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PULSE COMPRESSION DEGRADATION DUE TO OPEN LOOP
ADAPTIVE CANCELLATION, PART II

1. INTRODUCTION

An exact expression for the perturbed sidelobe level of a compressed pulse that has been pre-
processed through an adaptive canceller was derived in Ref. 1. The pertinent assumptions of that
analysis are:

1.  the adaptive canceller was implemented by using the Sampled Matrix Inversion (SMI) algo-
rithm [2] or its equivalent, the Gram-Schmidt cancelier [3],

2. the input noises were temporally independent and Gaussian,

3. the desired signal’s input vector {or code) was completely contained within the samples that
were used to calculate the adaptive weights and is only present in the main channel, and

4. the adaptive weights were computed from the same data set to which they are applied (con-
current processing).

Earlier research has shown that because of finite sampling, the quiescent compressed pulse
sidelobe levels are degraded by preprocessing the main channel input data stream (the uncompressed
pulse) through the adaptive canceller. It was also shown that the level of degradation is independent
of whether pulse compression occurs before or after the adaptive canceller under assumption three.

The exact expression [I] for pulse compression degradation requires computer assistance 1o
evaluate this expression. This report derives a “‘rule of thumb®’ expression that is a good approxima-
tion to the exact expression.

2. BACKGROUND

Figure | is a functional block diagram of an adaptive canceller followed by a pulse compressor.
The adaptive canceller linearly weights the auxiliary channels with weights that are calculated from a
batch of sampled input data. The main channel consists of a desired signal plus noise that may or
may not be correlated with the auxiliary channels. It was shown in Ref. 1 that when analyzing the
pulse compression degradation it is necessary only to consider the interaction of the main channel’s
desired signal with the random variables in the auxiliary channels (Fig. 1). Thus for analysis pur-
poses, the adaptive weights of x,, n =1, 2, ..., N — I are only a function of the desired signal s
and the samples of x,,. Furthermore, as the number of independent samples goes to infinity, the auxi-
liary adaptive weights go to zero [1].

Manuscript approved April 4, 1991,
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MAIN AUXILIARIES
CHANNEL: «

DESIRED
SIGNAL
ONLY

MATCHED
FILTER:s

IOUTPUT

Fig. I — GS canceller followed by
a matched filter

In Fig. 1, s represents the desired signal vector {or code) of length L, and
x,,n = 1,2, ..., N — 1 represents the nth auxiliary random data vector of length K. The canceller
shown is the Gram-Schmidt (GS), which is numerically equivalent to the SMI algorithm [3]. We
denote it by GSg y where K is the number of samiples per channel used to calculate the canceller
weights and N is the number of input channels (main and auxiliaries).

The pulse compressor is essentially the matched filter for a given radar waveform. Most of the
energy in the received radar waveform is compressed into a given single range cell and, thus, the sig-
nal level can be increased significantly for detection purposes. However, some energy does leak into
the sidelobes of the compressed puise response, resulting in low gain in range cells outside of the
given range cell. If a target or piece of clutter is large enough, it can break through and be detected
in these range sidelobes, fatsely indicating a target detection or masking a real target. Thus it is
highly desirable to maintain a low sidelobe response.

Let r equal the 2L — | output vector of the pulse compressor. If an adaptive canceller is not
being used, then it is straightforward to show that

r=38's (0
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where

_ '

s = (S]‘ S35 cens SL) s

.. 0 0 0

l,L Ly A s

SL—] 57, 0 0

Sp-2 SL-1 St 0

sT = 5 §3 §3 "8 (2)

0 5 Sq 0 Sp—
0 (U 5t -2
0 O 0 P Sl

and T,r denotes transpose and complex conjugate transpose, respectively. S is a L X (2L — 1)
matrix called the autocorrelation function (ACF) matrix of 5. If L. < K, we define an augmented sig-
nal vector S,,, of length K such that the first L elements are elements of § and the remaining elements
are Zero. S, is defined as the augmented (2K — 1) X (2K — 1) ACF matrix of s using the ele-
ments of s,,,. The quantity r,,, is defined as the augmented 2K — 1 output vector of the pulse
compressor. Thus '

_
rcmg - Scmgsaug- (3)

Let s’ be the resultant output vector after s has been processed through the GS canceller and s,,, be
the resultant augmented GS output vector. This resultant output vector is then inputted to the matched
filter of the vector s, or equivalently, s,,,. If we set r' equal to the response of s,,, match filtered
with s,,, then

v = ol
v YaupSaug-

o~
4
v

In Ref. 1 it was shown under assumptions 1 through 4 (given in Section 1) that the average
pulse compressed sidelobe level after adaptive cancellation is given by

K(K + DA (K,N) KK+ 1)
SL,(1) =
0 SL"(I)+(K~N+I)(K—N+2)

(K - N + DK -N+2) ’ AIE(K,N)”SC(I)“:Z,(S)



where

SL, (D)

SLAD)
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is the average pulse compressed sidelobe level after adaptive cancellation of the Ith range
sidelobe (sidelobes are numbered =/, { = 1, Z, ..., these can be related directly to the
elements of r'; for example, [ = =+ 1 are the sidelobes adjacent to the match point).

is the guiescent pulse compressed sidelobe level of the ith sidelobe (K = oo or equivalently
no adaptive cancellation before pulse compression, these can be related directly to the ele-

ments of rj

is the number of independent samples per channel used to calculate the adaptive cancelier
weights

is the number of channel (main and auxiliaries)

is the K —{th column of the augment AFC matrix §,,,, { # K, and

Note that SL, (I} and SL (I} are normalized to the mainlobe pulse compression gain (adapted or quies-
cent, respectively) which is set equal to one or 0 dB.

The scalars A, (K,N) and A4 »(K,N) are computed as foillows, Consider the two paratlet adap-
tive cancellers shown in Fig. 2. Define

ug, vy are arbitrary K-length main channel input vectors,

x, = (0,010, 5,20 ..., 50K, n = 1,2, ..., N — |, K-length random data vector

]

The elements of x,, # = 1, 2, ..., N — 1, are assumed to have the following characteristics:

I

x k), n =1, ., N — i k=1, .., Kare identically distributed circular Gaussian com-
plex random variables (r.v.)

Elx, (k)] = 0, Ef|x,tky}?} = 1, where E|-} denotes expectation and |- denotes magni-
tude
Efx, thx thoyl = Ounless ny = n; and k, = k,, where * denotes compiex conjugate.
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Up Xy Xz Xyn-g Vo X4 Xp  Xy.y
GSkn GSkn
Upn—1 ViN-1
Fig. 2 — Parallel N-input GS cancellers
Define
2 1
=1 = + s =0,1,.... N —
“ K-n " E-mEk-nzn """ 2 ©)
1
b, = .
" K-k —-n+1) @
It is shown in Ref. 1 that
Efluly_ vy | A (K,N) A (KN) |ufvy |2
Elluy -y 2Ivw- 2| = | A2 &N AN | | flug v ®)
where
'VAII(KsN)AIZ(KaN)h‘ N-=2 [au bn—l
= 11 %)

LAEI(K;N)AZZ(KaN)J B ”l:'lb Lbrz anJ.

Equations (8) and (9) resulted from solving the following coupled recursive relationships that were

derived in Ref. 1:

2

E[lujr+1vn+] ‘2} :E{'Uf,",,lz] ]:1 - K
— R

; 1 J
(K —n{K —n + 1)

+ Efflu, * v, %3 {

(K — n)K —n + I)} (10)
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1
i

Effju, 7 1va 1) = B¢l 0y, |7 L(K "W E - n + D

—

re v | 2 !
A e S T & &k —ar | Y

wheren =0, 1, ..., N — 1.

3. BOUND DERIVATION

The expression derived for SL, given by Eq. (§), although exact, does not readily indicate how
the adaptive sidelobe levet varies with N and K. In this section we derive a tight upper bound on SL,
that 1s in terms of explicit expressions of K and .

This bound is obtained by considering Egs. (10) and {11). Instead of deriving a recursive rela-
« . 3 .
tionship for Ef|lu,[|*{]v,]|*} in this equation, we upper-bound this expectation by using the inequality

(4]
b= NVEHw [ EQIval]. {12)
This inequality is merely another form of the Cauchy-Schwartz inequality. Tt allows us to upper-

bound the joint moment in terms of maments of individual random variables.

It was shown in Ref, 3 that

g (K — K —n + 1)

Etfn, '} = Yug} (13)
e K(K + 1}
and
moile, 14 1" 1 (K - ??}(K -+ l} PPN
mwﬁwﬂmﬁ—ﬂjﬁ;jr—f (14)
Substituting these expressions into Eq. (12) results in
K—niKk —n+1
Etfu 1w, P = gl rof? Fgh (15)
Substttuiing Eq. (15) into Eq. (10 results in
. 5 - 2 2 1
E{lul, . v, = Effuv, i [ — +
UiV s By K-n (K-mK—n+1)
!
+ Juoll? vl (16)

KK + 1)
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It is apparent from Eq. (16) that E{|u}v, |}, n = 0,1, ..., N—1 can be upper-bounded by
w, where w, is found by the recursive relationship
2 2
2 1 - [[uo“!voll
= - + o 17
Ot [l K - n (K—n)(K—n+1)] T TRE + 1) {an
Initial condition (IC) wy = |uhvy 2.

We can show that wpy _, has the form

- fo - —2 4 1 |ufbvo | 2
AR K—n (&K-nK-n+1D 0T

2 2

+ ¢ [lug|*[lvoll* (18)
where ¢ is a constant to be determined. In fact, ¢ does not depend on the initial condition, a fact that
we use to find ¢. For uy = vy, it follows from Eq. (13} that

2N — 1) (N — N 4
= 4 = - + - ]9
wy-1 = Effluy_["} [1 X KK = 1)] [[ug | (19)
Substituting Eq. (19) into Eq. (18) and solving for ¢,
XN - 1) (N — DN N2 [ 2 1 ) 0
=1 - + : - 1 - + e
¢=1 K KK + 1) EIOL K —n (Kﬁn)(K—n+l)J @0
1t is shown in the Appendix that
N2 2 I N-1]°
1 — + < 1 - 21
”I_:IO K —n (K—m&K ~—n+1) K .( )

and

K -N+N -1
CTTRK DK+ D 22)

Thus inserting these inequalities into Eq. (19} results in

P I (I—N_IW_H!!AW;E_!_(K_’N"'z)(N—‘])‘
i i t K J | =078 | K(K—])(K‘i'l) 1

To find a bound on the adaptive compressed sidelobe level as was done in Ref. 1, we set
Uy = S, and vg = s, where s,,, is the augmented K-length signal vector and s, is a column of the
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augmented signal matrix. We note that [|s||*> = 1 and that SE, = |sis|{®. I was shown in Ref. 1
that the expected value of the match point of the compressed pulse preprocessed by a GSg y canceller
is

EHS”S}Z} — (K _N;(é)(f_(l_)N + 2). 24)

Thus if we divide both sides of Eq. (23) by the expected value of the match point we find

N -1

SL(1) < SL.(1) + ls (D] : (25)
| K&K -N+D T UK -N+ DK - b
We set
- N -1
=1 - 26
QKN = | = o (26)
and
- N -}
= . 27
ASL(K,N) XN+ DK -1 27)
Thus
SLo(l) < QUK NISL,() + ASL. (K, NYIs D12, (28)

Similarly, define the quiescent sidefobe level factor

KNy = KK + DA(KE.N) 29
QRN = (K-N+DK-N+2)

and the adaptive side perturbation

ASL KN — KK + DA (KN | 0)
«(KN) = (K - N+ 1K —N+2)

so that Eq. (5) can be rewritten as

SL,) = QK NYSL,(I} + ASL(K.N) |js.(D)*. €18

4. RESULTS

We now demeonstrate in graphical form that Q(K,N) and ASL,(K.N) are close approximations of

L ORRUYY wiiasiuiideilave ai3

the quiescent sidetobe level factor Q(K, Ny and the adaptive sidelobe perturbation ASL, (K, N), respec-
tively. Define the following ratios

, = 2N (32)
R

8
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and

ASL(K,N)
p= (33)
ASL(K,N)

We set Ny, = N ~ 1 and K = MN where M is a positive integer and calculate rp and 7y vs
N, and M. We restrict M = 2. Many cases were run (M =< 10, N < 100), and the two ratios
were always less than one and lower-bounded by the case when M = 2. Thus, we only present the
curves for M = 2. The close approximation is verified by the plots of ry and r, shown in Figs. 3
and 4, respectively. The worst-case approximation of Q(K,N)} by Q(K,N) occurs when N, = 1.
M = 2. In this case rp (dB) = —1.76 dB.

f( M=2

-10H

0.0

- (@B)=—1.76 dB FOR N
-20+

aux =1

o (dB)

-30F

-4.0

—5.0 ! ! A 1 " 1 ! I 1 1
0.0 10 20 30 40 50 60 70 80 90 100

N, NO. OF AUXILIARIES

Flg 3 — o vs Nam\'- M=2

An even beiter approximation of Q(K,N} was found by using the expression

N -1
(K — N + DK’

ASL,(K.N) = (34)

Note that the difference between the expression for AEL,, given by Eqs. (34) and (27) is that the
K — 1 is replaced by K. Define the ratio

ASL (D)
ri ==, (33)
ASL,(H
Figure 5 plots this ratio for M = 2 vs N,,,. Note that the worst-case approximation occurs when
Ny = 2. M = 2. In this case, r'y (dB) = —.51 dB.
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N, 0 NO.OF AUXILIARIES :
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2.0
\ . (dB)= - .51 dB

=10
-20
-30F
-407}
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50 110
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Because é(K, N) and AS:LG(K,N) are close approximations to Q(K, N) and ASL,(K,N) respec-
tively, it is straightforward to show that

2
; N -1
An(KN) = [1 " 1 . (36)

and

(K —N+2N -1

A(K,N) = 37
12(K,N) K(K — MK + 1) G
Again, if we replace K — 1 with X in Eq. (37), an even better approximation results:
K—-N+22)N -1
An(K.N) = 4 a1l (38)

KK + D

Inserting the approximate expressions given by Eq. (26) for Q(K,N) and Eg. (34) for
ASL,(K,N) into Eq. (31) results in

N -1 N -1
KK — N +2)}SL“(!) T K -N+DK

SL,()= [l - s (39)

Define K34p({) to be the minimum number of independent samples such that SL,(/) = ZEq, where

SL, = max SL,(/); (i.c., the average adaptive sidelobe level at a specific range sidelobe / is at most 3
I1#0 <

dB above the maximum quiescent sidelobe level). It is straightforward to show that

2 2
- - AN
Kyp() = Al S \/ oLl . (N~ 1 ———%M_HS Ol (40)
2 2 25L, — SL(D)

when 8L,(/) << 1. The actual number of samples used to ensure that all adaptive sidelobes are
below 251, would be

K}dB = THnax KSdBU)' (41)
1.0 +0

If the maximum quiescent sidelobe level occurs close to the main lobe, then ||s.|° = 1 and we find
that K345(/) is maximized at this maximum quiescent sidelobe level. Hence,

LN — N-11" N-=1
Kig = > +'\/[ > J + g (42)

q

Reference 1 pointed out that the pulse compression degradation analysis can be applied to quan-
tifying the canceller degradation caused by a desired signal’s presence in the samples used to calculate
the adaptive weights. If the desired signal has the power o} after pulse compression, then the average

11
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power tesidue caused by the signal in the K — 1 range bins not containing the signal can be shown to
equal at most 52 ASL, (K, N) plus possibly the signal power due to the quiescent compressed sidelobes.
- b 1 1 . " < + oo 11 P

let o5, be the quiescent output noise power level of the canceller. Define

of

8y = ASLAK.NY —— ls.(DIf? 43)
T min
and
§ = max &(/). (44)

1,1+0

One normally desires =< I, otherwise the desired signal generates more range sidelobe power than
the noise power residue. Because !rrjla% s> = 1 and using the good approximation for ASL,(K,N)
g #E

given by Eg. (34) then

2

N -1 Os
5= 45
(K - N + DK Urznin )

It is desirable to know the number of independent input samples Ky such that 6 = 1. It can be
shown that

5. SUMMARY

An exact expression for the perturbed sidetobe level of a compressed pulse that has been pre-
processed through an adaptive canceller was derived in Ref. 1. The exact expression requires com-
puter assistance to evalvate this expression. In this report, a “‘rule of thumb’’ expression is derived

that is a good approximation to the exact expression. Furthermore, this same approximation can be
used to derive a good approximation for the canceller noise power level that is induced by having a
desired signal present in the canceller weight calculation. An expression for the number of indepen-
dent samples necessary to equalize the signal-induced power with the quiescent interference levet is

also derived,
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Thus

Now

Thus

We first

_N*Z | 2 1

_,,1;10 K-n  &K-mE-n+D

g2 + 2 ] 1 - 1

a=0 K —n (K—n)(K—n+1)J (K —n}K —n—-10
N-2 f 2 2 —\N—z 1

= 1 — _

n=0 K—n + (K—n)(K—n+i)J ”1}0 [1 (K — n}K —n
N2 2 2 K —
I |- + _{ N+ DK —-N+2)
n=0 K-n XK-mK-n+1 K(K + 1)

Appendix
PROOF OF EQS. (21) AND (22)

prove Eq. (21). Define

2V~ , NV - D

=1 —
K KK + 1)

_ K -N+ DK -N+2

b KK+ 1 I1
— _ N-2
. & NK+1)(K N+2) 'y _
(K + 1) n =0 (K - n)2

_ K+ DK ~-N+1)
KK — N +2)

N-=2 ) 1
130 (K — n)?

- 2 2
po KN U [I_N”],
K K

15

N-2 | 1
n =0 - (K_”)(K_n_f)

— 1)} . (AD)

(A2)

(A3)

(A4)

(A5)
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Next we prove Eq. (22). Set

N2 1
a_nl}(] vy —

Now
_ 2N - 1) NN - 1)
b = [I-l- e +K(K+1}jia
and
N 1 KK — N)
]7— =
a>,?1:10[ (K—n—l)z} K - DK -N+ 1)
or
17a<17 K(K_N) N—I

Using Bq. (A7) and Eq. (20), it can be shown that

. {1_ N -1 (N—l)NJ RN

K KK+ 1)

Using Eq. {A9) it follows that

K- K —N+1) (K-_DK-N+1’

2N -1 (N — DN N -1
C<[1 K +K(K+1J K -—DK N+ 1)

or

- < (K — N + 2N — 1)
KK — K + 1

16

(A6)

(A7)
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{(AD)

(A10)
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