transforms of X(t), g(t), and y(t) be
given by

{x(t)} = q(svr) = XI x(t)o(P*(s(t - 7))dt,

W {g(t)} = qg(Sr) = VW g(t)'(*(s(t - 7))dt,

W {y(t)} = qS(ST) = V/Hf| y(t)tO*(s(t - r))dt. (37)

Then the wavelet transform of the output y(t) is related to the wavelet transforms of x(t)
and g(t) through the equation

oy(s, T) = | X(Z)0g(S, z - r)dz g(z)q,,(s, z - -r)dz. (38)

8
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Proof Theorem 4: First, it is well known from linear system theory that

y(t) = 12| a,(z)g(t - z)dz = x(t) * g(t). (39)
-00

Substituting Eq. (39) into the definition of the wavelet transform of y(t), and invoking a
change of variable yields

W {Y(t)} =

= Vs| y(t),ob*(s(t - r))dt

= v'WL: L x(z)g(t - z)op*(s(t - r))dtdz

= L a(Z) Vs[I g(t - z),s*(s(t - r))dt] dz
-00 -D"oL, (Z VS .q'e-s (T - z))dt] dz

- f, x(z)q9g(s, r - z)dz, (40)

which proves the first integral in Eq. (38). The second integral in Eq. (38) is derived
similarly, but starts with the alternate form of the convolution integral

y(t) = L g(z)x(t - z)dz. (41)

This completes the proof.

It is well known from the theory of stochastic processes that the autocorrelation
function of a stationary process x(t) is related to its power spectral density S~z(f) through
the Fourier transform relation

E{x(t)x*(t - z)} = RZ0(z) = |0 S.(f)e3 2 7rfzdf. (42)

This is known as the Weiner-Khinchine Theorem [6]. Furthermore, if x(t) is passed through
a linear time-invariant filter whose impulse response is g(t), then the power spectral density
of the output y(t) [6] is given by:

Sa(f) = Fs {g(t)}1 S..(f). (43)

The following theorem gives similar relationships for the wavelet transform.

Theorem 5: Let x(t) be a wide-sense stationary stochastic process whose autocorre-
lation function is defined by

RZZ(z) = E{x(t)x*(t - z)}. (44)

9
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Then the wavelet transform of the autocorrelation function with respect to the wavelet
0b(t) is given by

W {R0IR(z)} = 4{(ST) = V/ J R.(z)ob*(s(z - r))dz, (45)

and the Fourier transform of q,(s, T) with respect to r is

F { ,,(sr)} = 4x(Sf) = ,1 Is)S.(M, (46)

where T(f) is the Fourier transform of the wavelet 0b(t), and S00(f) is the power spectral
density of x(t). Furthermore, let x(t) drive a linear time-invariant system whose impulse
response is g(t), and whose output is denoted by y(t). Then the Fourier transform of the
wavelet transform of the output autocorrelation function Ryy(z) is given by

(s, f ) = IG(f)121. (s' f). (47)

Proof of Theorem 5 (first method): We take the wavelet transform of the autocor-
relation function directly, and use the Fourier transform property (a transformation with
respect to the variable t)

F {V b*(s(t - -r))} =
' *(-ffs)e-32 -fr

I-

where s > 0. Thus,

This, in turn, implies that

= Vs-f R.(z),b*(s(t - r))dz

= -1/2 R00(z) [ I *(-f/s)e321fr(zr)df] dz

= S1-/2 L O*(f/s) [J RTZ(z)e327rfzdz] e-32 7frdf

= S-1/2 J q1*(-f/s)S..(-f)e-324 fdf
- co

= S-1/2 - q*(f/s)S..(fi)e12'tfdf.
-00c

'P. z(ST) =F-1 VS( S..(f )}-

4O(s,f) = (fl_ _ S_ _ ,

which proves Eq. (46).

10
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If we now consider the case of x(t) driving a linear system whose impulse response
is g(t), then from Eq. (43) the power spectral density of the output y(t) is

SY?(f) = IG(f)I250(f). (52)

Thus, from Eq. (51) and (52) it follows that

4Wy(s-f) =TV(f/s)S)(S)
- A/;) IG(f)|2S..(f)

= JG(f) 12 ['1*(fs) S-]

= IG(f) 24,0,(s f), (53)

which proves Eq. (47). This completes the proof.

Proof of Theorem 5 (second method): This approach uses the definition of the auto-
correlation as an expectation. Substituting Eq. (44) into Eq. (45), and using the change
of variable w= t - z yields

¾) {Rzz(z)} = V'|J E{x(t)x*(t - z)}jb*(s(z - -r))dz

= E{X(t) Vs x*(t - z)1)*(s(z - r))dz}

= E{x(t) [Vsj x (w)"P(s((t -r) - w))dw] d }
= E{z(t)h*(t-r)}, (54)

where we interpret h(t) to be the response to the input x(t) of a linear time-invariant
system whose impulse response is V/ 4'(st). Thus, the last line in Eq. (54) is the cross-
correlation function Rh(r). The Fourier transform of this correlation function is the
cross-power spectral density function, and it is well known that

F {R0h(r)} = S 1h(f) -= 1I 500(f), (55)

where we have used the Fourier transform relation

F {v/b(st)} = 'P(f/s) (56)

We note, however, that Eq. (55) is also equal to the Fourier transform with respect to r
of the wavelet transform OP,,(s, T). Thus, we have proved Eq. (46). The proof of Eq. (47)
is identical to the approach used in the first method. This completes the proof.

11
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Let R(s, r) be a density function that describes the average amount of spread in
range delay r and Doppler variable s a signal undergoes when applied to a dispersive
channel. We call R(s, 'r) the channel scattering function [7,8]. Furthermore, if the input
signal to the channel is x(t), and its wavelet transform is

¾) {2(t)} = q5
+2,(S~r) = va| x(t)?zfb*(s(t - T))dt, (57)

then the expected square magnitude of the wavelet transform of the channel output y(t)
is given by

E{Iqy(sT)j2} = L J R(w,z)A+(s/w, w(r - z))dwdz, (58)

where A,.O(s, r) is the wideband crossambiguity function defined by

2

A~}(svr) = a J x(t)b*(s(t - r))dt = I0 7(sr)12 . (59)
-00

Derivation: In a channel that spreads a signal in both time and Doppler, the output
is composed of time shifted and Doppler shifted replicas of the input signal. For a channel
composed of a finite number of scatterers, the output signal would be given by

N
y(t) = a piJg.i X(s i(t - ri)), (60)

i=1

where pi is the random complex reflection coefficient of the ith scatterer. By Theorem
1, we know that the wavelet transform of an input signal dilated by an amount si and
delayed an amount ri is given by

¾) {X(si(t - Ts))} = q0(S/siSi(t -i)). (61)

Thus, by linearity, the wavelet transform of output signal in Eq. (60) is

N
¾ {y(t)} = 'Py(s, -) = E pi(s/si, si('r - i)). (62)

1=1

If we assume that the expressions in Eqs. (60) and (62) are approximations for a channel
described by a continuous distribution of scatterers, then as N -- oo, we have

'Pv(svr) = | | S(z, w)a,(s9/ww(r - z))dwdz, (63)

where S(s, -r) is called the spreading function, and describes the distribution of the reflec-
tion coefficient in range delay r and Doppler variable s [7]. It is a stochastic function.
Furthermore, assume that the channel exhibits uncorrelated spreading, then

Ef S(s, r)S*(s, fj = R(sT )6(s - i)6(r - r), (64)

12
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where E(-) denotes the Dirac delta function. We apply Eq. (64) to the correlation function
of the wavelet transform of the channel output as follows:

0=_0 =-0 00 c

E S(L , z)S*(1, 1 )2
q0(S/'WW(r-z))P-(s/1,ti(+-

dibdwdzdz.

-1°° 1°

R(w, z) 0 (s w ( - z))*(./w, w(+ - z))dwdz.
(65)

Setting S _ s and r = T yields Eq. (58).

5. THE WAVELET EXPANSION AND DUABECHIES WAVELETS

The transform discussed in the previous sections shows that for a suitable choice of
ip(t), any function in L2(R) can be expressed as an integral sum of time-dilated and time-
delayed wavelets. Note that this is not an orthogonal representation, since, in general, we
do not have

L "P(si(t -'rl))Ob*(s 2(t -r 2 ))dt = 0, for all si 0 s2 and Tr T4 r2. (66)

Thus, the transformation is in some sense redundant. However, an orthogonal represen-
tation can be derived, provided the wavelet Ob(t) obeys some additional restrictions. The
result is an expansion composed of a countable sum of wavelets.

The description of this expansion was first given by Mallat [5]. In his work, he
presented the concept of a multiresolution approximation of any function g(t) E L2(R).
This is a nested sequence of closed subspaces in L2(R) denoted as fVj~jEZ, where Z is the
set of all integers for which the following are true:

(a) Vj C Vj+l, for all j E Z.

(b) UjEz Vj is dense in L2 (R) and njfz Vj = 0,

(c) g(t) E Vj g(2t) E Vj+l for all j E Z

(d) g(t) E Vj= g(t - 2-k) C Vj for all j C Z

(e) Let 12(Z) denote the space of square summable infinite sequences, then there exists
an isomorphism T: V0 12(Z) which commutes with the action of Z.

13
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Properties (a) and (b) merely state that the nested sequence of subspaces must span
the space L2(R). Properties (c) and (d) describe the effects of time dilation and time
delay. Collectively, however, all the properties can be used to prove that there exists a
function @(t) E L2 (R) such that for any j E Z the subspace Vj is spanned by the set
{VJ02(2j(t - k))}kEz . 0(t) is called the scaling function, and the properties stated above
imply that if we wish to approximate (in a minimum integral square error sense) the
function g(t) by a function gj(t) in the subspace Vj, then

00

gM(t) = E gjk v'i(2j(t - 2-jk)), (67)
k=-oo

where the coefficients of the expansion are given by

9j,k = V'J g(t)0*(2j(t -2-jk))dt. (68)

This, of course, is reminiscent of a generalized Fourier expansion; however, the difference
here is that the expansion is only over the subspace Vj not the entire space L2(R). Equation
(67) explains property (e) in that the sequence {gjk}Ez is an alternate representation of
g(t). Because the set {JV4(2j(t - k))}kEZ is a basis, the elements are orthogonal. Thus,
by calculating JJgJJ2 one finds that it is equal to the sum of the squares of the sequence
{gj,k}hkEZ- Since g(t) E L2 (R), ||g|22 is finite implying {gjil} Ez E I(R).

For practical applications, we need to know more than just the existence of the
scaling function; we need to know how it is parameterized, and how to compute it. A step
in this direction is the following theorem that is proved in Refs. 2 and 5.

Theorem 6: Let 0(t) be a scaling function, and H(f) be the Fourier series defined by
00

H(f) = E h(k)e-32 Tkf, (69)
k=-oo

where {h(k)}kEz is the sequence defined by

h(k) = 21 0(2-1 t)0*(t + k)dt. (70)

Then H(f) satisfies the following properties:

(i) IH(0)I = 1,

(ii) h(k) 0 0(k2 ) as k o-+ o,

(iii) IH(f)12 + IH(f + 1/2)12 = 1.

Furthermore, let
IH(f)l ) 0 for f E [0,1/2), (71)

14
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then the Fourier transform of the scaling function is given by
00

0(f) = II 11(2-Pf). (72)
p=1

The proof exploits properties (a) through (e), which define the multiresolution approxi-
mation. In particular, it uses properties (c) to say that the function 0(t/2)/2 is equal to a
weighted sum of the functions 0(t + k), and the weights are the elements of the sequence
{h(k)}kEZ. Furthermore, any sequence used to define H(f) in Eq. (69) so that H(f) obeys
properties (i) through (iii) of the theorem can be used to find 0(t) by defining its Fourier
transform through Eq. (72). Thus, our choice of the h(k)'s is somewhat arbitrary.

The expansion given by Eq. (67) is simple, but not always convenient for practical
applications. For, if we wanted the approximation of g(t) in the subspace Vj and had the
expansion for the approximation in Vj-4 , we would have to recompute all expansion coef-
ficients. Furthermore, this expansion does not lend itself to defining filtering operations.
An alternate expansion can be derived by noting (through the projection theorem) that
there exists a subspace Oj composed of functions that are orthogonal to those composing
V1 such that

oj (E) vj == vj+L, (73)
where E3 denotes the Cartesian product. Thus, from property (b) of the multiresolution
expansion one can show that

U Oj = L2 (R), (74)
jeZ

In light of this new definition we have the following theorem whose proof can be found in
the Refs. 2 and 5.

Theorem '. Let {1V}jbz define the multiresolution approximation of the space L2(R),
0(t) be the scaling function whose Fourier transform is 0(f), and H(f) be the Fourier
series describing the Fourier transform of 0(t) as in Theorem 6. Then there exists a
function 4'(t) such that {V b(2j(t -2-jk))}JkEzxz is a basis for L2(R), and the Fourier
transform of 0b(t) is given by

T~f =K(f)@(f), (75)

where
K(f) = e 2 f1[*(f + 1/2). (76)

From Eqs. (75) and (76) it is possible to show that 0(t) is equal to a linear sum of time
delayed scaling functions. The function ik(t) is called an orthogonal wavelet, and the
theorem given above says that any function g(t) in L2(R) can be written as

g(t) - gjk Vqb(2'(t-2 3 k)), (77)
j,kEZx Z

where
gj'k = V/J g(t),O*(2j(t -- 2-jk))dt = 09(2j,2-'). (78)'

15
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Thus, we see that the wavelet expansion coefficients are equal to the value of the wavelet
transform at the points (s, r) = (2j,2-jk). Figure 1 shows this. Moreover, we see that
0(t) plays a role in the definition of 'P(t). From a computational standpoint, Theorem 7
says that we must find 0(t) (or its Fourier transform) first, and then compute 'b(t).

4-4 -

3-

S 2-

1-

0

0

0 0 0 * 0 0 0 0 0 0 0 0 0 0* 0

* 0 0 . * 0 0 0

0

0

2

-r

3 41

Fig. 1 - Points in the (s, r) plane where the wavelet expansion
coefficients are equal to the wavelet transform. This figure shows
all points lying within and on the boundary of the region
s E [2-', 22] and i- = [O, 4].

Theorems 6 and 7 not only suggest how the scaling function and orthogonal wavelets
can be computed, but also suggest that we can, to some degree, control the shape of the
wavelet in the time domain according to how we choose the sequence {h(k)}kez. One
desirable property is to have a wavelet with compact support in the time domain, i.e.,
it is time limited in that it is nonzero only over a given interval. Such a wavelet gives
a true sense of time locality. A set of orthogonal wavelets with compact support was
discovered by Daubechies [2]. They are parameterized by an integer n, are real valued,
and are denoted as ",P(t) for n > 2. In fact,

SUpp On C [(1-n), n]

and
| ,n(2'(t -2-'Il)'bP(2'(t - 2-k))dt = 0 for all 1I& k or i $ j.f-00nA ri A

(79)

(80)
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The associated scaling function is denoted by 6On(t). These wavelets are derived by choosing
the sequence {h(k)}kEz so that is of finite length (a FIR filter in signal processing parlance).
The result is the set of sequences {hn(k)}kEz that are nonzero for k = 0, (2n-1);
thus, they are of length 2n. Details of the procedure for finding these sequences can
be found in Daubechies' original paper; however, we have tabulated the sequences for
n = 2,3, ... ,14 in the appendix.

Figure 2 shows the Daubechies orthogonal wavelets for n = 2,3,... ,13 They were
generated by first calculating (approximating) the Fourier transform of the associated
scaling function via the equation

P
On(f) = II Hn(2Pf), (81)

p=G

where
2n-1

Hn(f) = E hn(k)e32 `rkf. (82)
k=O

Once E)n(f)is found, we calculate the Fourier transform of the orthogonal wavelet as

qln(f) = Kn (if ) On (if) (83)

where
Kn(f) = e-72T7i H(f + 1/2). (84)

Equations (81-84) follow directly from Eq. (69), (72), (75), and (76). In particular, the
truncated product in Eq. (81) gives good results for P = 20 for low values of n (n = 3),
to P = 25 for high values of n (n = 13). This was checked by calculating the normalized
cross correlation between two Daubechies wavelets of order n, where one was derived by
using P = N, and the other with P = N + 1. For P = 25 (or P = 20 for low values of n)
the correlation was negligibly different from 1.

6. PROPERTIES OF DAUBECHIES WAVELETS

We now state and prove five theorems about the Daubechies wavelets introduced
in the previous section. The first three theorems state that these wavelets are bounded,
continuous, and in most cases differentiable.

Theorem 8: #On(t) is bounded for all n.

17



. 0.3

0.2

0.1

0

-0.1

.-0. [

-8 -6 -4 -2 0 2 4 6 8
TIME t

l0.2

0.2 - 1f1

0. 1 ----- _ _

-0. 1

-0.2

-0.3 1 I
-8 -6 -4 -2 0

TIME t
2 4 6 8

0.3

0.2

0.1

0

-0.1

-0.2

-0-3 I .I I

-8 -6 -4 -2 0 2 4 6 8
TIME t

0.3 0.3

0.2 A0.2

0.1 l y0.1 ~ _ _ -

-0. 1 -0. 1

-0.2 -0.2

-0.3 -- -0.3 -
-8 -6 -4 -2 0 2 4 8 8 -8 -6 X-4 -2 0 2

TIME t L TIME t

Fig. 2a - Daubechies orthogonal wavelets for n = 2,..., 7. These wavelets are
nonzero only in the interval f(1 - n), n].
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0.3
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Fig. 2b - Daubechies orthogonal wavelets for n = 8,. 13. These wavelets are
nonzero only in the interval [(1 - n), n].
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Proof of Theorem 8: Daubechies showed that the Fourier transform of the wavelet
0b,(t) has the property

IOe(f)I < C(1 + If l)-n+1ogB/log2 < C < 0, (85)

for some constant C, and where B < 2n-1. It follows that

IOe(t)l = | n(f)eJ27ftdf
'oo

< I JOn(f)ldf
_00

< c J' (1 df (86)
(1 + If )n-logB/log2(

and
log B < n- = - log 2 (87)
log 2 log 2

Therefore, there exists some e > 0 such that Eq. (86) can be rewritten to yield

(00 df
10wn(t)l < CJ 1+I ~~

= 2 b dz
1z I+E

= -2Cj-

- 2C < (88)

Thus, the scaling function On(t) is bounded for all t. Since {hn(k)}kEz is a finite sequence,
it is possible to show through Eqs. (81) and (82) that -,bn(t) is a finite sum of time delayed
scaling functions. Therefore, the wavelet 06I(t) is bounded for all t.

Theorem 9: OPn(t) is continuous for all n.

Proof of Theorem 9: Let Cc(R) be the set of all functions such that

g(t) E C-(R) o J IG(f)I(1 + If I)l+a < 00. (89)

If a = k for k = 0,1,2,..., then Ck(R) is the space of k-times continuously differentiable
functions, where, in particular, CO(R) is the space of continuous functions. Daubechies
has already shown that ,b,(t) C C=(R) for some a > 0. Thus, we only need to establish
that this implies ,b(t) E C0(R). To begin, note that for any e e [0,a],
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(1 + If 1)-+6 < (1 + If I)1+, for all f. (90)

This implies that

IG(f )I(1 + If 1)1+6 < IG(J)I(1 + If )1+a, for all f (91)

which, in turn, implies

L IG(f)j(1 + If I)l+'df < J IG(f)I(I + If l)l+adf < 00. (92)

Thus, by the definition of Ca(R) as it follows from Eq. (89), we see that qS(t) E CE(R)
for all e G [0, a]. Therefore, lbn(t) E C0(R), and so ?bn(t) is continuous.

Theorem 10: ?Pn(t) is continuously differentiable for n > 4.

Proof of Theorem 10: Daubechies proved that a > 1 for n > 4. Furthermore, from
the proof of the previous theorem, we know that 'bn(t) E C6 for all positive e less than a.
Thus, Obn(t) E C'(R) for all n > 4. In other words, '4'n(t) is continuously differentiable for
n > 4.

Theorem 11: For n > 4, "Pn(t) has a finite spectral variance, i.e.,

| f2 ln(.f)jdf < 00- (93)

Proof of Theorem 11: For n > 4, nba(t) is continuously differentiable, therefore,
,'4(t) is continuous. Also, since bkn(t) has compact support (an interval), so does 0b'(t).

Furthermore, since a continuous function over a compact interval is bounded, we see that
4,0(t) is bounded over supp 'n thus

J 10b(t)l2dt = | ktb(t)l2dt

< meas(supp 'in) . max 1sbn1t) 2
œupp Ob

< meas([(1 - n ),nD. max n
tEL(1-n),n]

- (2n - 1) * max kbp.,(t)12 < 00, (94)

where meas(-) is the Lebesgue measure, and have used Eq. (79). Since the Fourier trans-
form of Ob'(t) is j27rfiIn(f), we have by Parseval's Theorem,

47r2|° f2jq(f)I2df = ,0 | (t)12dt < Ao. (95)
-CO -oo~~~
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Theorem 12: For n > 4, or for any wavelet with a finite spectral variance, if g(t) C
L2(R), then

Oq$(Sr)| )2 O.0, as s -0. (96)

Proof of Theorem 12: By the definition of the wavelet transform we have

6q5
9ar) 8~V | g(t)O'V(s(t - -r))dtOr ~~'~Or _-.

= S3/2 J g(t)Ob'(s(t - r))dt. (97)

Therefore, taking the square magnitude of Eq. (97), applying the Schwartz inequality, and
using Eq. (95) from Theorem 11, we have

aq~g (Sar) 12 _ *(s 2

0'r = s3 ] g(t)bn (s(t7-))dt

< s3 | Ig(t)12dt | kbn(s(t- r))12 dt

|J jg(t)I 2dt J 1kb'(Z)I2dz

= (21irS)211gI12f f2 jq (f)j 2 df < 00 (98)

Thus, by applying the squeeze theorem for limits, Eq. (96) follows from Eq. (98). This
proves the theorem.

Basically, this theorem says that as s approaches zero, the derivative of the wavelet
transform along the r axis approaches zero. In other words, 0(s, -r) becomes 'smoother'
along T- as s -* 0.

Theorem 13: Obn(t) E L'(R) nL 2(R) for all n.

Proof of Theorem 13: By Theorem 8 we know that nbn(t) is bounded, i.e., 1bn(t)l < K
for some K < oo. Therefore, using Eq. (79) we have

00J 10bn(t)ldt < meas (supp Obn) - K < (2n - 1) - K < oo, (99)

which implies that nbn(t) E L'(R). Also,

zoj kbn(t)I2dt < meas (supp Obn) -K2 < (2n - 1) * K2 < 00, (100)

which implies that 'in(t) E L2 (R). This proves the theorem.
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This last theorem shows that the Daubechies orthogonal wavelets obey the regularity
property as defined in Eq. (9). This says that the wavelet transform that uses a Daubechies
orthogonal wavelet as the transform kernel is meaningful in the sense that its inverse exists.

Theorem 14: For all Daubechies wavelets, the following are true:

(i) Irim I q (f)I 2
- 0

f-*+O VIf

(ii) lim ly(f)1 2 = 0,

(iii) J -l(f ) df -< oo.

Proof of Theorem 14: Daubechies and Mallat have shown that

co

1.(f) = e-32 7xfH,*(f +- 1/2) fi H.(f/2k), (101)
c=l

where
HE(f) = [(1 + e -,72-f)I2] Qn(f), (102)

and

IQM(f)I2 = (- 1 + k) sin2 k(7rf). (103)
k:=O ( 

From Eqs. (102) and (103) one finds

lim IH (f)12 = 1, (104)
f-*O

which implies

lim|Ift Hn(f'/2A)| = 1- (105)
f k=i

Now consider the limit

limn lH(f + 1/2)12 li (1 - e-rf) 2n IQm (f + 1/2)2 1(106)

f-° IfVI f -o 2 f -O IfI

Using Eq. (103), and L'Hopital's rule, we see that

lim IQn(f + 1/2)12 - lim DfJQn(f + 1/2)12
f + VIfl f-+ Dff

= 27r lam E ( k+ k)sin 2 +l(rf +r/2) cos(7rf + r/2)

= 0. (107)

23



DAVID M. DRUMHELLER

Similarly,
ltim IQ.(f + 1/2)12 = 0.CombiningI E

Combining Eqs. (101-108) yields

lim lIn(f)12
f-°O Ifl

= lim .H(f + 1/2) * lim II Hn(7rf/2k)
f -- If! f -tO _

- i (1 -e-72rf) 2n

f -°O1 2 1

= 0-0-1=0,

- IQn(f + 1/2)12
f BmO VIf

I0 2

* Iim II Hn(f/2k)
f-OI c-i1 

which proves (i). (ii) follows from (i) for, if I'n(f )12 - K / 0 as f -- i 0, then the limit in
Eq. (109) would be infinite.

(iii) is proved in two parts, since we can write the integral in (iii) as

10 I(f) 2df= +1 "1"' - 1+12.
-fl- Ifl 1 ( =II+Ifl

(110)

Consider I,. We first note that because jHn(f)I2 < 1, and using Eq. (101), that

j'Pn(f)1
2 = le 2"'f2 l|Hnj(f + 1/2)12 II Hn(f/2k)2

I 9'n~~~~~~f) ~~I k=1o 

Also, from Eqs. (102) and (103) we have

-+1- e3,2wrf 12n
IHn(f)1 2 2 +e JQn(f)I12

1 + e32 1f 2n
1 2 

fEmax (f)fe[-1/2,,/2, nf

= cos 2 (7rf) *f. max2, I Qn(f) I2.
fe[1/2,1/2

Therefore, since sin(x) < xj, from Eq. (112) it follows that

JHn(f + 1/2)12
Ifl < [• E~ml/a2 2 IQn(f)| I +f l r/2)

= [i~max IQn(f)li
[f:E-1/2,1/2]1 () If l

[max IQ 1 221 sif] 2n
fc[[t-12,12, IQn( f)12 I nIfIP '

24
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Integrating both sides of Eq. (113) yields

I1 = 1 4E(f + 1/2)1 df = [12 m IQ m(f)12] 72nL If 2nl df

=[max IQn(f) 12l 7r2 n I<00 (114)
[fEt-1/2,1/2 ] n

which proves that I, < oo. Note that for If I > 1,

J'Fn(f) 1 < |'Pn(f) 12. (115)

Since sbn(t) E L2 (R), by Parseval's Theorem we know that Tn(f) C L2 (R), so it follows
that

I2 = j nl> 1f 11 11 df : J It(f)l 2df < 00. (116)

Combining Eqs. (114) and (116) yields

|~ IP(f)1if = I, + 2 < 00, (117)

which proves (iii).

7. APPLICATION: WAVELET PASSBAND FILTERING

Frequently one must filter a passband signal to reduce transients or reject out of
band signals. Generally, this is accomplished by passing the signal through an analog
filter designed to pass only those frequency (Fourier) components that occupy the signal
passband. This is equivalent to convolving the input signal with the impulse response of
the filter. In this section, we show how filtering can also be accomplished by using the
wavelet expansion.

It was shown in Section 5 that if g(t) C L2(R) has the wavelet expansion

g(t) - k E'bh w(2'(t - 23i)), (118)
i,kEZx Z

where
gjk = VJ g(t)4*(23(t -2-jk))dt. (119)

_00

We realize, however, that the components of the expansion associated with large values
of 2i roughly correspond to short term features (transients) of the signal g(t), and the
components associated with small values of 2i contribute to the long term (average or dc)
components of g(t). Thus, to do passband filtering in the wavelet domain, we can construct
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a signal with a wavelet expansion that uses only those coefficients that correspond to a
narrow range of dilations. In mathematical terms, we construct the signal

ah

gb(t) = E jgjk v\/2(2 1 (t - 2-jk)). (120)
j=jz kEZ

Thus, we are constructing a signal with the coefficients associated with the wavelets whose
dilations are 2', ... , 23k.

We demonstrate this filtering method by the example that follows. Figure 3 shows
a real valued signal composed of two windowed sine waves and a spike (transient). The
uncontaminated signal is mathematically expressed as

g(t) = 2 exp ((t _ t)2/a 2) [sin(27rffit) + sin(27rf2t)], (121)

where t = 8.533, oal = 3.413, fi = 1.5 Hz, and f2 = 2fi = 3.0 Hz. Whereas the spike is
given by

n(t) = 3 exp ((t - 1)/a2), (122)

where o2 = 0.071. Figure 4 shows the Fourier spectrum of g(t) + n(t), and Fig. 5 shows
its wavelet transform. The vertical ridge in Fig. 5 is due to the transient. Clearly, the
wavelet transform show the locality of the transient in time, which the Fourier spectrum
does not. We first analog filter the signal in Fig. 3 by passing it through a Chebyshev
passband filter whose Fourier spectrum is given by

CMs)- 1 (123)S4 + 1.80377S3 + 2.62680S2 + 2.02550S + 0.82851 (

where
f2 - f2

= 32rJ Bf (124)

and fo = V/JhT, is the geometric mean of the filter passband whose width is
B = fh - fi where fi < fh. In this case, fl = 1.15 Hz, and fh = 3.35 Hz. The Fourier
spectrum of the filter, shown in Fig. 6, displays some ripple in the passband. This is an
inherent characteristic of the Chebyshev filter type [9]. For this particular filter, the ripple
width (peak-to-peak difference) is 0.1 dB. Figure 7 shows the Chebyshev filter output in
time in response to the signal in Fig. 3, and Fig. 8 shows its Fourier spectrum. In Fig. 7,
we note two features. First, we see that as compared to the original function, the two
sine waves are displaced in time. This is due to the phase characteristic of the filter:
each sinewave experiences a different phase shift. Second, we see that the entire signal is
displaced in time slightly, thus accounting for a group delay that is also due to the phase
characteristic of the filter.
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Fig. 3 - Real valued input signal composed of
two windowed sine waves and a spike
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The transform kernel is a Daubechies orthogonal wavelet of order
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Fig. 6 - Square magnitude of the Chebyshev
passband filter's Fourier spectrum

Fig. 7 - Output of the Chebyshev passband filter in
time in response to the signal in Fig. 3

Fig. 8 - Square magnitude of the Fourier spectrum of
the input signal after analog filtering with a Chebyshev
passband filter
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Figures 9 and 10 show the result of applying the wavelet filtering method to the
signal. Figure 9 shows the result for a reconstruction using dilations 21, 22, and 23. Figure
10 shows a reconstruction using slightly less wavelet bandwidth. In this case, we have
used dilations 21 and 22. As compared to passing the signal through a Chebyshev filter,
we see qualitatively that wavelet filter produced more amplitude distortion in the time
domain but does not show the same effect of phase distortion or group delay. Both analog
filtering (using the Chebyshev filter) and wavelet filtering de-emphasize the spike but do
not completely remove it.

Figures 11 and 12 show the Fourier spectrum of the signals derived through wavelet
filtering. They show that the low frequency components of the spectrum have been re-
moved, and this is reasonable since a large part of the spectral energy of the spike is
located there. Furthermore, we see that in Fig. 12 a spurious peak occurs, which implies
that wavelet filtering causes nonlinear distortion in the Fourier frequency domain. Figures
13 to 15 show the wavelet transforms of the signals resulting from wavelet filtering, and
by analog filtering. (Remember that the wavelet expansion coefficients of these functions
are equal to their wavelet transforms at the points (Sa,7) = (2i, 2-ik) for i, k E Z x Z.)
As compared to the wavelet transform of the input signals shown in Fig. 5, these figures
show a reduction of the ridge in the (s,T) plane associated with the spike.
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Fig. 9 - Wavelet reconstruction of the input signal using
dilations 21, 22, and 23. The wavelet expansion used the
Daubechies orthogonal wavelet of order n = 8.
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Fig. 10 - Wavelet reconstruction of the input signal by
using dilations 21 and 22. The wavelet expansion used
the Daubechies orthogonal wavelet of order n = 8.
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Fig. 11 - Fourier spectrum (square magnitude) of the
wavelet reconstruction of the input signal using dilations
21, 22, and 23. The wavelet expansion used the
Daubechies orthogonal wavelet of order n = 8.

Fig. 12 - Fourier spectrum (square magnitude) of the
wavelet reconstruction of the input signal using dilations
2' and 22. The wavelet expansion used the Daubechies
orthogonal wavelet of order n = 8.
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Fig. 13 - Wavelet transform (square magnitude) of the wavelet
reconstruction of the input signal using dilations 2', 22, and 2'. The
transform kernel is a Daubechies orthogonal wavelet of order n = 8.
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Fig. 14 - Wavelet transform (square magnitude) of the wavelet
reconstruction of the input signal using dilations 2' and 22. The
transform kernel is a Daubechies orthogonal wavelet of order n = 8.
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Fig. 15 - Square magnitude of the wavelet transform of the input
signal after analog filtering with a Chebyshev passband filter. The
transform kernel is a Daubechies orthogonal wavelet of order n = 8.

8. APPLICATION: A DECONVOLUTION ALGORITHM

The deconvolution of two signals has important applications in geophysics and com-
munication systems. The problem can be simply stated as follows: given a known input
signal x(t) driving a linear system whose unknown impulse response is g(t), estimate g(t)
given the known (measured) output signal y(t:) = x(t) * g(t).

The easiest way to deconvolve is to simply calculate the Fourier transforms X(f)
and Y(f), and find their quotient G(f) = Y(f)/X(f). This is reasonable in principle but
in practice can produce numerically unstable results, since one may have to divide Y(f) by
a very small X(f) if our discrete numerical approximation of X(f) brings us close to one
of its zeros. This problem may become worse in the presence of noise in the measurement
of X(f). The following outlines a deconvolutlon procedure in the context of the wavelet
expansion.

Both the impulse response g(t) and the output y(t) have wavelet expansions given
by

g(t) gi. E p a,(2'(t -n2-)
i,nEZXZ

y(t) -1 E Y J(2 - m2-')), (125)
j,mEZXZ
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where as compared to the definition in Eq. (77) we have dropped the factors v2 and -\/2J
inside the summations for notational convenience, i.e., gi,n v- gi,,., and
yj,m X2 X Yjm. The coefficients 9i,n are unknown; they are the ones we wish to es-
timate. On the other hand, the coefficients Yjm are known and are calculated by the
direct application of Eq. (78) on the known (measured) output y(t). We also know that

y(t) = X(t) * g(t)
= x(t) * E g1,,'b(2'(t -n2-))

i,nEZX Z

= E gi,n x(t) * b(2'(t - n2-)). (126)
i,nEZX Z

Each term inside the last summation in Eq. (126) has its own wavelet expansion given by

x(t) * jb(2'(t - n2-')) = E dj',(2j(t -m2-j)). (127)
j,mEZXZ

By substituting Eq. (127) into Eq. (126), and with rearrangement of the summations we
find that

X(t) * g(t) = d!, gin] b(2j(t -m2 )) (128)
j,mcEZXz ,nrZxZ

Comparing Eq. (128) with the second line of Eq. (125) shows that

Yjm= E dj~sm gini
i,nEZxZ

00 )gi,-
= j ( dts- ) o . (129)

i=00 1)~

This suggests the following expression:

Y =D G. (130)
where D is a tensor, and Y and G are matrices. Assuming a suitably defined inverse of D
exists, the wavelet coefficients for the expansion of g(t) can be found from the expression

G =D-1 Y. (131)

A time series for the impulse response g(t) can be found immediately by using coefficients
gin in Eq. (77).

At this point, some comments are in order. First, the matrices and tensors in
Eq. (130) contain an infinite number of elements. However, in practice one should find
that elements will approach zero as the magnitude of their indices i, j, m and n become
large. This follows from Theorem 2, which says the wavelet transform decays as the
magnitude of s and -r become large. Since the coefficients of the wavelet expansion are
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equal to the wavelet transform at each point where (s, r) = (2j, 2-jk), we know that
the coefficients will decay to zero as the magnitude of j and k become large. Thus, for
practical purposes, we need only use matrices and tensors with finite numbers of significant
coefficients.

Given that we will truncate the tensors and matrices defined above, the problem can
be recast as a standard linear programming problem using matrices and vectors. First,
from Theorem 2 we know that the coefficients for the wavelet expansion of the input x(t)
will only be significant for limited ranges of i and n, i.e., i = il,. ..,ih, and n = nl,... I nh-
From Eq. (127) and the orthogonality of the wavelets in the expansion, we know that we
need only consider those elements of V associated with these values of i and n. Similarly,
the coefficients for the measured output will only be significant for a range of j and m,
i.e., i = jl,...,jh, and m = Ml,...,mh. (More generally, (nl,nh) and (mzmh) could
depend on i and j respectively. This was done in the numerical example that follows.)
From Eq. (125), it is implied that we need only consider those elements of D that are
related to the coefficients for the output associated with these values of j and m. With
these facts in mind and by using Eq. (130), this implies that the problem of finding the
wavelet expansion of the system impulse response (finding the coefficients gi,n) can be well
approximated by the vector equation

y = Dg, (132)

where
dinj nh dlflhn. dh 4

. nh

i Y ... dt!,T1k ... d ' ... ti

jmInm dtlnh. phZi,UJhmL ... 3khm . dj" . .djz,mi . jl,mZh

'djintn h th,nL thinh
hMl ... hMl ... ,md *-- jhml

YT= (Yjjm, . .. YiLmh ... Yjhm1 ... Yih,mh )
9 = (giln1 ... gil nh ... g*ins . g.. gih)nh (133)

We see that V is a matrix of size (ih - ji + 1)(mh - mI + 1) x (ih - it + 1)(nh - nm + 1), and
the vectors y and g are of length (jh - i + 1)(Mh - ml + 1) and (ih - iLI + 1)(nh - n + 1)
respectively.

If N = (ih - ji + 1)(mh - mI + 1) = (ih - i1 + 1)(nh - nt + 1), then D is a square
matrix, and the vectors are now elements of the Euclidean space RN. We also see that
the solution g does not change if we multiply both sides by the Hermitian of D, since

b = DHy = DjHDg Qg. (134)
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We now seek the solution to the equation

b = Qg, (135)

where Q = DHD is now a positive definite matrix. It is now possible to show that finding
the solution to Eq. (135) is equivalent to finding the solution of the quadratic problem

Min 1-gHQg g - b (136)

Finding g is now recast as a minimization problem, thus allowing the use of any method
designed to solve this class of problem.

We could find g by multiplying b by the inverse of Q, providing Q is nonsingular. If
it is, then Q-1 is unique, and we have a unique solution for g. However, rather than finding
Q-1 directly, we really need only to find g directly. Such a method is a numerical procedure
called the conjugate gradient algorithm [10]. It possess the same numerical stability as the
steepest decent algorithm but converges in a finite number of steps at the cost of some
additional computation. This method produces a finite sequence of vectors go, g,.... ,gNi

where gN is the solution we seek. The complete algorithm is given as follows. Let go be
any vector in RN, and define do = -e = b -Qgo, then for k = 0,..., (N- 1),

gk+1 = gk + (tkdk,
T~dk

a~k = d-qdek
d eH1 Qdk.

dA:+l -ek+l + 8kdA,,

ek H Qdk
k dkHQdk'

ek = Qgk -b. (137)

In practice, we generally cannot measure y(t) exactly but are given y,1m(t) = y(t) +n(t)
where n(t) is a noise process. This, in turn, means that we do not know y but are given
ym = y + n, where n is the vector describing the deviation from the true value of y
because of n(t). Therefore, application of the conjugate gradient algorithm gives us g in
a best least square error sense. As we will see, the presence of noise in ym will cause
distortion and noise to appear in the solution for g and in the resulting reconstructed
time series derived from the wavelet expansion.
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Figures 16 through 18 show the input x(t), the noiseless output y(t), and impulse
response g(t), the function we seek to estimate. Figures 19 through 21 show their re-
spective wavelet transforms that were generated by using the Daubechies wavelet of order
n = 5. Furthermore, all wavelet coefficients utilized in the deconvolution algorithm were
also based on wavelet expansions using the Daubechies wavelet of order n = 5. Since the
vector expression in Eq. (132) is an approximation to the matrix expression in Eq. (130),
it is appropriate that the matrix D and vector y (or ym) are composed of the significant
elements (those of largest magnitude) of the tensor V and matrix Y respectively. This is
done by choosing carefully the ranges of i, j, n, and m.

Fig. 16 -

15.0 20.0 25.0 30.0 4.0 1.0 6.0 11.0 16.0 21.0 26.0
TiME t TIME t

Input signal Fig. 17 - Noiseless output signal

1.0

0.5

0

-0.5

-1.0~~~~~~~~~~~~~~~~~~~~~~~~.

0 5.0 10.0 15.0 20.0 25.0 30.0
T MEt

Fig. 18- True impulse response. This is the function
we seek via a deconvolution algorithm.
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Fig. 19 - Square magnitude of the wavelet transform of the input
signal. The transform kernel is a Daubechies orthogonal wavelet of
order n = 5.
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Fig. 20 - Square magnitude of the wavelet transform of the noiseless
output signal. The transform kernel is a Daubechies orthogonal wavelet
of order n = 5.
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Fig. 21 - Square magnitude of the wavelet transform of the true
impulse response. The transform kernel is a Daubechies orthogonal
wavelet of order n = 5.

To choose the ranges of i and n, we consider the vector ym (or ym) whose elements are
the wavelet expansion coefficients of the (measured) output. These coefficients, in turn, are
equal to the values of the wavelet transform of the (measured) output at (a, r) = (2 i, 2-im),
for im E Z x Z. Therefore, we choose ji, jh, ml, and mh so that y is composed of
all coefficients within and on the boundary of the region s E [2-2,21] and T E [12,26],
including the coefficient Y-2,2, which is equal to the wavelet transform at (S, T) = (2-2,8).
As can be seen from Fig. 20, this region defines the portion of the (s, r) plane where the
wavelet transform of the output is significant.

We are now left with the task of choosing the ranges of i and n, and this is done by
examining the elements dr., of the matrix D. If we consider Eq. (127), we can assume
that the wavelet expansion coefficients of any x * +(^) should at most be significant over
the ranges of i and n for which the wavelet expansion coefficients of the input x(t) are
significant. These coefficients, in turn, are equal to the values of the wavelet transform
of the input at (sir) = (2i,2-in), for i,n E Z x Z. Therefore, we choose il, ih, nI, and
nh such that D is composed of all coefficients within and on the boundary of the region
s E [2-2,21] and T e [2,16], including the coefficient n2,0 that is equal to the wavelet
transform at (S, T) = (22, 0). As can be seen from Fig. 19, this region defines the portion
of the (s, r) plane where the wavelet transform of the input is significant.

The choice of the ranges of i, j, n, and m for the example presented here resulted in
a matrix D of size 57x57. Consequently, the conjugate gradient algorithm converged in
57 iterations. The choice of go (the initial guess of g) is arbitrary; hence, it was set equal-
to a vector of zeros.
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Figures 22 to 29 show the outputs with various signal-to-noise ratios and the resulting
estimated impulse responses. In all cases the estimated impulse response was derived
from a wavelet reconstruction using dilations 2-2, 2-1, 20, and 21. Clearly, as the signal-
to-noise ratio of the measured output decreases the estimated impulse response becomes
progressively more noisy and distorted. This also shows that high signal-to-noise ratios
are required for accurate estimation of the impulse response. Such behavior is common to
all deconvolution algorithms; it demonstrates a typical trade-off. Generally, convolution
smears the impulse response to produce the output signal. Deconvolution buys back the
resolution or features of the impulse response but at the expense of producing an estimate
exhibiting a signal-to-noise ratio that is lower than the measured output [11].

15.0
TIME t TIME t

Fig. 22 - Noisy output signal with a peak-signal-
to-average-noise ratio of 40 dB

.0 1.0 6.0 11.0 16.0 21.0
TIME I

Fig. 24 - Noisy output signal with a peak-signal-
to-average-noise ratio of 35 dB

Fig. 23 - Estimated impulse response based on the input
signal shown in Fig. 22 possessing a peak-signal-to-
average-noise ratio of 40 dB. The wavelet expansion for
the reconstruction of the impulse response used a
Daubechies orthogonal wavelet of order n = 5, and
dilations 2 2 , 2-', 20, and 21.
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Fig. 25 - Estimated impulse response based on the input
signal shown in Fig. 24 that possesses a peak-signal-to-
average-noise ratio of 35 dB. The wavelet expansion for
the reconstruction of the impulse response used a
Daubechies orthogonal wavelet of order n = 5, and
dilations 2-2, 2-', 20, and 2'.
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Fig. 26 - Noisy output signal with a peak-signal-
to-average-noise ratio of 30 dB
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Fig. 27 - Estimated impulse response based on the input
signal shown in Fig. 26 that possesses a peak-signal-to-
average-noise ratio of 30 dB. The wavelet expansion for
the reconstruction of the impulse response used a
Daubechies orthogonal wavelet of order n = 5, and
dilations 2-2, 2-', 20, and 2'.
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Fig. 28 - Noisy output signal with a peak-signal-
to-average-noise ratio of 20 dB

Fig. 29 - Estimated impulse response based on the input
signal shown in Fig. 28 possessing a peal-signal-to-
average-noise ratio of 20 dB. The wavelet expansion for
the reconstruction of the impulse response used a
Daubechies orthogonal wavelet of order n = 5, and
dilations 2-2, 2-', 20, and 2'.

9. SUMMARY

This report addressed several theoretical and practical aspects of the wavelet trans-
form and wavelet expansion in the context of' signal theory and signal processing.

On the most general level, several theorems were proved. In particular, a 'decay
rate theorem' was proved (Theorem 2) which described how rapidly the wavelet transform
decays as the dilation variable s increases. M'oreover, the theorem showed the decay rate
depends upon the continuity of the transformed signal. Such a theorem is analogous to
the various decay rate theorems found in Fourier analysis that describe how rapidly a
Fourier spectrum decays as the magnitude of the frequency variable increases.
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We also presented the reformulation and extension of some existing results. The
material in Section 4 showed that linear system theory, i.e., input/output relationships
for linear systems could be reformulated in the context of the wavelet transform. It was
also shown that stochastic signal theory could be applied to the wavelet transform; the
power spectral density and autocorrelation function could be used to describe the expected
value of wavelet transform of a stochastic signal. Some of the material in Sections 6 and
7 extended some earlier work. Here, the continuity, boundedness, and regularity of the
Daubechies orthonormal wavelets were guaranteed. Such results were only sketched out
in the original presentation of her work [2].

Two practical applications of the wavelet expansion were presented. The first ap-
plication was a filtering method, which may be most useful when the coefficients of the
wavelet expansion are already available. Here, we showed that one could passband filter
in the wavelet domain. Because of the sense of locality offered by the wavelet expansion
(and wavelet transform), this filtering method may be applicable when we require short
term, localized filtering of a signal. The second application of the wavelet expansion was
the development of a deconvolution or iterative restoration algorithm. The method cast
the problem as a quadratic least squares problem, thus admitting to a solution by a host of
well known and established algorithms. In this case we chose the conjugate gradient algo-
rithm, because it converges in a finite number of iterations. This also allowed us to avoid
the problem of division by zero that crops up in the simple spectral division approach
to deconvolution. The disadvantage of using the wavelet expansion approach to decon-
volution is the need to precalculate the expansion coefficients, and, to date, no known
analog to the fast Fourier transform (FFT) exists for the wavelet expansion. Thus, we
have encountered a classic trade off: the development of a robust deconvolution algorithm
at the expense of additional numerical computation.
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Appendix A

FOURIER SERIES COEFFICIENTES FOR DAUBECHIES WAVELETS

Note that the coefficients listed below define the Fourier series

(Al)
2n-1

Hn(f) = 2 1/2 2 an(k)e7 2 7rkf
k=:O

which is consistent with Daubechies definition of the series HE(f) [2]. To be consistent
with the form of H,(f) used in Eq. (82), one must take hn(k) = an(k)/vf.

a2(0) =
a2 (1) =
a2(2) =
a2(3) =

0.482962913145

0.836516303738

0.224143868042

-. 1.29409522551

= 0.332670552950
= 0.806891509311
= 0.459877502118

a3(3)

a3(4)
a3(5)

= 0.230377813309
= 0.714846570553
= 0.630880767930
= -. 027983769417

= 0.160102397974
= 0.603829269797
= 0.724308528438
= 0.138428145901
= -. 242294887066

a4(4)

a4(5)

a4(6)

a4(7)

as(5)

a5(6)

a5(7)

a5 (8)

a5 (9)

= -.135011020010
= -. 085441273882
= 0.035226291882

= -.187034811719
= 0.030841381836
= 0.032883011667
= -. 010597401785

= -. 032244869585
= 0.077571493840
= -. 006241490213
= -. 012580751999

= 0.003335725285

4-3

a3(0)

a3(1)

a3(2)

a4(0)

a4(1)

a4(2)

a4(3)

as(O)

as(1)

a5(2)

a5(3)

a5(4)



DAVID M. DRUMHELLER

= 0.111540743350
= 0.494623890398
= 0.751133908021
= 0.315250351709
= -. 226264693965
= -. 129766867567

= 0.077852054085
= 0.396539319482
= 0.729132090846
= 0.469782287405
= -. 143906003929
= -. 224036184994
= 0.071309219267

= 0.054415842243
= 0.312871590914
= 0.675630736297
= 0.585354683654
= -. 015829105256
= -. 284015542962
= 0.000472484574
= 0.128747426620

a6(6)

a6(7)

a6(8)

a6(9)

a6 (10)

a6(11)

a7(7)

a7(8)

a7(9)

a7(10)

a7(11)

a7(12)

a7(13)

a8(8)

a8(9)

a8 (10)

a8 (11)

a8 (12)

a8 (13)

a8(14)

a8 (15)

= 0.097501605587
= 0.027522865530

= -. 031582039318
= 0.000553842201
= 0.004777257511
= -.001077301085

= 0.080612609151
= -. 038029936935
= -.016574541631
= 0.012550998556
= 0.000429577973
= -. 001801640704
= 0.000353713800

= -.017369301002
- -.044088253931

= 0.013981027917
= 0.008746094047
= -. 004870352993
= -.000391740373
= 0.000675449406
= -.000117476784
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a6(0)

a6(l)
a6(2)

a6(3)

a6(4)

a6(5)

a7(o)

a7(l)
a7(2)

a7(3)

a7(4)

a7(5)

a7(6)

a8(0)

a8(1)

a8(2)

a8(3)

a8(4)

a8(5)

a8(6)

a8(7)
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a9 (0) = 0.038077947364

ag(l) = 0.243834674613
a9(2) = 0.604823123690

an(3) = 0.657288078051

a9(4) = 0.133197385825

aq(5) = -.293273783279

ag(6) = -. 096840783223

ag(7) = 0.148540749338

ag(8) = 0.030725681479

aio(0) = 0.026670057901

alo(1) = 0.188176800078
alo(2) = 0.527201188932

alo(3) = 0.688459039454

aLo(4) = 0.281172343661

alo(5) = -. 249846424327

alo(6) = -. 195946274377

alo(7) = 0.127369340336

alo(8) = 0.093057364604

alo(9) = -. 071394147166

all(0) = 0.018692339500
all(1) = 0.144048360129
all(2) = 0.449822419238
ail(3) = 0.685506451221

aul(4) = 0.411710892303
all(5) = -. 162485521339
all(6) = -. 274320974144
anl(7) = 0.066025638763

an1(8) = 0.149791844607

aul(9) = -. 046504355457
aul(10) = -. 066445800596

ag(9)

a9 (10)

ag(11)

a9 (12)

a9 (13)

ag(14)

a9 (15)

a9 (16)

a9 (17)

aio(lo)
alo(11)

alo(12)

alo(13)

alo(14)

alo(15)

alo(16)

alo(17)

alo(18)

alo( 19)

all(11)
all(12)
all(13)
all(14)
all(15)
a-1(16)

auL(17)

all(18)
all(19)
all(20)
all(21)

= -. 067632829061
= 0.000250947115

= 0.022361662124
= -. 004723204758
= -. 004281503682
= 0.001847646883
= 0.000230385764

= -. 000251963189

= 0.000039347320

= -. 029457536822
= 0.033212674059
= 0.003606553567
= -. 010733175483
= 0.001395351747
= 0.001992405295
= -. 000685856695
= -. 000116466855
= 0.000093588670
= -. 000013264203

= 0.031336714900
= 0.020839548328
= -. 015365977170
= -. 003339972936
= 0.004928945867
= -. 000308709907
= -. 000893056839
= 0.000249184997
= 0.000054438816
= -. 000034637754
= 0.000004494745
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= 0.013114280902
= 0.109587064387
= 0.377449392844

= 0.657445006413
= 0.516294170295
= -.044313624533
= -. 315809615475
= -. 023471399498
= 0.182806918672
= 0.005686977952
= -. 096186633657
= 0.010995853244

= 0.009204916897
= 0.082889405900
= 0.312115898739
= 0.611313131287
= 0.589096065406
= 0.086639694877
= -.316237370186
= -. 126430468961
= 0.177816118862
= 0.071915527849
= -. 106342427892

= -. 026758244166
= 0.056034390582

al 2 (12)

a12 (13)

al 2(14)

al2 (15)

al2 (16)

al 2 (17)

al 2 (18)

al 2(19)

al2(20)

al 2 (21)

al2(22)

al2(23)

al3(13)

al3 (14)

a13(15)

al 3(16)
al3 (17)

al 3(18)

a, 3(19)

al 3(20)

al3(21)

al 3(22)
al3(23)

al3(24)

al3(25)

= 0.041627451082
= -.012180151045
= -. 012829445168
= 0.006713258423
= 0.002249393038
= -.002179176553
= 0.000006459278
= 0.000388621871
= -.000088486615
= -. 000024241195
= 0.000012775434
= -. 000001528836

= 0.002363616024
= -.023833745174
= 0.003917927648
= 0.007254616037
= -.002760408506
= -.001315670455
= 0.000932006061
= 0.000049301053
= -. 000165090932
= 0.000030664729
= 0.000010440501
= -. 000004699171
= 0.000000521846

46

ai2 (0)

a12(1)

a12 (2)

a12 (3)

a12 (4)

a12 (5)

a12 (6)

a12 (7)

a12 (8)

a12 (9)

al 2 (10)

a12 (11)

a13(0)

a13 (l)

a13(2)

a13 (3)

a13 (4)

al 3(5)
a13 (6)

a13 (7)

a13(8)

a13(9)

al 3 (10)

a13 (11)

al3(12)
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= 0.006547491642
= 0.063360170581
= 0.259953209778
= 0.569486757657
= 0.659765991407
= 0.253248224211
= -. 245883485949
= -. 207221475070
= 0.141972692112
= 0.144030955893
= -. 083519992219
= -. 071278880702
= 0.054864716315
= 0.027555092282

al4 (14)

al4(15)

ai4(16)
al4(17)

al4 (18)
al4(19)

al4(20)

al4(21)

al 4(22)
al 4(23)

al4(24)

al 4(25)

al4(26)
al4(27)

= -. 029754599557
= -. 005754062318
= 0.012711190182
= -. 000664409841
= -. 003831834380
= 0.001038385046
= 0.000708200880
= -. 000381870689
= -. 000042656957
= 0.000068164760
= -. 000010124883
= -. 000004370468
= 0.000001706613
= -. 000000176357
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a14(0)

al4(l)
au4(2)

al4(3)

a14 (4)

a, 4.(5)

a14(6)

alt.(7)

a,4(8)

a14(9)

al 4 (10)

a14(11)

al4(12)
al4(13)




