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PULSE COMPRESSION DEGRADATION DUE TO OPEN
LOOP ADAPTIVE CANCELLATION, PART I

1. INTRODUCTION

An adaptive canceller [1] adjusts the auxiliary channel settings so as to null out interference in
the main channel (Fig. 1). The weights of the auxiliary channels are adjusted to minimize the output
noise power residue. 1f the noise environment is not known a priori, these weight settings must be
estimated from a finite set of incoming data on the input channels. Thus, the weight settings will
have perturbations about the quiescent optimum weight settings. These perturbations cause, for exam-
ple, the output noise power residue to rise [1-4], and if the adaptive canceller is used in the sidelobe
antenna canceller configuration, the adaptive array antenna sidelobe level to increase [5].

MAIN ANTENNA AUXILIARY ANTENNAS

L[] { N

Y — - _{

.

Fig. 1 — Adaptive canceller

A pulse compressor is essentially the matched filter for a given radar waveform. Most of the
energy in the received radar waveform is compressed into a given single-range cell and, thus, the sig-
nal level can be increased significantly for detection purposes. However, some energy does leak into
the sidelobes of the compressed pulse response, resulting in low gain in range cells outside of the
given range cell. If a target or piece of clutter is large enough, it can break through and be detected
in these range sidelobes, falsely indicating a target detection or masking a real target. Thus, it is
highly desirable to maintain a low sidelobe response.

Manuscript approved February 11, 1991,



KARL GERLACH

For the radar designer there is the choice of where to put the puise compressor: before or after
the canceller. A disadvantage of placing it before the canceller is that a pulse compressor must be
placed in each antenna channel (main and auxiliaries) to maintain channel match. Another disadvan-
tage is that the pulse compressor must have the dynamic range of the interference (possibly clutter and
Jamming) which has yet to be cancelled. These disadvantages do not exist if the pulse compressor is
placed after the canceller. However, a disadvantage of placing the pulse compressor after the can-
celler is that the range sidelobe levels of the compressed pulse increase hecause a finite number of
samples is used to compute the canceller weights. (We assume that the canceller weights are
estimated from a block of input data and applied back onto the same input data set.) Hence, the
designed radar waveform pulse compressor responses may not be achieved because of the interaction
of the canceller with the pulse compressor. Because of the higher sidelobes, unwanted targets may
break through and be detected. Significantly, as it will be shown, the maximum sidelobe levels that
result from imteracting with the canceller are independent of whether the input wavetorm was
compressed before or after the canceller if the uncompressed pulse is compietely contained within the

samples that are used to calculate the cancelier weights.

This report considers the degradations that result when trying to match-filter or pulse-compress a
desired radar waveform after it has been processed through a particular adaptive canceller calted the
Sampled Matrix Inversion (SMI) algorithm {2]. The SMI algorithm is an open-toop, rapidly converg-
ing adaptive canceller implementation whose noise power convergence rate is independent of the

hace haan ~cancidarad a hacalina far fack fanuvaraing
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adaptive canceller algorithms. The Gram-Schmidt (GS) canceller [4, 6-8] is a numerically equivalent
implementation (assuming infinite accuracy} of the SMI algorithm with excellent performance simul-
taneously in arithmetic efficiency, stability, and convergence. In addition, it is a good analytical tool
4.5} with which to investigate the convergence properties of the SMI canceller. Because of the
SMI’s complexity, we assume that it is implemented digitaily. Because the pulse compressor follows
the canceller, we assume that it is also implemented digitalty.

This report is laid out as follows., Section 2 briefly describes the GS canceller and Section 3
presents the signal model (for puise compression). Some past results on GS cancellers are reviewed
in Section 4. Sections 5 through 7 derive the analytical results and Section 8 discusses them.

For some applications, the matched filter is replaced by a filtering scheme that reduces the range
sidelobes at the expense of signal gain at the maiched point. Thus, a mismatched filter is used. I is
shown that the resuits derived for the matched filter are applicable to the mismatched filter.

2. THE GS CANCELLER

Consider the general N-input Gram-Schmidt canceller structure as shown in Fig. 2. Let xp(¢),
x1(1), ..., xy_ (1) represent the complex data signals in the Oth, 1st, ..., ¥ — lth channels,
respectively. We call the leftmost input x,{¢) the main channel and the remaining N — | inputs, the
auxiliary channels. The main channel’s signal consists of a desired signal plus additive noise (i.e.,
internal plus external noise). Cancellation of the signals from external interfering sources relies on
the correlation of simultaneously received signals in the main and auxiliary channels. The internat

noises on each channel are assumed to be uncorretated between channels. The GS canceller decorre-
lates the mn’ﬂmrw inouts one at a time from the other inputs hv us!ga the hasic 2- lnnU_t_ GS processor

Fatiwh LiaARgl M LiiZd VHID LT DRI AR

as is shown in Fig. 3. For example, Fig. 2 chows that xNhl(t) is uncorrelated with xﬁ,}(r).
Xy, L., x5 () in the first level of decomposition. Next, the output channel that results from
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Fig. 2 — GS structure
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Fig. 3 — Basic 2-input GS canceller

decorrelating xy _{#) with xy_7{i), is decorrelaied from the other outputs of the firsi-level GSs. The
decomposition proceeds until a final output channel is generated. If the decorrelation weights tn each
of the 2-input GSs are computed from an infinite number of input samples, then the main output chan-
nel is totally decorrelated with the input: xl(t} xa(), ... xN_,(t) Also, xS,N (),

+ papy b

n=01,... , N —1are pdlrwme bwubuuauy uncorrelaied or orth gO“

If an infinite number of input samples is not used then the decorrelation weights associated with
each 2-input GS canceller are estimated by using finite averaging, One method of processing data
ulluugn the GS canceller is called concurrent pmcessmg because the Wﬁi;lub are estimated from a
block of input data and applied back onto the same input data set. (For a discussion of other types of
GS processing, see Ref. 4.) This type of processing is often necessary to handle blinking interference

SOUrces.

We briefly describe the concurrent GS canceller. Let x{™ represent the outputs of the 2-input
GSs on the (sm — 1) level. Then outputs of the 2-input GSs ai the mth level are given by

n=01,..., 8N —m — 1
m+1y _ lm) (m) ¢ (m) ’
X =X, = oWy XN . t
" n e L S O
Note that x{* = x,. The weight w{", seen in Eg. (1}, is computed s0 as to uncorrefate X
n=0,1..., N -m— 1 with x{" . For K input samples per channel, this weight is estimated
as
K
¥ xli, * (xm k)
FETPRY !r(=I
wy = X ; (2)
2
PORRE
where * denotes the complex conjugate and | - | is the magnitude. Here & indexes the sampied data.

4
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Let xo represent the additive noise in the main channel. For this development, we make the fol-
lowing five assumptions:

1. The xg, Xy, ..., xy. are identically distributed Gaussian complex random variables

(r.v.).
2.  These same r.v.s are samples from stationary processes with zero mean.
3. x,, (ky) is statistically independent of x, (k) for k| # kj.

4.  The desired signals are not present in the auxiliary channels.

5 K >N

It is necessary to make the last assumption because for K < N —1 the GS canceller is numeri-
cally unstable because of the singularity of the estimated input covariance matrix, and for K = N -1
the output of a concurrent GS canceller is always zero [4]. In the following discussion, a normalized
L-length multivariate complex circular Gaussian vector is defined to have L elements, each of which
has real and imaginary parts that are independent Gaussian r.v.s with 0 mean and variance equal to
1/2 (the magnitude variance is one). In addition, the L elements are independent of one another.

Figure 4 presents simplified N-input GS canceller structures for concurrent processing. The
notation GSy y indicates that an N-input GS structure uses K samples from each channel to compute
the weights interior to the GS structure. The Oth channel (the far left channel in Fig. 2 or 4) is
always designated as the main channel and the others are called the auxiliary channels (or just
AUXs). Figure 5 represents the GS structure with &V orthogonal outputs displayed.

Mo ¥y Y
] 1 1
l l see l
GSK,N
CONCLIRRENT
WEIGHTING
t Zow

Fig. 4 — Representation of GS canceller with & channels and
K samples per channel
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Fig. 5 — GS representation with N output channels

3. SIGNAL MODEL

A network whose frequency response function maximizes the output peak signal-to-mean noise
power {5 /N) ratio is called 2 matched filter. Almost all radar receivers are designed by using the
matched filter criteria. If A(¢) is the impulse response function of the matched radar receiver, s{¢} is

the transmitted radar waveform, and the noise interference is white and additive, then it can be shown
[O-11] that

hit) = s*(—1), (3

where * denotes the complex conjugate operation.

A sampled matched receiver design is based on the same principle of maximizing S/N. We
sample the transmitted radar waveform at equal time intervals 7. Let 5y, 57, ..., 5; be the values of
the sampled transmitted waveform or code where L is the number of sampled points (Fig. 6). Set

§ = (Sy, 82, -, 51), (4)

where T denotes the vector transpose operation. The sampled receiver applies a weighting vector
g =108, 82 ---- gL)T such that

y =g's. (5
It can be shown that (S /N) is maximized when
g = s*. G

6
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s(t)

S1 52 53 SL _{-;
Fig. 6 — Sample radar waveform
MATCHED
-| FILTER
U(n) s V(n)
n=012....

Fig. 7 — Sampled matched filter

Figure 7 shows the matched receiver structure. Here U(n) is the received time sampled input
sequence consisting of signal plus noise. The received input sequence is convolved with conjugated
time reversed vector of s which results in an output sequence V(n). Mathematically, this is written

L-1

Viny = ¥ s%,U@ + D). N

=0

The sampled matched filter response of the desired signal vector s of length L is given by

L-m
Y, sistim, O0=m=1L -1,
I=1
rim) = < (8)
L+m
Y, s — L -DsEem<O
=1

This sequence is 2L — 1 points long and is often called the autocorrelation function (ACF) of s,
S22, .08
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if we define

P -, (=D, 0, r(D, L r (L — Y (@)
and
[ Sz 0 0 - 0 ‘|
S —1 S 0
S22 spoy sp o0 0
ST = 51 p) L . {10}
§1 82 77T Sy
Q 0 £1 8y -2
G 0 0 " o5 _[

where r is a 2L — 1 length vector, and S is a L X (2L — 1} matrix called the ACF matrix of 5, we
can show that

r =25's {1ty

where ¢ is the conjugate transpose operation.

We assume for this analysis that the GS canceller processes data in blocks of X data samples per
channel. Thus, the desired signal vector may be spread across a number of sample blocks. How-
ever, for this analysis, we assume the signal vector of length L is contained completety within the X
data samples. Hence L < K. A future report will consider the effects of signal segmentation (i.e.,
when the signal is spread across a number of sample blocks of length K). We define an augmented
signal vector s,,, of length K such that the first L elements are the elements of s and the remaining
elements are zero, Let s’ be the resultant output vector after s has been processed through the GS
canceller and sj,, be the resultant GS output augmented vector, This resultant output vector is then
input into the matched filter of the vecior s, or equivalently s,,,. If we set r’ equal to the response
of s;,, match filtered with s, then

r' = ShueSiug - {12)

where S, is defined as the K x (2K — 1) augmented ACF matrix of S,,,,.
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The results and derivations to be presented are the same whether we use the augmented or non-
augmented notation. Hence, we assume that all vectors are augmented and drop the augmgnted desig-
nation. Note also that we have left-justified s in S,,,. Actually s could start anywhere in s,,,; the
assumption that the s is left-justified is made for convenience’s sake and does not change the results
of this analysis.

Often s is chosen so that the matched filter response has low sidelobes (i.e., r(m) < < r(0) for
m # 0). However, if the desired signal is passed through a GS canceller structure, the desired signal
vector is perturbed and degradations occur in the matched filter response. Examples of codes that
have high compression ratios and low sidelobes are the Frank Code [12], Lewis and Kretschmer’s
P1-P4 code [13], and shift register codes (also see Ref. 14). All of these codes have an ACF with all
sidelobes well below the matched response. Figure 8 shows, for example, the ACF of the 100-
element Frank code.

-~ 104
-30
— 40

- 50 W\

LEPLUTTTL PRI

0] 40 80 120 160 200
SAMPLE NUMBER

FILTER RESPONSE (dB)

- 80

Fig. 8 — Frank code autocorrelation function L = 100,
zero Doppler shift and no bandwidth limitation

4, GS SIMPLIFICATIONS

This section discusses a number of results that significantly simplify the forthcoming analysis.
Let C be any (N — 1) X (N — 1) nonsingular matrix. It its well known [2] that transforming the
auxiliary input channels x|, ..., xy§_; by this transform does not change the transient or steady-state
noise power residue performance of the SMI (or GS). This is because the output from a canceller
with transformed auxiliaries is identical to the output from a canceller with untransformed auxiliaries.
The GS canceller implementation is equivalent to a matrix transforming the input channels. For a GS
canceller, the matrix C has the upper triangular matrix form. In the configuration illustrated in Fig. 9
the matrix transform C is implemented by passing the input channels through a GS,, y structure fol-
lowed by a power equalizer on the output auxiliary channels. The output-powers of the AUX chan-
nels after power equalization are equal to o2,;,. Without loss of generality, we can define o2, = 1.

The structure shown in Fig. 9 illustrates that any GS canceller structure can be divided info two

parts: a deterministic steady state front-end processor, in which the main channel is decorrelated
from the auxiliary channels, and a stochastic back-end processor, which is driven by uncorrelated

9
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Fig. 9 — Residue equivalent GSy y canceller using the power equalizer matrix

equal powered noise in each channel. The back-end processor is independent of the input covariance
matrix, and the auxiliary weights associated with the back end processor go to zero as K = oo.
Hence, the convergence properties of the GS canceller can be studied by analyzing the convergence
properties of the back-end processor. From this point on, we assume that the input channels are
orthogonal and of equal power.

A second matrix transform that significantly simplifies the forthcoming analysis is now dis-

cussed. Let ® be any K X K unitary matrix, i.e. '@ = I, where Jg is the K X K identity matrix,
Let us transform each input channel data set x,, n =90, 1,2, ..., N — 1 by & such that
vy, = ®x,, n==01,...,N-1, (13

10
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where y,, n =0, 1, ..., N — 1 is the resultant output data set. If we input this data set into a
GSg v canceller then [4] the estimated weights using the x,, input are identical to those using the y,
inputs. ‘

Let
X, = (X, (1),x,(2), ..., x.(K) (14)

be the K-length input vector in the nth channel and
z = @(1),22), ..., 2(K)' (15)

Tdem mrrboae o

be the output vector of a GSK,N. H !
X3,...,Xy_; into an orthogonal set of K-length data vectors z;, #;,..., Zy_;. In fact, it was
shown in Ref. 15 that

T = Gxg, (16)
where G is the GS complementary projection matrix given by
Z,2 Z)z) Iy . ZN_)

I t r '
12 7 Zy—1Zy |

It was also shown that G can be written as

G = ‘b! AN—lq)a (18)

where @ is a K X K unitary matrix that is a function of x,, n = 1,2, ..., N—1 and Ay_; is a
K x K diagonal matrix with the first N — 1 diagonal elements equal to zero and the other diagonal
clements equal to one. Thus

= q’rAN_l cI)X(). (19)
We can write the K-length input vector in the main channel as
Xy =S + X, (20)

where s denotes the K-length vector desired signal subcode and x; the K-length noise vector. Because
of linearity, the GSg y canceller can be decomposed as shown in Fig. 10. Here the left hand GSy y
canceller has only the desired signal in the main channel and the right-hand GSg y has only Xy in the
main channel. Note that the interior weights of the GSg » are not identical because of the different
main channel in each (actually only the weights in the main channel differ). Hence, the left-hand
GSk v output contains the perturbed desired signal output and the right-hand GSg » output contains
the output noisc residue. For the forthcoming analysis, we consider only the left hand output that
contains the desired signal.

11
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g X, KN -1 Xg Xy K1
J 1 eee l l l s e l .
GSK,N GSK,N
5 ZCW
i

13 +ZCW

Fig. 10 — Decomposition of signal and noise for concurrent processing

Figure 9 shows that the desired signal passes unperturbed through the front-end processor
GSe n- This is because the desired signal vector is a constant and, hence, is uncorrelated with the
auxiliary channels, Thus the main channel weights in the GS. y canceller are zero, As a result, we
need only consider the effects on the desired signal by the back-end processor where all the auxiliary

channels are equipowered and independent random variables.

Finally, it was shown in Refs. 3 and 4 that if sp and sy_; are the input and output signal vec-
tors respectively, of a GSx y, and the auxiliary inputs satisfy assumptions 1 through 5 (Section 2).

then n = sl _ Sy _/ShSg has the following probability density function (PDF):

(K —1)!

eV -2 KN
e

pln) =

From this it is straightforward to show that for K= N,
N-1
Fish _sp_1} = |1 —~ —= | s§s
(YSNY TRY [ X J 0Sp

and

' ZN_I NN—I I 2
E{|sy_sn-1 |t = [1 - (K ) + KEKJH;J shso t

and Ef-} denotes expectation.

12
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5. SINGLE AUXILIARY CROSS-CORRELATIONS

This section presents derivations for two cross-correlations of outputs of a 2-input GS canceller.
These expressions are fundamental in solving for the average pulse compression sidelobe increase
when N > 2.

Consider two separate augmented signal vectors uy and vy. We assume that the desired signal
vectors, each of length L, are completely contained in uy and vq, respectively. The augmented signal
vectors have length K. Thus L < K. We input u, and v into separate GSk , cancellers with a com-
mon auxiliary vector x (Fig. 11). The K samples (or elements) of x are random variables that satisfy
assumptions 1 through 5 (Section 2).

The output signal vectors of the respective GSk , (Fig. 11) are denoted by u; and v,. We wish
to find E{ |u} vy |?} and Ef|uy ||*||v,[*} where for any vector ¢, |i¢]* = c'c.

TO )‘( | X
GSk. GSk»
U4 V4

Fig. 11 — Parallel 2-input GS cancellers

From the previous section, we know that any K X K unitary matrix transformation of each input
vector into a GS canceller does not change the GS weights that are calculated thereafter. Further-
more, it is elementary to show that if u; and v, are the respective outputs of the unitary matrix
transformed canceller, then

~1 o~ 2
E{{uiv, [?) = Et[uv, %), 24)
and
2 2, _ ~ 2 S 2
Efflul|* vil*3 = Efflug || [ve]*)- (25)

We use this relationship to simplify the input signal vectors uy and vy. It can be shown [16]
that a K x K unitary matrix & exists, such that

Uy = ®uy = [lufl(1, 0,0, ...,07, (26)
and

Vo = dvy = |Ivgli(e. V1 = [p]%,0,0,..., 0/, 27

13
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where
uhvp
° = ool Tval o
and we have defined uy and Vg as the unitary matrix transformed input vectors. Set
y = dx. Z9

Note that because X is a normalized K-length multivariate complex circular Gaussian vector,
¥ = O1s Y2, ---, yg)T is also.

The K-length output vectors of each GSg , are given by

~ -~ yu
u;:ug——gvf(lx~——wuo (30
Yy
and
- - y‘% _ yyi ~
Vi =Vg - —— ¥y = |Ig - =-| v, (36
Yy Yy

where Iy is the K x K identity matrix. We can show that

e [ [l B b’sl?} NTZ Z}%?_} ‘ 32)

upvy = |lugl fvoll :
Yy
ol = uof? {1 - _ly_l_} , 9
¥y
and
- sy + N1 = |pl? 1]
Fal? = Ivol? {1— lo%y, + Y1 — 1ot 2l | a4
Yy
It s shown in the Appendix that
2 S ) )
Effuivi ) = B9 1) = Jubvo |2 LI X T RE T ”J uy ol D
and
Effw, 7 (v [Pt = ElogJ2 v, 1171 = M + flup |l vl (i S )
: ! : ! K(K + 1) oft 170 k K KK+b

14
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6. MULTIPLE AUXILIARY CROSS-CORRELATIONS

In this section, we derive expressions for two cross-correlations of outputs of an N-input GS
canceller. The input signal vectors uy and vo are as defined in the previous section. We input g

and vy to separate GSg y cancellers with common auxiliary vectors X, X3, ..., Xy_; as illustrated
in Fig. 12. The K samples (or elements) of each auxiliary vector X, ..., Xy_j, are r.v.s that
satisfy assumptions 1 through 5 (Section 2). Let the signal output at each level of the respective
GSg  be denoted by u, and v,, n = 0, 1, ..., N — 1. We wish to find E{|u’_{vy_; | %] and
Efffuy - |*Ivy 11}, It will be found that this can be done recursively.

Ug X4 X5 TN—1 ‘{'01‘1 ’[2 XN-1
i ¥ ¥ T L) L) ¥ ¥
GSK‘N GSK,N
Fig. 12 — Parallel N-input GS cancellers
UN-1 VN-1

To this end, as in the previous section, we multiply u, and vy by a unitary matrix transforma-
tion &, such that the new input vectors uy and vy are given by Egs. (26) and (27). It is straightfor-
ward to show that

~l o

E{|wyva |*) = EQ 0,9, 1%}, Ellu,?Ival?) = Efli, )2 (19,]) (37)
forn =0,1,..., N — 1. In addition, each of the auxiliary input data vectors is multiplied by &
such that x, = ®x,, n = 1,2, ... , N — 1. Note that each of the transformed auxiliary vectors also
satisfies assumptions 1 through 5 and is statistically identical to X,,m=1,2,..., N - 1.

We redraw the configurations seen in Fig. 12 into the equivalent configurations seen in Fig. 13.
Here we show for each of the original GSg y cancellers decomposed into two GSg y—; parallel can-
cellers followed by a single GSg , canceller, The K-length noise vector into the GSg » cancellers is
denoted by y.

As stated in Section 4, we can write

ile_z = ®5 Ay, By ﬁo, 38
Vo2 = ®h Ay_; By Vo, (39)

and
y = &) Av—2 $o Xy, (40)

15
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Fig. 13 — Equivalent representation of Fig. 12

where ®g is a K X K unitary matrix that is a function of X3, X , ... , Xy and Ay, isa kK X K
diagonal matrix with the first N — 2 diagonal elements equal to zero. All other diagonal elements are
equal to one.

If we premultiply uy_», Vy_», and y by the unitary matrix ®,, the resultants of the cross-
correlations we are seeking do not change. However, the number of independent and identically dis-
tributed (i.1.d.) elements in the auxiliary vector is reduced by N — 2 as indicated by Eq. (40). The
first N — 2 elements of ®y, $tiy_(, and $vy_, are zero. Hence, it follows using the methodology
given in the previous section for finding cross-correlations for an arbitrary number of i.i.d. samples in
the auxiliary channel of a 2-input GS that the expectations of these cross-correlations conditioned on
X2, ... 4, Xy_ are given by

EHﬁ;v’—I;"N—”Z‘ X, ..-r Xy 3} @0

T SN T 2 N 1 N [y 2|2 vw 2 i°
N-2iv—2 K-N+2 ((K-N+2K-N+3) (K~-N+DK-N+3'

and
Efluy vy P xe, oo, xv 1) (42)

o v., .12 r - 1

Ell P T

. 1
o JUMN—ITN -1 ~ g 2 _ i 1 )
_(K*N+2)(K—N+2)+HUN—ZH ¥ -2l LI (K—N+2}+(KN+2)(K~N+3)J
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By integrating over the conditional r.v.s, we find

Ef|ul- vy |4

_ t 2 - 2 L
= Ef|uy_2vv—2 1"} [l K__“N+2+(K—N+2)(K~—N+3)

1
(K—N+2)K ~N +3)

+ Effluy -2l v -2 |1%}

1
(K =N+ 2)K — N + 3)

E{|lay 1 |Pliva—11*) = Ef |uly_2vy-2 |}

Iy A||2} l_l — 2 + 1 , (43)
! ! L K—N+2 (K-—N+2)(K—N+3)J

where we have dropped the tilde over the output variables in lieu of Eq. (37).

It is apparent that the desired moments can be found through recursion. Set

a, = E{|u}v,|?}, (44)
Bs = Ethu, 7 {Ivall*}, @5)
2 1
=1- +
Gn K-n EK-mK-n+1)’ (46)
and
b, = L . (47
K —n¥K —n + 1) R
It then follows that the recursion equations are
Gy 1 = pix, + men ' (48)
and
Bnw1 = bpoy, + @,y (49)
with initial conditions (I.C.)
ag = |uhve|>, By = [ugl?|lvoll®. (50)

17
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We rewrite Eqs. (48-50) in vector form by defining €, = (o, 3,)7 as

(a,. ””} ( luavetﬂ
€t T Hp g | e LC.: g = g 12ty 12 ] Gh
| ) LII o 11" ¥l
Thus solving for ey
NI__IZ a, b, fafvo |2
Ev_p = . 52
U Al 0. N VA O e o2

The desired cross correlations are given by the elements of ey, where E{luh_,vy_, %} and
Etllay _ I* v —; 12} are given by the first and second elements, respectively.

Define
Ak, Ny Ap(K, N} N—2 [a, b,
4 = A2}(K= N) AEZ(Ka N) - n=>0 bn 2% (53)
Then
Ef{al_iva_ 1% = 4K, N tabvg 12 + A& N o llve!? (54)
and
Efluy 1P Ive 117 = 4K, N) [ubvg |2 + Asa(K. N) Jhag P flvel) (55)

We note that because of the symmetries in form of the 2 X 2 muatrix 4 defined in Eq. (53), we
can show that A,;(K, N} = A (K, N). In fact, if we evaluate Egs. (54) and (55) at vy = v5, we
find that

A (K, N) = An(K, N) (36}
and using Eq. (23)

2N - NN -
X KK+ 1)

A”(K, N) + All(Kﬂ N) =1 (57)

= CINMTY ML OO ATy A
Fo DIVLLAUDBE UEROUONADIA

We now derive an exact expression for the average adaptive pulse compressed sidelobe by using
the result of the previous section. The desired input signal vector is assumed not to be segmented
(i.e., it is contained entirely in the augmented signal vector denoted by s¢). Each auxiliary channel

has K samples and these samples satisfy assumptions 1 through 5. Also, the desired signal vector is
normalized so that {isq[* =

18
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Figure 14 shows the N-input canceller followed by the matched filter. Let s. be defined as any
column of the augmented ACF matrix. Then, an expression representing an output r of the matched
filter (match point or sidelobes) after cancellation is given by

ro=SeSy-y (38)

where sy_; is the K-length output signal vector of the GSg, » canceller.

Sg Xy Xp Xpot

GSkn

SN-1

MATCHED
FILTER:S,

louiput
Fig. 14 — GS canceller followed by a matched filter

We define the average adaptive pulse compression sidelobe level associated with s. as SL, .,
which is given by

(59

As K — oo, note that sy_; — sg and S, . goes to the quiescent sidelobe level of s.. This equals
| si.sg | 2 which is given as SLf,C.. We normalized. by the adaptive match point response
E[|s§v_215N_1 |2}, just as |s'sy|? would be normalized with the quiescent match point response
| soso |~

The denominator of Eq. (59) was evaluated in Refs. 3 and 4 and in Section 4 and is given by

, W 2N~=1 , NN -1
Etlsy-1sy-1 [ =1 XK T EKK+D
(K =N + IXK = N + 2)

KK + 1) ‘

(60)
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The numerator of Eq. (59) is evaluated by using the results of the previous sections. As stated
in Section 4, if sy and s. are the main channel inputs to two distinct GSg y cancetlers with identical
auxiliary inputs, then the outputs of these two cancellers can be written as

S = DAy 1P 5, (61)
senv-1 = YAy 1P s, (62)
where @ is a K X K unitary matrix. Using Egs. (61) and (62), it can be shown that

I — t
ScN—(SN—1 = ScSy_- (63)

Thus

Ellsisy_ 1% = Elisty—1sv_1 1 °)h (64)

and the analysis of Section 6 can be applied with uy = s, and vy = sq.

Using Eq. (54) and the fact that ||sgl|? = 1, it follows that

El{lstsy_ |7} = 4, (K, N) |stsg|? + A, M) s % (65)

Substituting Eq. (60} and (63) into Eq. (59) results in

KK+ VAWK M) o KK+ DA M)

a.c (66)

— 2
SL&’\C - v N+t DX N+ H “ll'l '

IRVE 4 R {
Z | ¥ [ AV 8

Fo AT i
i — v = LR — iV T i

J
We define

N = KK + 1) A (K, N) 7
O, )_(K—N+l)(K—N+2)

to be the quiescent sidelobe factor and

ASL (K. N) = KK + 1) AK N )
«(K, N) = (K—N+ 1K -N+2D)

to be the adaptive sideiobe perturbation. Note ASL,(K, N) is constant over all sidelobes of the
compressed pulse.

For the results to be presented, it is convenient to set N, = N — 1 where N, is the number
of auxiliary channels. In addition, the number of independent samples per channet X is set equal to
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an integer multiple of N,,,. Let K = MN,, and Qo(M, N,..) = Q(K, N) where Q(K, N) is defined
by Eq. (68). To achieve good signal detection and noise cancellation, for most practical cases
M = 2, [2-5,17]. Figure 15 presents the quiescent sidelobe factor Qo(M, Ny,,) plotted in dB vs N,
and M. Note for all M = 2 and N, that Qo(M, N,,,) is less than and approximately equal to one.
Hence the approximation that Og(M, N) = 1 is valid in most cases. Reexamining Eq. (67) indicates
that for M = 2, the adaptive sidelobe level is equal to the quiescent sidelobe level plus the adaptive
sidelobe perturbation term given by Eq. (69) which we denote as ASL,(K,N) s, .

K=MN

Qux

Qq (M, N) {dB}

—2.0 |

~5.0 L ] | | | | [ | | L i
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 80.0 100.0 10.0

N NO. OF AUXILIARIES

aux’

Fig. 15 — Quiescent sidelobe factor vs N, and N

Assume max ||s.||*> = 1. Figure 16 plots max ASL, vs N,,, and M. These curves establish a
performance floor for the peak adaptive pulse compression sidelobes. For a given N, and K (or
MN,,.), the adaptive compressed sidelobe level on the average is greater than the ASL, calculated for
N, and K. This figure shows that max ASL, decreases monotonically with M and N,,. Hence,
two ways of decreasing the performance floor are to increase either the number of independent input
samples or the number of auxiliary channels. We also observe that more than 5 N, independent
samples are necessary to achieve a modest adaptive compressed sidelobe level of —25 dB for fewer
than 20 auxiliaries.

It is significant to note that even had the waveform been pulse-compressed into a single range
bin before the cancellation process, the maximum range sidelobe level after cancellation would be the
same as if the waveform had been compressed after the canceller. To see this, assume
s = (1,0,0,.. .,O)T. This input vector corresponds to the output of a perfect pulse compressor; i.c.,
all of the signal energy is in one range cell (we are assuming a sampling rate equal to the waveform
bandwidth). If this waveform is input to the canceller, processed, and matched filtered with
s = (1,0,.. .,O)T, then Eq. (67) indicates that this input signal vector has maximum range sidelobe
levels equal to ASL,(K.N). Hence, the same perturbed sidelobe level results regardless of whether
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Fig. 16 — Maximum adaptive sidelobe perturbations vs N, and M,
signal completely contained in K input samples

pulse compression occurs before or after cancellation. Again, note that we are assuming the
uncompressed pulse is completely contained in the K samples used to calculate the canceller weights.
Thus, 1t would seem desirable if L << K to piace the pulse compression after the canceller because
of the previously cited disadvantages (see Section 1} of having it before the canceller. If the
uncompressed waveform extends over a number of batches of K samples, it might be more desirable
to do pulse compression first to prevent the compressed pulse’s canceller-induced higher sidetobes
from extending over these batches. A future study will address this issue.

The above analysis of pulse compression and canceller interactions can also be applied to quanti-

1ymg the canceller uegmuduon caused t oy the presence of a desired blgﬂdl m ifie sampies used o cai-
culate the adaptive canceller weights. If the desired signal has the power o2 after pulse compression,
then the average power residue from the signal in the K — 1 range bins not containing the signal can
be shown from our analysis to equal at most o2 ASL,(K,N) plus possibly the signal power resuiting
from the quiescent compressed mueiﬁbes Now o; ASL (K,N) might be much greater than the guies-
cent output noise power level o5, of the cancelter. However, ASL,(K,N) is a function of N and K,
and with increasing K can be made as small as desired. Hence, by using the values of o>, N, and

o4, in conjunction with Fig. 16, one can find the number of independent samples K needed such that
2 ACQT (F NY ic within 1 AR of -2

UV “L}L/a\l). ¥} lb wWililill 5 Qo O1 Um?ﬂ‘
We sniote that in some canceller schemes the adaptive weights are computed from the X/2 sam-

ples before and after a chosen sample. Hence the chosen sample itself is not used in the weight
evaluation., This techniaue’s advantace is that if the desired sienal 18 localized to a Qmﬂlg range sam-

¥ GraaBuairil, B L LY ALVIIRALT 20 LG 12 0 ALoliTAl Olgliar 25 IRAQIrlLl %

ple the undesirable effect of cancelling the desired signal does not occur [3,4]. However, a noise
power residue from the desired signal is present in the canceller output samples preceding and foliow-
ing the chosen sample because the signal is present in the weight calculation for these samples. This
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level occurs in the K /2 samples before and after the chosen sample. The maximum level of the
signal-induced canceller residue is equal to o? ASL,(K,N). Again, K can be chosen large enough to
be within 3 dB of o2;,. :

One final note: for some applications, the matched filter is replaced by a filtering scheme
whereby the range sidelobes are reduced at the expense of signal gain at the match point. However,
the results derived in this report are also valid if any filter other than the matched filter s, is used.
We could replace the s, seen in the ‘*matched filter’” block in Fig. 14 with a general weighting func-

tion given by the L-length vector, a with elements a4, 1. In our analysis, we would

..... gl LAeT eclo a5, Xy, -0 5 dF - our anaty

replace the S matrix defined by Eq. (10) with an A matrix whose elements are given by rep]acmg the
s s with @ s in Eq. (10). The vector s. then would be taken to be any column in A and the analysis
follows as given.

9. SUMMARY

Performance results for the sidelobe level of a compressed pulse that has been preprocessed
through an adaptive canceller have been obtained. The adaptive canceller is implemented by using
the Sampled Matrix Inversion (SMI) algorithm. Because of finite sampling, the quiescent compressed
pulse sidelobe levels are degraded because of the preprocessing of the main channel input data stream
(i.e., the uncompressed pulse) through an adaptive canceller. An exact expression was derived for
the average adaptive pulse compression sidelobe level that was found to be a function of the number
of auxiliary input canceller channels N, ., the number of independent samples per channel X, and the
given input code of length L. It was shown that K /N, can be significantly greater than one to
retain sidelobes that are close to the original quiescent sidelobe level (with no adaptive canceller).
Also, it was shown that the maximum sidelobe level degradation is independent of whether puise
compression occurs before or after the adaptive canceller if the uncompressed pulse is completely
contained within the K samples that are used to calculate the canceller weights. It was further shown
that this same analysis can be used to predict the noise power level at the canceller output, that is
induced by having the desired signal present in the canceller weight calculation.
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Appendix
DERIVATION OF EQS. (35)-(36)

Starting with Eq. (32), we first derive Eq. (35). Now

27y 2
. ~ ~ Yy
Ef[u;v; |?) =lug|*[Iv]? {Iple{ [1 - |y,1yl } } (A1)
|y1|2|y2!2
+ (1 - |p|HES———— .
(1= le] { 3y

Note that the expected values of the cross-terms resulting from magnitude-squaring the right side of
Eq. (32) are zero because y, is zero mean. Now for p = 1, we can show using Eqs. (Al) and (23)

that
lyi12)7 2 2
EJ |1 - =1-< + —. A2
{[ Yy K KK + 1) (a2)
From Eq. (A2), it can be shown that
Iy | 2
E = .
{ Wy | KK+ A
Now
roy2 K |y |4 9, 12 [, 1
E{(yf—y)z}=1=25 "lz E EE — ey (Ad)
o'y k=1 ¥'y) k=1 st 'y
Because y|, y2, ..., yx are identically distributed r.v.s, the terms in the first summation are all

equal and the terms in the double summation are equal. Let

[yi 121y, |?
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Substituting Eqs. (A3) and (A3) into Eq. (A4) results in

2

K-k "KK-Da=l (A6)
OF
4= = (A7)
K&K + 1)
Thus,
E{E Y |2 = ol i|"0||2{’p}2 [17 ﬁ} *“"'Pwm—lg}' (AB)

Eguation (35) follows directly from Eqg. (A8).

We now derive Bq. (36). From Egs. (33) and (34)

t

p * _ 2 2
[ IZI1 1 = (o212 {1— ilf ety # X1 fel 2l A%
vy Yy

Loy |2+ V1~ {pt? yifal?
(v'y)

Now the expectations of the individual terms of Eq. {A9) can be evaluated by using some of the pre-

vious resus.
2
{U’ll } (A0}
*. i— 2 2 2 2
E{IP}’;"’f : Pyl }=[p[2E{LX:%—}+(I_IPIZ)E{Wf}}a (A1}
¥y Yy Yy

= lol? % +a - lel

L
K H

2 Y S 2
E [plyy° + 129.\'1 V2 | } (AL2)
'y
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e dnt 2 lyi121y21?
= Iel E{(y’y)z} ~lelDE { ¥y

_ 2 2 _ PN S

—_ 1 2
= XK TID 1+ el

Thus,

B 2 [941P) = ol %ol {1 T m%} BERNE

Equation (36) follows from Eq. (A13).
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