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THEORY AND APPLICATION OF THE WAVELET
TRANSFORM TO SIGNAL PROCESSING

1. INTRODUCTION

Most scientists and engineers are familar with the Fourier representation of a func-
tion. In most cases of practical interest, it is well known that a piecewise continuous

periodic function gr(t) can be equated almost everywhere with a weighted countably in-
finite sum of exponential functions, i.e.,

o0

gT(t) a.e. Z gneg21mt/T, (1)

n=—oo

where g, is the nth Fourier coefficient, and is given by

1 T
=7 /o gr(t)e T gt (2)

This is the classic Fourier series. The Fourier representation for a piecewise continuous
nonperiodic function g(¢) has the integral formulation

a(t) = / Z G(f)etdf, (3)

where G(f) is the Fourier transform of g(t), and is given by

G(f) = [ gtyeat. (4)
The development of Fourier theory constitutes a significant portion of classical mathemat-
ical analysis. It has also been a valuable tool in physics and engineering by contributing to

the solution of problems in linear system theory, thermodynamics, and quantum physics,
to name a few.

Despite their wide use, some problems arise in the interpretation of the classic Fourier
representations. For example, if g(t) is a function that is nonzero only in an interval (it
has compact support), then the Fourier transform implies that this time-limited function
is a summation of complex exponential functions, each having support over the entire
real line. Furthermore, one cannot associate features of the time function g(t) with any
specific value, or range of values, of f of the transform G(f). In other words, the transform

exhibits no locality of time; a transient feature in g(t) contributes to G(f) at all values of
f.

Manuscript approved March 4, 1991.



DAVID M. DRUMHELLER

In light of these observations, researchers have sought alternatives to the Fourier
representations that display some sense of locality in time. It was recently discovered that
certain functions, those whose amplitude is significant over a finite interval, can serve as a
transform kernel for square summable functions, provided they obey a regularity condition
[1-5]. These functions are defined as a time-dilated and time-shifted version of a specified
function (%) called a wavelet. Thus, the transform kernel is 9(s(¢ — 7)), where s € [0, 00),
and 7 € (—o0,0). If we integrate the function g(t) with respect to this kernel, the result
is the wavelet transform ¢4(s, ), which is analogous to the Fourier transform since it has
an integral representation for both the forward and inverse transform. There is also a
version of it analogous to the Fourier series in that it represents a function as a countable
sum of wavelets.

Many uses for the wavelet transform have been proposed [1]. Among them are
the identification and localization of transients in time series and the compact coding
of images if the concept of a wavelet is extended to two dimensions. In this report we
are concerned with the application of the wavelet transform in signal theory and signal
processing. The first part of the report presents several theorems, some of which are
results that have either been left unproven in other references or have only been alluded
to by other authors. Others are new, and present a deliberate attempt to reformulate
some standard signal theory in the context of the wavelet transform. The last part of the
report presents the application of the wavelet transform to two common signal processing
problems: filtering and deconvolution.

Throughout this report we maintain the following notational conventions: time sig-
nals are represented by lower case italic as in g(¢), and their associated Fourier transforms
are always written with the same letter but in upper case italic as in G(f). Vectors are
written in bold lower case italic as in ®, and matrices are written in bold upper case italic
as in A. Finally, it is assumed that the reader has some familiarity with real analysis.

2. THE WAVELET TRANSFORM

As the Fourier transform does, the wavelet transform also provides a representation
of the elements in the set of all square summable functions. This is the space L?(R),
where R denotes the real line. The wavelet transform of the function g(t) is given by

w{o®)} = ¢ale,m) = V5 [ gty (st — )i, (%)

where 1(t) is referred to as the analyzing wavelet, s is the dilation variable, and T is the
delay variable. This defines a mapping from the one-dimensional (1-D) time domain, to
the two-dimensional (2-D) dilation/delay space defined by the (s,7) plane. The factor /3

appears because
o0

RO (6)

s [ st —))idt = [
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NRL REPORT 9316

thereby acting as a normalization factor. This implies the relative amplitudes, or powers
(square magnitude), of the wavelet transform at two different points in the (s,7) plane
can be compared meaningfully.

Note in the mathematical literature that the time-dilated and time-shifted version
of the analyzing wavelet is defined as

7 () ™

where @ = 1/s, and a € [0,00). We choose the definition by using s rather than a since
it is often interpreted as the time-dilation due to the Doppler effect caused by a moving
point reflector. That is, if a transmitter is stationary and a reflector is moving with a
positive radial velocity of v, then

1—-v/e 2v
s—l-}-'v/c;—l_—c—’ (8)

where c is the propagation speed. Thus, if we transmit the signal g(t), then we receive
v/3g(st). Adopting the convention of modeling time-dilation by the variable s will make

#Mhe results presented in this report immediately applicable to those working in the field
of wideband echo-location systems.

Given the definition of a forward transform in Eq. (5), we naturally seek a formula
for transforming from the (s,r) plane back to the time domain. If the wavelet’s Fourier
transform ¥( f) meets a regularity condition, namely

co= [~ lg(fﬁl—z-df < o0, 9

and |¥(f)| = |¥(—f)|, then an inversion formula for the wavelet transform exists, and
g(t) can be recovered from ¢4(s,7) through the formula

o0 o [7 [T V6 dylemibatt - r))drds. (10)

For completeness, a proof of this result is given below since most published versions of it
can only be found in obscure references.

Proof of the Inversion Formula - We begin by substituting Eq. (5) into Eq. (10) to
get
I= L[ /w s /w gy (s(y — 7))dy | (s(t — 7))drds. (11)
C¢ =0 Jr=—00 -0

However, it can be shown that the Fourier transform of ¥(s(¢t — 7)) is given by
F{utst—m} = [ plate — ry)eitay = LI ponere, (12)
-0 8

3
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Therefore, by invoking Parseval’s Theorem, using Eq. (12), and defining G(f) to be the
Fourier transform of g(t) (G(f) exits since g(t) € L*(R)), one finds that

B 1 oo poo oo \P*(f/s) 2 fr e ‘I’(é/s)eﬂw (t—7)) ] rds
I = & ,:o/ﬁ_ws[/_wa(f)_—_s e fdf”/ ZELE) pavet-mag | dra

The bracketed factor in the integrand of the last line of Eq. (13) can be reduced as follows:

f - f 7 g(¢/s)e? UTHE-Ndrde = f ” [ /_ i ‘I’(f/s)e”z"‘(*‘f)df] e*I7dr
= foo sp(s(t — 7)) dr

— /00 ,(/)(z)eﬂw(f/a)zdz 2w St
= U(f/s)e? ft, (14)

Thus, substituting Eq. (14) into Eq. (13) yields
I = ~ / = / T sIG(F)|U(f/s)Petdf ds
C,l, 8=0J f=-—00

= & [ e[ ueras] e (15)

-0

Concerning the bracketed factor in the integrand of Eq. (15), if f # 0, then the change of
variable 7 = s/ f yields

fo s O(f/8)Pds = /0 ” IE%—)Edn = Cy. (16)

Note that this is true regardless of the sign of f since |¥(f)| = |¥(—f)| by hypothesis.
We now consider the value of the bracketed factor as f — 0. In this case

lim /ooos_ll‘l’(f/s)|2ds = lim[lim /:/“s—llw(f/s)lzds]

_f—bo a—0+
. fla
= lim[lsz z"1|1I!(z)[2clz]
f—0}a—0+ fa
= Cy (17)

This result can also be deduced by noting that for any |f| > 0, however small, Eq. (16)
always holds. Hence, the value of the limit of the integral in Eq. (16) is Cy. Regardless
of its value at f = 0, we at least know that
[ 12(s/9)?ds = G, for almost all f. (18)
0

4
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In light of Eq. (18), Eq. (15) reduces to

I= [~ a(f)ermsar = o), (19)

which proves the inversion formula in Eq. (10). This completes the proof.

3. PROPERTIES OF THE WAVELET TRANSFORM

We now state and prove three properties of the wavelet transform. The first property
concerns the wavelet transform of a time-dilated and time-shifted signal.

Theorern 1: Let ¢,(s,7) be the wavelet transform of the function g(t). Then for
8 > 0,

w { Vasg(so(t = 1)) | = 85 ( 2, 30(r = 70))- (20)

Proof of Theorem 1: Equation (20) follows directly from the definition of the wavelet
transform by substituting ,/sog(so(t — 7)) for g(t) in the integrand of Eq. (5), and by
invoking the change of variable y = s¢(t — 79). This completes the proof.

The theorem above shows how distortion in the time domain affects the wavelet
transform. For example, if s > 1, we see that the support of the wavelet transform in the
(s,7) becomes wider in s and narrower in 7. Delaying a function in time merely delays its
wavelet transform along the 7 axis.

As in the case of the Fourier transform, one is often concerned about how rapidly
the transform G(f) decays as |f| — 0. This ‘decay rate’ is related to the continuity of
g(t). The following theorem describes the decay rate of the wavelet transform ¢,(s,7) at

points of continuity, and at points of a jump discontinuity for the function g(%), providing
g(t) is of bounded variation.

Theorem 2: Let g(t) € L*(R) and (t) € L*(R)N L*(R). Suppose g(t) is of bounded
variation in a neighborhood of ¢o, then the wavelet transform of g(t) with respect to the
wavelet 9(t) has the property

(2) &4(s,t0) — 0 as s — oo.

Furthermore, if for all § > 0,

s/” ] [¥(2)|?dz — 0 as s — oo, (21)
z|>s
then if g(¢) has a finite jump discontinuity at ¢,, then

() Vsgg(s,to) — g(to W2 + g(t&)P; as s — oo,

5
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where

1/’-}- ‘/[;oo ¢(t)dt,
— °°° b(t)dt. (22)
If g(t) is continuous at ¢, then

(241) +/sdg(s,t0) — 0 as s — oco.

Proof of Theorem 2: We note that for any § > 0,
bolsite) = /5 [ gty (s(t — to))dt

= A_t°|>5 -+ ,A.t_tolss \/Eg(t)}l‘b*(s(t — to))dt
== I1 + Iz. (23)

Counsider I; and I,, one at a time.
We first show that I; — 0 as s — co. By the Schwartz inequality

0<IBl < gl [, slb(os —to)) P

= lloli3 [, W()Nde. (24)
But since § > 0,
—ab oo —oo oo
lim [ W@z = lim [ "4 [Tz = [+ [T ()P =040 =0. (25)

(This could also have been proved by using the density of the step functions in L?(R).)
Thus, by applying the squeeze theorem for limits to Eq. (24) one finds that

Iim |L” = 0= lim I, = 0. (26)

Furthermore, if Eq. (21) is true, then by a similar development

0 VAL < gl [ sl(e)Pdz — 0as s — oo, (27)
Z| > 8
which proves )
v/s8I; — 0 as s — oo. (28)

Now consider I3. It is sufficient to consider the case where g(t) and () are real
valued. Because g(t) is of bounded variation in a neighborhood of ¢, say [tg— &,%0+ 8], we

6
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know g(¢) is the difference of two increasing function (that are also of bounded variation).
Therefore, it is also sufficient to consider the case of g(t) increasing, and with a finite
jump discontinuity at %,.

Using the second mean value theorem for integrals, we note that for some
RS (t07t0 + 6]7

L7 swsptste—tanas = [+ [ gle)ovo(e — o))
= o(t3) [ aw(a(t - to))dt
+9(to + 8) /ﬂ o sP(s(t — to))dt
= o) [ B+ g0+ 0) [ b(aNds
— 9 +alta+6) [ $(2)ds

= g(t2 )b+ a5 5 — oo, (29)

where we have used the definitions of 4_ and 9, given in Eq. (22). Similarly,

/::6 g(t)syp(s(t — to))dt — g(to - as 8 — oco. (30)
Together Eqs. (29) and (30) show that

Vsl — g(tg W- + g(t )9+ < oo as s — oo. (31)

This, in turn, implies that
I; —» 0ass— oo. (32)

Forif I — K # 0 as s — o0, then /s]; — oo as s — oo, which contradicts Eq. (31).

Equations (26) and (32) prove property (i), and Eqgs. (28) and (31) prove property
(ii). If g(t) is continuous at 2o, then g(t5) = g(t5), and property (iii) follows immediately.
This completes the proof.

Properties (ii) and (iii) imply that at t = ¢, the wavelet transform falls off to 0
less rapidly along the s axis if g(t) has a jurap discontinuity at ¢o. In other words, any
discontinuous jump of the function g(t) at ¢ = ¢, implies the value of ¢,(s,%,) is significant
for large values of s. In a practical sense, this means that the wavelet transform can be
used for transient detection, since any abrupt change or short term feature of the function

should cause ¢y(s,%0) to be significant for large values of s. Also, because of the assumed
regularity of the wavelet, we know ¥(0) = 0, hence

0=2(0) = [~ y(t)dt=p_+y > by = —9_. (33)

7
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Furthermore, the condition ¢ € L'(R) implies ¢, and %_ are finite since

il - < [ we)ldt = gl < oo. (34)

Finally, almost any function encountered in practice modeling a physical phenomenon will
be a well behaved, bounded, piece-wise continuous function. Thus, requiring g(t) to be of
bounded variation is not overly restrictive.

Theorem 3: Suppose g(t) and the wavelet 1(t) are members of L?(R), then

|8g(s, 7)1 < llgll3 1113 (35)

Proof of Theorem 3: Equation (35) follows directly from the application of the
Schwartz inequality to Eq. (5): .

alo,I = _Zg(tw*(s(t—r))dtz
< | [ e s [ pwiste - e
= [ e | [ weairad

= |lgll3 lI1l3- (36)

4. LINEAR SYSTEMS AND THE WAVELET TRANSFORM

In this section we state and prove three results of the wavelet transform as applied
to linear system theory.

Theorem 4: Let z(t) be the deterministic input to a linear system whose known
impulse response is g(t), and whose output is y(¢) = =(t) * g(t), where * denotes the
convolution operator. Furthermore, let the wavelet transforms of z(t), g(t), and y(t) be
given by

w{e®)}) = &) =v5 [ alyp (sl — )i,
w{s®} = der)=v5 [~ gy(stt - e,
W{s®)} = a4l =5 [yt (st — m)de. (37)

Then the wavelet transform of the output y(t) is related to the wavelet transforms of z(t)
and g(t) through the equation

bu(s,r) = [ o()yls,2 1)z = [ g(2)u(s,2 — 7)ds. (38)

8
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Proof Theorem 4: First, it is well known from linear system theory that
v(t) = [ a(2)glt — 2)dz = a(t) » g(). (39)

Substituting Eq. (39) into the definition of the wavelet transform of y(t), and invoking a
change of variable yields

wilin} = a6
= V5 [ y(eyr(s(t - )t
= V5 [ [ al@)glt - 2y(s(t — 7))dtdz
= /_ : 2(z) [\/.; f_ °: gt — 2)p*(s(t — T))dt] dz
~ /_ : 2(z) [ﬁ /_ ” gy (s(t — (7 — z))dt] dz
- / : 2(2)dy(s, 7 — 2)dz, (40)

which proves the first integral in Eq. (38). The second integral in Eq. (38) is derived
similarly, but starts with the alternate form of the convolution integral

vt)= [ g()a(t - 2)dz. (a1)

This completes the proof.

It is well known from the theory of stochastic processes that the autocorrelation
function of a stationary process z(t) is related to its power spectral density S..(f) through
the Fourier transform relation

B{o(t)e"(t — 2)} = Baal2) = [ Seal )™ . (42)
This is known as the Weiner-Khinchine Theorem [6]. Furthermore, if 2(t) is passed through
a linear time-invariant filter whose impulse response is g(t), then the power spectral density
of the output y(t) [6] is given by:

2

Su(f) = Sza(f)- (43)

F {g(t)}

The following theorem gives similar relationships for the wavelet transform.

Theorem 5: Let z(t) be a wide-sense stationary stochastic process whose autocorre-
lation function is defined by

R.o(2) = E{a(t)z*(t — 2)}. (44)

9
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Then the wavelet transform of the autocorrelation function with respect to the wavelet
(t) is given by

W {Rer(2)} = buu,7) = V5 [ Renlap(a(z = 7))z, (45)

and the Fourier transform of ¢,.(s,7) with respect to 7 is

U*(f/s
F {bunlan)} = unter ) = TS D5, (46)
where ¥(f) is the Fourier transform of the wavelet 1(t), and S..(f) is the power spectral
density of z(t). Furthermore, let z(¢) drive a linear time-invariant system whose impulse
response is g(t), and whose output is denoted by y(¢). Then the Fourier transform of the
wavelet transform of the output autocorrelation function R,,(z) is given by

®yy(s, f) = IG(f)|2@22(37 f)- (47)

Proof of Theorem 5 (first method): We take the wavelet transform of the autocor-
relation function directly, and use the Fourier transform property (a transformation with
respect to the variable )

W#(_f/q)c—JZTfT
\/.; ’

F {Vaw(s(t — )} = (48)

where s > 0. Thus,
W{Ral2)} = V5 [~ Bualap(slt - 1))
= s [” Ru() [ [ e f/s)e’z"f("")df] dz
= s7/2 /_ : U*(—f/s) [ f_ Z Rzz(z)e’z"f‘dz] e~ I df
= & [ W (= f/5)Sea(— eI d
= 572 [ W (/8)Sual ). (49)

Therefore,

busls,r) =7 {TUL)s ()], (50)
This, in turn, implies that
sz(s, f) = ‘I’_E‘/féi)"swz(fx (51)

which proves Eq. (46).

10
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If we now consider the case of z(¢) driving a linear system whose impulse response
is g(t), then from Eq. (43) the power spectral density of the output y(t) is

Syu(£) = |G(f)* Sea(f)- (52)

Thus, from Eq. (51) and (52) it follows that

@y(s,f) = Eg—;/i)'syy(f)
= FURg(yesuus)

Vs
- 1o |4, )

= IG(f)Izézz(s, f)7 (53)

which proves Eq. (47). This completes the proof.

Proof of Theorem 5 (second method): This approach uses the definition of the auto-
correlation as an expectation. Substituting Eq. (44) into Eq. (45), and using the change
of variable w = — z yields

w {Rm(z)} = V5 [ Bla(t)e"(t — 2)(s(z — )iz
= E{m(t)\/g [ °‘ 2*(t — 2)P*(s(z — T))dz}

= B{et0)|v5 [T stwp(o(e- 7) — w)iu] |

— BL(R(t- )}, (54)
where we interpret h(t) to be the response to the input z(f) of a linear time-invariant
system whose impulse response is 4/sy(st). Thus, the last line in Eq. (54) is the cross-

correlation function Ryn(7). The Fourier transform of this correlation function is the
cross-power spectral density function, and it is well known that

7 { B} = s = T s ), (55)

where we have used the Fourier transform relation

7 {vawan} = UL (56)

We note, however, that Eq. (55) is also equal to the Fourier transform with respect to 7
of the wavelet transform ¢..(s,7). Thus, we have proved Eq. (46). The proof of Eq. (47)
is identical to the approach used in the first method. This completes the proof.

11
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Let R(s,7) be a density function that describes the average amount of spread in
range delay 7 and Doppler variable s a signal undergoes when applied to a dispersive
channel. We call R(s,7) the channel scattering function [7,8]. Furthermore, if the input
signal to the channel is z(t), and its wavelet transform is

W {a(t)} = dulssm) = V5 [ a(t)w*(s(t — r))it, (57)

then the expected square magnitude of the wavelet transform of the channel output y(t)
is given by

Bligy(s ) = [~ [~ R(w,2)4us(s/w,0(r — 2))dwds, (58)

where A,4(s,7) is the wideband crossambiguity function defined by

2

Agy(s,7)=s = |d=(s,7)|% (59)

[ sty (st — )yt

Derivation: In a channel that spreads a signal in both time and Doppler, the output
is composed of time shifted and Doppler shifted replicas of the input signal. For a channel
composed of a finite number of scatterers, the output signal would be given by

N
y(t) = Z;Pi\/s_i (it — 7)), | (60)

where p; is the random complex reflection coefficient of the ith scatterer. By Theorem
1, we know that the wavelet transform of an input signal dilated by an amount s; and
delayed an amount 7; is given by

W {a(s:(t — 7))} = da(s/5:,8:(t — 7). (61)
Thus, by linearity, the wavelet transform of output signal in Eq. (60) is

W {y(8)} = dy(s,7) = 3_ pisba(s/ 51, 8i(7 — 7)) (62)

=1

If we assume that the expressions in Eqgs. (60) and (62) are approximations for a channel
described by a continuous distribution of scatterers, then as N — oo, we have

¢y(s,7) = /z=_°° [u—o S(z,w)pz(s/w, w(r — z))dwdz, (63)
where S(s,7) is called the spreading function, and describes the distribution of the reflec-

tion coefficient in range delay = and Doppler variable s [7]. It is a stochastic function.
Furthermore, assume that the channel exhibits uncorrelated spreading, then

E{S(s,7)5*(3,7)} = R(s,7)6(s — 8)6(7 — %), (64)

12
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where §(-) denotes the Dirac delta function. We apply Eq. (64) to the correlation function
of the wavelet transform of the channel output as follows:

B{g st} = [ [T [ "

E{S(w,2)5" (@, 2)}
bo(s/w,w(r — 2))42(3/, B(F — 2))

diwdwdzdz.
/z:—-oo /:u:O

R(w, 2)¢(s/w,w(T — 2))d5(3/w, w(f — z))dwdz.
(65)

Setting § = s and ¥ = 7 yields Eq. (58).

5. THE WAVELET EXPANSION AND DUABECHIES WAVELETS

The transform discussed in the previous sections shows that for a suitable choice of
¥(t), any function in L?(R) can be expressed as an integral sum of time-dilated and time-
delayed wavelets. Note that this is not an orthogonal representation, since, in general, we
do not have

/_ Z P(82(t — 7))9*(82(t — 72))dt = 0, for all s, % s; and 74 # 7. (66)

Thus, the transformation is in some sense redundant. However, an orthogonal represen-
tation can be derived, provided the wavelet 1(¢) obeys some additional restrictions. The
result is an expansion composed of a countable sum of wavelets.

The description of this expansion was first given by Mallat [5]. In his work, he
presented the concept of a multiresolution approzimation of any function g(t) € L*(R).
This is a nested sequence of closed subspaces in L?(R) denoted as {V;};cz, where Z is the
set of all integers for which the following are true:

(8) V; C Vi, for all j € 2,

(b) Ujez V; is dense in L?(R) and N;ez V; = 9,
()gt)eV; < g(2t) eV forallj€ Z

(A gt)eV; =>g(t—277k)e V;forall j€ 2

(e) Let I12(Z) denote the space of square summable infinite sequences, then there exists
an isomorphism T : Vo — [?(Z) which commutes with the action of Z.

13
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Properties (a) and (b) merely state that the nested sequence of subspaces must span
the space L%(R). Properties (c) and (d) describe the effects of time dilation and time
delay. Collectively, however, all the properties can be used to prove that there exists a
function 4(t) € L*(R) such that for any j € Z the subspace V; is spanned by the set
{V270(29(t — k))}rez - 8(t) is called the scaling function, and the properties stated above
imply that if we wish to approximate (in a minimum integral square error sense) the
function g(¢) by a function g;(¢) in the subspace Vj, then

Gt)= Y g VIRI(t - 2R)), (67)

k=—oc0

where the coeflicients of the expansion are given by
9=V [  g(£)8%(29(t — 279 k))dt. (68)

This, of course, is reminiscent of a generalized Fourier expansion; however, the difference
here is that the expansion is only over the subspace V; not the entire space LZ(R). Equation
(67) explains property (e) in that the sequence {g;}rcz is an alternate representation of
g(t). Because the set {V/270(27(t — k))}rez is a basis, the elements are orthogonal. Thus,
by calculating ||g||3 one finds that it is equal to the sum of the squares of the sequence
{gik}rez. Since g(t) € L*(R), ||g|3 is finite implying {g;r}rez € I*(R).

For practical applications, we need to know more than just the existence of the

scaling function; we need to know how it is parameterized, and how to compute it. A step
in this direction is the following theorem that is proved in Refs. 2 and 5.

Theorem 6: Let 6(t) be a scaling function, and H( f) be the Fourier series defined by

H(f)= Y k), (69)

k=—o00

where {h(k)}recz is the sequence defined by

h(k) = % [ oty + e  (v0)

Then H(f) satisfies the following properties:

(@) [H(0)| =1,
(ii) h(k) ~ O(k?) as k — oo,
(i) [H(HP + |H( +1/2) = 1.
Furthermore, let
|H(f)| #0 for fe€l0,1/2), (71)

14




NRL REPORT 9316

then the Fourier transform of the scaling function is given by

o(f) = [[ H(2?f). (72)
p=1

The proof exploits properties (a) through (e), which define the multiresolution approxi-
mation. In particular, it uses properties (¢) to say that the function (¢/2)/2 is equal to a
weighted sum of the functions (¢ + k), and the weights are the elements of the sequence
{A(k)}rez. Furthermore, any sequence used to define H(f) in Eq. (69) so that H(f) obeys
properties (i) through (iii) of the theorem can be used to find 6(t) by defining its Fourier
transform through Eq. (72). Thus, our choice of the h(k)’s is somewhat arbitrary.

The expansion given by Eq. (67) is simple, but not always convenient for practical
applications. For, if we wanted the approximation of g(t) in the subspace V; and had the
expansion for the approximation in V;_;, we would have to recompute all expansion coef-
ficients. Furthermore, this expansion does not lend itself to defining filtering operations.
An alternate expansion can be derived by noting (through the projection theorem) that

there exists a subspace O; composed of functions that are orthogonal to those composing
V; such that

0; D Vi = Vin, - (13)
where @ denotes the Cartesian product. Thus, from property (b) of the multiresolution
expansion one can show that

U 0; = L(R), (74)
i€z
In light of this new definition we have the following theorem whose proof can be found in
the Refs. 2 and 5.

Theorem 7: Let {V;};cz define the multiresolution approximation of the space L*(R),
6(t) be the scaling function whose Fourier transform is ©(f), and H(f) be the Fourier
series describing the Fourier transform of 8(¢t) as in Theorem 6. Then there exists a
function 1(t) such that {+/274(2(t — 279k))};rezxz is a basis for LZ(R), and the Fourier

transform of 4(¢) is given by
0 o
where

K(f) = e H*(f + 1/2). (76)
From Egs. (75) and (76) it is possible to show that 6(t) is equal to a linear sum of time

delayed scaling functions. The function %(t) is called an orthogonal wavelet, and the
theorem given above says that any function g(t) in L%(R) can be written as

aB)E 3 gix V2y(2i(t — 277E)), (77)

5HkEZXZ

where

gir = VP [ gty (2t — 279K))dt = ,(27, 27%R). (78)"

15
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Thus, we see that the wavelet expansion coefficients are equal to the value of the wavelet
transform at the points (s,7) = (27,279k). Figure 1 shows this. Moreover, we see that
6(t) plays a role in the definition of ¥(¢). From a computational standpoint, Theorem 7
says that we must find 6(¢) (or its Fourier transform) first, and then compute ¥ (%).

4 —4 © © © & © o @ o 0 ¢ o o & & > o

S 2 —e [ [ L [ [ ° [ [
1 — ® L] L] °
. [
[

4
0 | | I I
0 1 3 4

Fig. 1 — Points in the (s, 7) plane where the wavelet expansion
coefficients are equal to the wavelet transform. This figure shows
all points lying within and on the boundary of the region
s €27 2*]and 7 = [0, 4].

Theorems 6 and 7 not only suggest how the scaling function and orthogonal wavelets
can be computed, but also suggest that we can, to some degree, control the shape of the
wavelet in the time domain according to how we choose the sequence {h(k)}rcz. One
desirable property is to have a wavelet with compact support in the time domain, i.e.,
it is time limited in that it is nonzero only over a given interval. Such a wavelet gives
a true sense of time locality. A set of orthogonal wavelets with compact support was
discovered by Daubechies [2]. They are parameterized by an integer n, are real valued,
and are denoted as ¥,(t) for n > 2. In fact,

supp Pn C [(1 — n)an]’ (79)
and

f = (2t — 2Dy (2(t — 279K))dE = 0 for all I # k or i # j. (80)
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The associated scaling function is denoted by 6,(t). These wavelets are derived by choosing
the sequence {#(k)}xez so that is of finite length (a FIR filter in signal processing parlance).
The result is the set of sequences {h,(k)}rcz that are nonzero for k = 0,1,...,(2n — 1);
thus, they are of length 2n. Details of the procedure for finding these sequences can
be found in Daubechies’ original paper; however, we have tabulated the sequences for
n=2,3,...,14 in the appendix.

Figure 2 shows the Daubechies orthogonal waveiets forn = 2,3,...,13 They were

generated by first calculating (approximating) the Fourier transform of the associated
scaling function via the equation

O.(f) = I_IOHn(T"f), (81)
where et
H.(f) = 2 ha(k)e 727k, (82)

Once O,(f) is found, we calculate the Fourier transform of the orthogonal wavelet as

en=.(2)e.(2). =

where
Kalf) = ™ H(f +1/2). (s4)

Equations (81-84) follow directly from Eq. (89), (72), (75), and (76). In particular, the
truncated product in Eq. (81) gives good results for P = 20 for low values of n (n = 3),
to P = 25 for high values of n (n = 13). This was checked by calculating the normalized

cross correlation between two Daubechies wavelets of order n, where one was derived by
using P = N, and the other with P = N + 1. For P = 25 (or P = 20 for low values of n)
the correlation was negligibly different from 1.

6. PROPERTIES OF DAUBECHIES WAVELETS

We now state and prove five theorems about the Daubechies wavelets introduced
in the previous section. The first three theorems state that these wavelets are bounded,
continuous, and in most cases differentiable.

Theorem 8: 1,(t) is bounded for all n.

17
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Fig. 2a — Daubechies orthogonal wavelets for n = 2, ..., 7. These wavelets are
nonzero only in the interval {(1 — #n), n].
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Proof of Theorem 8: Daubechies showed that the Fourier transform of the wavelet
1Pn(t) has the property

1©n(f)] < C(1+ |f|) e Bllos2 < C < oo, (85)

for some constant C, and where B < 271, It follows that

001 = | [ ontremras

< [ 1ea(ler
&

< G./_oo (1 + |f|)r—tosB/log2’® (86)
= log B log B
og og
log2 <n—l=n log 2 > 1 (87)
Therefore, there exists some € > 0 such that Eq. (86) can be rewritten to yield
0.(t)] < C / L
) (1+ lfl)”e
= 20 [
./ (1 + f)1+e
© dz
= 2C A z1+E
= —20
1
2
= -g- < oo, (88)

Thus, the scaling function 6,(t) is bounded for all t. Since {h,(k)}rcz is a finite sequence,
it is possible to show through Eqgs. (81) and (82) that 9,(¢) is a finite sum of time delayed
scaling functions. Therefore, the wavelet 0,(¢) is bounded for all t.

Theorem 9: 1,(t) is continuous for all n.

Proof of Theorem 9: Let C*(R) be the set of all functions such that
g®) € C(R) & [ IGAIL+ 1) < oo. (89)

Ifa=~Fkfor k=0,1,2,..., then C¥(R) is the space of k-times continuously differentiable
functions, where, in particular, C°(R) is the space of continuous functions. Daubechies

has already shown that ,(t) € C*(R) for some & > 0. Thus, we only need to establish
that this implies 9(¢) € C°(R). To begin, note that for any € € [0, a],
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(L +1F)* < +If)F, for all f. (90)
This implies that
IG(AIQ + 1F)Y7 < |G + IFDMFS, for all f, (91)
which, in turn, implies
[re@ia+ 15y < 7 16N+ 1£)*+=df < oo. (92)

Thus, by the definition of C*(R) as it follows from Eq. (89), we see that ¢.(t) € C*(R)
for all € € [0, . Therefore, ¥,(t) € C°(R), and so ,(t) is continuous.

Theoremn 10: p(t) is continuously differentiable for n > 4.

Proof of Theorem 10: Daubechies proved that o > 1 for n > 4. Furthermore, from
the proof of the previous theorem, we know that v,(t) € C* for all positive € less than a.

Thus, ¥.(t) € C*(R) for all n > 4. In other words, 1,(t) is continuously differentiable for
n > 4.

Theorem 11: For n > 4, 1,(%) has a finite spectral variance, i.e.,

[ P16l < oo. (93)

Proof of Theorem 11: For n > 4, n(t) is continuously differentiable, therefore,
! (%) is continuous. Also, since ,(t) has compact support (an interval), so does . (t).

Furthermore, since a continuous function over a compact interval is bounded, we see that
! (t) is bounded over supp 7, thus

[ wierae

Il

[, W
< meas(supp ¥,) - "g;:agu l4r ()12

é meas([(1 — n),n])- el AL

(n-1)- _mas WO < oo, (04)

where meas(-) is the Lebesgue measure, and have used Eq. (79). Since the Fourier trans-
form of 1! (t) is 727 f¥,(f), we have by Parseval’s Theorem,

an? [~ PIR(OPdf = [ bt < oo. (95)
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Theorem 12: For n > 4, or for any wavelet with a finite spectral variance, if g(t) €
L*(R), then

laqsg(s T)‘ — 0, as s — 0. (96)

Proof of Theorem 12: By the definition of the wavelet transform we have

89sm) — a2 [T slabates — )i

= [ °; gty (s(t — 7))dt. (97)

Therefore, taking the square magnitude of Eq. (97), applying the Schwartz inequality, and
using Eq. (95) from Theorem 11, we have

0< O¢g(s,7) — &3
or

[ sey(ate - r))at 2
[ lge)Par [ p(a(t — )Pt
= o [ lge)at [ pex()Pds

= @roPllgllt [ PR < oo. (98)

IA

Thus, by applying the squeeze theorem for limits, Eq. (96) follows from Eq. (98). This
proves the theorem.

Basically, this theorem says that as s approaches zero, the derivative of the wavelet
transform along the T axis approaches zero. In other words, ¢(s,7) becomes ‘smoother’
along 7 as s — 0.

Theorem 13: ¥,(t) € LY(R)N L*(R) for all n.

Proof of Theorem 13: By Theorem 8 we know that 1,(t) is bounded, i.e., [Yn(t)| < K
for some K < oo. Therefore, using Eq. (79) we have

/;: [n(t)|dt < meas (supp ¥n) - K < (2n — 1) - K < oo, (99)
which implies that ¥,(t) € L*(R). Also,
[ Mhnle)Pat < meas (suzp ) - K* < (n— 1) - K* < o0, (100)

which implies that ,(t) € L?(R). This proves the theorem.
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This last theorem shows that the Daubechies orthogonal wavelets obey the regularity
property as defined in Eq. (9). This says that the wavelet transform that uses a Daubechies
orthogonal wavelet as the transform kernel is meaningful in the sense that its inverse exists.

Theorem 14: For all Daubechies wavelets, the following are true:

: . 8L
@) f}fg I =0,
@) limlz(OF =0,

© [¥n(f)I?
iii —=df < oco.
G
Proof of Theorem 14: Daubechies and Mallat have shown that

Uo(f) = e H(F +1/2) [] Hal£/2%),
k=1

where
H(f) = [+ 7)/2] Qu(f),
and
CXOTES S Kb )

From Egs. (102) and (103) one finds
tim H (1) = 1,

which implies

-} 2
lim H Hn(f'/zk) = 1.
F—0 b1
Now consider the limit
2 _ )| 2 -
lim M (f £ 1/2)F 11— emm ) 1@a(f 4 1/2)1
F=0 |71 foo| 2 For0 7]

Using Eq. (103), and L Hopital’s rule, we see that

lim 1@n(f +1/2)]% lim, 211@n(f +1/2)12
-0t |71 -0t D;f

f—ot  —

(101)

(102)

(103)

(104)

(105)

(106)

n—1 .
= 2m lim Zk(n lt+k) sin®* Y f + 7/2) cos(xf + 7/2)
k=1

= 0.
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Similarly, 0 1)
Qn(f +1/2
Jim F =0. (108)
Combining Egs. (101-108) yields
(AR HFHY2P | |
b= T Mmoo i 11 Hn(m£/2")
_ o (@ —e ) Qa(f +1/2)P e ok|
= dm——| im H b 11 Ha(£/2°)
= 0-0-1=0, (109)

which proves (i). (ii) follows from (i) for, if |¥,(f)|? —» K # 0 as f — 0, then the limit in
Eq. (109) would be infinite.

(iii) is proved in two parts, since we can write the integral in (iii) as

N T
Consider I;. We first note that because |Ha(f)|? < 1, and using Eq. (101), that
D e AT N AT [ ATRR O et
Also, from Egs. (102) and (103) we have )
(PP = i% " lantr
< P s 0

= cosz"(vrf) sel 1/2'1/2][Qn(f)l2 (112)

Therefore, since sin(z) < |¢|, from Eq. (112) it follows that

|H.(f l—j‘:ll/Z)l2 < | oz 1/2]| ()P cos%(ﬂij‘cl +/2)
= :fe[ 1/2,1,2]lQn(f);2 %@
= :fe[ Yoy 1/2]|62ﬂ(f)]2 (vrl.;)lzﬂ
— -fe{ 1/21,,,]l62n(f)l2 A2 f2n1, -
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Integrating both sides of Eq. (113) yields

he [ g | g @u(n | [ 1

n 1
- [fe[ 1/2 1/2] lQ"(f)lz] n =% (114)
which proves that I; < co. Note that for |f| > 1,
oI < iy (115)
A
Since ,(t) € L?(R), by Parseval’s Theorem we know that U,.(f) € L%(R), so it follows
that
_ 9. ()| 2
L=[ Y s f|mun#<m (116)

Combining Egs. (114) and (116) yields

f°° 1@ (NI

S = h+ < oo, (117)

which proves (iii).

7. APPLICATION: WAVELET PASSBAND FILTERING

Frequently one must filter a passband signal to reduce transients or reject out of
band signals. Generally, this is accomplished by passing the signal through an analog
filter designed to pass only those frequency (Fourier) components that occupy the signal
passband. This is equivalent to convolving the input signal with the impulse response of
the filter. In this section, we show how filtering can also be accomplished by using the
wavelet expansion.

It was shown in Section 5 that if g(t) € L*(R) has the wavelet expansion

D= Y ga VI - 27R)), | (118)

IkEZXZ
where

gin =V [ gty (2(t — 27 R))dt. (119)

We realize, however, that the components of the expansion associated with large values
of 29 roughly correspond to short term features (transients) of the signal g(t), and the
components associated with small values of 27 contribute to the long term (average or dc)
components of g(t). Thus, to do passband filtering in the wavelet domain, we can construct
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a signal with a wavelet expansion that uses only those coefficients that correspond to a
narrow range of dilations. In mathematical terms, we construct the signal

ot = 30 3 g3 VIt — 279R)). (120)

j=iikez

Thus, we are constructing a signal with the coefficients associated with the wavelets whose
dilations are 2%, ... 2%,

We demonstrate this filtering method by the example that follows. Figure 3 shows
a real valued signal composed of two windowed sine waves and a spike (transient). The
uncontaminated signal is mathematically expressed as

g(t) = % ecp ((t - t—)z/af) [sin(27 fit) + sin(27 fot)], (121)

where = 8.533, 0y = 3.413, f; = 1.5 Hz, and f, = 2f; = 3.0 Hz. Whereas the spike is
given by

n(t) = 3ezp ((t - E)/az;) , (122)

where o, = 0.071. Figure 4 shows the Fourier spectrum of g(t) + n(t), and Fig. 5 shows
its wavelet transform. The vertical ridge in Fig. 5 is due to the transient. Clearly, the
wavelet transform show the locality of the transient in time, which the Fourier spectrum
does not. We first analog filter the signal in Fig. 3 by passing it through a Chebyshev
passband filter whose Fourier spectrum is given by

1
C(f) = 577 1.803775° 1 2.6268057  2.025505 1 0.82851 (123)
where f g
and fo = +/fnfi is the geometric mean of the filter passband whose width is

B = fi — fi where f; < fi. In this case, fi = 1.15 Hz, and f; = 3.35 Hz. The Fourier
spectrum of the filter, shown in Fig. 6, displays some ripple in the passband. This is an
inherent characteristic of the Chebyshev filter type [9]. For this particular filter, the ripple
width (peak-to-peak difference) is 0.1 dB. Figure 7 shows the Chebyshev filter output in
time in response to the signal in Fig. 3, and Fig. 8 shows its Fourier spectrum. In Fig. 7,
we note two features. First, we see that as compared to the original function, the two
sine waves are displaced in time. This is due to the phase characteristic of the filter:
each sinewave experiences a different phase shift. Second, we see that the entire signal is

displaced in time slightly, thus accounting for a group delay that is also due to the phase
characteristic of the filter.
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Fig. 3 — Real valued input signal composed of Fig. 4 — Square magnitude of the input
two windowed sine waves and a spike signal’s Fourier spectrum

DILATIONS

Fig. 5 — Square magnitude of the input signal’s wavelet transform.
The transform kernel is a Daubechies orthogonal wavelet of order
n=238
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Fig. 6 — Square magnitude of the Chebyshev Fig. 7 — Output of the Chebyshev passband filter in
passband filter’s Fourier spectrum time in response to the signal in Fig. 3

Fig. 8 — Square magnitude of the Fourier spectrum of
the input signal after analog filtering with a Chebyshev
passband filter
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Figures 9 and 10 show the result of applying the wavelet filtering method to the
signal. Figure 9 shows the result for a reconstruction using dilations 21, 22, and 23. Figure
10 shows a reconstruction using slightly less wavelet bandwidth. In this case, we have
used dilations 2! and 22. As compared to passing the signal through a Chebyshev filter,
we see qualitatively that wavelet filter produced more amplitude distortion in the time
domain but does not show the same effect of phase distortion or group delay. Both analog
filtering (using the Chebyshev filter) and wavelet filtering de-emphasize the spike but do
not completely remove it.

Figures 11 and 12 show the Fourier spectrum of the signals derived through wavelet
filtering. They show that the low frequency components of the spectrum have been re-
moved, and this is reasonable since a large part of the spectral energy of the spike is
located there. Furthermore, we see that in Fig. 12 a spurious peak occurs, which implies
that wavelet filtering causes nonlinear distortion in the Fourier frequency domain. Figures
13 to 15 show the wavelet transforms of the signals resulting from wavelet filtering, and
by analog filtering. (Remember that the wavelet expansion coefficients of these functions
are equal to their wavelet transforms at the points (s,7) = (2¢,27%k) for i,k € Z x Z.)
As compared to the wavelet transform of the input signals shown in Fig. 5, these figures
show a reduction of the ridge in the (s,7) plane associated with the spike.
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Fig. 11 — Fourier spectrum (square magnitude) of the Fig. 12 — Fourier spectrum (square magnitude) of the
wavelet reconstruction of the input signal using dilations wavelet reconstruction of the input signal using dilations
2!, 2%, and 2°. The wavelet expansion used the 2" and 2°. The wavelet expansion used the Daubechies
Daubechies orthogonal wavelet of order n = 8. orthogonal wavelet of order n = 8.
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Fig. 13 — Wavelet transform (square magnitude) of the wavelet

reconstruction of the input signal using dilations 2!, 22, and 2°. The
transform kernel is a Daubechies orthogonal wavelet of order n = 8.
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Fig. 14 — Wavelet transform (square magnitude) of the wavelet

reconstruction of the input signal using dilations 2' and 2. The
transform kernel is a Daubechies orthogonal wavelet of order n = 8.
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DILATIONS

Fig. 15 — Square magnitude of the wavelet transform of the input
signal after analog filtering with a Chebyshev passband filter, The
transform kernel is a Daubechies orthogonal wavelet of order n = 8.

8. APPLICATION: A DECONVOLUTION ALGORITHM

The deconvolution of two signals has important applications in geophysics and com-
munication systems. The problem can be simply stated as follows: given a known input
signal z(¢) driving a linear system whose unknown impulse response is g(t), estimate g(t)
given the known (measured) output signal y(t) = «(¢) * g(¢).

The easiest way to deconvolve is to simply calculate the Fourier transforms X(f)
and Y(f), and find their quotient G(f) = Y(f)/X(f). This is reasonable in principle but
in practice can produce numerically unstable results, since one may have to divide Y(f) by
a very small X(f) if our discrete numerical approximation of X(f) brings us close to one
of its zeros. This problem may become worse in the presence of noise in the measurement

of X(f). The following outlines a deconvolution procedure in the context of the wavelet
expansion.

Both the impulse response g(t) and the output y(¢) have wavelet expansions given

by |
gt) =Y ginp(2(t —n27%),
I NEZXZ
W) Y g -m2), (125),
ImEZXZ
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where as compared to the definition in Eq. (77) we have dropped the factors v/2¢ and /27
inside the summations for notational convenience, i.e., gin Vi o gin and
Yim V2 — Yjm. The coefficients gi;n are unknown; they are the ones we wish to es-
timate. On the other hand, the coefficients y;,, are known and are calculated by the
direct application of Eq. (78) on the known (measured) output y(t). We also know that

y(t) = =(t)=g(t) _ _
= a(t)*x Y gin¥(2'(t—n27Y))

in€ZxZ

= X Gina(t)x (2t —n27)). (126)

in€ZxZ

Each term inside the last summation in Eq. (126) has its own wavelet expansion given by

2(t) * (2t —n27)) = Y dPT(2(t — m27Y)). (127)

IMEZXRZ

By substituting Eq. (127) into Eq. (126), and with rearrangement of the summations we
find that ’

w0 o)= 3 | 5 it g vz - m2) (128)

imezxZlinezxz
Comparing Eq. (128) with the second line of Eq. (125) shows that
Yim = Z d;’:n Gin,
in€Zxz
- -1 7,0 71 Fim
= > (e @t i i) | g0 |- (129)

t=—ce gi1

This suggests the following expression:
Y =D G, (130)

where D is a tensor, and Y and G are matrices. Assuming a suitably defined inverse of D
exists, the wavelet coefficients for the expansion of g(t) can be found from the expression

G=D'Y. (131)

A time series for the impulse response g(¢) can be found immediately by using coefficients
9in in Eq. (77).

At this point, some comments are in order. First, the matrices and tensors in
Eq. (130) contain an infinite number of elements. However, in practice one should find
that elements will approach zero as the magnitude of their indices 7, j, m and n become
large. This follows from Theorem 2, which says the wavelet transform decays as the
magnitude of s and 7 become large. Since the coefficients of the wavelet expansion are
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equal to the wavelet transform at each point where (s,7) = (27,277k), we know that
the coefficients will decay to zero as the magnitude of ;7 and k£ become large. Thus, for

practical purposes, we need only use matrices and tensors with finite numbers of significant
coefficients.

Given that we will truncate the tensors and matrices defined above, the problem can
be recast as a standard linear programming problem using matrices and vectors. First,
from Theorem 2 we know that the coeflicients for the wavelet expansion of the input z(¢)
will only be significant for limited ranges of © and n,i.e., i =4;,...,%,, and n = ny,..., 0.
From Eq. (127) and the orthogonality of the wavelets in the expansion, we know that we
need only consider those elements of D associated with these values of : and n. Similarly,
the coeflicients for the measured output will only be significant for a range of 7 and m,
ie, j = Ji,.-.yJn, and m = my,...,mp. (More generally, (n;,ns) and (m;, ms) could
depend on 7 and j respectively. This was done in the numerical example that follows.)
From Eq. (125), it is implied that we need only consider those elements of D that are
related to the coefficients for the output associated with these values of j and m. With
these facts in mind and by using Eq. (130), this implies that the problem of finding the
wavelet expansion of the system impulse response (finding the coefficients g; ) can be well
approximated by the vector equation

y = Dg, (132)
where
i,my i T2 TR
J1sT e J1y et Jiymy ot Ji1,M
iy TEL ihaT2 thaTih
JyTE ttt It Mp e Ji,Mp e JMh
D = : : : ’
i,y Th TR T
JhaT e ThT T JhsT Tt Ths
ip,my innn thaTi thaTis
JryMp """ d.;'mmh tt d;hsmh e d.;'mmh
T _ . . . ,
Y = (Ui -+ Yimn o+ Yiumi oo+ Yinma )
r __
g = ( Ging  ++- Ginp o0 Gingy o+ Gipmp ) . (133)

We see that D is a matrix of size (j, — i + 1)(mp —my + 1) X (ip — 41+ 1)(np —ny + 1), and
the vectors y and g are of length (jn — 71 + 1)(mp —my+ 1) and (¢, — 4 + 1)(np —ni + 1)
respectively.

EN=Un—di+1)(mp—my+1) = (ip — 4+ 1)(np — ny + 1), then D is a square
matrix, and the vectors are now elements of the Euclidean space RY. We also see that
the solution g does not change if we multiply both sides by the Hermitian of D, since

b= DEy = DHDg = Qg. (134)
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We now seek the solution to the equation

b=Qg, (135)

where @ = DE D is now a positive definite matrix. It is now possible to show that finding
the solution to Eq. (135) is equivalent to finding the solution of the quadratic problem

|1 g H
= -b . 136
g, [29 Qg g] (136)
Finding g is now recast as a minimization problem, thus allowing the use of any method
designed to solve this class of problem.

We could find g by multiplying b by the inverse of Q, providing Q is nonsingular. If
it is, then Q™! is unique, and we have a unique solution for g. However, rather than finding
Q! directly, we really need only to find g directly. Such a method is a numerical procedure
called the conjugate gradient algorithm [10]. It possess the same numerical stability as the
steepest decent algorithm but converges in a finite number of steps at the cost of some
additional computation. This method produces a finite sequence of vectors go,g1,---,9nN,
where gx is the solution we seek. The complete algorithm is given as follows. Let go be
any vector in RN, and define dy = —eq = b — Qgo, then for k= 0,...,(N — 1),

gr+1 = Gk + oudy,

_ __eidk
S T
dir1 = —epy1+ Brdr,
o EaQd
diQd,’
€r = ng—b. (137)

In practice, we generally cannot measure y(t) exactly but are given y,(t) = y(t)+n(t)
where n(t) is a noise process. This, in turn, means that we do not know y but are given
Ym = Y + n, where n is the vector describing the deviation from the true value of ¥y
because of n(t). Therefore, application of the conjugate gradient algorithm gives us g in
a best least square error sense. As we will see, the presence of noise in y,, will cause
distortion and noise to appear in the solution for g and in the resulting reconstructed
time series derived from the wavelet expansion.
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Figures 16 through 18 show the input (), the noiseless output y(¢), and impulse
response g(t), the function we seek to estimate. Figures 19 through 21 show their re-
spective wavelet transforms that were generated by using the Daubechies wavelet of order
n = 5. Furthermore, all wavelet coefficients utilized in the deconvolution algorithm were
also based on wavelet expansions using the Daubechies wavelet of order n = 5. Since the
vector expression in Eq. (132) is an approximation to the matrix expression in Eq. (130),
it is appropriate that the matrix D and vector y (or y,,) are composed of the significant
elements (those of largest magnitude) of the tensor D and matrix Y respectively. This is
done by choosing carefully the ranges of i, j, n, and m.

1.0

05 - 0.5 -

) S N 0 N

05} i
!
_1‘0 ] 3 ] 1] 13 _1 0 ] L d ] 1
0 5.0 10.0 16.0 20.0 25.0 30.0 4.0 10 6.0 1.0 16.0 21.0 '26.0
TIME t TIME t
Fig. 16 — Input signal Fig. 17 — Noiseless output signal

1] (] N i,
o 5.0 10.0 15.0 20.0 25.0 30.0
TMEt

Fig. 18 — True impulse response. This is the function
we seek via a deconvolution algorithm.
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DILATIONS

I !
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Fig. 19 — Square magnitude of the wavelet transform of the input
signal. The transform kernel is a Daubechies orthogonal wavelet of
order n = 5. o
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Fig. 20 — Square magnitude of the wavelet transform of the noiseless
output signal. The transform kernel is a Daubechies orthogonal wavelet
of order n = 5.
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Fig. 21 — Square magnitude of the wavelet transform of the true
impulse response. The transform kernel is a Daubechies orthogonal
wavelet of order n = 5.

To choose the ranges of ¢ and n, we consider the vector y,, (or ¥,,) whose elements are
the wavelet expansion coefficients of the (measured) output. These coefficients, in turn, are
equal to the values of the wavelet transform of the (measured) output at (s,7) = (27,279m),
for j,m € Z x Z. Therefore, we choose ji, jr, my, and my so that y is composed of
all coefficients within and on the boundary of the region s € [272,2'] and = € [12,26],
including the coefficient y_; 2, which is equal to the wavelet transform at (s,7) = (272,8).
As can be seen from Fig. 20, this region defines the portion of the (s,7) plane where the
wavelet transform of the output is significant.

We are now left with the task of choosing the ranges of 7 and n, and this is done by
examining the elements d;’,:, of the matrix D. If we consider Eq. (127), we can assume
that the wavelet expansion coefficients of any z * ¢(:) should at most be significant over
the ranges of 7+ and n for which the wavelet expansion coeflicients of the input z(t) are
significant. These coefficients, in turn, are equal to the values of the wavelet transform
of the input at (s,7) = (2%,27%n), for i,n € Z x Z. Therefore, we choose i, i, n, and
np, such that D is composed of all coefficients within and on the boundary of the region
s € [272,21] and 7 € [2,16], including the coeflicient d"_";,o that is equal to the wavelet
transform at (s,7) = (272,0). As can be seen from Fig. 19, this region defines the portion
of the (s,7) plane where the wavelet transform of the input is significant.

The choice of the ranges of 4, j, n, and m for the example presented here resulted in
a matrix D of size 57x57. Consequently, the conjugate gradient algorithm converged in
57 iterations. The choice of go (the initial guess of g) is arbitrary; hence, it was set equal.
to a vector of zeros.
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Figures 22 to 29 show the outputs with various signal-to-noise ratios and the resulting
estimated impulse responses. In all cases the estimated impulse response was derived
from a wavelet reconstruction using dilations 272, 2%, 2%, and 2. Clearly, as the signal-
to-noise ratio of the measured output decreases the estimated impulse response becomes
progressively more noisy and distorted. This also shows that high signal-to-noise ratios
are required for accurate estimation of the impulse response. Such behavior is common to
all deconvolution algorithms; it demonstrates a typical trade-off. Generally, convolution
smears the impulse response to produce the output signal. Deconvolution buys back the
resolution or features of the impulse response but at the expense of producing an estimate
exhibiting a signal-to-noise ratio that is lower than the measured output [11].
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05 05k A ﬂ
0 0 s PN AN N
05 050 .
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1.0} 10|
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20 ! 1 1 ! s 2.0 ! i 1 I ! 4
“o 5.0 10.0 15.0 20.0 25.0 30.0 0 50 10.0 15.0 20.0 25.0 300
TIME t TIMEt
Fig. 22 — Noisy output signal with a peak-signal- Fig. 23 — Estimated impulse response based on the input
to-average-noise ratio of 40 dB signal shown in Fig. 22 possessing a peak-signal-to-
average-noise ratio of 40 dB. The wavelet expansion for
the reconstruction of the impulse response used a
Daubechies orthogonal wavelet of order n = 5, and
dilations 272, 271, 2°, and 2!.
15 15
sol 10 ,
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TIME t TIME t
Fig. 24 — Noisy output signal with a peak-signal- ' Fig. 25 — Estimated impulse response based on the input
to-average-noise ratio of 35 dB signal shown in Fig. 24 that possesses a peak-signal-to-

average-noise ratio of 35 dB. The wavelet expansion for
the reconstruction of the impulse response used a
Daubechies orthogonal wavelet of order n = 5, and
dilations 272, 271, 29, and 2.
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Fig. 26 — Noisy output signal with a peak-signal- Fig. 27 — Estimated impulse response based on the input
to-average-noise ratio of 30 dB signal shown in Fig. 26 that possesses a peak-signal-to-

average-noise ratio of 30 dB. The wavelet expansion for
the reconstruction of the impulse response used a
Daubechies orthogonal wavelet of order n = 5, and
dilations 272, 27!, 2%, and 2'.
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Fig. 28 — Noisy output signal with a peak-signal- Fig. 29 — Estimated impulse response based on the input
to-average-noise ratio of 20 dB signal shown in Fig. 28 possessing a peal-signal-to-

average-noise ratio of 20 dB. The wavelet expansion for
the reconstruction of the impulse response used a
Daubechies orthogonal wavelet of order n = 5, and
dilations 272, 27!, 2°, and 2!.

9. SUMMARY

This report addressed several theoretical and practical aspects of the wavelet trans-
form and wavelet expansion in the context of signal theory and signal processing.

On the most general level, several theorems were proved. In particular, a ‘decay
rate theorem’ was proved (Theorem 2) which described how rapidly the wavelet transform
decays as the dilation variable s increases. Moreover, the theorem showed the decay rate
depends upon the continuity of the transformed signal. Such a theorem is analogous to
the various decay rate theorems found in Fourier analysis that describe how rapidly a
Fourier spectrum decays as the magnitude of the frequency variable increases.
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We also presented the reformulation and extension of some existing results. The
material in Section 4 showed that linear system theory, i.e., input/output relationships
for linear systems could be reformulated in the context of the wavelet transform. It was
also shown that stochastic signal theory could be applied to the wavelet transform; the
power spectral density and autocorrelation function could be used to describe the expected
value of wavelet transform of a stochastic signal. Some of the material in Sections 6 and
7 extended some earlier work. Here, the continuity, boundedness, and regularity of the
Daubechies orthonormal wavelets were guaranteed. Such results were only sketched out
in the original presentation of her work [2].

Two practical applications of the wavelet expansion were presented. The first ap-
plication was a filtering method, which may be most useful when the coefficients of the
wavelet expansion are already available. Here, we showed that one could passband filter
in the wavelet domain. Because of the sense of locality offered by the wavelet expansion
(and wavelet transform), this filtering method may be applicable when we require short
term, localized filtering of a signal. The second application of the wavelet expansion was
the development of a deconvolution or iterative restoration algorithm. The method cast
the problem as a quadratic least squares problem, thus admitting to a solution by a host of
well known and established algorithms. In this case we chose the conjugate gradient algo-
rithm, because it converges in a finite number of iterations. This also allowed us to avoid
the problem of division by zero that crops up in the simple spectral division approach
to deconvolution. The disadvantage of using the wavelet expansion approach to decon-
volution is the need to precalculate the expansion coefficients, and, to date, no known
analog to the fast Fourier transform (FFT) exists for the wavelet expansion. Thus, we
have encountered a classic trade off: the development of a robust deconvolution algorithm
at the expense of additional numerical computation.
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Appendix A

FOURIER SERIES COEFFICIENTS FOR DAUBECHIES WAVELETS

Note that the coefficients listed below define the Fourier series

Bo(f) =22 S an(R)e ™, (A1)
>

k=0

which is consistent with Daubechies definition of the series H,(f) [2]. To be consistent
with the form of H,(f) used in Eq. (82), one must take h,(k) = a.(k)/v2.

az(0) = 0.482962913145
as(1) = 0.836516303738

a2x(2) = 0.224143868042

a2(3) = —.129409522551
a3(0) = 0.332670552950 a3(3) = —.135011020010
as(l) = 0.806891509311 a3(4) = —.085441273882
a3(2) = 0.459877502118 a3(5) = 0.035226291882
a4(0) = 0.230377813309 as(4) = —.187034811719
as(l) = 0.714846570553 as(5) = 0.030841381836
ay(2) = 0.630880767930 a4(6) = 0.0328830116867
ay(3) = —.027983769417 as(7) = —.010597401785
as(0) = 0.160102397974 as(5) = -—.032244869585
as(1) = 0.603829269797 as(6) = 0.077571493840
as(2) = 0.724308528438 as(7) = —.006241490213
as(3) = 0.138428145901 as(8) = —.012580751999
as(4) = —.242294887066 as(9) = 0.003335725285
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as(0)
as(1)
ag(2)
ag(3)
ag(4)
as(5)

a7(0)
az(1)
az(2)
az(3)
az(4)
az(5)
az(6)

ag(0)
as(1)
as(2)
as(3)
as(4)
as(5)
ag(6)
as(7)

I

I
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0.111540743350
0.494623890398
0.751133908021
0.315250351709
—.226264693965
—.129766867567

0.077852054085
0.396539319482
0.729132090846
0.469782287405
—.143906003929
—.224036184994
0.071309219267

0.054415842243
0.312871590914
0.675630736297
0.585354683654
—.015829105256
—.284015542962
0.000472484574
0.128747426620

ae(6)
as(7)
as(8)
as(9)
ag(10)
ag(11)

ar(7)
az(8)
ar(9)
az(10)
ar(11)
ar(12)
ar(13)

as(8)

ag(9)
ag(10)
as(11)
ag(12)
as(13)
ag(14)
as(15)

I

I

i

i

i

il

I

0.097501605587
0.027522865530
—.031582039318
0.000553842201
0.004777257511
—.001077301085

0.080612609151
—.038029936935
—.016574541631
0.012550998556
0.000429577973
—.001801640704
0.000353713800

—.017369301002
—.044088253931
0.013981027917
0.008746094047
—.004870352993
—.000391740373
0.000675449406
—.000117476784



as(0)
as(1)
as(2)
as(3)
as(4)
a9(5)
as(8)
ag(7)
a9(8)

a,m(O)
ay0(1)
a10(2)
a10(3)
a10(4)
a10(5)
a,m(6)
a10(7)
a10(8)
a10(9)

a11(0)
an1(1)
a11(2)
a11(3)
a11(4)
a1(5)
a11(6)
a11(7)
a11(8)
a11(9)
a11(10)

i

If

Il

i
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0.038077947364
0.243834674613
0.604823123690
0.657288078051
0.133197385825
—.293273783279
—.096840783223
0.148540749338
0.030725681479

0.026670057901
0.188176800078
0.527201188932
0.688459039454
0.281172343661
—.249846424327
—.195946274377
0.127369340336
0.093057364604
—.071394147166

0.018692339500
0.144048360129
0.449822419238
0.685506451221
0.411710892303
—.162485521339
—.274320974144
0.066025638763
0.149791844607
—.046504355457
—.066445800596

as(9)
ay(10)
ag(11)
ag(12)
ag(13)
ag(14)
ag(15)
ay(16)
ag(17)

a10(10)
a10(11)
a10(12)
a10(13)
a10(14)
a10(15)
a10(16)
a10(17)
a10(18)
a10(19)

a31(11)
a11(12)
a11(13)
a11(14)
a11(15)
a11(16)
a1:(17)
a11(18)
a11(19)
a11(20)
a11(21)

]

Il

—.067632829061
0.000250947115
0.022361662124
—.004723204758
—.004281503682
0.001847646883
0.000230385764
—.000251963189
0.000039347320

—.029457536822
0.033212674059
0.003606553567
—.010733175483
0.001395351747
0.001992405295
—.000685856695
—.000116466855
0.000093588670
—.000013264203

0.031336714900
0.020839548328
—.015365977170
—.003339972936
0.004928945867
—.000308709907
—.000893056839
0.000249184997
0.000054438816
—.000034637754
0.000004494745



a12(0)
a;2(1)
a12(2)
a12(3)
ay2(4)
a12(5)
a12(6)
a12(7)
a12(8)
a12(9)
a12(10)
a12(11)

a13(0)
ay3(1)
a13(2)
a13(3)
a33(4)
a13(5)
a13(6)
a13(7)
a,3(8)
a13(9)
a13(10)
a13(11)
a13(12)

It

Il

I

Il

i

Il
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0.013114280902
0.109587064387
0.377449392844
0.657445006413
0.516294170295
—.044313624533
—.315809615475
—.023471399498
0.182806918672
0.005686977952
—.096186633657
0.010995853244

0.009204916897
0.082889405900
0.312115898739
0.611313131287
0.589096065406
0.086639694877
—.316237370186
—.126430468961
0.177816118862
0.071915527849
—.106342427892
—.026758244166
0.056034390582
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a12(12)
a12(13)
a12(14)
a12(15)
a12(16)
a12(17)
a12(18)
a32(19)
a12(20)
a12(21)
a12(22)
a12(23)

a13(13)
a13(14)
a13(15)
a13(16)
a13(17)
a13(18)
a13(19)
a13(20)
a13(21)
a13(22)
a13(23)
a13(24)
a;3(25)

I

I

Il

I

I

I

Il

I

I

I

0.041627451082
—.012180151045
—.012829445168
0.006713258423
0.002249393038
—.002179176553
0.000006459278
0.000388621871
—.000088486615
—.000024241195
0.000012775434
—.000001528836

0.002363616024
—.023833745174
0.003917927648
0.007254616037
—.002760408506
—.001315670455
0.000932006061
0.000049301053
—.000165090932
0.000030664729
0.000010440501
—.000004699171
0.000000521846



a14(0)
a14(1)
a14(2)
a14(3)
a14(4)
a14(5)
a14(6)
a14(7)
a14(8)
a14(9)
a14(10)
a14(11)
a14(12)
a14(13)

I
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0.006547491642
0.063360170581
0.259953209778
0.569486757657
0.659765991407
0.253248224211
—.245883485949
—.207221475070
0.141972692112
0.144030955893
—.083519992219
—.071278880702
0.054864716315
0.027555092282
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a14(14)
a14(15)
a14(16)
a14(17)
a14(18)
a14(19)
a14(20)
a14(21)
a14(22)
a14(23)
a14(24)
a14(25)
a14(26)
a14(27)

]

—.029754599557
—.005754062318
0.012711190182
—.000664409841
—.003831834380
0.001038385046
0.000708200880
—.000381870689
—.000042656957
0.000068164760
—.000010124883
—.000004370468
0.000001706613
—.000000176357






