Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information 1s estimated to average 1 nour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data neaded, and completing and reviewing the coliection of information. Send comments regarding this burden estimate or any other aspect of this
Collection of intormation, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 17, 1990 Interim
4. TITLE AND SUBTITLE S. FUNDING NUMBERS
Creation, Validation, Testing, and Data Management of a Knowledge Base
Designed for a Technician’s Assister System for the AN/SQS-53B, Unit 26, PE-25620N
Using a Fault Isolation System Shell TA-
6. AUTHOR(S) WU-DN157-139
Molnar, J.A.
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

Naval Research Laboratory

Washington, DC 20375-5000 NRL Report 9296

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

Naval Oceanographic & Atmospheric Research Lab
Stennis Space Center, MS 39529-5004

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

A system using the Fault Isolation System (FIS) shell was designed for Unit 26 of the SQS-53B Sonar System.
The sonar system unit has a mixture of analog and digital components. Over 100 replaceable modules are in Unit 26.
The knowledge base created to describe the circuit topology of Unit 26 contains over 3,000 rules and was ten times
larger than any other system modeled for FIS. A methodology is described for creation of large knowledge bases and of
the data management requirements. A format of the data management structure is presented in this report. Software
written in C for data manipulation is described in this report. The diagnostic, compilation, verification, and validation
process for the creation of a viable FIS knowledge base is also presented in this report. Knowledge base manipulation
software was written in LISP or in C interfaced to LISP on a SUN 3/110. Validation was performed at the Naval
Underwater Systems Center, New London, CT.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Knowledge engineering Verification 151
Expert systems Validation 16. PRICE CODE
Artificial intelligence Maintenance aid
17. SECURITY CLASSIFICATION] 18. SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THiS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

. Prescribed by ANSI Std. Z39-18
1 298107

CONTENTS

INTRODUCTION ... ittt ieiiee s e teeteae e trenaraeseeeaues e seaaanssssseesnssssesansssnesteasssseennssseresnssseennnsssseantnraene 1
KNOWLEDGE DATABASE....ccc ittt cceeceeenerereeeeeteteeeeeteseeeeeassessssesssassssssenaessaaenneesessanses 2
Knowledge ACGUISITION.ttt iciciiiriciiririiicieiie it rseeeet ettt e e eerr e e e e e e e e s e e e e s eeeeeas 2
Causal RUIE File.......uuiiirieeieiiiiiieeineiiisicirs e eeeeeeentrenseeesesessesssnnnsnransssesssresenssrsnsnesssssssanes 5
TESHHSE FFALE ... ettt e e ce e ce e an s e e 15
Precondition File......eeeeiiiiieieeiiiiiiiieiiieeeiireeeeetenieeeeeeeeeeeeeeeeneeeeneeerteesenanaannsnnnnnseeeasaesnns 20
Order INfOrmationoiveunieieii ittt st st et e e et e e eeeeeane e et eeeeas 21
INSEUCHION Fle.euuirrei e ee et et ettt ettt e e e ee e ae e s re s eeenacnrassanann 22

Conversion of Knowledge Database from Human Data Management Format to LISP
Compiled DAtADASEccivuieieeriireiiereeretiereieeneesneernrerssesesssrestensessssansrrnrenssrnsrennennersnsarnssenses 23
RUIE CONVETSION ... e ittt ettt ettt et et o eema e eean e et aeeean s et eaansasessssasnsssnnsnen 23
TESHISt COMVEISION ...uiirrreieeeeeerriieeerrrateeeeeertaneeeraeranereeramesseasnnsseseersssessansnaseeaennassssennes 27
Testlist Conversion for Function INSIUCHONSveeevrerrruencererserreerernmiencoseserrrereeonssensesserenrens 32
Accessing Instructions with the “Print-Instructions” Function During Execution.......cccccceevveen.s 33
SUIMMIATY .. ceiitiiiriieiiiee ettt e e eetin st rreeeseeeeeessesrasssessssserssssssressssassnsesnsansssnnnsesnsnssnnnns 33

Formulation and Modification of the FIS Compatible Knowledge Base by Using the
EdIOT FUNCHION. c..uuiiiiiiiiereeiirraiireenereerennntesseeeeeecsssmsssssaearasnsssssassressnsssasssnnsesssssssnnssssersnnns 34
Formulation of the FIS Rulebase Using the FIS Editor Exclusively......ccccoeeeveevenecrreceeneen. 34
COMPIIALION. . cctrrtirreeieiiiieneerrereeeetreretetuueereeruesessstasesessensasssssossssannsrsssosesssnnsessnnesessnsesssnnsnes 38
MISCEILANEOUS. .. ceetteiieiii it ettt e ee e tree e e eeee s aeree s seeensssseeasssssasasnnssannrnnnnes 39
Addition Of INSHUCHONS . .e.uiiientieet ettt ittt ettt te e e et seemeee et s ee e et s et eenansaansnsansnsannsnns 40
VERIFICATION AND VALIDATION.......coiitecrrtirirreeiiirreeessnesserseesssssesessssasssssssssssssssssesssssessssnssnes 40
Verification of Data COMNECHVILYvu.iveruerreeneerrieererierrnseenreeressesssessessesssnsessnessnersnneessnenes 40
Verification of Rule COMNUILYciiiiieieiieiiieeieeiieceeeee e e e eeteeeevvsneeeersneeeerssnerersesenses 40
Verification of the AmMbIgUILY SeLS.....cccuiiiiiiiiiiiriiiieieeireereetirireieeeeeeeereeeaieeeeeenenrnaneeeaes 41
Validation of the Knowledge Database...........cevueeiiimeiiiiiierneeiieeiiieeseaenteseesneeeseneeeeeenasaeesennns 41
Validation Through Fault Simulation..........ccceeevciiiievioiiiieciieiienecceenr e ccnreeeeeccireeeeeeeaaans 41
Validation Through Field TSNcvieeuueeiriireieiiiiieeeereiiieeireeee e eenee e enneserenneesasssnnns 44
SUMMARY ...ciiiiiieiiireeie ettt e tttaueesesrsteseettuseeesettasstatetnnsessertnsastttessssssreesssssernnsssennanessessnsseses 45
REFERENC ES ..ottt eettmteetettaneteeetraaaseeentasaesaranessssessnnassssensensasssnnssssssnssssssnnssesnsnnanssnnns 46
GLIOSSARY ...ciiiiiiiiirietiernennessnreriirrereessssssssoessseresseertussssassessseeesensasnssssnsesssssnnsnssssesasssssssnnnnssensssses 46
APPENDIX A - Sample Rule Set Data FOTMAL.........cccccvvveeeerveeriieieeninieesreenieeeeneeersnsessssesessssassseenas 49
APPENDIX B - Sample Testlist Data FOIMAL......cccervueerieeiiirrierererariereiesseessereeseeseseeseseesesesssnesssesnes 59
APPENDIX C - Sample Precondition Data FOIMAL.......ccoccveeiiiieiiiieniiieciieecieieciieeeieeseinssesesssssnesesneas 63
APPENDIX D - Sample Order Data FOIMALcouuirreeiiiiiiiiicenee i eeeae v reenessennesanseensessansesnnnssenrnnes 65
APPENDIX E - Sample Instruction Data FOIAtccceeuiiiiiiiieieiriein et ee s e ee e ee e e ee e 67

iii

APPENDIX F - Automatic Conversion Program for Rule and Testlist Databasescvveeemiiiiniiiiennninnn 71

APPENDIX G - Conversion Program Rule Databasecccovuuiimiiiiriiiiiii e 79
APPENDIX H - Automatic Conversion Program for Test Databaseooiiiiieiiiininiinincnanes 85
APPENDIX I - Semiautomatic Conversion Program for Test Database.......ccccccviiiivmniiiiieiinnceeniiinnenns 97
APPENDIX J - Test Database Instruction Index Program..........c.coovimiiiiiiiiiiiiiiininininneeiecseees 107
APPENDIX K - Conversion of Instruction Database Program.........cccccvvvemmmieriiiiineeisescoiininennnesnecancnnes 115
APPENDIX L - Conversion Program to Restore Database FOIMAL.........cccoveeevieiinniininceniiniiinenseceneenenns 119
APPENDIX M - Sample Data Output Format From Rule Verifier.......cccoooiiiiiininniiecenne 127
APPENDIX N - Sample Data Output Format From Ambiguity Set Verifier......cooovmvnnininncivncncnccee, 139

iv

CREATION, VALIDATION, TESTING AND DATA MANAGEMENT
OF A KNOWLEDGE BASE DESIGNED FOR A TECHNICIAN’S
ASSISTER SYSTEM FOR THE AN/SQS-53B, UNIT 26,
USING A FAULT ISOLATION SYSTEM

INTRODUCTION

FIS (Fault Isolation System) is a model-based expert system shell developed to aid in the diagnostics of
systems containing analog components. The shell written in LISP contains numerous functions that calculate the
diagnostic testing sequence based on probabilistic algorithms. The shell acts on a knowledge database developed
specifically for each unit under test (UUT). This report outlines the process required for the formation of the
knowledge database.

The largest knowledge database, to date, has been for Unit 26, the CP Processor of the AN/SQS-53B sonar
system. This unit consists of 12 channels that process the left, center, and right beams of the sonar system. A
mixture exists of analog and digital functions, with over 100 replaceable modules in the unit. A knowledge engineer
constructed rules for the system from the schematic diagrams after considering the designed test points to be the only
real test points in the system. The result was a database containing over 3000 rules and 600 tests with test
instructions that describe the operation of Unit 26.

During the development of the database for the whole system, a determination was made that by creating a
hierarchy of knowledge databases, based on the system functionality, the fault isolation would improve. The
resulting hierarchy was named the Technician's Assister System (TAS). During fault isolation, TAS loads
individual knowledge databases for each functional area. This effort resulted in 12 distinct knowledge databases that
describe the 12 functional areas of the system. Each knowledge database required the same construction techniques.
FIS includes several software utilities for developing a knowledge database; they are all incorporated within the FIS
editor. The editor facilitates the creation of a syntactically correct knowledge database, however its sequential
structure of data entry is time consuming. Therefore, enhancements were made to the FIS editor to permit
transformation of data structures from a data file format to structures that are syntactically correct for FIS. The
enhanced version of FIS used in TAS is referred to as TA/FIS. Also, several auxiliary programs were created to aid
in the process. This report focuses on techniques used to make the transformations from the standard data structures.
The data structures and the software developed are described in this report.

The process used in developing a viable knowledge database is knowledge acquisition, data structuring,
compilation, and validation. Several methods used for creating the FIS knowledge database are described in this
report. The appropriateness of each method is discussed. The compilation and validation processes are presented to
instruct users on all processes required to obtain a functioning FIS knowledge database. The techniques used for each
are described, as well as the types of errors and methods required to resolve them.

Finally, the knowledge database is not a static entity. Through the service lifetime of a naval warfare system
such as the AN/SQS-53B, numerous changes are made to the hardware to rectify deficiencies or enhance performance.
An Al system used in the maintenance of such systems must be continually updated to remain a viable entity for
system maintenance. Thus, this report also provides information on how the available techniques, contained in FIS
or subsequent FIS enhancements, can be used in configuration management of the knowledge database. The report
provides the user, program managers, and defense contractors with information on how to maintain FIS knowledge
databases within the structure of a changing warfare system configuration.

Manuscript approved September 5, 1990.

J.MOLNAR

KNOWLEDGE DATABASE

Three stages exist in the formation of a UUT knowledge database. The first stage consists of performing
knowledge acquisition. For Unit 26 of the AN/SQS-53B this entails using schematics. (Future approaches may use
information provided by computer aided engineering workstations that require minimal human intervention in the
actual process of knowledge acquisition.) The intended result is to form a database that facilitates the validation and
configuration management. This is an important requirement because fielded systems regularly require engineering
changes or entire upgrades to correct system deficiencies or problems. Therefore, the original knowledge databases
would require alterations to reflect changes in system software and hardware. The use of a database structure is an
added feature in the development performed for the AN/SQS-53B application. Previous methods used only the
structure that resulted from direct entry of data by using the FIS editor.

The second stage involves conversion of the initial knowledge database structure into a similar structure
compatible with consumption by a LISP program. At this stage, units of “like” information are grouped into LISP
lists. Primarily there are five forms of data: rules, tests, preconditions, orders, and instructions. Other forms of
information related to graphics presentation may also be included. In this sonar unit application, the graphics
information was unnecessary. Reference to the creation of knowledge database graphics information is available
elsewhere [1]. All five data types used by the FIS sonar system application require a unified data format. The FIS
format requires that all of the information in the separate data structures be grouped to form the knowledge database.
To obtain a functioning knowledge database requires several steps; they are conversion, editing, error checking,
compilation, and structure addition.

The third stage involves using a LISP function to add information to the FIS knowledge database and to
properly structure the file for input into the FIS compiler. The result of these steps is a single file with a .lisp
suffix.

Knowledge Acquisition

Knowledge acquisition is the first step in preparing a FIS knowledge database. The two types of information
acquired during this stage are causal information and auxiliary information. Causal information describes the cause-
effect relationship of the modules. Auxiliary information describes information related to a specific condition, state,
or test. All the information is obtained by a knowledge engineer. The process examines a schematic and constructs
the information in a compatible format. Figure 1 shows an example of the schematic that is an excerpt of the
schematics for the whole unit. Several things should be noted in this figure; first, the large block located roughly at
the right-hand side near the center of the figure is labeled Muitiplex Gates (3LA23) A16. This is an example of what
is later referred to as a module. The terminals for this module are labeled with numbers. The numbered terminals are
normal input or outputs from the module and are not generally available to technicians for testing purposes, but for
purposes of FIS these terminals are useful in defining rule relationships. However they are not useful as test points,
Test points, on the right-hand side of the figure, are also defined with large round dots such as the one labeled A11J7.
The others can also be readily seen. Information on the type of measurement and the expected value for the test
appears next to the test point. Another type of test point that is also displayed is a Performance Monitoring Fault
Locator (PMFL) test point, shown roughly in the center of the figure. It appears as a pentagon with the number 297
inside. This type of test point is used in the TAS system hierarchy to provide functional isolation. Also, the lines
connecting the modules have arrowheads to indicate the direction of signal flow. From this information terminals
are able to be defined as input or output terminals.

When collecting information for the knowledge database, most items are available from the schematics or
elsewhere within the DATOM [2] for the sonar system. The knowledge engineer must extract all of the useful
information and organize it into rules, tests, instructions, preconditions or orders, as appropriate. The format for
these items is described in the following sections. All of the information must eventually be available in computer
files. In the development of the TA/FIS for the AN/SQS-53B an ASCII text file format was created and used. These
formats are described in the text, and examples are available in the appendices. Other formats could also be created.
Currently, all of the information used in the sonar system application has been converted to a database format to

UNIT 26

Al
CP BEAMS [,2 OR BB/ TCK LFT, 3-6 XA58-XA63 | . XA58 - XA63
s > ’ T MOD - AMPL ’
b RTM < 2§ MULTIPLEXER |
2 | (3IMAI3) |
4.35 KHZ AS58-A63
CARRIER FROM | ——4< 3 | (SAME AS A64) |24>t—""
XA70-5 AND II
4
THIS SHEET = |
i
|~o.5ssc—1 5)
ﬁ\
’ xa58-x463 k-
0.840.12 V | 3 l"°
2
H FLI-FL6
NA f
Lo
+0.15 V
2 _
}.o.sssc-‘
Ji
CP BEAM 7 OR BB/ TCK CTR BM XA64
B >l
s RTN L2
Je -
MOD-AMPL-MULTIPLEXER
31 4 REFER TO TABLE IN
MONITOR BEARING 1
- xace SHOWN ARE TYPICA
a95kH o~ ‘
CARRIER TO | ¢ g <
XAS58 THRU XA63-3 AND 4 | o -
CPBEAMS 8-10, 1l OR BB/ TCK RGT, 12 THIS SHEET CP BEAMS B-12
e —)
RTN RTN
1
4o+oesvpp- B1.8 VPP *r—
Ji XA7! XATO ‘J3
Q@ |-
Lo
xTAL osc |9 9 (-LL{‘
4.95 KHZ |25
(356 56) 4
AT CARRIER PWR AMP L (3AM7) A70
GTA41600A

CP Signal Processing Channel

NRL REPORT 9296

(BEAM SEQUENCE-1,%,9,2,6,10,3,7,11,4,8,12)

——

TO AI9
.- SHEET 46

MULTIPLEX 4
GATES
-6 XAI6 M

I
[
|
& I ML
—d b 117 USEC W :
L L
|
0
708 H | 3

USEC

OCCURS EVERY 1416 USEC I
USE POSITIVE EXT 9
SYNC FROM AllJI8

1

|

|

= l

\ A |
XA64

> |16 r—tgp !

| MULTIPLEX |

GATE 7 |

GATE

I
l i
1y
DRIVER > |2t - I"" 1| <13
(3MAI3) A64 10 AI9 |
= |
SERVICING NOTE 12 FOR SONAR SHEET 46 | -
"0 CHECK BEAMS |-12, WAVEFORMS A
L FOR BEAM SELECTED BY SONAR MONITOR —+35

TO XA44-i4 AND |15 |
SHEET 46 XA65-
— 14
XA65-XA69

XAG69 |
| IGH : |
I

MOD - AMPL | | o
2 | muLTiPLEXER |
MULTIPLEX | ——< 40
(3MAI3) ' GaTES 8-12 |
3 | A65- a69 eyl — <+ ——— 4 |

(SAME AS A64) | :

[

,MB

|

|

I|M4 i

s i

"

______ B / L (38 é—lr—0<

|

!

E'MB
e
.

__1,______,} 4.95 KHZ CARRIER |

RS i
5 |
294 [!
: ! iz — L———
| b—L(39
B TO AI9 4
o FL8 —FLI2 SHEET 46 MULTIPLEX GAT!
5 CODED SIGNAL PROCESSOR ELECTRICAL RACK Al

CODED SONAR SIGNAL PROCESSOR UNIT 26

Fig. 1 - Schematic diagram for Unit 26 of the AM/SQS-53B displays general interconnection relationships (primary f
placed on module A/6) [2]

SE313-TP-MMC-040

MULTIPLEXED CP BEAM [-12

IS (3LA23) A6

AllJT u a
(TPT) ~~{b+ 1.0 USEC —Lu -
USE POSITIVE
s LLO EXT SYNC
e JdBc _.{ FROM AllJI8
Al
- XA'G\IX Gl FROM XAI4-15,40
T ¢ < SHEET 32
t
I |
I ! USE PASSIVE PROBE
| f LLI= LOGIC LEVEL ONE=+2.0 TO +4.5V
i | LLO= LOGIC LEVEL ZERO= +0.0 TO +0.6 V
| |
I !
f f
| !
| f
| | LLt
I |
| I Lo
{ | 18 USEC r
| : Al1JI3
! ' (TPI3) 354 USEC
| |
' i
| | L
| l
| AllJ14
| | (TPM LLO
| } 354 USEC
| ! 1416 USEC
| I I
| Rz
| I a0 4l
| | N
| | =1 xan
I |
| [GATE A FROM XAI5 —8,33
L—] T -+ SHEET 33
f
s | GATE B o FROM XAI5-7,42
ll > T - SHEET 33
N P | GATE C o FROM XAIS -18,43
TI_/ T - SHEET 33
N | GATE | N FROM XAlI5-9 34
I/ 16 l <+ SHEET 33
IR NN GATE 2 . FROM XAI5-10,35
;/ flf - SHEET 33
S] ad GATE 3 - FROM XAIS - |6, 4
P | SHEET 33
N PP GATE 4 - FROM XAI5-38
7 SHEET 33

“eus is

NRL REPORT 9296

facilitate data management. The current format and the database program used in data management will be described
in a later publication. The format described here is presented as a viable example of an implemented format and
contains the essence of the information that is required by any format. Numerous references will be made to Fig.1 to
exemplify the process of knowledge acquisition.

Causal Rule File

During fault isolation, the assumption is that the system is acting irregularly and/or that a fault indicator is
present and indicates a system malfunction. Given these conditions, the human performing the troubleshooting will
use the technician’s assister version of FIS (TA/FIS) to isolate the fault. TA/FIS will indicate which replaceable
units (modules) have failed based on the test results of a fault isolation session that consists of the computer
providing suggestions on the most efficient tests to be made by the technician. The session starts with the
assumption that a module has failed, resulting in an abnormality in the system. This form of causal reasoning
provides the basis for the contents of the causal rule file.

One of two states can be present to incur a fault indication at the module output. One state results when an
input to the module is faulty, thus indicating a failure upstream of the tested module. The other state occurs when
the module itself is bad. An upstream module is a module that connects to the test point, but occurs in the electrical
signal flow before the test point. In Fig.1, following the signal flow from terminal 13 of module A76, it is evident
that the module A6 is upstream of the MOD-AMPL-MULTIPLEXER (3MA13) A64 module. Downstream is then
defined as all modules whose test results rely upon the integrity of the modules before it in the signal path.
Conversely, module A64 is downstream of module A16.

An example of the first state occurs when a poor signal enters module A76 and propagates through the module
to output terminal 13. In this case module A6 is not faulted but it presents a fault at its output, thus implicating it
as a possible fault. To exemplify the second state, if module A16 was faulted in such a way that results in a poor
signal from terminal 13, its effect propagates downstream to module A64. In this case module AI6 is directly
responsible for the presentation of a faulty signal at terminal 13. The causal rules define this relationship as a given
module failure, or cause that produces an effect at an output terminal, provided the conditions of the UUT test are
consistent. The causal rule is the statement of the cause and effect relationship that exists between interconnected
modules in an electronic circuit.

The different individual components of the causal rule file are now defined along with the format. The
essential format elements of the causal rule file are the module name, a rule number (for accountability purposes), a
cause, an effect, a type (optional), and a precondition. Other optional items included are titles, headers and footers,
dates, headings, and descriptive comments. An example of the format used for the causal rule file is included in
Appendix A.

Module Name

The format for the module name, within the rule database, must be descriptive and distinctive for the UUT.
The designation of a module may occur anywhere within the file, but must be before the first rule for that module.
It may be of any length, but must have a letter, between A and Z, as its first character. The format defines the
module name by placing the word module and a colon followed by one or more spaces before the actual module
name, as indicated by the example in Fig.1.

Module: A26AIA16

In this example, and for most module names used for the AN/SQS-53B Unit 26, the leading A acts as an
alphabetic place holder. The 26 following the leading A is indicative of the subsystem unit, as seen at the bottom
center of Fig.1. The next two characters, Al, designate the clectrical rack location of the module, seen also at the
bottom center of Fig. 1, just above the unit designation. The final characters, A and a group of numbers (in this
case 16), indicate the specific module within the unit as noted in the figure.

J.MOLNAR

No other characters may occur on the line in which the module name occurs unless it is a comment and
adheres to the comment format.

Rule Number

Figure 2 shows that each rule consists of a cause, an effect, type (optional), and precondition. A number, as
the first character on a line, denotes that a rule follows. One or more spaces separate the number from the
components of the rule. The number acts to order the rules of each module, so that humans may account for their
presence or absence. A rule, once created, maintains a numbered place in the rule list. The user removes the rule
that is no longer appropriate, but the rule number should remain to mark its place. The rule has no relation to the
schematics of the sonar system; it is purely a construction of knowledge database creation.

In management of the database the number provides a place for the knowledge engineer to account for
deletions of rules from previous versions by allowing space for comments relating to the deletion. Additional
information, if needed, resides in the comments that follow the modules rule set. A descriptive comment such as the
date and appropriate rationale should replace deleted rules. The rule number allows the creators of the knowledge
database to identify rules within a unit. The number also announces that the remainder of the line is a rule. The
software converts the database to a format compatible with FIS and uses this convention to identify rules. Numbers
may also have comments that follow and conform to the format for comments. Other extraneous items that follow a
comment either produce an immediate error when converted, or are processed, thus producing an undefined rule for
the knowledge database. Undefined rules produce syntax errors during compilation.

Rules

Rules consist of elements such as cause, effect, type (optional) and precondition. The following sections
describe each of these elements.

Several strategies are used in the creation of the rule database. The first strategy uses a point-to-point internal
module network structure, This means that each input point of a module connects directly to the module output
point through the use of a logical construct. Figure 2 (rules 1-36) shows this first strategy. This strategy uses the
input terminal of the module being examined or the output terminal of the module immediately upstream to define
the cause. Either terminal is allowable in this definition, provided other rules maintain the logical connection. A
pseudonode allows the use of both the input and upstream output terminal by providing the logical interconnection
between them. A pseudonode is a node that has physical existence over a connection length, not at a single point, as
for real terminals.

Out of necessity for pseudonodes, virtual modules were created; modules that have ambiguous boundaries in
the physical system but that are necessary because of a requirement to assure system connectivity. Often virtual
modules describe physical entities such as backplanes that have no definite terminals or boundaries. Each
interconnection then becomes part of a virtual module. This increases the total number of rules, but has the positive
effect of defining all interconnections.

Beside upstream faults producing effects at output terminal, the module can produce a faulty output, as Fig. 2
shows in rules 37 to 48. The knowledge database requires that for every module at least one rule must be present
that identifies the module as the producing source of improper effect at an output terminal. A waming occurs during
compilation to indicate an error in knowledge database syntax.

A second strategy, similar to the first, attempts to reduce the number of rules. This strategy uses
pseudoterminals, terminals that are not physically present but are logical creations that possess a central location
between any two physical terminals, input and output, within a module. Rules 61 to 80 show this type of strategy,
since the terminal a26alal6 is a logical creation as is the parameter mplxr_gates. These are extremely useful in
describing highly parallel systems, because they allow the knowledge engineer to describe the physical system in
fewer rules. In the example of module Al6, four gates exist that control the path of 12 separate signals. The use of
the pseudoterminal reduces the number of rules from 48 to 16, rules 73, 75, 77, and 79 do not relate directly to the

NRL REPORT 9296

Module: a26alal6_mplx_gates

No Cause

a26alal1J7 waveform bad
a26alallJ7 waveform bad
a26alal1)7 waveform bad
a26alal1J7 waveform bad
a26alal1J7 waveform bad
a26alal1J7 waveform bad
a26alal1J7 waveform bad
a26alal1J7 waveform bad
a26alal1J7 waveform bad
10 a26a1a11J7 waveform bad
11 a26a1a11)7 waveform bad
12 a26al1a11J7 waveform bad
13 a26alal6-2 gate_a bad
14 a26alal6-2 gate_a bad
15 a26alal6-2 gate_a bad
16 a26alal6-2 gate_a bad
17 a26alal1J13 gate_b bad
18 a26alal1J13 gate_b bad
19 a26alal1J13 gate_b bad
20 a26alallJ13 gate_b bad
21 a26alal6-28 gate_c bad
22 a26alal6-28 gate_c bad
23 a26alal6-28 gate_c bad
24 a26alal6-28 gate_c bad
25 a26alal6-16 gate_1 bad
26 a26alal6-16 gaie_1 bad
27 a26alal6-16 gate_1 bad
28 a26alal6-17 gate_2 bad
29 a26alal6-17 gate_2 bad
30 a26alal6-17 gate_2 bad
31 a26alal6-41 gate_3 bad
32 a26alal6-41 gate_3 bad
33 a26alal6-41 gate_3 bad
34 a26alalll14 gate_4 bad
35 a26alal1J14 gate_4 bad
36 a26alallJ14 gate_4 bad
37 a26alal6_mplx_gates
38 a26alal6_mplx_gates
39 a26alal6_mplx_gates
40 a26alal6é_mplx_gates
41 a26alal6_mplx_gates
42 a26alal6_mplx_gates
43 a26alal6_mplx_gates
44 a26alal6_mplx_gates
45 a26alal6_mplx_gates
46 a26a1a16=mplx=gates

O 00 ~I N o AW N =

Effect

a26a1a58]7 gate_select bad
a26a1a59J7 gate_select bad
a26a1a60J7 gate_select bad
a26ala61J7 gate_select bad
a26ala62]7 gate_select bad
a26ala63]7 gate_select bad
a26ala64J7 gate_select bad
a26ala65]7 gate_select bad
a26ala66J7 gate_select bad
a26ala67)7 gate_select bad
a26ala68]7 gate_select bad
a26al1a69]7 gate_select bad
a26a1a58]7 gate_select bad
a26a1a59J7 gate_select bad
a26a1a60J7 gate_select bad
a26ala61J7 gate_select bad
a26ala62J7 gate_select bad
a26ala63J7 gate_select bad
a26ala64J7 gate_select bad
a26a1a65)7 gate_select bad
a26ala66]7 gate_select bad
a26ala67J7 gate_select bad
a26ala68J7 gate_select bad
a26ala69J7 gate_select bad
a26ala58J7 gate_select bad
a26ala62J7 gate_select bad
a26ala66]7 gate_select bad
a26a1a59]7 gate_select bad
a26al1a63]7 gate_select bad
a26ala67]7 gate_select bad
a26al1a60]J7 gate_select bad
a26ala64J7 gate_select bad
a26ala68J7 gate_select bad
a26ala61J7 gate_select bad
a26ala65J7 gate_select bad
a26ala69J7 gate_select bad
a26a1a58J7 gate_select bad
a26ala59J7 gate_select bad
a26a1a60J7 gate_select bad
a26ala61)7 gate_select bad
a26ala62J7 gate_select bad
a26ala63]7 gate_select bad
a26ala64)7 gate_select bad
a26ala65J7 gate_select bad
a26ala66J7 gate_select bad
a26ala67]7 gate_select bad

~
t

L7 I R O T T - T T 7 B T T~ T B 7 B 7 B T 7 S T < B < I T T T T < TR T T B I T T T R T T - S T T T T T 7 T 7 T)

Precondition

L I o T T T e T R R I A i e e e e e

Fig. 2 - Sample list of rules for module A6

J. MOLNAR

47 a26alal6_mplx_gates

48 a26alal6_mplx_gates

49 a26ala77J4 volts bad {4.5v supply]
50 a26al1a77J4 volts bad

51 a26ala77J4 volts bad

52 a26ala77J4 volts bad

53 a26ala77]4 volts bad

54 a26ala77J4 volts bad

55 a26ala77J4 volts bad

56 a26a1a7734 volts bad

57 a26ala77J4 volts bad

58 a26al1a77J4 volts bad

59 a26a1a7734 volts bad

60 a26a1a77J4 volts bad

61 a26al1a58J7 gate_select bad
62 a26a1a59J7 gate_select bad
63 a26a1a60]7 gate_select bad
64 a26ala61J7 gate_select bad
65 a26a1a62]7 gate_select bad
66 a26ala63]7 gate_select bad
67 a26ala64]7 gate_select bad
68 a26a1a65]7 gate_select bad
69 a26a1a66J7 gate_select bad
70 a26ala67J7 gate_select bad
71 a26a1a68J7 gate_select bad
72 a26a1a69]7 gate_select bad
73 a26alal5-13 not_gate 1 bad
74 a26alal6 mplxr_gates faulted
75 a26alal5-15 not_gate_2 bad
76 a26alal6 mplxr_gates faulted
77 a26alal5-6 not_gate_3 bad
78 a26alal6 mplxr_gates faulted
79 a26alal5-7 not_gate_4 bad
80 a26alal6 mplxr_gates faulted

a26al1a68J7 gate_select bad
a26a1a69J7 gate_select bad
a26a1a58J7 gate_select bad
a2621a59]7 gate_select bad
a26a1a60J7 gate_select bad
a26ala61J7 gate_select bad
a26a1a62]7 gate_select bad
a26a1a63]7 gate_select bad
a26a1a64J7 gate_select bad
a2621a65]7 gate_select bad
a26ala66J7 gate_select bad
a26a1a67]7 gate_select bad
a26a1a68J7 gate_select bad
a26a1a69J7 gate_select bad
a26alal6 mplxr_gates faulted
a26alal6 mplxr_gates faulted
a26alal6 mplxr_gates faulted
a26alal6 mplxr_gates faulted
a26a1a16 mplxr_gates faulted
a26alal6 mplxr_gates faulted
a26alal6 mplxr_gates faulted
a26a1a16 mplxr_gates faulted
a26alal6 mplixr_gates faulted
a26alal6 mplxr_gates faulted
a26alal6 mplxr_gates faulted
a26alal6 mplxr_gates faulted
a26a1a20J2 gate_1 bad
a26al1a20J2 gate_1 bad
a26al1a20J3 gate_2 bad
a26a1a20J3 gate_2 bad
a26a1a20J4 gate 3 bad
a26a1a20J4 gate_3 bad
a26al1a20J5 gate_4 bad
a26a1a20J5 gate 4 bad

P R . L L. T 7 B I T T - T T T T TR T T T~ T B I B R~ T I I

I T = T S e T Y S Y e e e R

Fig. 2 (cont) - Sample list of rules for module A16

pseudoterminal concept. For some modules within the sonar system, all of the input terminals may have effect at a
majority of the output terminals. For modules with many terminals and that have parallel effect at the output

terminals, the equation for the number of rules becomes:

R=TiXT0

R is the number of rules resulting

T; is the number of input terminals, and
T, is the number of output terminals

If, however, pseudoterminals are used, the relationship of the number of rules to terminals is additive: R = Ti + To

The savings become evident when at least two input terminals exist and the sum of the number of input and
output terminals is >5. Considerable savings in the number of rules can result from this strategy. Those savings

translate into reduced loading and running time for FIS.

NRL REPORT 9296

The format is the same as the one developed for the first strategy. However, the terminal name of either the
cause or the effect will be a pseudoterminal, depending on whether an input or output related rule is being considered.
While the pseudoterminal name can be any combination of characters, provided the first character is a letter, it is best
to choose a descriptive terminal name as in Fig, 2, where a26alal6 is used. Also, a parameter and malfunction must
accompany the pseudoterminal. This completes the cause or effect expression. The parameter used with the
pseudoterminal can be any group of alphanumeric characters (provided an alphabetical character leads the group), but
a descriptive, yet not real, parameter is preferred such as mplxr_gates as shown in Fig. 2. "Bad" is the preferred
description of the malfunction state, although other descriptions such as faulted, in the example, are acceptable. For
the sonar system, the convention used for naming the pseudoterminal was to abbreviate the module name. The
parameter conventionally chosen is the word “function,” and the malfunction condition was bad. The pseudoterminal
cannot use the whole module name since there would be a conflict of a module name being defined as a terminal
name, an unacceptable FIS syntax. In that case a syntax error results during compilation by using the FIS compiler.
In the example, the terminal name is a26alal6, which is an abbreviation of the entire module name
a26alal6_mplx_gates.

The third strategy implemented in the knowledge database formation is rules that express an abnormal
functioning condition as the state of the normal function, i.e., a “false good.” This strategy is used for modules that
display status information. For the sonar system, the modules included are indicator lights, built-in-test (BIT),
displays, and other lighted indicators. For these types of modules a bad input will not always result in the effect
being bad, since there is ambiguity resulting from the effect of a faulted module or display. In either, a good or bad
indication could occur independent of the actual fault state in the monitored area. Figure 3 contains an example of
this situation, where an error light, CORRELATOR TEST ERROR XDS§8, malfunction can express a "false good.”

The result is that it becomes necessary to define a rule in which several causes will provide the same effect.
This requirement prompted the development of "and” rules. “And” rules take their name from the connector & used
to link the causes. “And” rule constructs have several causes complete in themselves, but separated by spaces and
the connective &. A single effect follows the compound cause, and all other attributes of a rule remain the same.
While this is an effective method for displaying the logic of the occurrence, it is not an accepted format for the
expression of a FIS rule. FIS does not accept this format structure. To express this condition in actual
implementation, a single rule or shallow sequence of rules replaces the compound rule. This directs the ultimate
cause to a local module whose malfunction will produce a false indication. The compound condition requires a test
to link the rule to a measurable state. The example displays such a replacement:

1 a26ala27 driver ADS8 logic_gate open
2 ADSS8 logic_gate open ADSS8 light on.

In this example a shallow sequence (two levels) of rules describes the logic. The a26ala27 driver for the
indicator light ADS8 is bad, which results in the logic gate being open. With the logic gate open, the light is on
when it should be off. This situation requires care during rule description to allow consideration of all relevant
causes. For comparison, the “and” rule to describe the relationship is:

1 a26ala27 driver & ADS8 logic gate open ADSS light ok

where the & provides the logical connection of causal states resulting in a malfunction. The localized effect is
unrelated to the signal fault. Also "ok," defined as a state free of malfunctions, is used as the state descriptor, thus a
false good. This is a syntactically improper rule state for FIS. In the shallow sequence of rules, which replaces the
compound rule, a syntactically correct expression "on" replaces "ok.” "On" expresses the intent to the user, while at
the same time expressing to FIS that a malfunction state is occurring. FIS only recognizes "ok" as a functional
condition.

J. MOLNAR

Cause - The cause has one of three formats in database: atom, triple, or compound (where the implementation
replaces compound causes).

The atom is the simplest form, since it is just the name of the module to which the rule refers. In Fig. 2,
rules 37 through 48 express this type of cause. The format for the name is the same as the format for the module
name defined earlier. These must be exactly the same as the module name, or a syntax error will result when the FIS
compiler is used. The atom form describes a faulty module producing any number of bad effects. The module is
identified as faulty because the input is within specification, but the resulting output is out of specification.

The triple form is the most common type of cause used in FIS rules. It consists of three elements: a
terminal, a parameter, and a condition. These three elements define a form used by FIS to identify the cause “list” in
LISP. The terminal name defines either a physical terminal that exists at a spatial location, such as an edge
connector, or it may be a logical creation, such as pseudoterminals or pseudonodes. The format used for the terminal
name is the same as the module named for all physical terminals, except that a terminal designation is appended:

xxxxxxxxJ16

as the J16 does in this example. In the convention for the sonar system a J denotes a terminal designed as a test-
point, as seen in rule 1 of Fig. 2. In other cases, a "-," seen in rule 13 of Fig. 2, indicates that the terminal could be
an edge or pin connection that would not readily be testable. The relationship of these rules, in Fig. 2, relates to
their physical counterpart in Fig. 1. Finally, a pseudonode or pseudoterminal has an abbreviated module name or
module name with a suffix, which can have significance related to the type of rule. This type of terminal was
exemplified by rule 74 in Fig. 2. Whether the suffix is added to the module name or the module name is abbreviated
depends on the module name and rule being described.

The cause parameter is either a measurable physical parameter or a logical creation that links the pseudo
element in a set of rule constructs. Typical parameters relate physical quantities such as volts or frequency; others
refer to system quantities such as a signal type, while others refer to more general quantities such as logic levels.

The parameter is a single group of characters separated from the terminal and state by spaces.

The state of the system parameter at a terminal can be in either fully functional or malfunctional. In analog
systems, it is common for multiple degrees of a malfunction state to exist. Conditions to express the degree of each
malfunction state must exist in the rules.

The state expression has one of two possibilities, either “ok” or any other state. The only acceptable reference
to an unfaulted condition is "ok." Any condition other than "ok” identifies a fault. However, due to the syntax FIS
requires, "ok” conditions are not a part of the rule set. The rules therefore only contain conditions for the
malfunctioning state. The "ok" condition is relevant for the compound cause however. Common faulty conditions
are: bad, high, or low. However, any other name for a faulty condition is permitted to express the degree of the
malfunction state, such as: very-high, marginally-high, marginally-low, and very-low. The condition is a group of
characters beginning with a letter of the alphabet, and it is separated from the parameter and the effect by spaces.

The compound form uses a group of causes separated by spaces and &. The individual causes may be either
atom or triple type causes, or a mixture of both types. At present, the number of compound cause elements has no
limit, but appears unlikely that more than one atom element would apply in a single compound rule. There could,
however, be a very large number of triples present in a single compound rule. The compound cause with its
associated effect and precondition must later be restructured to conform to syntax conventions. The restructuring
entails replacing the compound rule with a series of simple rules to be compatible with the FIS format. The
compound rules are useful in maintaining the thought process involved in the development, and to check the logic
for the series of rules that replace the compound rules.

10

UNIT 2

Al 20 A20J13(TPI3) XA.ZO A20JIS (TPIS)
w) 12—
LEFT BEAM TEST \ / XA27 i
a—» <27}
R IGHT BEAM TEST \ /
.’

CENTER BEAM TEST

T
L
L
A

\ / L] wiLL FILL TO UPLEVEL
XA20 -m IN 0.5 SEC DURING
LLO TRANSMIT TIME,
iy 354 omeﬁwie
EANDOM PATT
END SYNC 4" vSeC " R
Frzem USE POSITIVE —< 28
X826 - 43 EXT SvYAC | .
n20u14 ‘ SHEET 39 FROM A11JI8 __'_<zq§
e+ eynC (rer) t l |
d »— = 3,
| :
. \ 4 * [.
PE f :
¢ —» 25
XAZO e USE MNEGATIVE AZ0JIO (TPI1O) |
D/JIU)/V EXT SYNG FPoM ¥AZO | ;
Oht RLIVIZ ‘->—>/z ——— 50
3¢ T f
o Z_L/ A2¢ 1| 7 PE ! ;
Crti) '
/ |
_ a7 I
AZCL 9 A W e 14— N USE NEGATIVE i
(TF9) 4 EXT SYnE FRom |
UsE NESTATIVE 38 AZ /I __+<30
EXT SYNC FHOM) .
V-YANEL, xacl | ‘
FC '
£ - e 2!
A20JI2 (TPI2 '
20 () N XA20 PC | '
>/ I 22
|
31
USE MEGATIVE EXT
Lot SYIC FRoM 421412
. . __LLO
USE /0 X PASSIVE PROBE e 0CCURS
L1 =0€GIC LEVEL ONE « 2.6 TO+4Y.5V ™ ysec [4— DURING XT
LLC=LCGIC LEIEL 2880~ F0.0TD 0.6 V
G7A416/4 A

CP Signal Processing Channel

NRL REPORT 9296

T——
E2
N ﬁqﬁ L ">O
| FF
| — uxK NOTE!:
| THE MAJOR BOARD COMPO
I — K Q ARE IDENTIFIED FoR INSTR
I p— CLR PURPOSES ONLY,
| - (@)
l
pa E|
<3 J Q
| (= 9 >C/
& * e NIV
!
t ﬂ K)
N L LR >O
: | -
o E
AN I >>
I
v |
N |
|
f INB
|
| DRIVER
! E3
< J Q y
! FF
! ———— Clk
/| %
N _
i Q
CLR
.
N
!
A
&

TEST MOMITOR B (3TGI10) A27

CODED SIGNAL PROCESSOR ELECTRICAL RACK Al

CODED SONRR SIGNAL PROCESSOR UNIT 2(

Fig. 3 - Schematic diagram for Unit 26 of the AN/SQS-53B displays special module conditions that would result in a
good" (primary focus is placed on module XDS8) [2]

11

SE313-TP-MMC-040

@

XA271 COPRELATOR TEST
>15> — Y 10 XAl9- 20
SHEET 46
NENTS
WCTIONAL

—_— e | e e e - m e, e e —

+4$.5 VYV SRoM
2LAAIITRZ -3
(SHEET 47)

OFF
! COPRELATOR
ALL 2 TEST BEAMS
> 34\/ g ~a MON I TORED
! -4 3 ss
! >
! 5-8 4 SEE SERVICING
> "\ of NOTE |5
/ /1 5 i
| o (oMt 26)
! q-12
N N
xd e
[[
[i
| t
=l E <
: : CORRELATHR
| | TEST ERROR PP ——
XDS8
|
i

' ; CTR SYNC FROM
: $> < XRiB-27, SHEET 44

"false

NRL REPORT 9296

Effect - Only one format is allowed for the effect. It is the same format as the triple format for the cause. All
three elements - the terminal, parameter, and state are indistinguishable from the cause structure. This is reasonable,
since for several modules connected together the effect in one module becomes the cause for the next module. The
effect and cause relationship provides a link to express the relationship of the physical connections between system
modules. This linking effect can be seen in the example of the pseudoterminal in Fig. 2. The triple relating the
effect of rules 61 through 72 becomes the cause of rules 74, 76, 78 and 80. This linking relationship becomes more
evident when examining the rules for several modules that are physically linked.

Type — The type is presently just a place holder in the current implementation of the FIS database. In
previous implementations two possible types existed; sometimes s, and always a. “Sometimes” type rules indicate a
degree of fuzziness for a rule, so that the bond between the cause and effect are weakened. “Always” type rules
indicate that a specific cause would be certain to produce a given effect. Because of the probabilistic nature of FIS, it
was later determined that only “sometimes” rules would be viable, since “always” rules would produce direct
implications on module viability. Therefore, the present knowledge database can have either s or a as the type.
During the conversion to a LISP compatible format only type s is a valid default state for all rules. Later
implementations of the knowledge database will not contain the type designation.

Precondition — The precondition is a single descriptive atom that describes the condition the UUT should be
in while the test is being made. The default value is ¢, which occupies the remaining space in the FIS database
format. This form can be seen in Fig. 2. The default state is generally the most common condition of the system
during testing. Other than the default, any group of characters can act as a precondition, provided the first character is
a letter. Figure 4, which is an excerpt from the rules for the 59 module, displays an example of a precondition other
than the default. Since ¢ is the assumed default, later data structures may choose to eliminate the precondition item
and default to ¢, unless a unique precondition exists.

Module: a26al1S9

No Cause Effect Type Precondition
1 a26a189-1 time_slot_1_volts hi a26ala24J1 time_slot_1_volts hi s a26al159_set_to_oper
2 a26al1S89-1 time_slot_1_volts lo a26a1a24J1 time_slot_1_volts lo s a26a189_set_to_oper

Fig. 4 - Excerpt from rule list for module a26al59 exemplifying a nondefault precondition

Optional Items

All text items that follow either a rule number or the word “module” are considered to be information
necessary to FIS. If other information that is only for human consumption is present in these locations then that
information is considered optional and may only be included if delimited on the left by a / or {, and on the right by a
] or }, respective of matching the first delimiter. A comment closing delimiter must occur on the same line as the
beginning comment delimiter to identify the item as a comment.

Other optional items desired in the file may occur without delimiters provided they are not in a module or rule
location. Several types of this information are found to be useful in the rule database for the sonar system.

13

J. MOLNAR

For the purposes of data management the following items provided valuable optional information:

. A data title to describe the file information;

. The date of the rule set version;

. Column headers, such as No (Number), Cause, Effect, Type, and Precondition increase the readability;
. If arule is deleted, replacement of the rule with a comment, such as [deleted, date];

. Page numbers;

Any other comment about the state of the file.

SO A0 o

Each of these features are found in Fig. 5, except the page number that would be in a standard location such as at the
bottom center of each page.

Left Correlator Rule Base
July 1989

Module: a26a1a58_mod_amp_mpx
No Cause Effect Type Precondition
1 a26J3_beams volts hi a26ala58J1 volts hi s t
2 a26J3_beams volts lo a26al1a58J1 volts lo S t
3 a26J3_beams uniformity bad a26ala58]1 volts hi s t
4 a26J3_beams uniformity bad a26a1a58J1 volts lo s t
5 a26J3_beams waveform bad a26a1a58J1 waveform bad s t
6 a26ala58]1 volts hi a26al1a58]J3 volts hi s t
7 a26ala58]1 volts lo a26a1a58]3 volts lo s t
8 a26alaS8]1 waveform bad a26a1a58J3 waveform bad s t
9 a26a1a70J3 reference_signal bad 226al1a58J3 volts hi S t
10 a26a1a70J3 reference_signal bad a26a1a58J3 volts lo s t
11 a26a1a70J3 reference_signal bad a26a1a58J3 waveform bad s t
12 [Deleted 21 July 1987. Moved to a26alFL1.]
13 {Deleted 21 July 1987. Moved to a26alFL1.]
14 [Deleted 21 July 1987. Moved to a26alFL1.}
15 [Deleted 21 July 1987. Moved to a26alFL1.]
16 [Deleted 21 July 1987. Moved to a26alFL1.]
17 [Deleted 21 July 1987. Moved to a26a1FL1.]
18 a26ala58J4 volts hi a26a189-1 time_slot_1_volts hi s t
19 a26ala58J4 volts lo a26a189-1 time_slot_1_volts lo s t
20 a26a1a58J4 waveform bad a26a159-1 time_slot_1_waveform bad s t
21 a26ala58_mod_amp_mpx a26a1S9-1 time_slot_1_volts hi s t
22 a26ala58_mod_amp_mpx a26a1S9-1 time_slot_1_volts lo s t
23 a26ala58_mod_amp_mpx a26a189-1 time_slot_1_waveform bad s t
24 a26a1a58]7 gate_select bad a26a159-1 time_slot_1_volts hi s t
25 a26a1a58]7 gate_select bad a26a159-1 time_slot_1_volts lo s t
26 a26al1a58]7 gate_select bad 226a189-1 time_slot_1_waveform bad s t
27 a26a76]3 volts bad [+12v supply] a26a1589-1 time_slot_1_volts hi s t
28 a26a76J3 volts bad a26a159-1 time_slot_1_volts lo s t
29 a26a76]3 voits bad a26a1S9-1 time_slot_1_waveform bad S t
[Modified 21 July 1987. a26ala58_mod_amp_mpx: Moved rules 12-17 to a26alFL1.]

Fig. 5 - Excerpt from rule list for a26ala58 module displaying the format for comments

14

NRL REPORT 9296

Testlist File

While the causal rule file defines the interrelation of all of the modules, it does not contain useful information
for the technician or automated test equipment. The testlist file contains all the basic information necessary to
perform a test, except explicit instructions. FIS uses the information contained in the testlist file to suggest to the
user which tests will provide the greatest amount of information about the system's state; the best test. With the rule
information, FIS correlates the information so that each real test provides implications on the health of modules.
The testlist, when converted to an FIS format, then provides the information necessary for the inference engine to
calculate the effect of performing a test.

For the sonar system, the information contained in the testlist was obtained from the actual tests in the
troubleshooting process, as given by the sonar system manuals [2,3]. The tests defined are based on the use of real
test points designed into a system and that are readily accessible. In addition to measurable test points, tests that
include reading indicator lights, displays, or monitors are visual tests, and their interpretations provide the test result.
Figure 2, from Ref. 2, displays an example of general test information that is available from the module level
schematics. If additional information to complete the test definition is needed, the knowledge engineer should refer
to a detailed schematic such as is found in Fig. 6 [3]. Figure 6 provides a descriptive procedure in addition to detailed
schematics. This information should be sufficient to describe tests in the correct information format and will give
sufficient detail in creating the instruction information for FIS.

Again, as in the causal rule file, two types of information exist. One type is information that becomes
functional for FIS. The other type is optional information that is used in the management of the data. The
following description of the required information is listed in the order in which the information should appear as
columns across the page. The appropriate column header defines the column of information. The section on
“optional information” presents a description of the header information.

Figure 7 shows an example of the format used for the sonar system test information with a more extensive
example appearing in Appendix B.

Name

The name should be descriptive of the test. This item is created by the knowledge engineer and should be
tailored to his needs. It must be an atom that has a letter as the first character. The convention used for the sonar
system was to abbreviate the name of the test point, or to abbreviate the test point and add a suffix for cases that
require additional identification. Such a convention allows the user, who will not be able to remember all of the test
names, to more easily make tests in FIS by using the make test name (mtn) command. If the user wishes to by-
pass the best test information, an intuitive naming structure simplifies the function of making a test. If, however,
the name is not intuitive, the make test (mt) command still allows the user to enter the terminal. FIS then prompts
the user for the parameter and setup.

Other strategies have created names that are just test numbers led by the letter “t.” These strategies have
primarily been conceived for Test Program set generation or use with automatic test equipment. If this strategy is
used for technician aid applications, a method must be developed for the user to identify the name.

Test point

The test point should follow the same format as the terminal used in the causal rule file. A correlation must
exist between the terminal name used in the causal rules and the terminal identified in the test information file; they
must be exactly the same names.

If the test points do not correspond, FIS will signal that syntax errors exist. If the knowledge engineer
ignores the syntax errors, FIS will compile the knowledge database, but it will lack of logical connection between
tests and rules. Errors will result when using the knowledge database. Therefore, it is important that the knowledge
database be cross-checked for such occurrences of syntax errors.

15

J. MOLNAR

Parameter

The parameter also should relate to the causal rule file and have the same format. The purpose is to name the
physical parameter that the user would measure in the performance of a test. Again, if the parameter does not match
the parameter as expressed in the rule, then the elements of the knowledge database will not maintain their
continuity.

Units

The unit item is similar to the parameter, but it defines precisely the parameter unit to measure. For
example, the units for the parameter voltage (or volts) could be volts, millivolts, microvolts, etc. The "unit"
indicates that a quantitative value has a unit that must be consistent with the test procedure. Primarily, the format
requires units so that the technician when using FIS will enter an appropriate quantitative value to provide an
accurate test result.

Qualitative Values

At least two qualitative values are presumed, one naming the functional state and all others defining a
malfunction. The only qualitative functional value acceptable to FIS is “ok.” All other qualitative values represent
malfunctioning states. The qualitative values would also correlate with the conditions described for the causal rule
file. Thus, for example, if five different types of malfunction exist, then there should exist five types of rules with
the appropriate states identified. The malfunction states arise from the levels of performance variation.

The format for the qualitative values is that they must occur in a column with no line spaces between the
entries in the column. It is not necessary that “ok” always be at the head of the column, but it is a good practice.

Minimum Quantitative Value

This number defines the minimum value that is acceptable as a functional "ok” reading. By definition, any
value less than the minimum quantitative value corresponds to a malfunction and relates to the relevant qualitative
value. The range then defined extends from negative infinity to the minimum quantitative value; this will always be
the case. If various levels of malfunction exist then the minimum will define the absolute lowest limit functionality,
and the other states will fall outside the defined bound extending to negative infinity. Relating the value in Fig. 7 to
the actual test point in module A70 of Fig. 1, the minimum value can easily be seen to correspond.

Maximum Quantitative Value

This number defines the maximum value that is acceptable as a functional “ok” reading. By definition any
value greater than the maximum quantitative value corresponds to a malfunction and relates to the relevant qualitative
value. The range defined extends from the maximum quantitative value to positive infinity. If various levels or
malfunctions exist, then the maximum value will define the upper limit of functionality, and other states will fall
beyond the defined bound to extend to positive infinity. Similarly, the relationship of the physical measurement of
Fig. 1 can be correlated with the value of the maximum value given in Fig. 7.

Cost
The cost is a value defined in terms that assume an approximate cost of the actual performance of the test. In
an earlier version, FIS uses cost as one of the criteria for selecting a test as a "best test.” The cost item is not used

in the present version. If implemented, the cost value is generally a simple number, but it may be an equation for
computing the value.

16

CIRCULIT DESCRIPTION

The network coupler accepts logic levels and provides
output alarms when any of the inputs are absent. The network
coupler consists of six circuits. Input levels for the cir-
cuits are 2.0 to 4.0 vdc (high level) and O to 0.6 vdc (low
level). Circuits 1, 2, and 5 contain a mixer network with a
long time constant that determines the duty cycle. The out-
put voltage levels are a function of the duty cycle of the
corresponding input signal. The normal inputs must be con-
tinuously present for the outputs to remain less than +150
mv. In circuit 1, logic signals are applied through finger
contact 4 and diodes CR1 through CR3 to the base of inverter
G1. Q1 collector output is applied through a long time con-
stant network (C1, and R1 through R6) to finger contact 29.
The output at finger contact 29 is a function of the average
dc voltage at Q1 collector and the input duty cycle. The
output increases at finger contact 29 above the alarm level
of +150 mv when the input duty cycle drops below approxi-
mately 17 percent (20-usec positive mv width out of a 118-
usec period), and decreases below the alarm level of -150 mv
when the input duty cycle raises above approximately 85 per-
cent (140-usec positive pulse width out of a 1416-usec
period). Any steady state input of a logic low level or high
level causes an alarm vaoltage which exceeds +150 mv.

Except for duty cycles, circuit 2 functions are similar
to circuit 1. The logic levels applied to finger contact %
operate the circuit of inverter Q2 in a similar manner to
that of Q1.

The output increases at finger contact 30 above the
alarm level of +150 mv when the input duty cycle (1416 usec)
drops below approximately 10 percent (140-usec positive
width), and decreases below the alarm level of -150 mv when
the input duty cycle rises above approximately 35 percent
(500-usec positive width). Any steady state input of a logic
high or a logic low causes an alarm voltage that exceeds
+150 mv.

- Circuit 3 combines 12 input multiplexer gates at a 12-
input NOR gate (CR7 through CR32) and applies them to the
base of inverter Q3. The inverted composite of the inputs
appear at Q3 collector and J3. Under normal conditions, the
inverted composite waveform is a continuous uniform logic
signal. The inverted composite waveform is coupled to U1,
through diode CR33, to integrator R28 and C3 to the ‘base of
emitter follower Q4. The inverted composite waveform from U1
is coupled through CR34 to integrator R30, C4, and C5 and
applied to the base of Q5. With normal inputs, both integra-
tor voltages remain below +3 volts and emitter followers
(used as OR gates) Q4 and Q5 are cut off. When a fixed low
level is applied, the collector of Q3 becomes more positive,
C3 charges to a level greater than +3 volts, Q4 conducts
more heavily, Q6 cuts off and the emitter of Q7 goes down to
near ground potential. This sets U2 to the alarm state and
output mixer R37 through R39 at finger contact 42 drops to
below -150 mv. When a continuous high level is applied, the
collector of Q3 goes less positive and the output of U1-2
goes more positive. As a result, capacitors C4 and C5 charge
to a level greater than +3 volts, Q5 conducts more heavily,

and Q6 cuts off. With Q6 cut off, emitter f
ducts, U2 is set to the alarm state and the
ger contact 4 drops to below -150 mv.

The fault locator transmit pulse at fi
occurs at a slow rate compared with the muy
rates. The pulse (a logic high level) is couy;
inverters in U1 to sharpen the waveshape. The
is directly coupled to U2-10 which is the
resets the flip-flop periodically, so that
will not remain when the fault condition is

In circuit 4, a logic level 1is app
contact 18, through diode CR35 and voltage
to finger contact 43.

In circuit 5, a 4-MHz square wave is g
contact 19. The output at finger contact 4¢

volt if the input is 0.3 to 3.5 vdc. When
continuous high or low level, the output ¢
(R43 through R46, and C6) changes to a

output.

Circyit 6 consists of an input at fi
which is applied to inverter U1. The invert
from U1 is applied to finger contact 45.

NOTE
This wunit may have part number 77D6
77D611979G1. Both wunits are electr’

physically identical, although compone
ences do exist. If repair of the unit i
the proper replacement component can i
from the parts 1list given in DATOM
SE313-TP-MMC-110.

T —
3.5V —
+0. 3v —
T1:84 USEC

T22118 USEC

NRL REPORT 9296

napipl

*l:k

Tlz1416 USEC
722354 USEC

;ollower Q7 con-
voltage at fin-

.nger contact 17
tiplexer signal
1led through two
: output of U1-3
clear input and
the alarm level
hnly temporary.

lied to finger
divider R41,R42

splied to finger
is a nominal O
the input is a
f mixer network
+ 500 mv alarm

ger contact 20
'd signal output

J2227G1 or
cally and
nt differ-
i required,
e selected

Manual 8

77D613285 - 1 -

12
si2v
R3
4700 R4
] - 56. 2K
Ri
o B, o
+0.7v/ .
-0.7v INV
A () a0 o
SET SIGN @ —@ @ & JAN2N248 1
R7 R2
22x 68K
R9 77
4700 R1Q
AN\ 90. 9K
——\WA—
+0.1v/ X
\\\‘ CR4 CRS CRE 0. 7y, 10,4y
-0. 7V ﬂ INY
GATE 4 5 1/;;3 %
\\,/] \t!s JA.:2N248 1
RI3
22¢ RS
——AN——————4 68K
CR7 CR8 77
' s 6 ; - E :; -6V
R14
22¢
M h~ T4 —ﬂ
CR9 CRIO — +4,4y
2 ¢3! < 5 } %EE£> ~Jﬁ-_l—-——_1—»‘o 3v
» 12 e
(ORt
RIS TiZ118 USEC MUX Gt
22¢ T2t USEC 43
MY
CRII CRI2 N
7 (o)
MULTIPLEXER] 3 @ g
CR3! CR32
GATES \\,// +0.7v7s
-0.7v
RI6 1/;;}
22¢ NgV)
AN
CR13 CRI4
R2%
RI7 “bv
22«
— VWA
CRIS CRI6
et) o0
O _/ CRI8

Fig. 6 - Detailed schematic diagram for Unit 26 of the AN/SQS-53B, which displays component level informa
and detailed test procedure information (primary focus is placed on module 2641A419) [3]

17

{ GRN)
[0]w]
Ji

SE313-TP-MMC-090

23 N FL SENSE PT
-70 MY NORMAL (T1:286 USEC)
+220 My ALARM (LOGIC O)
+ -200 MV ALARM (LOGIC 1}
L ¢ RS :E RE
“T™ 10uF 2370 5 261K
1 X X
(GRN
. ocz
-25v_REF 32
. o
T/ 30 Y FL SENSE PT
-30 MV NORMAL (122354 USEC
(BLK) +280 MV ALARM (T2:0)
+ GND 470 MV ALARM (T2:708 USEC
c2 R SRz 49
1 OUF 11K S 261K ‘
X I
|
-25v_REF —
_,__£§_> GND
/77) 25 3
| so)
/77
-25v_REF 22 N\
-25v
47 REF
+12V
+4.5Y
+4. 5V
1)
R28
MTES 82. 5K R32
[4 511
' EMITTER 1 § R35
R27 FOLLOWER R33 oK
220 1000
R 04
VWV JANZN 1T 11 MWV
c 1% u2-t12
+3v
INV Ul-4
) 03 SH2 INV
JAN2NT06 ZONE C8 Q6 +3, 4V
JANZ2N2905
£ EMITTER
T FOLLOWER
“2. 7V
— +0.6v . ﬁ}? Q7
/ / JAN2N2905
+0.5v
12 e R34
33K
Tiz118 USEC
T2z1 USEC 777
-6V
Diagram 1is provided for information only. The

SCHEMATIC DIAGRAM

tion

assembly is not repairable onboard ship.

NRL REPORT 9296

$3
$1 POSS
TEST $2 QUAL $4 $5 COST, INSTR TEXT
NAME POINT PARAMETER UNITS RES MIN MAX SECONDS PREREQUISITES NAME PARAMETERS
AT0J7_scope a26alA70J7 volts volts hi 6.8 84 20 unit-26_door open v_dif_scope $6=26A170J8
lo a26al_drawer open $7=pesk to peak
ok diff_scope ready

probe_on a26atA7017

Fig. 7 - Excerpt from testlist, displaying the format of optional and required information

Prerequisites

This column of values defines the default state the system must be in for the test cost to be of the value stated
in the cost column. The format is that a prerequisite must have two sets of characters separated by a space. In
general, the purpose of the prerequisites is to display the state of the system or test instrument. FIS does not use
this item; the sole purpose is to define “like tests” for the knowledge engineer to use in managing the data.

Instruction Name

FIS uses items in this section and the next section to display operational instructions to the technician.
These items provide the means of correlating the tests that contain specific information with the general instructions.

The “Instruction Name” is a single set of characters beginning with a letter and relating to a test instruction
procedure that occurs in the instruction file. The instruction name identifies with several tests because the
instruction provides general information for a class of tests. By relating the test to the instruction several advantages
can be realized, such as reduced disk usage, reduced RAM requirement, and reduced loading time for the knowledge
database. Also, in the knowledge database format the knowledge engineer can readily relate tests to instructions.

Text Parameter

The text parameters also relate to the instruction file and provide specific test instruction information to the
instruction command of FIS to tailor the generic instruction to a specific test. The purpose is to reduce the number
of instructions needed in the file. The text parameter can be of any format. A $ and numbers identify the field,
which relates to a § and number in the instruction. During operation the fields, identified as text, fill into the
instruction blanks for each test.

Column Headings

Column headings occur above the columns containing the data. The actual column heading can have any
name, but at least one space must separate the headings. Overlapping column headings are not allowed. The
complete heading consists of four lines. As Fig. 7 shows, the first line may only include the characters $3 (where
$3 indicates a column field that provides information to the instruction file) and spaces. The format uses $3 to
identify that the following three lines are lines of the header and, secondly, to mark the qualitative value column.
This is just one of the columns marked with a § followed by a number. These columns contain information that
passes to the instruction file when processing an instruction for a test. While the numbers relating to the column
information are not rigid they must correspond to the information required for a corresponding § numbered space in
the instruction file. Therefore, the format used for the sonar system has the following $§ numbers corresponding to
the column information stated:

19

J.MOLNAR

$1 - Test point

$2 - Parameter

$3 - Qualitative value

$4 - Minimum quantitative value

35 - Maximum quantitative value

36, 87, 38, 39 and $0 - Contained in the text parameter column.

Setup

The setup consists of a single field of characters used primarily to differentiate tests made at a common test
point. It can also identify a unique testing condition that would be common for several tests. This item was not in
the original format as seen in Fig. 7. It was added through the FIS editor before compilation. The format was later
revised to include a column for the setup.

Test Type

The two types of tests may be either performance or diagnostic. Performance tests determine if the system is
working, if it is out of specification or has some parameters misaligned. Performance tests “P” isolate to the
functional unit where the fault is occurring. Diagnostic tests “D” are those tests used once a fault has been
determined to exist. This occurs only after a performance test has failed. Diagnostic tests isolate to the faulty
module. This item was not in the original format as seen in Fig. 7. It was added through the FIS editor before
compilation. The format was later revised to include a column for the test type.

FIS uses the test type to prioritize the best tests. FIS first selects performance tests as the best test. This
continues until the performance tests are exhausted, or a performance test has provided a result out of specification.
Upon completing a performance test that indicates a malfunction, diagnostic tests become available for FIS to
suggest as best tests. If a "bad" performance test occurs, then FIS has the ability to select the appropriate best test
from the combined set of all performance and diagnostic tests. In this case, the heuristic search criterion determines
which best test FIS will provide.

Optional Items

An optional item may appear anywhere in the file. They are delimited on the left by [and on the right by],
or they must have an * as the first character. Anything appearing in the file that is not part of a column heading is
data. Thus, page numbers, dates, titles, page headers, comments, etc. must appear as optional items.

Remaining Notes on the Testlist File Structure

Data for a particular test do not have to appear on consecutive lines, i.e., comments and blank lines may break
up a block of data. This is useful, for example, if information of a column extends onto the next page. However, a
new column header may not occur to break up the block of data.

Precondition File

The precondition file links the preconditions established in the causal rule file with specific tests. The
specific precondition will apply when preparing to perform a test, since it implies that a particular condition exists
to aliow the rule to fire. The precondition file also defines if any particular sequence is required to perform a test.
Because of the simplicity of this file, direct preparation in the LISP format becomes possible, and eliminates the
need for conversion from a human-readable format. However, should direct preparation of this file become
inconvenient, a conversion could be developed. The two essential elements of the precondition file are the file title
and the precondition definitions. The precondition file is created by the knowledge engineer from the available
information used to create the rule preconditions. In general, these arise out of unique switch states that must exist
in the system to allow a different signal to pass or a connection to exist. An example of a precondition file is
supplied in Appendix C.

20

NRL REPORT 9296

The File Title

The name of the file should coincide with the name for the causal rule and the testlist files, and it must have
the .prec suffix instead of the respective .rule and .test suffixes. This title appears only in the naming of the file and
not in the file itself.

Precondition Definitions

The preconditions that appear in the causal rule file apply to a set of tests identified by the test name. Also,
since the precondition is a switch state, then the reverse switch state definition becomes a default by producing the
negative precondition, or not precondition. The precondition should be a lisp atom, or, if necessary, more than one
lisp atom. The following indicates the contents of the structure:

((Precondition_A (TestName_1 TestName_2 TestName_3))
(Precondition A_Off (Not Precondition_A))
(Precondition_B (TestName 3 TestName_4 TestName_5))
(Precondition_C (TestName_6 TestName_7))) .

If the precondition definition is unnecessary because of the nature of the system being analyzed, then it is appropriate
to define the information set as NIL.

Order Information

The order information identifies tests that must be performed before other tests can be made. An example of
such a test is when the system must be in a different functional state for two separate tests. Subsequent tests branch
out of each of the tests performed, while the system is in different functional states. Thus, if the first test is
omitted, the system is not in the correct state to perform subsequent tests. Two elements are provided; the file title
and the order definition. An example of the structure and format is supplied in Appendix D.

The File Title

The name of the file should coincide with the name for the causal rule, testlist, and precondition files, but should
have the .ordr suffix.

Order Definitions

The order required for testing defines branches - how certain tests must follow other tests in order of execution.
The following indicates the contents of the structure:

((TestName_A (TestName_B TestName _C))
(TestName_D (TestName_E TestName_F TestName G)))

In this example, two lists of orders exist for performing tests. The first is (TestName A (TestName B
TestName_C)). Within this list, TestName_A is the name of a test that must be selected and performed before FIS
allows TestName_B and TestName_C to become available to the user. Thus the order of performing TestName A
before the other two is important because TestName_A produces a state that affects the performance of the other
tests. The requirements for ordering tests did not appear in the sonar system application. It could, however, have
been implemented to require all of the tests with the same precondition to be performed in some order at the same
time. In essence, the order list allows the knowledge engineer to have a means of defining a test sequence that
should be performed by the technician. Similarly, in the example, TestName_D must be performed before
TestName_E, TestName_F, and TestName_G become available tests. Whole sequences of tests can be defined by
nesting the following test in parentheses after the test which should precede it.

21

J.MOLNAR
If the order information is unnecessary because of the nature of the system being analyzed, then it is
appropriate to define the information set as NIL.
Instruction File
The instruction file provides textual instructions to the technician during a test sequence. Three primary

elements are in this file: the instruction name, instruction text, and string inputs acquired from the testlist file.
Figure 8 shows an example of an instruction file. A more extensive excerpt is available in Appendix E.

Instruction Name: A45J5_a
Instruction Text:
"Connect oscilloscope to ",$1,".
Observe modulated pulse with duration of approximately 50 msec.

Measure the peak to peak amplitude of the pulse.
The correct range is,"$4", to, "$5"."

Fig. 8 - Excerpt of an instruction from that instruction file

Instruction Name

This item must appear as the words Instruction Name followed by a colon (:). The actual name of the
instruction (that should be correlated with an instruction name in the testlist file) follows after any number of spaces,
as shown in Fig. 8.

Instruction Text

This item must appear as the word Instruction Text followed by a colon (:). The actual text must follow after
at least one space and a right quotation mark (). Items following the quotation mark are part of the text until
encountering the second quotation mark (). Subsequent text enclosed in quotation marks may follow until the
instruction text is complete. A break in quoted material usually is where string information from the testlist file
occurs. In Fig. 8, all the generic text for several tests is enclosed by quotation marks, and the specific information
for each test is supplied in the unquoted area marked by the string number.

String Input

The string input is a number, 1,2,4,5,6,7,8,9 and 0, led by the dollar sign §, as in the example, $§1. The
testlist information provides FIS with information to complete the instruction, permitting instructions to appear as
complete text, with the addition of the linking test information.

During conversion to the LISP format, comments and any other optional information entered in the file are

ignored. Only information in quotations or string variables identified by §, or the instruction name identifier
instruction name are converted.

22

NRL REPORT 9296

Conversion of Knowledge Database from Human Data Management Format to LISP Compiled
Database

The information described in the previous chapter on knowledge database formation provides the substance
that the FIS shell needs to act as a technician’s assister. It is not, however, in a format that the FIS can use, except
for the unaltered precondition and order files. FIS is written in LISP, therefore, it is necessary to translate the
information from a format that is understood by humans to the language that the FIS can understand.

To perform this conversion, several programs were written in the C language. The computer used was a VAX
11/780 with a VAX/VMS 4.6 operating system. A version with slight modifications for UNIX was also created. It
was convenient to select this machine for data management. Since FIS is implemented in 2 UNIX operating system
environment, the files, once converted, were transferred to the computer running FIS. The conversion programs in
Appendices F, G, H, I, J and K were portable to other computer and operating systems. Appendix F provides the
automated procedure for rule and test conversions. Appendix G provides the semiautomated procedure for rule
conversion. Appendix H provides the automated procedure for testlist conversion. Appendix I provides the
semiautomated procedure for testlist conversion. Appendix J provides the procedure for extracting test instruction
information from the testlist file. Appendix K provides the procedure for formation of instruction information. This
Section provides the information on how to use these procedures.

The four conversion programs used provide a LISP consumable form for the rulelist, testlist, and instructions.
The reason for the four conversion programs is that the testlist contains information that is required by both the
UUT file and LISP instruction function of FIS. Therefore, two of the conversions provide the information, the
testlist and instructions, to two different respective parts of the FIS palatable knowledge database. Once converted,
the user appends the resulting files into a single file. This file is compiled to the executable FIS Knowledge Base.

Rule Conversion

Three types of rule conversion exist. One generates the rules into a FIS format, readable through the FIS
editor. This type of procedure adds new modules and corresponding rules to an existing knowledge database, and is
semiautomated. Another type of procedure is automated and results directly in the correct FIS format, with default
values given for certain data items. This was the primary method used in the sonar system application. The third
type of conversion enters the data manually by using the FIS editor. This last method was used to make minor
changes.

In each method of conversion the rule database stores the essential information in a file accessible by FIS.
All conversions eventually result in the same information existing in the knowledge database. The first type,
however, demands a seccond step that requires human interaction with the FIS editor to arrive at a final format. The
second type of conversion produces a final format, but some information, such as failure rates for modules, is given
a defanlt value that can be modified to an actual value. The third type is directly formulated as the user enters the
information through the editor.

Semiautomated Rule Addition

In the first type of conversion, the module name, defined in the rule database, is stripped during the conversion
process and an output file is generated with its name. The program contained in Appendix G is used to perform the
conversion. When the program executes it uses the rule data file as the input file. Each of the module names, in the
rule data file, is given to an output file opened with the same name. The output file generated contains all of the
rules associated with that module.

The conversion generates a separate file for each module within the UUT, with the file name being the module
name. The format of the output file is the precondition (defaulted at ¢ in the example), the cause, and the effect

23

J. MOLNAR

associated with each rule. The following is an example of the contents of the file generated from this conversion:

t power (a26_cabinet_pwr volts bad)
t (a26_cabinet_ pwr volts bad)(a26al a74j1 volts bad)
t (a26_cabinet_pwr volts bad) (a26ala74;3 volts bad).

where ¢ represents the precondition for each of the three rules. In the first rule, power represents the cause. In the
second rule, the list (a26-cabinet-pwr volts bad) represents the cause. In the third rule, the cause of the second rule is
repeated. The effect of the first rule is the list (a26-cabinet-pwr volts bad). The effect of the second rule is
(a26ala74j1 volts bad). And the effect of the third rule is (a26ala74;j3 volts bad). The cause may be either a module
name or a triple in the form of a list, enclosed in parentheses, that consists of a test point, a parameter, and an
abnormality. The effect is always a triple.

The conversion program prompts the user for the name of the file to convert. After entering this information,
the conversion will occur resulting in new files, one for each module in the rule database. Thus, after the
conversion, the working directory will contain as many new files as there were modules in the rule base. When
entering a Is command in UNIX, the directory listing will include all of the files existing before the conversion and
the new files generated in the conversion. If the converted file is not in a proper format, as described in the previous
section, then the conversion will occur, but an error message will indicate lines where the format is inappropriate.

Once converted, the user invokes the FIS editor to include knowledge database rules in the file. Prerequisites
are that a shell knowledge database file has been created and exists in the application memory of the FIS application.
The user chooses the editor function within FIS. When entering the editor, the user selects the module editor menu
item. The module editor then allows the user to add, delete, or change all of the information associated with modules
and rules through two viable options, manual and automatic.

Manual Rule File Addition to FIS — The manual procedure requires that you choose the add-module
command. FIS prompts the user for the module name, the failure rate, and the rules. The module name is evident.
The failure rate is the normalized value of the System (in this case the AN/SQS-53B) component's mean time to
failure. If this is not available, then a default value is used. Finally, the user may add individual rules as he would
for adding small numbers of rules. If the rule files are already prepared, then the user provides a NIL as default when
prompted by FIS to enter the rules for each module. This completes the setup of the file. Now the user adds the
rules by invoking the rule-file command in the FIS editor menu. This requests the name of the file containing the
rules and the index number of the module, in the FIS knowledge database, to which the rules will be added. The user
should exercise caution to ensure that the index used matches the name of the module rules. Since only the index
number - not the actual name - is used, confusion could occur. To obtain the proper index, the user may invoke the
show-module command in the module editor. A module index must be used to access the rule files for each module.
The process continues until all rules are added.

The following example illustrates the process involved in using the semiautomated/manual procedure for rule
addition. In the following example these notes apply:

a. Each new step is boxed. This may be an entire display screen or just the relevant change from the
previous screen. This method of presentation is used to conserve space and to clarify the actual action that occurred.

b. User responses are in bold text.

c. Explanatory comments are in italics between boxed text areas.

24

NRL REPORT 9296

The example follows:

This menu results from selecting the editor selection at the top level of FIS.

INSPECT MISC.
me: module-editor q: quit
te: term-editor
pe: prec-editor
oe: order-editor

Enter command or ? --> me
The me option is used to enter the rules.

INSPECT MODIFY I/O MISC.
sm: show-module am: add-module 1. read li: lisp
sms: show-modules dm: del-module w: write q: quit
srs: show-rules drs: del-rules

ar: add-rule

ef: edit-field

df: del-field

rf: rule-file

mm: modulemaker

Enter command or ? -->am
A module must first be added to the file.

Creating a MODULE entry
Enter NAME -->mod1
The user must enter the name of the module.

[Enter FRATE -->.1 |
A failure rate is entered that may be a default or a result of normalizing the reliability information for the system. A
number less than one is reasonable.

[Enter CAUSAL-RULES -->nil |
Entering nil for the causal rules completes the module information, otherwise manual rule entry would be required at
this point.

INSPECT MODIFY /O MISC.
sm: show-module am: add-module r; read li: lisp
sms: show-modules dm: del-module w: write q: quit
srs: show-rules drs: del-rules

ar: add-rule

ef: edit-field 7

df: del-field

if: rule-file

mm: modulemaker
Enter command or ? -->sms

The sms command is selected so that the module names and their indices will be displayed.

25

J.MOLNAR

The terminals and their indices are displayed below in groups of 14. When the "more" appears at the bottom of the
list a return will cause the next group to display. These are identified by the dots and the boxed screen indication.

1. POWER

2. A26A1510

3. A26A1S8_END_TEST_SWITCH
4. A26A159

5. A10_DELAY_LINE

6. Al17_AMPL_CONTROL

7. Al_DELAY_LINE

8. A22_SIGN_CONTROL

9. A23_ATOD

10. A24_AMP

11. A26_REFERENCE_CONTROL
12. A29_DELAY_LINE

13. A2 _DELAY_LINE

14. A30_DTOA

more

30. MOD1

When the user is familiar with the indices he invokes the rf (rule-file) command.
l Enter command or ? -->rf |

| Enter file name -->"mod1" I
The name of the file is entered. It must be surrounded by double quotation marks.

| Enter MODULE id -->30 I
The appropriate index is supplied.

I Enter command or ? -->]
The procedure can be repeated until all modules and rules have been entered.

Automated Rule File Addition to FIS — The automatic method of preparation uses the command
modulemaker. When the user invokes this command, FIS prompts him for a file name whose contents include a list
of all the module names separated by spaces, or on separate lines. To prepare this file in a simple way the UNIX
command is used,

Is > modulenames

where the only contents of the directory are the module rule files whose names are the modules’ names. If other files
exist, the user can invoke a text editor to remove extraneous information from the modulenames file.

Following the prompting for the file name of the modules, the command prompts the user for an output file
name. FIS adds a .v suffix to the name. When the function executes, it produces a file whose contents are exactly
the same as the manual process, using a default failure rate of 0.1 (this can be edited later if necessary). From this
point, the process of adding the rule is exactly the same as the semiautomated/manual process. All parts of the
example for the semiautomated/manual-rule file addition procedure apply after the initial module addition. For the
semiautomated/automated procedure the modulemaker command replaces it and the user is prompted to the name of
the file that contains the module names. This process is named semiautomated because a significant level of human
involvement is required to create the rules. The automated procedure, which minimizes human interaction, is
described in the next section.

26

NRL REPORT 9296

Automated Rule Addition

In the automated conversion, the data file converts directly from the rule database format to the format
compatible with FIS. The listing of the program that performs this conversion is shown in Appendix F. This
program constructs a complete .v file with the rule and test information, if the rule and test data files are provided as
input. If just the rule part of the .v file must be created, then a dummy input file must be provided as the name of
the testlist file. Conversely, if only the test information is to be entered, a dummy file is provided for the rule file
input. Originally the procedures used in this program were separate programs, but they were joined to make a fast
cohesive method for constructing the knowledge database contained in the .v file.

This conversion, when executed, first asks for the rule data file's name, then the name of the testlist file.
Next the program prompts the user for the name of the output file. A .v suffix is added to the file name
automatically. The conversion occurs resulting in a file whose name has a .v suffix. The result is a complete .v file
in the correct format. This means that the rule and testlists are constructed in the proper place within the file, and
NILs are supplied for the lists not yet entered such as orders and preconditions. This is exactly the same as the result
of the first method of conversion, except that the first method does not account for adding tests. In the first method a
NIL is supplied in place of the testlist. If a dummy file is supplied for the name of the testlist file, the two produce
exactly the same .v file. As in the semiautomated/automated rule addition procedure, the automatic conversion
routine supplies a default failure rate of 0.1 for modules, which may later be edited as necessary. The .v file prepared
in this manner, with rule and test information provided, is in a form that will permit a successful compilation to a
working knowledge database.

Manual Rule Addition

The all manual method requires that FIS be loaded, a knowledge database .v file loaded, and the knowledge-
editor command sclected. Within the knowledge editor, the user should select the module-editor command and then
select the command to add modules. FIS prompts the user to enter the module name and all the individual items
composing the module. Each module is added separately. The manual entry of rules with the FIS editor is discussed
in this report.

Testlist Conversion

The user may perform the conversion of the testlist manually, semiautomatically, and automatically in a
manner similar to the conversion of the rulelist. Only the functional test information from the testlist file such as
test name, test point, parameter, units, qualitative and quantitative values, the cost, type, setup and precondition

information is used to construct the FIS testlist item.

As in the converted rule file, the parentheses enclose all elements of the file. Assuming a successful
conversion without format errors, then a file is generated as the one below:

27

J.MOLNAR

(Test-point (Test-name-1 Param
Setup
((Qualval-1 ((Quant-1 Quant-2))
(Qualval-2 ((Quant-0 Quant-1))
(Qualval-3((Quant-2 Quant-3))))
units
test_type
cost
focal_module)
(test-name-2

).

The entire quantity is enclosed in parentheses to define, in LISP terms, that the information is a list of the
tests. This quantity is then incorporated into the appropriate position within the .v file, replacing a NIL that held
the place. The actual format and manner that results after the conversion depends upon the type of conversion used.
Each provides a slightly different format because the whole process using that procedure must be considered. The
processes are discussed in the following sections.

Automated Test Addition

The automated conversion of the testlist file is preferred in large databases to simplify and reduce the effort
involved. Both the automated conversion process, contained in Appendix F and described in the automatic rule
conversion, and the independent automatic testlist conversion, listed in Appendix H, accomplish the conversion
automatically with similar amounts of effort. As stated for the rule data conversion, the automated conversion can
incorporate both the rule and test information without further effort. The independent automatic testlist conversion
deals only with the testlist file, and some slight amount of editing is required to arrive at the final format. The
independent automatic testlist conversion is basically incorporated as a procedure within the automated conversion.

The independent automatic testlist conversion, when invoked, uses the testlist file as the input. The output of
the conversion produces a file in the correct format as shown:

{(Test-point (Test-name-1 Param
Setup
((Qualval-1 ((Quant-1 Quant-2))
(Qualval-2 ((Quant-0 Quant-1))
(Qualval-3((Quant-2 Quant-3))))
units
test_type
cost
Sfocal_module)
(test-name-2

e

28

NRL REPORT 9296

This format has no connection, at this point, with the .v file. The user must append the file generated in the testlist
conversion to the .v file, however this cannot be performed immediately. The testlist is a list within the .v file, just
as the rulelist is a list. If it is not present, a NIL is there to hold its place. There are other items required in the .v
file, and if any are not available, a NIL is supplied. At this point, after adding the rules, three NILs are at the
beginning of the .v file, and four NiLs at the end. The place for the testlist is immediately after the rules, as
indicated:

NIL

NIL

NIL
(RULELIST)
(TESTLIST)
NIL

NIL

NIL.

To append the converted testlist the user must remove the NILs at the end of the file. The user then appends the two
files. The three remaining NILs can then be added, or the remaining information to fill those NIL spaces may be
supplied. The .v file, after this process, may be compiled.

The automated procedure is the preferred method of entering testlist information. The manual conversion and
construction of the FIS testlist are preferred only for small amounts of data; for large amounts of data the automatic
method is preferred. The fully manual or the semi-automated method become tedious for large amounts of data.

Manual Test Addition

The fully manual method requires that FIS be loaded, a knowledge database .v file loaded, and the knowledge-
editor command selected. Within the knowledge editor the user should select the terminal-editor command. The user
then selects the command to add tests. FIS prompts the user to enter the terminal identification number for all the
individual items composing the test. Each test is added separately. This method is discussed further in this report.

Semiautomated Test Addition

The semiautomated method of test addition is an improvement over the manual method since it eliminates
adding each component of every test. However, for knowledge databases with a large number of terminals it is still
somewhat tedious. The program in Appendix I is executed to perform the semiautomated method of test addition.
The testlist file becomes the input to the program. The user is prompted for the name of the output file, or if the
output should be at the screen. The output file, named in this process, will contain only the list of errors and line
numbers that occur during the conversion. The other form of output creates files named for each terminal in the list.
The contents of these files are the tests associated with each of these terminals. The file contents are in the form
shown below:

Testname, parameter, setup, specifications, units, test type, cost, focal-module;

An example of the contents of a file is:

t100 freq sl ((OK) (hi) (lo)) hz perf 1.0 NIL

1200 freq 52 ((OK) (0 1) (bad ((-inf 0)(inf)))) hz diag 0.5 (modl)

1101 freq sl ((OK) (hi) (lo)) hz perf 0.3 NIL .

Having generated the test information files, the user may use the test-file command in the terminal editor.
Again, as for the rule construction, the user must be certain that the index of the terminal is correct and matches the

test information. By using the wrong index, the user enters the test information for one terminal into the data slot
assigned to another terminal. This process continues until all test information has been entered. For large numbers

29

J. MOLNAR
of terminals, as is generally the case when constructing an entire knowledge database, this method and the manual
method take considerable time.

The following example is designed to illustrate the process involved in using the semiautomated procedure for
test addition. In the following example these notes apply:

a. Each new step is boxed. This may be an entire display screen or just the relevant change from the
previous screen. This method of presentation is used to conserve space and to clarify the actual action that occurred.

b. User responses are in bold text.
¢. Explanatory comments are in italics between boxed text areas.
The example follows:

This menu results from selecting the editor selection at the top level of FIS.

INSPECT MISC.
me: module-editor q: quit
te: term-editor
pe: prec-editor

oe: order-editor

Enter command or ? --> te

The te option is used to enter the tests.

INSPECT MODIFY /o MISC
stm: show-term at: add-term 1: read li: lisp
stms: show-terms dt: del-term w: write q: quit
sts: show-tests dts: del-tests

ats: add-test

ef: edit-field

df: del-field

tf: test-file

Enter command or ? -->at

A terminal must first be added to the file.

Creating a Terminal entry
Enter NAME -->terml

The user must enter the name of the terminal.

30

NRL REPORT 9296

{ Enter TESTS -->nil |
Entering nil for the TESTS completes the module information, otherwise manual rule entry would be required at this point.

INSPECT MODIFY 1/0 MISC.
stm; show-term at: add-term r: read li: lisp
stms: show-terms dt: del-term w: write q: quit
sts: show-tests dts: del-tests

ats: add-test

ef: edit-field

df: del-field

tf: test-file
Enter command or ? -->stms

The stms command is selected so that the terminal names and their indices will be displayed.

The terminals and their indices are displayed below in groups of 14. When the "more" appears at the bottom of the list, a
return will cause the next group to display. These are identified by the dots and the boxed screen indication.

1. A78I5

2. A20]5

3, AlJ4

4. AlJ5

5. AlJl

6. Al]3

7. Al)7

8. AllJ6

9. AlJ6

10. A1J8

11. A7714

12. A76]3

13. AlJ9

14. A10J9

more

30. TERM1

When the user is familiar with the indices he invokes the tf (test-file) command.
| Enter command or ? -->tf |
| Enter file name -->"term1" . I

The name of the file is entered. It must be surrounded by double quotation marks.

[Enter MODULE id -->30 |
The appropriate index is supplied.

l Enter command or ? -->]
The procedure can be repeated until all modules and rules have been entered.

31

J.MOLNAR

If errors have occurred in the conversion, they may actually be in the file format or may be a result of
misaligned information in the file’s columns. The conversion program is sensitive to column structure as well as
format. If errors occur, they must be eliminated in order to obtain all of the test information for the appropriate
terminal files. They can usually be eliminated by examining the data file at the point of the error and identified by
the line number; then any column misalignment of the data must be corrected. This can be performed with a
standard text editor such as vi. If errors persist, the user should review the format for data exceeding column
allocations. However, if this occurs in only a few cases, the knowledge engineer may choose to enter the data with
the manual editor. If the number of errors is more extensive, the user should revise the data file to meet the
established format guidelines.

Testlist Conversion for Function Instructions

In the implementation of the TAS, a feature was added to FIS to display instructions, which required an
addition to the data structure expressed in the .v and .lisp files. The additional data required are contained in two
parts. The first is a test index that is appended to the .lisp file. The other data are in an .instruction file that
contains the general instructions for all tests. The index information relates the special tests to the general
instructions and contains information to specialize an instruction for a specific test. Each general instruction is
stored as a multiple of a 512-byte block. The index identifies the record block in the .instruction file that relates to a
specific test. FIS uses the information from both data parts to display a specific instruction.

Two conversion programs are used to create the two data items. One conversion program, listed in Appendix
K, uses the instruction text file (exemplified in Appendix E) and converts it to an .instruction file used by TAS
during instruction display. The input text file contains data in the following format:

Instruction_name: xxx
Instruction Text:
“general text” special_print_integer
“general text” special print_integer “general text”
special_print_integer... .

In this format the Instruction-name: xxx identifies the name of a generalized instruction that the other conversion
uses in the indexing process. The Instruction Text: is used by the first conversion to identify that the body of the
instruction follows. General text indicates that this portion of text enclosed in quotation marks will appear each
time this instruction is called in a FIS troubleshooting session. The special_print_integer is denoted by a $ and an
integer from 0 to 9. During instruction display, the specific value is supplied by the index data siructure.

During the conversion, the instruction_name, the general text and special_print_integers are placed into an
appropriate number of records within the instruction file. The integer O delimits the end of each instruction.
Prompted by the large size of the input files, a linked list was used, thereby minimizing necessary memory. This
instruction file exists separately from the knowledge database, since several knowledge databases use the same
general instruction file. This was demonstrated in the application to the TAS hierarchy, where several knowledge
databases all used the same general instructions.

The other conversion program, listed in Appendix J, creates the index for the instructions. The testlist file
and the .instruction file (created with the first conversion) are the input files for this conversion. The format for the
testlist file is the same as that required to create the FIS testlist. However for the conversion to create the index, two
additional columns from the testlist file are recognized. Column 10 is the instruction name and column 11 relates
additional text parameters. The LISP function generated, called instr-list, has the following format:

32

NRL REPORT 9296

(defun instr-list ()
(
(test_point-1
(Parameter Instruction_name (Min Max) record location [txt0]..[txt9]}

(Parameter ...))

)

(test point-2 ...

)
).

In the output structure the following items are all used to fill in the special_print_integer items within the
general instruction: test_point, parameter, min, max, and text items. The text parameters (txt0 and txf9 in the above
example) are optional and appear only if provided by the input file. If the input file does not provide the values for
Min and Max, then (NIL NIL) will be substituted for the minimum and maximum values. The instruction_name is
used by the conversion process to correlate with the other input file, the .instruction file. The correlation with the
.instruction file provides the record_location that is equivalent to the offset, in bytes, from the beginning of the data
file, divided by the size of each instruction record block (512 bytes).

The index is arranged so that all test data with the same test point are grouped as sublists under that test point.
This allows for a quicker look-up in the LISP searching routines.

Program flow and execution are very similar to the conversion of the testlist, except in the creation of the data
file. After each data block is read it must be stored within the process memory rather than being written to an output
file because of the ordering required for the data structure.

Accessing Instructions with the “Print-Instructions” Function During Execution

The command Print-Instructions was added to FIS specifically for the technician maintenance application. It
is only used in the display of instructions during a maintenance application. It uses the LISP function instr-list, the
index created in the previous section, to find the correct location of the instruction in the data file. This prints the
generalized instruction along with any specified text parameters associated with the specific test point. The
generalized instruction converts to a specific instruction that the technician can follow to perform the necessary test.

The .instruction file, described in the previous section, is opened by the Print-Instructions function whenever
a test is presented to the user. The Print-Instructions function correlates the test with the instruction by calling the
instr-list function and by using this function to index the appropriate record number. Print-Instructions moves the
file pointer to the correct position in the .instruction file.

The file containing the instructions in record format should be placed in a file named .instruction, in the user’s
working directory. The purpose of having separate files is to reduce the requirements for RAM memory. These
instructions are not elements that are actively used by FIS to operate properly, but rather an item accessed when
necessary. Error checking is built into FIS to prevent the two files from being separated. The result is that only
when instruction information is required, it is necessary to access the .instruction file.

Summary

The section "Knowledge Acquisition” described the data required by FIS. It also described the format that this
data must conform to if automated conversion to a LISP format is to occur.

The process of converting to the LISP format is discussed in the section "Conversion of Knowledge Database
from Human Data Management Format to LISP Compiled Database.” The result is the formulation of a .v file.
Also, the creation of the .instruction file that contains general instruction information, and the instruction index were
discussed. At this point (with a .v file, an .instruction file, and an instruction index function, inst-list), the FIS

33

J.MOLNAR

knowledge database is in a format that is not easily interpreted by humans, since it is in a LISP compatible format.
FIS cannot use the data at this point either. The user must invoke the FIS compiler to create an executable
Technician’s Assister System for a specific UUT.

Before and after compilation it may become necessary to modify the knowledge database in the .v file format
to correct minor problems. The process of editing and that of compilation are also discussed in this report.

Formulation and Modification of the FIS Compatible Knowledge Base by Using the Editor
Function

Two approaches exist to formulate the FIS compatible rulebase. The first relies on manual entry of module,
terminal, precondition, and order information in an interactive session with the FIS Editor. A more detailed
description of this process can be found in Ref. 1. The second approach uses the FIS Editor only in a semiautomated
mode, and only to create a shell for the appending of the rulebase whose LISP conversion has already been described.
For large knowledge databases the use of the FIS editor is minimal. The majority of the effort is performed in the
conversion process by using UNIX editing tools and functions.

Formulation of the FIS Rulebase Using the FIS Editor Exclusively

FIS has two types of editors that are supplied as standard features of FIS, a graphical editor and a knowledge
database editor. No graphics were included in the TAS for the AN/SQS-53B application; therefore, this report does
not describe the graphical editor.

Only the editor for the knowledge database is described. Once the user chooses the knowledge database editor
from the main FIS menu and supplies an UUT name (the knowledge database for the UUT), then the user has four
possible utilities that he can use in editing the knowledge database. The utilities and corresponding elements are
module editor (for modules and rules), terminal editor (for test information), precondition editor (for precondition
information), and order editor (for order information). All four editor utilities have a similar structure. The
following sections briefly describe each structure.

Module Editor

Once the user selects the module editor, FIS presents the following menu:

INSPECT MODIFY I/0 MISC.
sm: show-module am: add-module r: read li: lisp
sms: show-modules dm: del-module w: write q: quit
srs: show-rules drs: del-rules

ar: add-rule

ef: edit-field

df: del-field

tf: rule-file

mm: modulemaker

Inspect — Show-module: FIS prompts the user for the module index. When the user provides the index
number (one to module total), all of the information for the module is then supplied; the name of the module, the
failure rate, and the list of rules.

Show-modules: FIS presents a list of all the modules and their numeric index, in groups of 14-line lists.
Pressing the return key presents the next 14 lines in the list.

34

NRL REPORT 9296
Show-rules: FIS prompts the user for the module index. When the index is supplied, all the rules for that
module are presented.
Modify — Add-module: This function allows the user to establish new modules. Once the user enters a
module name, FIS prompts the user for the failure rate. After supplying the failure rate, FIS prompts the user for a
list of rules. NIL is convenient to enter as the temporary value for the rule set. Actual rules can be entered later

with the add-rule function or the rule-file function, for a group of rules.

Delete module: This function deletes all the information in the module, as well as the module name and its
index.

Delete-rules: This function deletes a rule or rules from the module's information set.

Add-rule: This function adds a rule to the information for a specified module.

Edit-field: This function allows modification of defined fields.

Delete-field: This function deletes defined fields.

Rule-file: This function allows the user to add rules to a module’s information set by supplying a file name to
read the rules from. FIS prompts the user for the module’s index number and the name of the file where the rules are
stored.

Modulemaker: This function initializes the .v file to a form that initializes all of the modules with a default
failure rate of 0.1 and no rules. FIS prompts the user for the file's name that contains the module names and the
output file names for the UUT’s .v file. The function supplies the .v suffix. This function is most efficiently used
with the rulefile function.

I/0 — Read: Read into memory a .v file

Write: This function writes changes to the .v file that is currently being edited.

Misc — LISP: This function allows the user to escape to LISP to execute LISP functions.

Quit: This function exits at the level where the ele_ment editor is selected.

Terminal Editor

Once the user selects the terminal editor, FIS presents the following menu:

INSPECT MODIFY /0 MISC.
stm: show-term at: add-term r: read li: lisp
stms: show-terms dt: del-term w: write q: quit
sts: show-tests dts: del-tests

ats: add-test

ef: edit-field

df: del-field

tf: test-file

The terminal editor is similar to the module editor. The function for I/O and MISC. are identical. The other
functions are similar.

35

J.MOLNAR

Inspection — Show-term: FIS prompts the user for the terminal index. When the user supplies the index
number, from 1 to terminal total, FIS displays all the information for that terminal such as the terminal name, and
the test (test name, parameter, setup, qualitative and quantitative values, units, type (performance or diagnostic),
cost, and focal module).

Show-terms: FIS presents a list of all the terminals and their numeric index, in groups of 14-line lists.

Show-tests: FIS prompts the user for the terminal index. When the index is supplied all the tests for that
terminal are presented.

Modify — Add-term: This function allows the user to establish tests for new terminals. Once the user enters
a terminal name, FIS prompts him for the tests. This must be supplied in precise format without prompting. For
users unfamiliar with the test format required, it is more efficient to enter tests individually with the add-test

function, where the user is prompted for information. If add-test is to be used, then NIL should be entered when
prompted for tests.

Del-term: This function deletes the terminal and all information associated with the terminal, including the
index.

Del-tests: This function deletes the test information for a given terminal.

Add-tests: This function adds a test to the information for a specified terminal. FIS prompts the user for each
item of information.

Edit-fields: This function allows modification of defined fields.

Del-field: This function allows deletion of defined fields.

Test-file: This function allows the user to add tests to a terminal’s information set by supplying a name to the
file to which the tests will be read. The user is prompted for the terminal’s index number and the name of the file
where the tests for that terminal are stored.

Precondition Editor

Once the user selects the precondition editor, FIS presents the following menu to the user:

INSPECT MODIFY 10 MISC.
sp: show-prec ap: add-prec r:read li: lisp
sps: show-precs dp: del-prec w: write q: quit
ef: edit-field
df: del-field

The precondition defines states which must exist to perform groups of tests. Note the similarity with the module
editor. The functions for I/O and MISC. are identical. The other functions are similar in form.

Inspection — Show-prec: FIS prompts the user for the precondition index. When the user supplies the index
number, from 1 to precondition total, FIS displays all of the information for that precondition — the label and
definition.

Show-precs: FIS presents a list of all preconditions and their numeric index, in groups of 14-line lists.

36

NRL REPORT 9296

Modify — Add-prec: This function allows the user to establish the preconditions for the UUT. First, FIS
prompts the user for a label; this is the precondition name. Once the label is provided, the user is prompted for a
definition that must be in the form of a LISP list.

Del-prec: This function deletes the precondition and the definition of the precondition.

Edit-field: This function allows modifications of defined fields.

Del-field: This function allows deletion of defined ficlds.

Order Editor

Once the user selects the order editor, FIS presents the following menu to the user:

INSPECT MODIFY /0 MISC.
so: show-order ao: add-order r: read li: lisp
sos: show-orders do: del-order w: write q: quit
ef: edit-field
df: del-field

The order defines the requirement for test procedures. The similarity with the module editor is noticeable. The
functions for 1/O and MISC. are identical. The other functions are similar.

Inspection — Show-order: FIS prompts the user for the order index. When the user enters the index number,
from 1 to order total, FIS displays all the information for that order — the successor and predecessor, or predecessors.

Show-orders: This function displays a list of all the orders and their numeric index.

Modify — Add-order: This function allows the user to establish the order of testing required when testing the
UUT. The user is first prompted for a successor; this is the name of the order. Then FIS prompts the user for a
single predecessor, or a list of predecessors in a LISP list.

Del-order: This function deletes the order.

Edit-field: This function allows modifications of defined fields.
Del-field: This function allows deletion of defined fields.
Formation of the Knowledge Base for Large UUTs

The formation of the knowledge database for the AN/SQS-53B was performed as already described by using
the data in text format and individually converting each item to a modified format. In this manner, rules and tests
were added to the knowledge database by module and terminal name respectively. The preconditions and orders were
each formulated in the LISP format and appended separately to the knowledge database. Since the capability was
already available (through the early stages of development) to transform data to a knowledge database format, the
individual components were combined into a single program, as listed in Appendix F. In this case, by invoking this
program the user is prompted for all the names of each type of information. Thus, the user is asked for files that
contain the rule, test, precondition, and order information. The function performs all of the required conversions and
produces a complete knowledge database. If the data files contain data that are not in the correct format, a message
will appear indicating that an error has occurred in reading the data file. A line number identifies the error location.
Errors indicate that a particular line in the data file has data that do not conform to the format defined.

37

J. MOLNAR

To correct errors, one must examine the data file and modify the data to conform to the format. Upon
modifying the data file, the function to create the knowledge database should be executed again. If errors that are not
readily explained persist, modification and reforming may be tried again. If the data that cause the errors are not
extensive, the user may choose to enter it manually by using one of the knowledge database editors. Assuming that
the user is not aware of the intricacies of the data format, it may be appropriate to use the FIS editor.

Once the knowledge database of the UUT is complete, a function that converts the information back to the
data format is also available (the program listing is found in Appendix L). Even if no data files had existed
previously, and all the knowledge had been entered with the knowledge editor, the data files can be created with this
program. The purpose of maintaining or creating the data file is to ensure the integrity of the data, through data
management of a format that a user can easily view. In this manner, changes made after the compilation and
validation can be incorporated into the database. Similarly, if changes occur as a result of engineering changes made
to the UUT, the data changes can more easily be traced from data file to knowledge file. Ultimately, information in
the knowledge database relates directly back to the circuit topology of the UUT. The data files exist to ensure the
integrity of the data for the TAS.

Although the programs discussed in this section, and listed in Appendices F and L, are written in the C
programming language and not presently part of FIS, they will be incorporated as functions within the knowledge
editor. In the next updated release the functionality of the program in Appendix F will be contained in a single
function within FIS called ckb: create-knowledge-base. Also in the updated release, the functionality of the program
in Appendix L will be contained in a FIS function called ctd: convert-to-data. The addition of these functions will
consolidate the programs used to convert information in a data format to information in the knowledge database
format of FIS.

Compilation

After assembling all the component parts of the knowledge database, they must be compiled into a format that
FIS can execute. To compile the knowledge database in the .v format into a functional .lisp file, the process begins
by entering FIS and choosing the compiler command. The FIS compiler will prompt the user for the file name.
This file name is entered without suffixes, i.e., .v. FIS then compiles the information into a file with a .lisp suffix.
FIS will reply with several messages to indicate that it is working, and several diagnostic messages will appear. The
messages are to indicate to the user that simple diagnostic precompilation tests are being performed. These tests
check the syntax of the .v file contents. Errors in syntax can be symptomatic of more critical errors within the file.
The compiler provides a message that indicates testing of each item. Primarily, FIS informs the user that it is
checking the syntax of modules and terminals. Duplicate module and terminal names are indicated during the initial
check. After the initial check, a full diagnostic report is provided with the information that triggered the warning
flag.

The following is a list of the diagnostic messages that FIS presents to the user, and an explanation of each.
The actual message is presented in italics.

a. The rules contain the following modules that have not yet been defined — This diagnostic provides a list
of module names. The module names are those that appear as causes in the rules. It is required that if a module is a
cause, it should be defined as a module and must contain a set of rules. The solution is to create a module and add
the rules that apply. Otherwise, if the indicated item is not a module, a triple should replace the atom in the cause,
of the rule triggering the diagnostic message.

b. The following modules are not mentioned in the rules — This diagnostic provides a list of module names.
The module names listed are structured properly; however, they do not possess a rule in their rule set, nor does a rule
appear elsewhere in the knowledge database that identifies the module as a cause. This condition does not allow for
closure of the knowledge. There must be at least one rule to identify each module as a possible cause for bad output
signals from the module. The knowledge engineer must create a rule to identify the module as a cause to a valid
effect.

38

NRL REPORT 9296

c. The rules contain the following terminals that have not yet been defined — This diagnostic provides a list
of terminal names. The terminal names in the list identify those terminals that have no tests. This can be a result
of no test existing for that terminal, or a terminal that has a test but has not been identified in the terminal list. The
second cause is a condition that should be corrected by adding a terminal and a test. The first condition is not
necessary to correct since it is not required that all terminals have tests. In the application, terminals with J in the
name are to indicate testable point. Other terminals do not require tests.

d. The following terminals are not mentioned in the rules — This diagnostic provides a list of terminals.
The terminal names in the list identify conditions where terminals exist with no relation to the rule. This can be a
symptom of an extraneous terminal test or an error in the rules. If the terminal test is extraneous it can be
eliminated. If it is a result of an error in the rules, then the rules must be created or modified to use the terminal as a
test point for knowledge database.

e. The following labels are used for both terminals and modules — This diagnostic provides a list of names
that have dual definitions as modules and terminals. This state should not exist, and those names with dual
definitions should be modified in all appropriate places in the rule set to read either as a module or a terminal. If not
corrected, linkage of the knowledge database elements could be affected.

f. A rule’s effect must be a triple of the form (terminal parameter qualitatives-value). The following atomic
effects were found -— This diagnostic provides a list of improper effects that exist in rules. The solution is to
provide a triple of the correct form.

g. The following terminals have no performance or diagnostic tests — This diagnostic provides a list of
terminals. One of the items required for the definition of a terminal test is an indication of whether it is a
performance or diagnostic test. Performance tests are performed first to determine functional abnormalities.
Diagnostic tests are performed to isolate and correct a functional abnormality.

h. The following modules were defined twice -— This diagnostic provides a list of modules. This indicates
that a module and rule occur in two different locations within the knowledge database. This condition provides
contradictory information for the knowledge database, and linkage of the knowledge database elements is threatened.
The solution is to move the rules from one location to the other and eliminate the second definition of the module.

i. The following terminals are defined twice — This diagnostic produces a list of terminals. The diagnostic
points out effects similar to the case of diagnostic Item h for modules. The information, by duplicating a definition
of the terminal, confuses the information in the knowledge database. The solution is to remove the duplicate
definition and place the additional test information into the single terminal definition.

Miscellaneous

As the FIS compiler produces all of the above diagnostics, additional diagnostics exist that may result from an
error that is handled by the LISP debugger. In general, this type of error is a result of a breach in the LISP format.
Usually an error will occur that will be a segmentation violation or some very similar error. These types of errors
are not predictable, so it is impossible to define all the possible error messages that may occur. The user should
reference the SUN LISP manual for an explanation of errors that result in entry to the LISP debugger. In the case of
knowledge database compilation, the majority of errors result from misplaced parentheses. This condition can be
diagnosed and corrected by removing, replacing, or repositioning the parentheses.

The result of all but miscellaneous diagnostics is a warning, during compilation, that syntax errors exist. FIS
prompts the user for an answer as to whether compilation should continue. If the user answers “no,” compilation
will stop. If the user answers “yes,” compilation will continue. Additional messages will appear to indicate that the
compiler is still working. Next, the compiler asks the user whether to remove the rules or not. Removing the rules
saves some storage space, but disables the ability to trace the causal network. Whether the rules are removed or not,
the next indication is that the compiled version is being written to a file. The file writes to a file with the same

39

J.MOLNAR

UUT name as the .v file, and the suffix now becomes .lisp to indicate that compilation has occurred. Compilation
ends with a return to the main menu.

Addition of Instructions

Once compilation of the file has occurred, the process used to create the instructions is invoked to create a
viable .lisp file incorporating the instruction information used in the TAS/FIS. This is performed by creating the
instruction file .instruction and appending the instruction index to the bottom of the .lisp file. Without the index
added and the .instruction file existing, an error warning will occur. The .lisp file is complete for the TAS/FIS with
the instruction index appended to it.

VERIFICATION AND VALIDATION

Although the diagnostics within the compiler are capable of detecting obvious faults in the knowledge
database, they are incapable of detecting more subtle errors that produce major impacts. A major impact of an error
occurs when the knowledge database appears to act properly in a procedural sense, but has errors in the rule
continuity, thus preventing proper functionality. That means that the system will not converge to a system fault
regardless of the amount of testing performed.

To verify and validate the data, FIS includes software to perform some of the testing of the system. There are
basically three forms of verification performed. The first is to examine the connectivity of the data by examining the
rules and ambiguity set information. The second is to use a logic simulator, resident in FIS, to test for convergence.
And finally, if the actual hardware system is available, the technician’s assister system should be validated against
tests made on the system. This will determine whether the knowledge database converges by using real test data.
The following sections will explain each of these methods.

Verification of Data Connectivity
Two types of verifiable data exist. Each provides its own diagnostic information. Verification tests are

performed on the rules and ambiguity sets. At the main FIS menu the user chooses the Hard-copy option. The
menu for hard copy is as follows,

Programs

1. Generate graphical description of UUT
2. Generate ambiguity set output

3. Generate cost code information output
4, Generate rule set output

5. Generate history list

6. Exit

The user selects the desired option. The selected option from this menu results in data files suitable for printing.
Since the data is extensive printing is preferred. The printed data is used for verification analysis. The only items
used for verification are Item 2 (generates ambiguity set output) and Item 4 (generates rule set output).

Verification of Rule Continuity

This verification tool, as well as the others mentioned, are implemented after compilation. The user uses the
output from this tool to examine the continuity of the rules. From this information the knowledge engineer may
determine the continuity from any point in an upstream and downstream direction. An example of the form is seen
in Appendix M. By using this data, the knowledge engineer logically traces the connections in a point-to-point
manner through the knowledge database and determines whether they conform to the relationship represented in the
system schematics.

40

NRL REPORT 9296

Verification of the Ambiguity Sets

The verification tool (an example output is provided in Appendix N) examines the ambiguity sets arising as a
result of all tests. It indicates for each test the modules that could be at fault if a failure occurs. This information is
important since it allows the knowledge engineer to examine each ambiguity set. By doing this he is able to
determine whether modules are correctly identified as suspects. Also, blank spaces demarcate places where tests exist
but the knowledge database does not properly use them. This results in modules being absent from an ambiguity set
for these tests. The knowledge engineer must then determine which rules are missing that would use these tests, or
if the tests are useless. In general, the assumption is that rules should be added that would use these tests. The
reason for this assumption is that the equipment design (for the AN/SQS-53B) is stable. The knowledge database
constructed from this design must use a limited number of test points provided by the designer of the system. Since
a limited number of test points exist, and consequently tests, it is advantageous for the knowledge engineer to use all
of the test points available. This optimizes the inclusion of test points, and allows efficient fault isolation.

At present, the ambiguity set list must be examined in conjunction with the test list, since tests without
ambiguity sets are not identified. Only a double separation line appears to demarcate these tests. By using the
testlist, the knowledge engineer can identify the test and verify its utility. This is possible since the ambiguity set
command lexically orders the occurrence of tests. After identifying the test, the knowledge engineer must determine
whether the rules properly use them. Otherwise, the knowledge engineer should remove the knowledge database
representation of the test terminal.

Validation of the Knowledge Database

Once the knowledge database has been constructed, compiled, and verified for consistency, the only remaining
step is to validate the operation. That means that the computer based technician’s assister should isolate faults and
assist a technician in maintaining the system. Two assertions in the preceding statement should be noted. First, the
Al system must be able to isolate faults. This entails singling out the module that is bad in a system, or if multiple
faults exist, finding all the failures. Secondly, the technician must find the Al system useful. It must allow the
technician to isolate faults quickly (faster than he may have done on his own). It must also act in a manner that is
consistent with the technician’s training and reasoning ability. Both of these assertions are important to the creation
of a viable expert system for fault isolation.

Presently, two methods of conducting the validation process exist. First, FIS has a fault simulation
capability that allows the user to set faults and then go through a troubleshooting session. The second method is to
test the system in an operational environment to determine if the computer based technician’s assister acts properly
and efficiently in isolating faults.

Validation Through Fault Simulation

FIS has two modes of simulating a troubleshooting session. Each has its advantages, and both should be
performed for all or most modules. Both methods must be accessed by invoking the demonstration mode from the
main menu. Once invoked, the user loads the appropriate UUT’s knowledge database, the .lisp file. After loading,
the command used to set faults should be chosen. Setting a fault allows the knowledge engineer to set a fault to a
module or node (a local effect) and farther allows him to simulate the action of testing. The control should then be
returned to the main demonstration menu. The following sections explain the automatic and manual modes.

41

J.MOLNAR

Automatic FIS Validation

The user begins the fault simulation process by first initializing the simulation with a fault condition. The
fault condition is used by the simulator to trace the logical result of simulated tests. The knowledge engineer enters
the fault condition by invoking the set-fault function. Once the set-fault function is entered the user is prompted for
the type of fault to set and the name of that module or effect. This menu is displayed below:

Fault Options

m: module
i: imm-eff
s: show

q: quit

Enter fault option?-->

A list of faults can also be entered to simulate multiple fault conditions, if either the "module” or “imm-eff”
(immediate effect) options are selected. If the “module” option is selected then the module names are displayed as seen.

Modules: (POWER A26A1S10 A26A1S8_END_TEST_SWITCH A26A1S9 A10_DELAY_LINE
A17_AMPL_CONTROL Al1_DELAY_LINE A22_SIGN_CONTROL A23_ATOD A24_AMP
A26_REFERENCE_CONTROL A29_DELAY_LINE A2_DELAY_LINE A30_DTOA A31_DTOA A32_DTOA
A33_DTOA A3_DELAY_LINE A4_DELAY_LINE A5_DELAY_LINE A7_DELAY_LINE A9_DELAY_LINE
CORRELATOR_REF DOWNSTREAM_SONAR_UNITS MOD_REFER MUX_REF PMFL TIMING
UPSTREAM_SONAR_UNITS)

Enter module to be faulted -->

If the "imm-eff" option is selected then the list of terminals is presented to the user:

Terminals: (A78]5 A20J5 A1J4 A1J5 A1J1 A1J3 A1J7 A11J6 Al1J6 A1J8 A77J4 A76]3 A1]J9 A10J9 A10]1
A10J5 A10J4 A10J8 A10J6 A10J7 A10J3 A11J5 A11J2 A10J2 A21J13 A21J14 A11J3 A2J6 A11J16 A7J4
Al11J14 A24)2 A20J8 A11J12 A11J10 A11J11 A20J6 A24J1 A24J5 A11J15 A11J18 A21J8 A29]8 A29J6
A29]7 A3J6 A3I8 A3J7 A30J4 A30J1 A30J2 A30J3 A20J2 A79J6 A77]7 A31J4 A31J1 A31J2 A31J3 A20]3
A32]4 A32]71 A32]2 A32J3 A20J4 A33J4 A33J1 A33J2 A33J3 A4J4 A4J9 A4JS A4J1 A4J3 A4J6 A4]7 A4]8
ASI6 A5J8 ATI9 ATJ5 ATI1 ATI3 A717 A7J6 ATI8 A9J8 A13J1 A11J4 Al11]8 A11]9 A11J7 AS58]7 AS59]7
A60]J7 A61J7 A24J4 A4311 A43J3 AT0J7 A75J2 A70J5 A71J1 A70J3 A74J1 A20J9 A20J11 A21J11 A20]13
A21J5 A26A1DS8 PMFL_J A42J5 A45J5 A46J5 A47J5 A4815 A45J4 A46J4 A47J4 A48]4 A45]3 A46]3
A4713 A48]3 A45]2 A46]12 A4T7I2 A48J2 A59T1 DISPLAY A98J2 A98J1 A42J3 A26A1J9 A26A1710)

Select terminal or (q)uit -->

Upon setting the fault, the function is exited by entering "quit” and the simulator function is selected from the
demonstration menu. After entering the simulation, the system automatically generates all of the tests that would be
performed and the anticipated results. This is done by using default logic; special logic reasoning can be supplied in
file form when the simulator queries whether default reasoning should be used, as seen in the following example:

42

NRL REPORT 9296

The simulator is selected from the demonstration menu.
[Enter command or ? -->s l

Default reasoning is selected to use in the simulation.
[Use default simulator reasoning (y orn)?: y]

FIS performs the logical sequence of test and supplied results consistent with the fault being simulated.
Making test = (G-IF PWR S§1) with result(s) = (HI LOW).

The results (HI LOW) are ambiguous - choosing HI

Making test = (M-IF PWR S1) with result(s) = (HI LOW).

The results (HI LOW) are ambiguous - choosing HI

Making test = (G-IF PHASE S1) with result(s) = (LOW HI).

The results (LOW HI) are ambiguous - choosing LOW

Making test = (SORT-CONT LOGIC S1) with result(s) = (BAD).
Making test = (F-AGC LOGIC S1) with result(s) = (BAD).

No best test available

The simulation continues until a termination is reached.

The path generated from the simulation is presented to the user, the simulator function is terminated, and the user is returned
to the main demonstration menu to request an additional command.

(G-IF PWR S1 HI)
(M-IF PWR S1 HI)

(G-IF PHASE S1 LOW)
(SORT-CONT LOGIC S1 BAD)
(F-AGC LOGIC S1 BAD)

Enter command or ? -->

This process generates the most efficient path for testing the system, assuming that all system faults would display
physical characteristics that are consistent with the logical representation. The simulation anticipates this
consistency. This mode is useful in determining that each module can be fault isolated. It is a useful test of
convergence.

FIS Assisted Manual Validation

The FIS assisted manual validation is achieved by setting a fault using the above process and performing a
manual troubleshooting session or sessions. In this mode, the knowledge engineer sets the module fault. As the
FIS system suggests each test, it displays a logically simulated result that would appear during that test. The person
performing the simulation in this manner can then examine the probabilities and the ambiguity sets after each test.
This mode gives the sense of an actual troubleshooting session and the process involved; it indicates the times
involved in the troubleshooting sessions and the correlation with the automatic FIS validation mode. With this
information, modifications can be made to the TAS. An example of the display is shown below. This is the
standard best test display, except that the STM column contains the simulation value that will be logically consistent
with the rules in the knowledge database.

43

J.MOLNAR

TEST QUALVAL SPEC SIM
DISPLAY OK NIL (BAD)
CP_BEAM_4_WAVEFORM BAD NIL

S1

SS1

DISP_4_WAVE

Back to (t)erminals, (p)arameters or (s)etups, (q)uit or select measured value/qualval -->

Two items should be considered when performing the manual simulation. First, all modules that are not
faulted receive a certification factor that they are good. Conversely, the probability of failure increases only for the
modules in the ambiguity set of the faulty module. Secondly, after each failed test, the ambiguity set should be
examined to determine whether the testing is resulting in convergence. The knowledge engineer should examine
whether the “faulted” module is a member of the ambiguity set. As testing increases during the simulation, the size
of the ambiguity set should decrease, but should continue to contain the “faulted” module.

A convenient way to record the manual simulation process is by opening a UNIX script file. This can be
done while still in the UNIX shell, before entering FIS. From that moment until the user closes the script by
entering control D or "exit," all information that passes through the terminal will be recorded to a file. The file can
then be further examined for weaknesses in the process of fault isolation.

Validation Through Field Testing

Once the knowledge engineer is satisfied with the performance, field testing should be performed. This allows
technicians familiar with the hardware and troubleshooting to examine the operation of the Al system.

Testbed Testing

The first test in actual field exposure should be at the factory, testbed, or other site where hardware engineers
are present. The testing of the AN/SQS-53B, Unit 26, technician’s assister was performed at the Naval Underwater
Systems Center (New London, CT). The purpose of testbed tests is to obtain information on how the sonar system
works, its BIT capabilities, and the troubleshooting process. The knowledge engineer obtains the best exposure by
reviewing the BIT to determine its effectiveness. This allows him to determine how well the expert system utilizes
the available information. It is often difficult for the knowledge engineer to realize the capabilities of BIT from the
technical description.

In the validation process for the sonar system technician’s assister, for example, it was determined that an
indicator light for the correlator functions as a more powerful test than was originally anticipated. Although the
TAS acted properly, the power of this single test enhanced its operation.

Full Field Test and Technician Exposure

The final test in the validation process is to perform a full field test with technicians using the TAS. One
purpose of the TAS is to aid inexperienced technicians in the entire troubleshooting process. Another is to aid
experienced technicians in isolating difficult faults. The technician’s assister system needs to be tested in situations
with both types of technicians. This determines the accuracy of fault isolation, the veracity of the fault isolation
process, and the ease of human interaction. These should be evaluated during the field testing process, with the
greatest emphasis placed on the human interaction with the computer. The technician’s assister system should aid
the technician, not frustrate him with the process, the interaction, the communication, or the language. It may be
useful to compare the operation of the system with an expert technician troubleshooting a problem. This should

44

NRL REPORT 9296

provide a baseline for performance and not as an absolute evaluation criterion, since the system will not compete
with experts, but assist those without expertise.

The prototype expert system developed for the AN/SQS-53B, Unit 26 has not yet been evaluated and validated
in a field testing environment. This form of validation is to be performed independently by the Naval Sea Systems
Command. The field validation may be conducted at an AN/SQS-53B technician training center. The results from
the independent validation process may influence further developments of the system as they become available to
NRL.

SUMMARY

The process of creating a knowledge database that together with the FIS shell forms an artificial intelligence
based technician’s assister system takes several steps. The steps are knowledge acquisition — obtaining the cause-
effect rules, tests and testing instruction — from schematics or design information. Information obtained is then
converted from human data management form to a LISP language format. Compilation follows by placing the
knowledge databasc in a form that the computer can operate on efficiently. Verification then ensures the integrity of
the knowledge database. Finally, validation assures the developer that the system constructed from the knowledge
database acts properly. At each stage there is recourse to revert to previous steps to make knowledge database
modifications.

The process of going from knowledge acquisition to a technician’s assister system may require several
iterations to achieve a valuable expert system. The development of the TAS knowledge database stressed the
importance of data management. The transition from a data management form to the form used in the executable
expert system was extensively developed and simplified to expedite the process of knowledge database creation. All
information for the TAS should be available in the knowledge database. Any modifications made to the prime
system should also be made in the knowledge database to maintain the configuration. If this is done, a new version
for the expert system can be generated at any time.

The appendices contain samples of the development of the sonar system’s knowledge database. They are
meant to be a guide to the structure and format required for configuration management. They are also intended to
display the format required for conversion to a knowledge database the computer can understand.

As a final note, the sonar system was much larger than any other system previously constructed with FIS.
By increasing the size of the system modeled, speed degradation was observed. As a result, a modified architecture
(TAS) was developed to improve performance. This architecture consisted of breaking the sonar system up into
functional units that were much smaller, and as such, allowed fault isolation speeds comparable to smaller systems,
The parts of the system were then organized by a top level information gathering system. The top level made bulk
acquisition of indicator light and BIT test information possible. Its primary purpose was to isolate to the functional
area. At the same time, the top level then selected which technician’s assister knowledge database to examine for
faults. Subsequently, it loaded the knowledge database for that functional unit in the system, and acted as a typical
FIS technician’'s assister [4]. The entire system was named the Technician's Assister System, which was composed
of two layers of software functionality. The expert system to perform the analysis to the functional level was named
the local area expert (LAE). The analysis to the module level was performed with the software layer based on FIS.
This layer was named the fault isolation layer (FIL), a name chosen to indicate that the software was based on FIS
and also to indicate that enhancements were made to the basic FIS shell to accommodate the application. It is
generally believed that large systems with BIT tests can be adequately handled in this manner. The testing
architecture for entire systems could be developed by incorporating these techniques of knowledge acquisition and
validation.

45

J.MOLNAR

REFERENCES

1. F. Pipitone, K. A DeJong, and W. Spears, "An Artificial Intelligence Approach to Analog Systems
Diagnosis,” NRL Report 9219, Sept. 1989.

2. Servicing Diagrams Manual, Receive Subsystem for Sonar Detecting - Ranging Set, AN/SQS-53B(V) 4(1),
SE313-TP-MMC-040, 4-39 & 4-53, Department of the Navy-Naval Sea Systems Command and General
Electric Company-Avionics and Electronic Systems Division, DATOM Contract #N00024-84-C-6232,0ct.
1985.

3. Maintenance Data Diagrams Manual for Sonar Detecting - Ranging Set, AN/SQS-53B(V) 7(2), SE313-TP-
MMC-090, 3-193, Department of the Navy-Naval Sea Systems Command and General Electric Company-
Avionics and Electronic Systems Division, DATOM Contract #N00024-84-C-6232, Oct. 1985.

4. J. A. Molnar and G. Moss, "A Hierarchical Artificial Intelligence Maintenance Advisor," Proceedings of
American Defense Preparedness Association Symposium and Workshops on Artificial Intelligence
Applications for Military Logistics, Williamsburg, VA, March, 1990.

GLOSSARY

Ambiguity set - A set of all modules that could be faulty as a result of a failed test. This is based on the set of
causal rules that are used to describe the UUT.

Abnormality - The manner in which a physical parameter at a terminal deviates from its specified value. Also
referred to as the state of the test [1].

ATE - Automatic Test Equipment is a system characterized by a computer controller and an assortment of test
making equipment. They are guided by software to assess the functionality of a unit under test, without human
intervention. The ATE is a separate system developed specifically for the purpose of performing diagnostic tests. It
is separate from the unit under test, but connected to the unit under test with a test fixture.

Best test - A standard test selected by FIS automatically. Such a test is found by a combination of heuristic
screening of possible tests and maximization of the expected information gain divided by the cost (primarily in time)
of making the test [1].

BIT - Built-in-test is the subsystem of a system; its specific function is to perform diagnostic tests to assess the
functionality of the system without connecting separate test equipment to the system. The BIT performs testing
either while the system is operating in its normal capacity, or in a mode in which only controlled testing is
occurring. The BIT in either case does not interfere with the designed functionality of the system; its only function
is to perform system diagnostic analysis.

Cause - The upstream portion of a causal rule. It can represent an abnormality at a terminal — in which case it
has the same form as an effect — or it can be the name of the module. The latter is used in a rule asserting that a
module can be faulty so as to cause some problem (that problem is the effect of the rule) [1].

Causal rule - This is a qualitative description of a causal relationship between two terminals of a module, or
between a module and one of its terminals. Each rule has the form (If <precondition> then <cause> <type>
<effect>). Each rule is associated with a particular module whose behavior it partially describes. TA/FIS does not
use the type. The cause is either the name of a module or an abnormality of a physical parameter at a terminal. The
effect is an abnormality of a physical parameter at a terminal. The precondition (optional and often absent) is a
binary function of the current state of FIS. For example, in the case of a multiplexer, we might have a rule (in
English paraphrase) "If the select line is 'logic high' then input2 frequency high causes output frequency high." The

46

NRL REPORT 9296

precondition here enables FIS to not follow the path from cause to effect if the multiplexer is currently believed to
be switched off with respect to input2 [1].

Connectivity - This is the logical interrelationship of the rules that describe the physical relationship of the
electronic system being modeled by the FIS knowledge database. Rules should exist which link together to create
the same logical path that is seen in the physical interconnections of a circuit.

Convergence - The ability of the of FIS to use the knowledge database to correctly isolate faults. If FIS cannot
converge on any faulty module this indicates a format error or an error in the logical connectivity of the rules within
the knowledge database.

Downstream faults - A fault in a module whose test results rely upon the integrity of the modules before it in
the signal path.

Effect - This the downstream part of a causal rule. It has the form (<terminal> <parameter> <abnormality>). An
example is (inputl voltage low) [1].

Entropy - This is the sum of p*log(1/p) over the fault states of the unit under test. P is the probability of a state.
The sum is not computed directly, but by an efficient polynomial time algorithm [1].

FIS - Fault Isolation System is an Al software system designed to provide system diagnostic information in testing
applications, based upon heuristics and entropy calculations. A knowledge database is required for the system to
operate upon. FIS also contains editing functions available to assist the knowledge engineer in the creation of a
syntactically correct knowledge database. Assorted functions are also available to assist the knowledge engineer in
validating the accuracy of the knowledge database. Primarily FIS provides an inference engine to assist humans in
performing the most efficient diagnostics on system hardware for which a knowledge database exists.

Module - This is a replaceable component in a UUT. FIS describes a UUT as a fixed set of modules. Each
module has various data associated with it after UUT knowledge acquisition. This includes a set of causal rules, an
a-priori relative probability, and a replacement cost [1].

Pseudonode - A logical construct used in the causal rules of the knowledge database to present the capability of
analyzing the connection between modules and the backplane of a system. These nodes do not exist, nor can they be
tested directly. Instead, their existence is defined as all points between any two real terminals, not at any single
point. As with other terminals, they are part of some module, usually the backplane module. They are used in the
causal rules as part of a triple, with a parameter and state as the other two elements of the triple.

Pseudoterminal - A logical construct used in the causal rules to reduce the total number of rules. The
pseudoterminal is defined as existing within a real module, and always connected to two real modules also defined in
the same module: an output and an input terminal to the module. The goal of pseudoterminal is to provide an
additive factor for multiple interconnections between input and output terminals within a module. This is an
improvement over the multiplicative factor that would exist if the input and output terminals were directly
connected.

Qualitative values - The coarse values given to a parameter at a given terminal. The abnormality states are
defined for it, plus the special value of "ok." A typical set of qualitative values is (ok low high).

Quantitative values - The numerical equivalent of the qualitative values. FIS equates ranges of numerical
values to the qualitative values.

Rulebase - This is the database that contains all of the causal rules for the FIS knowledge database.

Rulelist - This is another name for the rulebase.

47

J.MOLNAR

Segmentation violation - An error occurring in LISP that usually results from a misplaced parenthesis.

Sonar system - The hardware consisting of several different functional units organized and controlled to perform
the single task of monitoring perturbations in liquids. Primarily these systems are used on ships to detect and
identify objects in water and monitor their movements. Acoustic waves propagating through the water are processed
to provide information on their emanation or reflection point. The AN/SQS-53B is a specific sonar system used in
this research.

TAJFIS - Technician Assister/Fault Isolation System is an enhanced FIS version developed to provide an Artificial
Intelligence System to assist technicians in the diagnostic testing of the AN/SQS-53B. Primarily TA/FIS is the
model-based part of the two level system hierarchy. TA/FIS (or FIL) provides isolation to the module level, while
the Local Area Expert provides isolation to the functional area. Some enhancements found in TA/FIS are textual
presentation of test instructions, recommendation of replacement, histogram of module probabilities, and a touch
interface for communicating with the computer.

Terminal - This is a connection between two modules. Some terminals are test points. Terminals can represent
any causal conduit between modules. For example, wires, cables, optical paths, waveguides and mechanical linkages

can all be terminals. These terminals may represent only a slice of space separating two parts of some conductor {1].

Testbed - Any system whose primary purpose is to act as an experimental equipment for examining how an
operational system reacts to changes internally or externally.

Testlist - The database that contains all of the test information for the FIS knowledge database.
Test point - This is a terminal in a module where a diagnostic test can be performed.

Upstream faults - This is a fault in a module connected to the module test point at a location that acts on the
signal at some time prior to the time it passed the test location.

UUT (unit under test) - This is the hardware system or subsystem that is being diagnostically examined.

Virtual module - or pseudomodule - A module which exists as a logical construct of a causal rule in the
knowledge database. This is composed solely of pseudonodes. In general, it represents interconnections between real
modules that have their physical manifestation usually as the backplane in a system. In the knowledge database it
must obey the format of the causal rules. It must be defined as a module. It has at least one rule which uses the
pseudomodule as a cause.

48

Appendix A
SAMPLE RULE SET DATA FORMAT

*****************sm left_channels downsu-eam left con-********************
******************Sm upstream

Module: upstream_sonar_units

No Cause

1 upstream_sonar_units
2 upstream_sonar_units
3 upstream_sonar_units
4 upstream_sonar_units

Effect

a26J3_beams volts hi
a26J3_beams volts lo
a26]3_beams uniformity bad
a26J3_beams waveform bad

Type

wvown nwn

Precondition

- = - -

[Modified 22 July 1987. upstream_sonar_units: Removed Failure Rate and Replacement Cost fields from header.]
[Modified 22 July 1987. upstream_sonar_units: Removed - from space between column labels and rule 1.}

Module: a26alFL.1

No Cause

1 a26a1a58J3 volts hi

2 a26alaS8I3 volts lo

3 a26ala58J3 waveform bad
4 a26alFL1

5 a26alFL1

6 a26alFL1

Module: a26alFL2

No Cause

1 a26al1a59J3 volts hi

2 a26ala59]3 volts lo

3 a26ala59]3 waveform bad
4 a26alFL2

5 a26alFL2

6 a26alFL2

Effect

a26ala58J4 volts hi
a26ala58J4 volts lo
a26a1a58J4 waveform bad
a26alas58J4 volts hi
a26ala58J4 volts lo
a26alas58J4 waveform bad

Effect

a26a1a59J4 volts hi
a26alad9J4 volts lo
a26a1a59J4 waveform bad
a26a1a59J4 volts hi
a26ala59J4 volts lo
a26ala59J4 waveform bad

49

Type

v owvwmwn nown

Type

(7T - IRV R 7 I 7 B 7

Precondition

- e o e =

Precondition

— o o e e

Module: a26alFL3
No Cause

1 a26a1a60J3 volts hi
2 a26al1a60]3 volts lo

3 a26ala60J3 waveform bad

4 a26alFL3
5 a26alFL3
6 a26alFL3

Module: a26a1FL4
No

Cause

1 a26ala61J3 volts hi
2 a26ala61J3 volts lo

3 a26ala61J3 waveform bad

4 a26alFL4
5 a26alFL4
6 a26alFL4

Module: a26ala58_mod _amp_mpx

No Cause

1 a26J3_beams volts hi
2 a26J3_beams volts lo

3 a26J3_beams uniformity bad
4 a26J3_beams uniformity bad
5 a26]3_beams waveform bad

6 a26ala58]J1 volts hi
7 a26ala58J1 volts lo

8 a26ala58J1 waveform bad

9 a26ala70J3 reference_signal bad
10 a26a1a70J3 reference_signal bad
11 a26a1a70J3 reference_signal bad

12 [Deleted 21 July 1987.
13 [Deleted 21 July 1987.
14 [Deleted 21 July 1987.
15 [Deleted 21 July 1987.
16 [Deleted 21 July 1987.
17 [Deleted 21 July 1987.

18 a26a1a58J4 volts hi
19 a26a1a58J4 volts lo

Moved to a26alFL1.]
Moved to a26al1FL1.]
Moved to a26alFL1.]
Moved to a26alFL1.]
Moved to a26al1FL1.]
Moved to a26al1FL1.]

20 a26ala58J4 waveform bad
21 a26ala58_mod_amp_mpx
22 a26alaS8_mod_amp_mpx
23 a26ala58_mod_amp_mpx
24 a26a1a58]7 gate_select bad
25 a26a1a58]7 gate_select bad
26 a26a1a58)7 gate_select bad

J. MOLNAR

Effect

a26ala60J4 volts hi
a26a1a60J4 volts lo
a26al1a60J4 waveform bad
a26ala60J4 volts hi
a26al1a60J4 volts lo
a26al1a60J4 waveform bad

Effect

a26ala61J4 volts hi
a26ala61J4 volts lo
a26ala61J4 waveform bad
a26ala61J4 volts hi
a26ala61J4 volts lo
a26ala61J4 waveform bad

Effect

a26ala58J1 volts hi
a26alas8J1 volts lo
a26ala58]1 volts hi
a26alas58J1 volts lo
a26ala58J1 waveform bad
a26al1a58J3 volts hi
a26alas8J3 volts lo
a26al1a58J3 waveform bad
a26ala58J3 volts hi
a26ala58]3 volts lo
a26ala58J3 waveform bad

a26a159-1 time_slot_1_volts hi
a26a159-1 time_slot_1_volts lo
a26a1S89-1 time_slot_1_waveform bad
a26a1S59-1 time_slot_1_volts hi
a26a1S59-1 time_slot_1_volts lo
a26a1S9-1 time_slot_1_waveform bad
a26a1S9-1 time_slot_1_volts hi
a26a159-1 time_slot_1_volts lo
a26a1S9-1 time_slot_1_waveform bad

50

Type Precondition

7B 7o B 7 B B 7 B /]

Type Precondition

17 T 7 TR 7> T 7 T 7 R /)

Type Precondition

v wvn v nn ;L nn nwn n v

wwm v now

L T R N

L T S

L e T T S S T e

e i e i o T

27 a26a76J3 volts bad [+12v supply]
28 a26a76J3 volts bad

29 a26a76]3 volts bad

30 a26a57-23 volts bad [-12v supply]
31 a26a57-23 volts bad

32 a26a57-23 volts bad

33 a26a77J4 volts bad [+4.5v supply]
34 a26a77]4 volts bad

35 a26a77J4 volts bad

36 a26a77J7 volts bad [-2v supply]
37 a26a77J7 volts bad

38 a26a77J7 volts bad

39 a26a75J2 volts bad [+25v supply]
40 a26a75J2 volts bad

41 a26a75J2 volts bad

42 a26a78I5 volts bad [-25v supply]
43 a26a78]J5 volts bad

44 a26a78J5 volts bad

NRL REPORT 9296

a26a1S59-1 time_slot_1_volts hi
a26a159-1 time_slot_1_volts lo
a26a159-1 time_slot_1_waveform bad
a26a1S89-1 time_slot_1_volts hi
a26a189-1 time_slot_1_volts lo
a26a1S9-1 time_slot_1_waveform bad
a26a1S89-1 time_slot_1_volts hi
a26a159-1 time_slot_1_volts lo
a26a159-1 time_slot_1_waveform bad
a26a1S9-1 time_slot_1_volts hi
a26a159-1 time_slot_1_volts lo
a26a159-1 time_slot_1_waveform bad
a26a1S59-1 time_slot_1_volts hi
a26a1S59-1 time_slot_1_volts lo
a26a159-1 time_slot_1_waveform bad
a26a1S59-1 time_slot_1_volts hi
a26a1S59-1 time_slot_1_volts lo
a26a159-1 time_slot_1_waveform bad

[Modified 21 July 1987. a26ala58_mod_amp_mpx: Moved rules 12-17 to a26alFL1.]

Module: a26a1a59_mod_amp_mpx
No Cause

1 a26ala59J1 volts hi

2 a26ala59]1 volts lo

3 a26a1a59J1 waveform bad

4 a26ala70J3 reference_signal bad

5 a26ala70J3 reference_signal bad

6 a26a1a70J3 reference_signal bad

7 [Deleted 21 July 1987. Moved to a26al1FL2.]
8 [Deleted 21 July 1987. Moved to a26al1FL.2.]
9 [Deleted 21 July 1987. Moved to a26alFL2.]
10 [Deleted 21 July 1987. Moved to a26alFL2.]
11 [Deleted 21 July 1987. Moved to a26al1FL2.]
12 [Deleted 21 July 1987. Moved to a26al1FL2.]
13 a26a1a59J4 volts hi

14 a26a1a59J4 volis lo

15 a26a1a59J4 waveform bad

16 a26a1a59_mod_amp_mpx

17 a26al1a59_mod_amp_mpx

18 a26a1a5%9_mod_amp_mpx

19 a26a1a59]7 gate_select bad

20 a26a1a59]17 gate_select bad

21 a26ala59)7 gate_select bad

22 a26a76J3 volts bad [+12v supply]

23 a26a76J3 volts bad

24 a26a76J]3 volts bad

25 a26a57-23 volts bad [-12v supply]

26 a26a57-23 volts bad

27 a26a57-23 volts bad

28 a26a77J4 volts bad [+4.5v supply]

Effect

a26a1a59]3 volts hi
a26ala59J3 volts lo
a26a1a59J3 waveform bad
a26a1a59J3 volts hi
a26a1a59J3 volts lo
a26al1a59J3 waveform bad

a26a189-1 time_slot_4_volts hi
a26a1S9-1 time_slot_4_volts lo
a26a159-1 time_slot_4_waveform bad
a26a159-1 time_slot_4_volts hi
a26a1S59-1 time_slot_4_volts lo
a26a159-1 time_slot_4_waveform bad
a26a159-1 time_slot_4_volts hi
a26a1S59-1 time_slot_4_volts lo
a26a1S59-1 ume_slot_4_waveform bad
a26a159-1 time_slot_4_volts hi
a26a159-1 time_slot_4_volts lo
a26a1S9-1 time_slot_4 waveform bad
a26a1S9-1 time_slot_4_volts hi
a26a1S9-1 time_slot_4_volts lo
a26a159-1 time_slot_4_waveform bad
a26a159-1 time_slot_4_volts hi

51

(7T 7 B /- T /7 I 7 B 7 TR /- T 7 B 7 T/ B S 7 7 I 7 T 7 T 7 B 7 T 7]

Type Precondition

7B I - R 7 BV R /]

[Z T 7 T 7 B V- B 7 TRV BV R I I 7 T/ IRV R 7 T I 7 I V]

L T I o)

e T o T T

L e e T e T e o T I N R N

J.MOLNAR

29 a26a77J4 volts bad a26a159-1 time_slot_4_volts lo s t
30 a26a77J4 volts bad a26a159-1 time_slot_4_waveformbad s t
31 a26a77J7 volts bad [-2v supply] a26a1S9-1 time_slot_4_volts hi s ot
32 a26a77J7 volts bad a26a159-1 time_slot_4_volts lo s t
33 a26a77]7 volts bad a26al1S9-1 time_slot_ 4_waveformbad s t
34 a26a75J2 volts bad [+25v supply] a226a159-1 time_slot_4_volts hi s t
35 a26a75J2 volts bad a26a159-1 time_slot_4_volts lo s t
36 a26a75J2 volts bad a26al159-1 time_slot 4_waveformbad s t
37 a26a78]J5 volts bad [-25v supply] a26a159-1 time_slot_4_volts hi s ot
38 a26a78J5 volts bad a26a1S9-1 time_slot_4_volts lo s t
39 a26a78J5 volts bad a26a189-1 time_slot_4_waveformbad s t

[Modified 21 July 1987. a26ala59_mod_amp_mpx: Moved rules 7-12 to a26a1FL2.]
[Modified 21 July 1987. a26ala59_mod_amp_mpx: Removed failure rate ane replacement cost ficlds from heading.]

Module: a26a1a60_mod_amp_mpx

No Cause Effect Type Precondition
a26a1a60J1 volts hi
a26ala60J1 volts lo
a26a1a60J1 volts hi
a26ala60J1 volts lo

1 a26J3_beams volts hi
2 a26]3_beams volts lo
3 a26J3_beams uniformity bad
4 a26J3_beams uniformity bad

5 a26J3_beams waveform bad a26ala60J1 waveform bad
6 a26ala60J1 volts hi a26al1a60J3 volts hi
7 a26ala60J1 volts lo a26a1a60J3 volts lo
8 a26a1a60J1 waveform bad a26a1a60J3 waveform bad

a26a1a60J3 volts hi
a26a1a60J3 volts lo
a26ala60J3 waveform bad

9 a26ala70J3 reference_signal bad
10 a26a1a70J3 reference_signal bad
11 a26a1a70J3 reference_signal bad
12 [Deleted 21 July 1987. Moved to a26alFL3.]
13 [Deleted 21 July 1987. Moved to a26alFL3.]
14 [Deleted 21 July 1987. Moved to a26alFL3.]
15 [Deleted 21 July 1987. Moved to a26al1FL3.]
16 [Deleted 21 July 1987. Moved to a26al1FL3.]
17 [Deleted 21 July 1987. Moved to a26al1FL3.]

w wmwn n .y wn v Ny
L T T o B B T e N

30 a26a57-23 volts bad [-12v supply]
31 a26a57-23 volts bad

32 a26a57-23 volts bad

33 a26a77J4 volts bad [+4.5v supply]
34 a26a77J4 volts bad

18 a26a1a60J4 volts hi a26a1S59-1 time_slot_7_volts hi s t
19 a26a1a60J4 volts lo a26a1S59-1 time_slot_7_volts lo s t
20 a26a1a60J4 waveform bad a26a1S9-1 time_slot 7 waveformbad s ¢
21 a26ala60_mod_amp_mpx a26a159-1 time_slot_7_volts hi s t
22 a26ala60_mod_amp_mpx a26a159-1 time_slot_7_volts lo s t
23 a26ala60_mod_amp_mpx a26a1S9-1 time_slot_7_waveformbad s t
24 a26al1a60J7 gate_sclect bad a26a159-1 time_slot_7_volts hi s t
25 a26a1a60]7 gate_select bad a26a189-1 time_slot_7_volts lo s t
26 a26a1a60]7 gate_select bad a26a1S9-1 time_slot_7_waveformbad s t
27 a26a76]3 volts bad [+12v supply] a26a1S59-1 time_slot_7_volts hi s t
28 a26a76J3 volts bad a26a1S9-1 time_slot_7_volts lo s t
29 a26a76J3 volts bad a26a1S9-1 time_slot_ 7 waveformbad s t

S t

S t

S t

S t

S t

a26a159-1 time_slot_7_volts hi
a26a159-1 time_slot_7_volts lo
a26a1S59-1 time_slot_7_waveform bad
a26al1S9-1 time_slot_7_volts hi
a26a159-1 time_slot_7_volts lo

52

35 a26a77)4 volts bad

NRL REPORT 9296

36 a26a77)7 volts bad [-2v supply]

37 a26a77)7 volts bad
38 a26a77J7 volts bad

39 a26a75J2 volts bad [+25v supply]

40 a26a75J2 volts bad
41 a26a75]2 volts bad

42 a26a78]5 volts bad [-25v supply]

43 a26a78J5 volts bad
44 a26a78]5 volts bad

a26a1S9-1 time_slot_7_waveform bad
a26a159-1 time_slot_7_volts hi
a26a1S9-1 time_slot_7_volts lo
a26a1S59-1 time_slot_7_waveform bad
a26a159-1 time_slot_7_volts hi
a26a159-1 time_slot_7_volts lo
a26a1S9-1 time_slot_7_waveform bad
a26a1S59-1 time_slot_7_volts hi
a26a159-1 time_slot_7_volts lo
a26a159-1 time_slot_7_waveform bad

[Modified 21 July 1987. a26a1a60_mod_amp_mpx: Moved rules 12-17 to a26al1FL3.]

[Modified 21 July 1987. a26ala60_mod_amp_mpx: Removed failure rate ane replacement cost fields from heading.]

Module: a26ala61_mod_amp_mpx

No Cause

1 a26J3_beams volts hi
2 a26J3_beams volts lo

3 a26J3_beams uniformity bad
4 a26J3_beams uniformity bad
5 a26J3_beams waveform bad

6 a26ala61J1 volts hi
7 a26ala61J1 volts lo

8 a26ala61J1 waveform bad

9 a26ala70J3 reference_signal bad
10 a26a1a70J3 reference_signal bad
11 a26a1a70J3 reference_signal bad

12 [Deleted 21 July 1987.
13 [Deleted 21 July 1987.
14 [Deleted 21 July 1987.
15 [Deleted 21 July 1987.
16 [Deleted 21 July 1987.
17 [Deleted 21 July 1987.

18 a26a1a61J4 volis hi
19 a26ala61J4 volts lo

Moved to a26alFL4.]
Moved to a26alFL4.]
Moved to a26alFL4.]
Moved to a26alF1L4.]
Moved to a26alF14.]
Moved to a26al1FLA4.]

20 a26ala61J4 waveform bad

2] a26ala61_mod_amp_mpx

22 a26ala61_mod_amp_mpx

23 a26ala61_mod_amp_mpx

24 a26ala61J7 gate_select bad

25 a26ala61J7 gate_select bad

26 a26al1a61J7 gate_select bad

27 a26a76J3 volts bad [+12v supply]

28 a26a76J3 volts bad
29 a26a76]3 volts bad

30 a26a57-23 volts bad [-12v supply]

31 a26a57-23 volts bad
32 a26a57-23 volts bad

33 a26a77J4 volts bad [+4.5v supply]

34 a26a77J4 volts bad
35 a26a77]4 volts bad

Effect

a26ala61J1 volts hi
a26ala61J1 volts lo
a26ala61J1 volts hi
a26ala61J1 volts lo
a26ala61J1 waveform bad
a26ala61J3 volts hi
a26ala61J3 volts lo
a26ala61J3 waveform bad
a26ala61J3 volts hi
a26ala61J3 volts lo
a26ala61J3 waveform bad

a26a1S59-1 time_slot_10_volts hi
a26a1S9-1 time_slot_10_volts o
a26a159-1 time_slot_10_waveform bad
a26a159-1 time_slot_10_volts hi
a26a159-1 time_slot_10_volts lo
a26a159-1 time_slot_10_waveform bad
a26a1S9-1 time_slot_10_volts hi
a26a1S9-1 time_slot_10_volts lo
a26a189-1 dme_slot_10_waveform bad
a26a1S9-1 time_slot_10_volts hi
a26a159-1 time_slot_10_volts lo
a26a159-1 time_slot_10_waveform bad
a26a1S9-1 time_slot_10_volts hi
a26a1S9-1 time_slot_10_volts lo
a26a159-1 time_slot_10_waveform bad
a26a159-1 time_slot_10_volts hi
a26a159-1 time_slot_10_volts lo
a26a159-1 time_slot_10_waveform bad

53

(7B 7- B 7 R /- R 7 B 7 R 7 R /I 7 T 7 R /Y

L7 T 7 IR R 7 R 7 T 7 B/ R ¥ R V]

v wm »n v vy

L I - Y S

Type Precondition

L R Y Y e R

L I T I Y A i e e e

36 a26a7717 volts bad [-2v supply]
37 a26a77]7 volts bad

38 a26a77J7 volts bad

39 a26a75J2 volts bad [+25v supply]
40 a26a75J2 volts bad

41 a26a75]2 volts bad

42 a26a78J5 volts bad [-25v supply]
43 a26a78J5 volts bad

44 a26a78J5 volts bad

J.MOLNAR

a26a1S9-1 time_slot_10_volts hi
a26a1S59-1 time_slot_10_volts lo

a26a1S9-1 time_slot_10_waveform bad

a26a189-1 time_slot_10_volts hi
a26a1S89-1 time_slot_10_volts lo

a26a1S59-1 time_slot_10_waveform bad

a26a159-1 time_slot_10_volts hi
a26a159-1 time_slot_10_volts lo

a26a1S9-1 time_slot_10_waveform bad

[Modified 21 July 1987. a26ala61_mod_amp_mpx: Moved rules 12-17 to a26alFL4.]

[Modified 21 July 1987. a26ala61_mod_amp_mpx: Removed failure rate ane replacement cost fields from heading.]

***********Stan downstream
Module: a26ala45_doppler_det

No Cause

1 a26a1a30J4 amplitude hi

2 a26ala45]2 amplitude hi

3 a26ala45J3 amplitude hi

4 a26ala45J5 amplitude hi

5 a26ala30J4 amplitude lo

6 a26alad5J2 amplitude lo

7 a26a1a45J3 amplitude lo

8 a26alad5]5 amplitude lo

9 a26al1a30J4 waveform bad

10 a26a12a45J2 waveform bad

11 a26a1a4513 waveform bad

12 a26a12a45J5 waveform bad

13 a26a1a42J5 carrier bad

14 a26a1a45J4 carrier bad

15 a26a1a45J4 carrier bad

16 a26al1a45J4 carrier bad

17 a26alad5 fil_det_functions bad

18 a26ala45_doppler_det

19 a26ala45 mod_amp_functions bad
20 a26al1a45 mod_amp_functions bad
21 a26alads fil_det_functions bad

22 a26ala45_doppler_det

23 a26ala45 mod_amp_functions bad
24 a?6ala45 mod_amp_functions bad
25 a26alad5 fil_det_functions bad

26 a26ala45_doppler_det

27 a26ala45 mod_amp_functions bad
28 a26ala45 mod_amp_functions bad
29 a26ala45_doppler_det

30 a26ala45_doppler_det

31 a26ala74J1 volts bad [25v supply]
32 a26ala74J1 volts bad [25v supply]
33 a26a1a79J6 volts bad [-6v supply]

Effect

a26ala45J2 amplitude hi
a26ala45)3 amplitude hi
a26ala45J5 amplitude hi

a26J2-f CP_beam_1_amplitude hi
a26a1a45J2 amplitude lo
a26ala45J3 amplitude lo
a26alad5J5 amplitude lo

a26J2-f CP_beam_1_amplitude lo
a26ala45]2 waveform bad
a26alad5J3 waveform bad
a26alad45J5 waveform bad

a26J2-f CP_beam_1_waveform bad
a26ala45J4 carrier bad

a26ala45J5 amplitude hi
a26ala45J5 amplitude lo
a26alad5J5 waveform bad
a26ala45J2 amplitude hi
a26a1a45J3 amplitude hi
a26ala45J5 amplitude hi

a26]2-f CP_beam_1_amplitude hi
a26ala45J2 amplitude lo
a26ala45J3 amplitude lo
a26ala45J5 amplitude lo

a26J2-f CP_beam_1_amplitude lo
a26alad5J2 waveform bad
a26ala45J3 waveform bad
a26ala45J5 waveform bad

a26J2-f CP_beam_1_waveform bad
a26alad5 fil_det_functions bad
a26ala45 mod_amp_functions bad
a26alads fil_det_functions bad
a26ala45 mod_amp_functions bad
a26alads mod_amp_functions bad

54

v »v v vy wnmn v W

Type Precondition

7 T 7T 7 B 7 R 7 I 7 B 7 R 7 T 7 B 7 T 7 T 7 T 7 T 7 T 7 I 7 T/ R 7 T/ B/ A B < ¥ R T B 7 T 7 BV I T B Y B I T ¢

L T

o e T e T e T T Y N N T e T o T e e T o S N N e I T T S T o T

Module: a26ala46_doppler_det
No Cause

1 a26a1a31J4 amplitude hi

2 a26a1a46J2 amplitude hi

3 a26ala46J3 amplitude hi

4 a26ala46J5 amplitude hi

5 a26ala46J]5 amplitude hi

6 a26ala31J4 amplitude lo

7 a26alad46]2 amplitude lo

8 a26ala46J]3 amplitude lo

9 a26ala46J5 amplitude lo

10 a26a1a46J5 amplitude lo

11 a26ala31J4 waveform bad

12 a26al1a46J2 waveform bad

13 a26ala46J3 waveform bad

14 a26a1a46]5 waveform bad

15 a26a1a46]5 waveform bad

16 a26a1a42J5 carrier bad

17 a26a1a46J4 carrier bad

18 a26a1a46J4 carrier bad

19 a26a1a46J4 carrier bad

20 a26ala46 fil_det_functions bad

21 a26ala46_doppler_det

22 a26ala46 mod_amp_functions bad
23 a26ala46 mod_amp_functions bad
24 a26ala46 mod_amp_functions bad
25 a26alado6 fil_det_functions bad

26 a26alad6_doppler_det

27 a26ala46 mod_amp_functions bad
28 a26ala46 mod_amp_functions bad
29 a26ala46 mod_amp_functions bad
30 a26a1a46 fil_det_functions bad

31 a26ala46_doppler_det

32 a26ala46 mod_amp_functions bad
33 a26ala46 mod_amp_functions bad
34 a26alad46 mod_amp_functions bad
35 a26alad6_doppler_det

36 a26alad46_doppler_det

37 a26ala74]1 volts bad [25v supply]
38 a26ala74J1 volts bad [25v supply]
39 a26a1a79J6 volts bad [-6v supply]

Module: a26ala47_doppler_det
No Cause

1 a26ala32J4 amplitude hi
2 a26ala47J2 amplitude hi
3 a26ala47J3 amplitude hi
4 a26ala47]5 amplitude hi
5 a26ala32J4 amplitude lo

NRL REPORT 9296

Effect

a26ala46J2 amplitude hi
a26a1a46J3 amplitude hi
a26a1a46J5 amplitude hi

a26J2-Q CP_beam_2_amplitude hi
a26alad46-22 amplitude hi
a26ala46J2 amplitude lo
a26alad6)3 amplitude lo
a26ala46J5 amplitude lo

a26J2-Q CP_beam_2_amplitude lo
a26ala46-22 amplitude lo
a26ala46J2 waveform bad
a26ala46J3 waveform bad
a26alad6)5 waveform bad

a26J2-Q CP_beam_2_waveform bad
a26alad46-22 waveform bad
a26ala46J4 carrier bad

a26al1a46J5 amplitude hi
a26alad6J5 amplitude lo
a26alad6J5 waveform bad
a26a1a46J2 amplitude hi
a26a1a46J3 amplitude hi
a26ala46J5 amplitude hi

a26J2-Q CP_beam_2_amplitude hi
a26ala46-22 amplitude hi
a26ala46J2 amplitude lo
a26ala46J3 amplitude lo
a26ala46]S amplitude lo

a26J2-Q CP_beam_2_amplitude lo
a26ala46-22 amplitude lo
a26a1a46J2 waveform bad
a26ala46J3 waveform bad
a26ala46J5 waveform bad

a26J2-Q CP_beam_2_waveform bad
a26ala46-22 waveform bad
a26aladé6 fil_det_functions bad
a26ala46 mod_amp_functions bad
a26ala46 fil_det_functions bad
a26ala46 mod_amp_functions bad
a26alad6 mod_amp_functions bad

Effect

a26ala47J2 amplitude hi
a26ala47J3 amplitude hi
a26ala47J5 amplitude hi
a26J2-K CP_beam_3_amplitude hi
a26a1a47J2 amplitude lo

55

Type

L2 B /- T - BV T 7 B 7 B B 7~ B T/ B 7 I R/ I 7 7 I 7 R 7 S 7 T 7 B 7 T 7 T /> B 7 T I 7 T 7 T 7 T 7 T 7 B 7 SR 7 R 7 R 7, T 7 N 7 S 7 R 7 R 7, S 7}

Type

v nn v wn

Precondition

L I I I I e I I Y T I i a i a E a lE e a a TE a e = GaeiGNGy

Precondition

L Y N A

6 a26alad7)2 amplitude lo

7 a26ala47J3 amplitude lo

8 a26ala47]5 amplitude lo

9 a26ala32J4 waveform bad

10 a26ala47)2 waveform bad

11 a26a1a47)3 waveform bad

12 a26ala47J5 waveform bad

13 a26a1a42]5 carrier bad

14 a26a1a47)4 carrier bad

15 a26ala47)4 carrier bad

16 a26ala47J4 carrier bad

17 a26ala47 fil_det_functions bad

18 a26ala47_doppler_det

19 a26a1a47 mod_amp_functions bad
20 a26ala47 mod_amp_functions bad
21 a26alad7 fil_det_functions bad

22 a26ala47_doppler_det

23 a26ala47 mod_amp_functions bad
24 a26ala47 mod_amp_functions bad
25 a26ala47 fil_det_functions bad

26 a26alad7_doppler_det

27 a26ala47 mod_amp_functions bad
28 a26alad7 mod_amp_functions bad
29 a26alad7_doppler_det

30 a26ala47_doppler_det

31 a26ala74J1 volts bad [25v supply]
32 a26a1a74J1 volts bad [25v supply]
33 a26ala79J6 volts bad [-6v supply]

Module: a26ala48_doppler_det
No Cause

1 a26ala33J4 amplitude hi

2 a26ala48J2 amplitude hi

3 a26ala48]3 amplitude hi

4 a26ala48J5 amplitude hi

5 a26ala33J4 amplitude lo

6 a26ala48J2 amplitude lo

7 a26ala48J3 amplitude lo

8 a26ala48J5 amplitude lo

9 a26ala33J4 waveform bad

10 a26a1a48J2 waveform bad

11 a26a1a48J3 waveform bad

12 a26a1a48J5 waveform bad

13 a26a1a42J5 carrier bad

14 a26a1a48J4 carrier bad

15 a26a1a48J4 carrier bad

16 a26a1a48J4 carrier bad

17 a26ala48 fil_det_functions bad

18 a26ala48_doppler_det

19 a26ala48 mod_amp_functions bad
20 a26ala48 mod_amp_functions bad

J. MOLNAR

a26ala47J3 amplitude lo
a26ala47J5 amplitude lo

a26]2-K CP_beam_3_amplitude lo
a26ala47J2 waveform bad
a26alad7J)3 waveform bad
a26alad7J5 waveform bad

a26J)2-K CP_beam_3_waveform bad
a26ala47J4 carrier bad

a26ala47J5 amplitude hi
a26ala47J5 amplitude lo
a26alad7J5 waveform bad
a26ala47J2 amplitude hi
a26ala47J]3 amplitude hi
a26ala47J5 amplitude hi

226J2-K CP_beam_3_amplitude hi
a26ala47J2 amplitude lo
a26ala47J3 amplitude lo
a26alad47J5 amplitude lo

a26J2-K CP_beam_3_amplitude lo
a26ala47J2 waveform bad
a26alad7J3 waveform bad
a26ala47J)5 waveform bad

a26J2-K CP_beam_3_waveform bad
a26alad7 fil_det_functions bad
a26alad7 mod_amp_functions bad
a26alad7 fil_det_functions bad
a26ala47 mod_amp_functions bad
a26alad47 mod_amp_functions bad

Effect

a26a1a48J2 amplitude hi
a26a1a48J3 amplitude hi
a26a1a48J5 amplitude hi

a26]2-S CP_beam_4_amplitude hi
a26ala48J2 amplitude lo
a26ala48J3 amplitude lo
a26a1a48J5 amplitude lo

a26J2-S CP_beam_4_amplitude lo
a26ala48J2 waveform bad
a26ala48J3 waveform bad
a26a1a48J5 waveform bad

a26J2-S CP_beam_4_waveform bad
a26ala48J4 carrier bad

a26ala48J5 amplitude hi
a26alad8J5 amplitude lo
a26a1a48J5 waveform bad
a26ala48J2 amplitude hi
a26a1a48J3 amplitude hi
a26a1a48J5 amplitude hi

a26J2-S CP_beam_4_amplitude hi

56

7o TR B 7 B B B 7 T 7 B/ T Y T - 7 R 7 T 7 B 7 T - B v I 7 R T/ T/ B < VI 7 B 7 T 7 T /- 7 TR 7> B /]

3

[7- 7~ 7 B B 7 B/ B 7 B VI 7 R/ R 7 7 T 7 R 7 T 7 T 7 B 7 T 7 R 7 /)

o T Y i el el el e e e e = R = N

Precondition

L T N e T I I o

21 a26ala48 fil_det_functions bad

22 a26ala48_doppler_det

23 a26ala48 mod_amp_functions bad
24 a26ala48 mod_amp_functions bad
25 a26ala48 fil_det_functions bad

26 a26ala48_doppler_det

27 a26ala48 mod_amp_functions bad
28 a26ala48 mod_amp_functions bad
29 a26ala48_doppler_det

30 a26ala48_doppler_det

31 a26ala74J1 volts bad [25v supply]
32 a26al1a74J1 volts bad [25v supply]
33 a26a1a79J6 volts bad [-6v supply]

Module: a26a1a80_relay board
No Cause

1 a26J3_beams volts hi

S a26J3_beams volts lo

9 a26J3_beams uniformity bad
13 a26J3_beams uniformity bad
17 a26J3_beams waveform bad

NRL REPORT 9296

a26a1a48J2 amplitude lo
a26a1a48J3 amplitude lo
a26a1a48J5 amplitude lo

a26J2-S CP_beam_4_amplitude lo
a26a1a48J2 waveform bad
a26a1a48J3 waveform bad
a26a1a48J5 waveform bad

a26]2-S CP_beam_4_waveform bad
a26ala48 fil_det_functions bad
a26ala48 mod_amp_functions bad
a26ala48 fil_det_functions bad
a26ala48 mod_amp_functions bad
a26ala48 mod_amp_functions bad

Effect

a26ala59]J1 volts hi
a26alas9J1 volts lo
a26al1as59J1 volts hi
a26ala59J1 volts lo
a26al1a59J1 waveform bad

L7 T 7 I 7 B 7 B 7 B /- TR 7 T 7 R 7 B/ N 7 B RV}

Type

v w wmw»nwnm

L I I T T I I Y)

Precondition

L S

[Note 1: Relay is active when it is not supposed to be. a26ala63J1 and a26ala65J1 are open circuited, but a]

[signal is expected.]

[Note 2: Relay is inactive when it is supposed to be active. We expect a26ala63J1 and a26ala65J1 to be open]

[circuited, but they have signals. Signal level is normal for not_BB/TRK_mode, but is too high for BB/TRK_mode]

[Modified 23 June 1987. a26a1a80_relay_board:]

[Modified 23 June 1987. a26a1a80_relay_board: Changed preconditions, rules 31-33 and 40-42, from]
[BB/TRK_mode to t.]

[Modified 23 June 1987. a26a1a80_relay_board: Changed preconditions, rules 34-39. from not_ BB/TRK_mode to t.]

[note that this was appended to rules.all in the jul2287 directory and that this module is the only one that has]

[[been changed]
[this was performed on august 21, 1987]

[modified september 21, 1987. a26a1a80_relay_board: changed lo to bad, cause of rules 29 and 30.]
[modified september 21, 1987. a26ala80_relay_board: removed spurious character from "26a1a80" incause of rules]

[21,22,25 and a26.]

Module: downstream_sonar_units

No Cause Effect Type Precondition
1 a26J2-f CP_beam_1_amplitude hi display CP_beam_1_amplitude hi s t
2 a26]2-f CP_beam_1_amplitude lo display CP_beam_1_amplitude lo s t
3 a26J2-f CP_beam_1_waveform bad display CP_beam_1_waveform bad s
4 a26J2-Q CP_beam_2_amplitude hi display CP_beam_2_amplitude hi s t
5 a26J2-Q CP_beam_2_amplitude lo display CP_beam_2_amplitude lo s t
6 a26J2-Q CP_beam_2_waveform bad display CP_beam_2_waveform bad s t
7 a26J2-K CP_beam_3_amplitude hi display CP_beam_3_amplitude hi s t
8 a26J2-K CP_beam_3_amplitude lo display CP_beam_3_amplitude lo s t

57

J.MOLNAR

9 a26J2-K CP_beam_3_waveform bad
10 a26J2-S CP_beam_4_amplitude hi
11 a26J2-S CP_beam_4_amplitude lo
12 a26J2-S CP_beam_4_waveform bad

display CP_beam_3_waveform bad
display CP_beam_4_amplitude hi
display CP_beam_4_amplitude lo
display CP_beam_4_waveform bad

37 downstream_sonar_units
38 downstream_sonar_units
39 downstream_sonar_units
40 downstream_sonar_units
41 downstream_sonar_units
42 downstream_sonar_units
43 downstream_sonar_units
44 downstream_sonar_units
45 downstream_sonar_units
46 downstream_sonar_units
47 downstream_sonar_units
48 downstream_sonar_units

display CP_beam_1_amplitude hi
display CP_beam_1_amplitude lo
display CP_beam_1_waveform bad
display CP_beam_2_amplitude hi
display CP_beam_2_amplitude lo
display CP_beam_2_waveform bad
display CP_beam_3_amplitude hi
display CP_beam_3_amplitude lo
display CP_beam_3_waveform bad
display CP_beam_4_amplitude hi
display CP_beam_4_amplitude lo
display CP_beam_4_waveform bad

58

17 I 7 B/ R 7 T 7 B 7 B/ R/ B 7 T 7 I 7 T 7 R 7 R 7 T 7 R 7]

L T T e e e i

Appendix B
SAMPLE TESTLIST DATA FORMAT

59

09

NAME

AlAlJ4

Al1A1J5

AlAIN

A1A113

Al1A1]7

AlA1l1J6

AlA1J6

$1
TEST
POINT

a26alAll4

a26alAll5

a26alAlJl

a26alAll3

a26alA1J7

a26alAl11J6

a26alAl1J6

$2
PARAMETER

logic_levels

mts_gate

not_mts_gate

end_clear

not_CL2

not_ST2

ST3

UNITS

logic

logic

logic

logic

logic

logic

logic

$3

POSS

QUAL $4 $5
RES MIN MAX

ok

bad
ok

bad
ok

bad
ok

COST,
SECONDS

20

20

20 scope ready

20

20

20

20

PREREQUISITES

scope ready

a26al _drawer open
unit-26_door open [1]
probe_on a26alAlJ4
active_mode on

scope ready

a26al _drawer open
unit-26_door open [1]
probe_on a26al A1J5

A1l

a26al_drawer open
unit-26_door open [1]
probe_on a26al A1J1

scope ready
a26al_drawer open
unit-26_door open [1]
probe_on a26al A1J3

scope ready

a26al _drawer open
unit-26_door open [1]
probe_on a26al A1J7

scope ready
a26al_drawer open
unit-26_door open [1]
probe_on a26alA11J6

scope ready
a26al_drawer open
unit-26_door open [1]
probe_on a26al A116

INSTR
NAME

logic_1

Al

All3

AdJ6

Al1]5

AlJ6

$6=positive

$6=negative

$6=TEST-END
$7=26A1S8

YVNION T

NRL REPORT 9296

1919Un[0A 98=09¢

19)0U3]0A Oe=9¢

LoV

[o180]

o180

[o101

Jomod

Tomod

LY

1101V 1e9Ze uo aqoxd
(1] uado Jo0pgz-1un
uodo 1ome1p™ [egZE
Apear odoos

uo 9pow™ 9AIOR

6001V Te9ze uo aqoxd
[1] uado 100p~9z-1UN
uado TomeIp [egze
Apear adoos

UQ 9pO™ DATIOR

6f1V 1e9Ze uo oqoxd
[1] uado 100p~9z-1un
uado 1omelp” [egze
Apear odoos

UO 9powW SATIOR

PL1V [e9ze uo-aqord
[1] uado 100p~9z-1un
uado 1omelp [egze
Apear adoos

Apearyur gip~oe
¢l9 eregze U0 aqo1d
uado Jomerp™ [egZE
uado J00p 9Z-3MUn

Apeox ™ g1p~oe

i Le1R9ZR UO 9qo1d
uado JomeIp [e9Ze
uado 100p~9zZ-1UN

81V [e9ze uo aqord
[1] uado 100p~9z-1un
uado JomeIp [egze
Apear odoos

0c

0t

114

114

01

118

1[4

o
peq

o13o[

o130

o13o1

o130

sJjoA

$Ij0A

a180]

eIy

134

s[aas] o101

s[aaa]0130[

sjjoA

s)j0A

£LSd

1{01V1e9ze

6101V1e9ZE

61V 1egze

priviesze

¢loseregze

plLLe1R9ZR

81viegze

OIVIV

6[01VIV

ofIVIV

VIIVIV

¢lorere

plLLe1e

8(IVIV

61

J.MOLNAR

8SVIV9IZ=LS
ANd-LSH1-9%

SITIV

ey

A4

91V

S(1V

[

[1] uado 100p~9z-1un
uado JomeIp Jegze
Apear adoos

€101V 1®9ze U0 9qoxd
[1] uado 100p~9z-1un
uado 1omerp” [egze
Apear adoos

LIOTV 1B9ZE U0 oqoxd
[1] uado x00p~9z-1mn
uado Jomelp [egze
Apear adoos

[1] uado 100p~9z-1un
uado 1omeIp” [egze
Kpear adoos

Rr01V1e9ze uo eqoxd
[1] uado 100p~9z-1UN

uodo meIp [E9ZR
Apear adoos

U0 9pOWU™ AT
p{01V1e9ze uo oqoid
[1] uado 100p~gz-3un
uodo TomeIp [e9ZE
Kpear adoos

UO IpOW™ dALOR
SIQTV1e9Ze uo aqoxd
[1] uado J00p~9z-1un
uado 1ome1p” [egre
SI01vV

0c

0c

0z

0c

0t

{14

Apear odoos

Yo
peq

3o
0C

a180]

o130]

ordo]

o130

ot8o]

a130[

11S 1ou

Iea]d pud

1710 10u

LLS

LLSd

Jar pua peof

peq 2180] doueApE pUI prRO]

SII1VIeSTE

¢f01viegze

LI01VIegce

9r01viesce

8[01VIegze

pI0IV1e9TE

SI01viegce

SITIVIV

ef0IVIV

LIOIVIV

9[01viv

f0IVIV

VIOIVIV

SIOIVIV

62

((IFCOMBO
(A26A1A8J0 A26A1A8]J2

A26A1A8J4
A26A1A816
A26A1A8]8

A26A1A8]10
A26A1A8J12

A26A1A8]14
A26A1A8]16
A26A1A8]118
A26A1A8120
A26A1A8145
A26A1A8124
A26A1A8]26
A26A1A8528

A26A1A8J28-1

A26A1A8]30

A26A1A8130-1))

Appendix C
SAMPLE PRECONDITION DATA FORMAT

(TDATTNON (A26A1A5718))

(VFOSEL

(A26A1A5J36 A26A1A5J40

A26A1A5142
A26A1A5]44
A26A1A5]46
A26A1A5)48
A26A1A5J50
A26A1A5]52
A26A1A5]54
A26A1A5J56
A26A1A5]58
A26A1A5J60
A26A1A5J62
A26A1A5]64
A26A1A5J66
A26A1A5J68
A26A1A5J70
A26A1A5J72
A26A1A5]74
A26A1A7136
A26A1A7I38
A26A1A8]32
A26A1A13-1
A26A1A13]2
A26A1A13140
A26A1A13]44

A26A1A69J40-1))

63

J.MOLNAR

(BLANK
(A26A1A7-1 A26A1A7I6

A26A1A7I8
A26A1A7J10
A26A1A7I12
A26A1A7]14
A26A1A7I16
A26A1A7J18
A26A1A7120
A26A1A7I22
A26A1A7124
A26A1A7I26
A26A1A7]28
A26A1A7J30
A26A1A7I32
A26A1A7J34
A26A1A7I36
A26A1A7J38
A26A1A1300
A26A1A1312
A26A1A14]8))

(NOTBLANK (NOT BLANK))

(TDATTNOFF (NOT TDATTNON))

(REFSEL (NOT VFOSEL)))

64

((A26A1A7074 A26A1A7016)
(A26A1A7036
(A26A1A70J8 A26A1A7I10
A26A1A7I12
A26A1A7714
A26A1A7I16
A26A1A7I18
A26A1A7120
A26A1A7122
A26A1A7124
A26A1A7126
A26A1A7128
A26A1A7130))
(A26A1A8074 A26A1A80J6)
(A26A1A80J6 A26A1A8710)
(A26A1A8T10 A26A1A8712)
(A26A1A8T12 A26A1A8714)
(A26A1A8714 A26A1A8J16)
(A26A1A8T16 A26A1A8]18)
(A26A1A8718 A26A1A8120)
(A26A1A8124 A26A1A8]26)
(A26A1A10J2 A26A1A10J42)
(A26A1A10J4 A26A1A10J42)
(A26A1A10J6 A26A1A10J42)
(A26A1A10J8 A26A1A10J42)
(A26A1A1010 A26A1A10J42)
(A26A1A10712 A26A1A10742)
(A26A1A10714 A26A1A10J42)
(A26A1A10J16 A26A1A10142)
(A26A1A10J18 A26A1A10J42)
(A26A1A10J20 A26A1A10J42)
(A26A1A10J22 A26A1A10J42)
(A26A1A10124 A26A1A10142)
(A26A1A10]26 A26A1A10742)
(A26A1A10J28 A26A1A10J42)
(A26A1A10J30 A26A1A10J42)
(A26A1A10J32 A26A1A10142)
(A26A1A10J34 A26A1A10J42)
(A26A1A10J36 A26A1A10J42)
(A26A1A10J38 A26A1A10J42)
(A26A1A10J40 A26A1A10J42)
(A26A1A12J8 A26A1A12J32)
(A26A1A12J10 A26A1A12J32)
(A26A1A12J12 A26A1A12J32)
(A26A1A1214 A26A1A12132)
(A26A1A12J16 A26A1A12J32)

Appendix D
SAMPLE ORDER DATA FORMAT

65

(A26A1A12718 A26A1A12132)
(A26A1A12J20 A26A1A12132)
(A26A1A12122 A26A1A12]32)
(A26A1A12124 A26A1A12)32)
(A26A1A12J26 A26A1A12132)
(A26A1A12J28 A26A1A12132)
(A26A1A12J30 A26A1A12J32)
(A26A1A13J4 A26A1A13]6)

(A26A1A1314 A26A1A1378)

(A26A1A13710 A26A1A13]12)
(A26A1A13710 A26A1A13114)
(A26A1A6719 A26A1A57T10A)
(A26A1A6J20 A26A1A57J20A)
(A26A1A6)22 A26A1A57I30A)
(A26A1A6J24 A26A1A57I40A)
(A26A1A6128 A26A1A57I50A)
(A26A1A6130 A26A1A57I60A)
(A26A1A6J32 A26A1AS57I70A)
(A26A1A6)34 A26A1A57I80A)
(A26A1A874 A26A1A84150))

J. MOLNAR

66

Appendix E
SAMPLE INSTRUCTION DATA FORMAT

Instruction Name: A30J4_w

Instruction Text:

"Connect 10X scope probe to ",$1,".

Use positive external sync from 26A1A11J18.

Set TARGET CONTROL - INITIAL BEARING control 34A3B1
to ",$7," relative.

Observe analog pulses.

Verify the following:
Pulse repetition rate = 1416 microseconds.
Pulse width = 354 microseconds.

Pulse starts 708 microseconds after sync.

("83,)"

Instruction Name: A45J3_a
Instruction Text:

"Connect oscilloscope to ",$1,".
Use direct coupling.

Observe CP target pulses superimposed on approximately
150 mv of noise.

Estimate the average 0 to peak amplitude of the CP target
pulses.

Correct range is 530 to 710 millivolts, zero to peak.

{".$3,"}"

67

J. MOLNAR

Instruction Name: A45J3_w
Instruction Text:

"Connect oscilloscope to ",$1,".
Use direct coupling.

Observe CP target pulses superimposed on approximately
150 mv of noise.

Verify the following:
CP target pulse width is approximately 30 milliseconds,
to the 50% points.
CP target pulse peaks are approximately 4 time noise
level.

(".83,)"

Instruction Name: A45J5_a
Instruction Text:
"Connect oscilloscope to ",$1,".

Observe modulated pulse with duration of approximately
50 milliseconds.

Measure the peak to peak amplitude of the pulse.
The correct range is ",$4," to ", $5".

(83"

Instruction Name: A45J5_w
Instruction Text:
"Connect oscilloscope to ",$1,".

Observe modulated pulse with amplitude of approximately
21 volts peak to peak.

Verify that the average pulse duration is approximately
50 milliseconds.

{".%3,"}"

68

NRL REPORT 9296

Instruction Name: A4J6

Instruction Text:

"Connect X10 scope probe to ", $1,".

Use positive internal sync.

Observe square wave.

Verify the following:
Period = approx 1.0 microseconds.
Pulse Width = approx 0.5 microsecond.
Logic Level One = +2.0 to +4.5 volts.
Logic Level Zero = +0.0 to +0.6 volt.

(".83,)"

69

Appendix F

AUTOMATIC CONVERSION PROGRAM FOR RULE AND TESTLIST
DATABASES

/*
This program is made to read in uut data from the format made by a generic text editor and convert to a FIS ".v"
file.

*/
[*declarations:*/

#include <stdio.h>;

#include <sys/file.h>;
#include "string.h"

#define LINE_LENGTH 145

struct lines
{
char info[LINE_LENGTH];

} data[10000];

char response[30], answer, answer1[5], *temp, module[30], cause[50],
effect[50], precondition[30], name[30], test_point[30], parameter{30],
units{20], okreadin[10}, okreadin2[10], okreadin3{10],
min[10], max[10], liinum[10];

int ch, chl, i, ii, filelength, counter2, length, space, numone,
column[LINE_LENGTH], col, storenum, nextone, place;

FILE *fopen(), *fp1, *fp2, *{p3;

main()

{

do
{
printf("What is the name of your rule file? ");
scanf("%s", response);
if ((fpi=fopen(response, "r")) == NULL)
printf("File doesn't exist.\n");
} while (fpl == NULL);
do
{
printf("What is the name of your test file? ™);
scanf("%s", response);
if ((fp3=fopen(response, "r")) == NULL)
printf("File doesn't exist\n");
} while (fp3 == NULL);

[*open input file*/

71

J.MOLNAR

[*open output file*/
do

{
printf("What is the name of the output file? ");

scanf("%s", response);

if (ch=access(response, 0) == 0)

{
printf("The file already exists. Overwrite Y/N? ");
scanf("%s", answerl);

}

if ((ch==1 && (answerl[0]=="y' Il answerl[0]=="Y")) lich !=1)
fp2=fopen(response, "w”");

} while (ch == 1 && (answer1[0]=='N' Il answerl{0]=="n")); [Fwrite & read*/
filelength=0;
numone=0;
while (answer=fgets(data[filelength].info, LINE_LENGTH, fp1) != NULL)
++filelength;
fprintf(fp2, "NIL\aNIL\nNILwa(");
i=0; [*filelength is how long file is*/
do
{

if ((temp=strpbrk(data[i].info, "W")) != NULL)
if (stncmp (temp, "WORKING", 7) == 0) /*skip 2 lines if W is found*/
i=i+2;
if (((temp=strpbrk(data[i].info, "M")) != NULL) & &
(strncmip (temp, "Modu", 4) ==0)) /*look for the letter M*/
{
if (numone != 0)
(
numone=0); /*print control*/
fprintf(fp2,”))\n");
}

for (counter2=0; counter2<=30; ++counter2)
module[counter2]=\0";
for (ii=8; templii] != \n'; ++ ii)
module[ii-8]=templ[ii];
i=i+3;
fprintf(fp2, " (NAME %s) (FRATE 1)\n (CAUSAL-RULES\n", module);
)
else
{
1i=0;
place=3;
if ((length=strlen(data[i].info)) > 15)
if (((strpbrk(data[i}.info, "[")==NULL) && (data(i].info[ii]!="N")) Il
(((temp=strpbrk(data(i].info, "["))!=NULL) && (strlen(data(i].info)-strlen(temp)>5)))
{ [*is the line [deleted] ? */
i=85;
for (counter2=85; datali].info[counter2] != \n'; ++counter2)
if (data[i].info[counter2] !="'")
precondition[counter2-ii]=data(i].info{counter2};
else
++i;
space=0;

72

NRL REPORT 9296

for (counter2=3; counter2<=length && space != 5; ++counter2)
if ((cause[counter2-3]=data[i].info[counter2]) ="")
++space;
space=0;
for (counter2=40; counter2<=length && space != 4; ++counter2)
if ((effect{counter2-40]=data(i].info[counter2]) =="")
++space;
if (numone == 0)
{
++numone;
fprintf(fp2, " (n");
}
/*find if the cause is the same as the module*/
if (strlen(strpbrk(cause, " ")) < 5)

fprintf(fp2," (%s %s\n (%s))\n" ,precondition,
cause, effect);

else

fprintf(fp2," (%s (%s)\n (%s))\n" precondition,
cause, effect);

)
}

[*clean up the variables*/
for (counter2=0; counter2<=50; ++counter2)
{
cause[counter2]=\0";
effect[counter2}=N0';
1
for (counter2=0; counter2<=30; ++counter2)
precondition[counter2]=\)';
++i;
} while (i<=filelength);
fprintf(fp2,”) \n\n");
‘ [*rules database*/
filelength=0;
while (answer=fgets(data[filelength)].info, LINE_LENGTH, fp3) != NULL)
++filelength;
fprintf(fp2, "(");
i=0;
ch=4;
if (ch<filelength)
find_col(data[ch].info, column); /*sets up the columns into int array column*/
do
{
if ((strpbrk(data[i].info, "*")) = NULL) /*skip over any line with **'s */
++i;
else
{
1i=0;
answer=data[i].info[ii];
if ((length=strlen(data[i].info)) > 55) && (answer !="")
{ f*does it begin with a character?*/
col=1; /*this is the column number*/
storenum= -1;

73

J. MOLNAR

for (counter2=0; counter2<=length && col < 6; counter2++)
if (datali].info[counter2]} !=""1I

(data[i].info[counter2] == "' && column[counter2] != 0))
switch(col)
{ /*set up variables depending on column*/
case 1: if (storenum == -1) storenum=counter2;
name[counter2-storenum]=data[i].info[counter2];
nextone=1;
break;

case 2: if (storenum == -1) storenum=counter2;
test_point[counter2-storenum]=data[i].info[counter2];
nextone=1;
break;
case 3: if (storenum == -1) storenum=counter2;
parameter{counter2-storenum)=data[i].info[counter2];
nextone=1;
break;
case 4: if (storenum == -1) storenum=counter2;
units[counter2-storenum]=data[i].info[counter2];
nextone=1;
break;
case 5: if (storenum == -1) storenum=counter2;
okreadin[counter2-storenum]=data[i].info[counter2];
nextone=1;
break;
}
else
if (nextone == 1)
{
++col; /*increment the column number*/
nextone=0; /*skip over spaces between columns without
incrementing col */
storenum= -1; /*the starting place for indivdual variables*/

}

/**

* hi lo ok value (ok (min max) lo (-inf min) hi (max inf))
* hi lo ok noval (ok lo hi)

* ok bad value (ok (min max) bad (-inf min) (max inf))
* ok bad noval (ok bad)

***/

[*the following method is used instead of the above column method because sometimes the data doesn't exist and the
program looks for nothing or misinterprets data found*/

ch=63;
if (data[i].info[ch] !="") f*there's s.t. there!!1*/
{
for (counter2=63; data[i].info[counter2] !=""; ++counter2)
min[counter2-63]=datafi].info[counter2];
if (strlen (min) < 6)
for (counter2=69; data[il.info[counter2] !="" | counter2<70; ++counter2)
max[counter2-69]=data[i].info[counter2];

74

NRL REPORT 9296

else

{

ch1=67,

if (data[i+1].infofch1] = \0")

for (counter2=67; data[i+1].info[counter2] !=""Hi

counter2<70; ++counter2);

}
max[counter2-671=data[i+1].info[counter2];

[*the data[i+1] is used above because if the qual val is to long,
there's no space for the second on the same line, and it's
located underncath*/

}
else
if (data[il.info[ch+1] !="")

{

for (counter2=64; datafi].info[counter2] !=""; ++counter2)
min[counter2-64]=datali].info[counter2];

if (strlen (min) < 6)
for (counter2=70; data[i].info[counter2] !=""1ll counter2<71; ++counter?)
max[counter2-70]=data[i].info[counter2];
else
{
ch1=68;
if (data[i+1].info[ch1] !="\0")
for (counter2=68; data[i+1].info[counter2] !1=""1
counter2<71; ++counter2)
max[counter2-68]=data[i+1].info[counter2];

}

if (atof(min) > atof(max))
printf("Problem with min max values in %s %s.\n", name, test_point);
f*if the min is greater than the max, there's a problem.*/
ii=58; /*this is done because sometimes the data's in the wrong space*/
for (counter2=58; counter2<60; ++counter2)
if (data[i+1].info[counter2] !="")
okreadin2[counter2-ii]=datafi+1].info[counter2];
else
++il;
if (strlen(data[i+2}.info) >58)
for (counter2=58; data[i+2].info[counter2} ="' &&
counter2<strlen(data[i+2].info); ++counter2)
okreadin3[counter2-58}=data[i+2].info[counter2];
ii=77;
for (counter2=77; counter2<80; ++counter2)
if (data[i].info[counter2] !="")
lilnum{counter2-iij=datafi].info[counter2];
else
++ii;

75

J. MOLNAR

/******** priming time *********/
fprintf(fp2, " (%s (%s %s\n S1\n",
name, test_point, parameter);
if ({okreadin[0] == ') && (okreadin2[0] == '0%)

fprintf(fp2, " ((ok) (faulted)\n");

if ((okreadin[0] == 'a") && (okreadin2[0] == '07)
fprintf(fp2, " ((absent) (ok))\n");

if ((okreadin[0] = 'p") & & (okreadin2[0] = '0")
fprintf(fp2, " ((ok) (present))\n™);

if ((okreadin[0] = '0") & & (okreadin2[0] == '0"))
fprintf(fp2, " ((ok) (om))\n");

if ((okreadin[0] == 'b") && (okreadin2[0] == '0"))
if (min[0] = \0")

fprintf(fp2, " ((ok) (bad))\n");
else
fprintf(fp2,” {(ok (%s %s)) (bad (-inf %s) (%s inf))\n", min, max, min, max);

if ((okreadin{0] == 'h") && (okreadin2{0] == TY))
if (min[0] = \0")

fprintf(fp2, " ((ok) (lo) (hi))\n");
else
fprintf(fp2,
" ((ok ((%s %s))) (lo ((-inf %s))) (hi ((%s inf))))\n", min, max, min, max);
fprintf(fp2, " es\n D\n", units);
fprintf(fp2, " %s\n NIL\n", lilnum);
}
}
for (counter2=0; counter2<=30; ++counter2)
{

name[counter2]=\0";
test_point[counter2]=N0'; fcleaning up the variables*/
parameter[counter2]="\0';
}
for (counter2=0; counter2<=20; ++counter?2)
units{counter2]=\0";
for (counter2=0; counter2<=10; ++counter2)
{
okreadin{counter2]=\0)";
okreadin2[counter2]=N0";
okreadin3[counter2}=\0'";
lilnum{counter2}=N0";
min[counter2}=N)";
max[counter2]j=\0";
}
++;
} while (i<=filelength);
fprintf(fp2," N\n");
fprintf(fp2,"NIL\aNIL\aNIL\n");
close(fpl);
close(fp3);
close(fp2);

76

NRL REPORT 9296

/***************************f{nqcnjcnqs*****************************/

find_col (string, columns)

char *string;
int columns(];

{
int k=0, num=0;

while (string[k] =="") columns[k++]=1;
if (k==0) columns[k++]=1;
while (string[k] != \0)

{
if (string[k]=="") columns[k]=0;
else
if (string[k-1] !="") columns[k] = num;
else
columns[k] = ++num;
k++;
}
while (k < LINE_LENGTH) columns[k++]=0;
return;

}

/**

* This function looks at a header and develops column fields:
E 3

* Headerl H2 Head3 Header4

* 11111111110002200333330000000444444400000

*

* as such, to find out what column a specific piece of data

* is in.
**/

77

Appendix G
CONVERSION PROGRAM RULE DATABASE

/***
*

* Program CONVERT
E 3

* This program converts causal rule data given in tabular form to data in a

* LISP format that may be used as input to the Fault Isolation System (FIS)
* package. The tabular input file consists of cause-effect relationships

* for a given module, and any number of modules may be specified. CONVERT*
* allows much flexibility with regard to the format of the input file, but

* several restrictions are necessary:

*

* 1. Each set of cause-effect relationships for a module must be

* seperated by a line:

* Module: <module_name>

* Note any number of spaces and tabs is allowed before, within, and after
* the line.

* 2. Each cause-effect relationship for a module must be numbered and

* given in the following form:

* <no.> <cause> <effect> <type> <precondition>

* <effect> is a triplet of the following form:

* <terminal> <parameter> <abnormality>

* <cause> is either a triplet as above or an atom of the form:

* <module_name>

* Again, any number of spaces and tabs is allowed within the line: each
* parameter field is determined by its position on the line relative to

* the others, not by its columnar location.
*

*

*

*

*

*

*

*

*

*

*

*

¥ ¥ ¥ R ¥ ¥

3. The <cause> field given above may also be a conjunction of causes. If
so, the cause-effect relationship may appear on one or more lines:
<no.> <causel> & <cause2> & ... & <causen> <effect> <type> <pre.
or:
<no.> <causel> & ... & <causem> &
<causem+1> & ... & <causek> &

<causei> & ... & <causen> <effect> <type> <precondition>
Note that each cause must be seperated by '&' and that, if the list of
causes continues to the next line, the last character on the line (other
than a space or tab) must be '&'. Each cause may be either an atom or a
triplet as describe above.
* 4, Parentheses may not appear anywhere in the input file.
* 5. Comments may appear anywhere in the file. They are delimited on the
* Jeft by either [or { and on the right by] or }. Mixing of delimiters
* is not allowed: comments started with a bracket must end with a
* bracket, and those started with a brace must end with a brace. Both
* delimiters must occur on the same line.
* 6. The maximum number of characters allowed on an input line (including
* gpaces and tabs) is MAX_LENGTH (specified in the C program).
*

R OR K K F ¥ ¥ OH X R X R OF X ¥ R % K % X ¥ R X K OF OF K K ¥ ¥ ¥ K F X ¥ ¥ X ¥

79

J. MOLNAR

* Any line appearing in the file that does not follow the format described
* above is simply ignored. Thus headers, page numbers, spaces, etc. are
* permitted anywhere and will have no effect (as long as they cannot be
* interpreted in one of the ways described above).

*

* The output of the program is a series of lists in which the head is the
* module name and the tail is a list of cause-effect relationships:

%

(module_name

(

(cause effect [precondition])

(cause eff-ect [precondition])

)

(module_name
)]
*

* ‘effect’ is always of the form '(terminal parameter abnormality)' and

* ‘cause’ is either in this form or a non-parenthesised atom: 'module_name’
* The precondition is printed only when it is given as something other than
* "t". Thus for the input line

* 4 terml parl effectl term2 par2 effect2 s ¢t

* the output will be

* ((term1 parl effectl) (term2 par2 effect2))

* And for the input line

* 5 module term3 par3 effect3 s precondl

* the corresponding output line will be

* (module (term3 par3 effect3) precondl)

* For the case when ‘cause’ is a conjunction of causes, the ouput will look
* as follows:

* ;(causel & cause2 & ... & causen effect type [precondition])

* Each cause is either a triplet (in parentheses) or an atom. Note that this
* line is commented out (a semicolon in LISP indicates a comment)

* because the the FIS package is not yet able to handle this case.
*

sk ok d ok dk 3k dk ok ok sk %k dk sk ok ok ok %k %k k sk %k k %k k k dk Xk %k %k %k k %k k Xk k k ¥k *k *k %

*/

L2EE TN SR IR A A

#include <stdio.h>

#define MAX_LENGTH 200 /* maximum length of input line */
#define TRUE 1

#define FALSE 0

#define MAX_MODULE_NUM 200

FILE *fpl, *fp2[MAX_MODULE_NUM]; /* pointers to input, output files */

main()
{
char stringlMAX_LENGTH]; /* array into which input line is placed */
char c[6];
char name1[30], name2[30]; /* file names of input, output files */
int num, k, k1, a, i;

do {

printf("Enter the name of the file to be converted... ");
scanf("%s" ,namel);

80

¥O% ¥ R XK X R E E R OH ¥ O X O ¥ F X X ¥ OF ¥ X OF X ¥ X F O ¥ X F ¥ H X ¥

NRL REPORT 9296

if (fp1=fopen(namel,"r")) == NULL)
printf("No such file exists.\n");
} while (fpl == NULL);

/*
Read in lines until the first module identification is found.

*/

num = gets_1(string);

while (stncmp("Module:",&string[num],7) !=0)
num = gets_1(string);

/* Disregard spaces or tabs before module name. */

for (k=num+7; string[k]=="" Il string[k}=="\¢"; k++) ;

/* Place a NUL character at end of module name. */

for (k1=k; string[k1]!="" && string[k1}!=\t' & & string[k1]!="\0"; k1++) ;

string[k1] = \0";

i=0;

strcpy (name?2, &string[k]);

fp2[i] = fopen(name2,"w+");

/*
This is the main loop in the program. Each line is read until EOF is
encountered. If the first character in the line (other than a space or
tab) is a digit, then routine 'sep’ is called to print the output line if
it is in the proper format. If the first character is not a digit, then
a check is made to see if the line is a module identification. If so, the
module name is printed, otherwise no output is given for this line. The
routine 'strncmp(s1,s2,n)' compares the first n characters of strings s1
and s2 and returns O if they are the same.

*/

while((num=gets_1(string)) = 999)

if (stringfnum}>="0" && string{num}<='9") /* digit check */
sep(&string[num].i);

else if (strncmp("Module:" &string[num],7) == 0) { /* New module found */
fclose (fp2[i++]); /*close the last module file */
for (k=num+7; string[k]==""1I string(k]=="\t'; k++) ;
for (k1=k; string[k1]!="" & & string[k1]!="\' & & string[k1]!="\0";

kl++);

string[k1] ="\0"; /* Place NUL character at end of module name. */
strcpy (name2, &string[k]);
fp2[i] = fopen(name?2,"w+"); /* open the new module file */

}

/* Close input and output files. */
fclose(fpl);

/***************************************
*

* SEP(STRING,])
*

* Routine SEP receives an input line beginning at location STRING. This
* input will be recognized (i.e. output wil be generated) if given in the

* form descibed previously, that is:

* <no.> <cause> <effect> <type> <precondition>

¥R R ¥ ¥ X X ¥

81

J. MOLNAR

* where <effect> is a triplet and <cause> is either a triplet or an atom and
* may be a conjunction of several causes.

* SEP performs character by character examination of the input string,

* during which it is always in one of four possible states (or MODEs):

* MODE = 0: An input parameter is being read.

* MODE = 1: Spaces or tabs are being read.

* MODE = 2: A comment is being read (bracket delimeters).

* MODE = 3: A comment is being read (brace delimeters).

* The array of pointers DATA stores the locations of the parameters on the
* input line. After the string has been processed, a check is made to see if
* the input is in the correct format. If so, the appropriate output line is

*
*

printed.

¥R R R ¥ X X R ¥ X ¥ X X

% % %k ok Sk kb N %k v ok %k ok %k ok %k %k %k ok %k k 3k %k ok Kk ¥ %k %k k sk k %k %k *k %k %k %k %k k *k ¥

*/

sep(string,i)
char *string;
int i;

{

intmode=1,m=0,nl1 =-1;

int n, k, num, k1, k2, OK, LOOP;

char *loc;

char *strrchr();

char data[50]1[50]; /* stores a max of 50 parameter fields */

char sIIMAX_LENGTH]; /* array in which an input line following a

conjunction of causes is placed */
do {
n=-1;
while (string[++n] != 0)
if (mode ==0) {

if (string[n] !="" && string[n] != \t")
data[n1][m++] = string[n]; /* update current parameter field */
else { /* end of current parameter field */
mode = 1;
data[n1][m] = 0; /* place NULL character at end of string */

)
else if (mode == 1) {
if (string[n] == '[") mode = 2; /* start of a comment */
else if (string[n] =='{") mode = 3; /* start of a comment */
else if ((string[n] !="") && (string[n] != \t)) {
mode = 0; /* new parameter field encountered */
m = 0;
data{++n1][m++] = string[n];

)
else if (mode==2 & & string[n]=="]") mode = 1; /* end of a comment */
else if (mode==3 & & string[n]=="}") mode = 1; /* end of a comment */

if (mode == 0) data[n1][m] = 0; /* place NULL chr at end of string */
LOOP = FALSE;

82

NRL REPORT 9296

/*
Exit the main loop only if the last character on the input line (other
than a space or tab) is not &. If it is, then read the next input line
and repeat the loop, updating array DATA.
Routine 'strrchr(st,ch)’ returns the address of the last appearance of
the character chr in string st (it returns O if ch does not appear in

the string).
*/
if ((loc=strrchr(&string[0],'&") 1= 0) {
for (++loc; *loc==""Il *loc=="\{'; loc++) ; /* disregard spaces and

tabs after '&' */
if (*loc == 0) { /* last chr on line was '&"; read in new line */
num = gets_1(s1);
string = &s1[num];
mode = 1;
LOOP = TRUE;
}

}
} while (LOOP == TRUE);
/*

Check the input to make sure it is in the correct form. That is, the

the cause must have either one or three fields, and there must be exactly
six other fields present (three for effect, and one each for no., type,

and precondition). If the cause is a conjunction, then each '&' must be
seperated by one or three fields. If any of these restrictions does not

hold, then set OK to FALSE. Note that N1 indicates the total number of
input fields, and the array DATA points to those fields.

*/
OK = TRUE;
num = 0Q;

for (k1=1; (k1 < n14) && (OK == TRUE); k1++)
if (data[k1][0] = "'&")
if (num !=1 && num != 3) OK = FALSE; /* must have 1 or 3 fields */
else num = 0; /* between each '&' */

else num = num + 1;
if (num!=1 && num!=3) OK = FALSE;

/*
Generate output only if input was found to be in correct form. First the
appropriate cause output will be given, followed by the effect, and then
by the prcondition (if not equal to "t").

*/

if (OK == TRUE) {
fprintf(fp2[i]," %s ",data[n1]); /* precondition field */
if (k1 == 2) fprintf(fp2[i]," %s ",data[1]); /* 1 field, no '&' present */
else if (k1==4 && data[2][0]!='&") /* 3 fields, no '&' present */
fprintf(fp2[il," (%s %s %s) ",data[1],data[2],data[3]);
else { /* there is at least one '&' present */
k2=1;
fprintf(fp2[il," ; ("); /* print a semicolon to comment out the line */

83

J. MOLNAR

while (k2 < nl1-4)
if (data[k2+1][0] =="'&") { /* 1 field, followed by ‘&' */
fprintf(fp2[i],"%s & ",data[k2]);
kK2=k2+2;

}
else if (data[k2+3][0] == '&") { /* 3 ficlds, followed by '&' */
fprintf(fp2[il,"(%s %s %s) & ".datalk2] data[k2+1],data[k2+2]);
k2 =k2 + 4;

)
else if (k2+2 < n1-4) { /* last cause, 3 fields */
fprintf(fp2[il," (%s %s %s) ",data[k2],data[k2+1],data[k2+2]);
k2 =k2 +3;

else { /* last cause, 1 field */
fprintf(fp2[i],"%s ",data[k2]);
kK2=k2+1;

)

/* print rest of output line. */
fprintf(fp2[il," (%s %s %s)\n" data[n1-4],data[n1-3],data[n1-2]);

return;

}

/**
*

* GETS_1(STRING)
*

* This routine reads a line of input and places it into the character array
* STRING, replacing the newline charcater with a NULL character. The
* function returns the index of the first array element that is not a space

* or a tab. It returns '999' on end-of-file.
*
%k %k %k K %k %k ok ok ck %k %k sk %k Kk %k k %k %k sk k %k K >k %k %k %k %k %k %k &k Kk ¥k ¥ %k *k %k %k ¥k %k ¥k

*/

gets_1(string)
char *string;
{
intk; /* number of spaces and tabs before first character */

if (fgets(string, MAX_LENGTH,fp1) == NULL) return{(999);
for(k=0; string[k]=="" Il string[k]=="{; k++) ;
*(&string[strespn(string,“\n")]) = 0

return(k);

84

¥ OX X K K K X ¥

Appendix H

AUTOMATIC CONVERSION PROGRAM FOR TEST DATABASE

/***
*

* Program CON2
%

* This program converts FIS test data given in tabular form to data in a

* LISP format that can be used as input to the FIS package. The

* restrictions for the format of the input file are as follows:

*

* 1. Nine columns of data are recognized. They are (in order): module name,

* test point, parameter, units, possible qualitative values, maximum

* value, minimum value, cost, and prequisites. Any column after these

* nine is ignored.

* 2. Before the data are given, a column header must appear in order to
establish the column locations. This header should have the following
form:

$3
$1 POSS
TEST $2 QUAL $4 $5 COST,
NAME POINT PARAMETER UNITS RES MIN MAX SECONDS PREREQUISITES

*

*

*

*

E

*

%

* Although preferable, the header does not have to look like this. CON2
* simply looks at the lowest line in the header, and establishes column
* locations by searching for groups of characters seperated by one or
* more spaces. However, there must be exactly four lines in the header,
* and the first line must contain only the characters "$3" (other than
* spaces). If other columns are desired, there must be appropriate

* column headers for them.

* 3. Comments may appear anywhere in the file. They are delimited on the

* left by '[' and on the right by "I'. Anything appearing in the file

* that is not part of a header is considered as data. Thus page numbers,

* dates, page headers, etc. must be bracketed.

* 4, Data for a particular module do not have to appear on consecutive lines.

* That is, comments and blank lines may break up a block of data. This is
* useful, for example, if you would like to extend a prerequisite list

* onto a next page. NOTE: A new column header may not break up a block
* of data.

* 5. The maximum number of characters allowed on an input line is

* MAX_LENGTH (specified in the C program).

*

* The output of the program is a series of lines in the foolowing form:
*

LI R R S R B R S A K B B R S R R R S K R R R TR B CBEE BT B T S S R R

* (<name> <test_point> <parameter> <qual>
* p <units> (lcostl Iprereqll Iprereq2l ... Iprereq13l))

85

J.MOLNAR

* *
* <qual> may take several forms, depending on what is in the possible *
* gualitative values column and what is in the min and max columns. This *
* is summarized in the following chart: *
* *
* MIN and *
* POSS QUAL MAX given <qual> *
* *
* hilo ok YES (ok (min max) hi (max inf) lo (-inf min)) *
* hilo ok NO (hi lo ok) *
* good lo ok YES (good (min max) hi (max inf) lo (-inf min)) *
* good lo ok NO (good lo ok) *
* ok bad YES (ok (min max) bad (-inf min) (max inf)) *
* ok bad NO (ok bad) *
* good bad YES (good (min max) bad (-inf min) (inf max)) *
* good bad NO (good bad) *
* qlq2q3 YES ERROR *
* qlq2q3 NO (q1 92 g3) *
* qlq2 YES ERROR *
* qlq2 NO (q1 q2) *
* *
* (q1, q2, and g3 indicate other qualitative descriptions) *
* For each block of test data there are thirteen prerequisites that must be *
* specified (sec routine 'print_pre' for a list of them). Each is assumed to *
* have two parts: the prerequisite identifier and the variable descriptor *
* (for example, ‘active_mode on"). If the identifier is not found in the *
* prerequisite list in the input, then that prerequisite will be given as Izl *
* on the output. *
* When an error is encountered on the input, an error message will be *
* printed at the line in which the error occured. *
* %
Sk sk %k %k %k ck ok sk ook dk kK ok sk %k %k ok %k %k %k sk ok %k %k %k dk %k %k sk 3% %k %k 3k %k %k %k %k %k %k %k %k k %k ok k %k %k Kk %k k)k *k *k %k ¥k %k %k

*/

#include <stdio.h>

#define MAX_LENGTH 200 /* maximum length of input string */
#define ER_MSG "***Error on this line*** "

#define ERROR ER1 = TRUE

#define ASSIGN(X) if (X[0] == \0) strcpy(X,word); else ERROR; break
#define TRUE 1

#define FALSE 0

struct

{
char terminal [30];
char test [50][30];
)

terminal_name[300];

ini N, ER1;
FILE *fp1, *fp2,*fp3;

main()

86

NRL REPORT 9296

char string[MAX_LENGTH]; /* array into which input line is placed */

char infile[30], outfile[30]; /* input, output files */

int columnsfMAX_LENGTH]; /* column identification array */

char word[100], c[6];

/* The following character arrays store the nine data fields for each block
of test data. Note that prel is the is the first prerequisite field (the
identifier) and pre2 the secound (the variable descriptor).

*/

char name[30], test_point[30], parameter[30], min[10], max[10], cost[30],

pre1[15]1[30], pre2[151[301, qual[3]1[10], units[30];

int qual_num, pre_num; /* array indexers for qual and prel and pre2 */

int num, L, FIRST, i, k, a, j, error_line_count=0;

/* initalize the array */
i=0;
j=0;
for (i=0;i<300;++i)
strcpy (terminal_namelfi].terminal,™);
for (j=0; j<=50; ++j)
strcpy (terminal_namel[i].test,"™);

ER1 = FALSE; /* ER1=TRUE when an error on the input occurs */
do { /* Read in the input file name */
printf("Enter the name of the input file...);
scanf("%s" infile);
if ((fp1=fopen(infile,"r")) == NULL)
printf("No such file exists.\n");
} while (fpl == NULL) ;

printf("Do you wish the error file to be sent to the screen (s) or a file (f) ");
scanf("%s".c);
if (c[0]==T Ul c[0]==TF)

fp3= fopen("ERROR_FILE","w");

else
fp3 = stdout; /* stdout is the screen */
printf("\n\n");

/* Read in the output file name */
printf("Enter the name of the output file... ");
scanf("%s" outfile);

printf("™\n\n");

FIRST = 1;

/*

This is the main loop (highest level) loop in the program. A line of input
is read and stored in 'string’. L indicates the length of the string and N

is the current point in the string that is being examined. Note that N is
global and is updated in routine 'get_word’, which returns the next word

87

J.MOLNAR

(group of characters) to ‘word' and the column header number under which the

word is located.

while (fgets(string,200,fp1) = NULL) {
error_line_count++;
string[strcspn(string,™\n")] = \0;
L = strlen(string);
N=0;
while N <L) {
if (string[0]=="")
break; /* line begins with an * and should be ignored */
num=get_word(word,string,columns);
switch(num) {
case 1: /* The current word is a module name. Print out data for
previous test data block, initialize pre_num, qual_num,
and FIRST, and set name equal to the current word.
*/

print_data(name,test_point,parameter,units,qual,min,max,

cost,prel,pre2,pre_num,qual_num, FIRST error_line_count);

pre_num = -1;
qual_num = -1;

FIRST = 0;
strcpy(name,word);
break;

case 2: ASSIGN(test_point); /* current word is test_point */
case 3: ASSIGN(parameter); /* current word is parameter */
case 4: ASSIGN(units); /* current word is units */
case 5: /* Current word is one of the descriptors in the POSS QUAL

column. Increment the qaul_num index and store word

in the qual array.
*/
if (++qual_num > 2) ERROR;
else strcpy(qual{qual_num],word);

break;
case 6: ASSIGN(min); /* current word is the min value */
case 7: ASSIGN(max); /* current word is the max value */

case 8: /* The current word is in the cost field. Since several
strings in a test data block may be assigned to this
field (because of constructs such as "10 + ping_cycle_
time") each word must be appended to the previous value
of cost with a space in between (unless, of course, the
current word ends with an underscore, in which case the
rest of that word is on the next line and the two must

be appended without the space).
*/
if (cost[0] == \O") strcpy(cost,word);
else {

k = strlen(cost);
if (cost[k-1] !="_") cost[k++] ="";
for (i=0; word[i}'=N0"; i++, k++)
cost[k] = word[i];
costlk] = \0;
}
break;

88

NRL REPORT 9296

case 9: /* The current word is the first part of a prerequisite
field. Increment the pre_num index and store it in the
prel array. Then get the next word. It should be the
second part of the prerequisite field; store it in pre2.
*
/
strcpy(prel{++pre_num],word);
if (get_word(word,string,columns) != 9) ERROR;
else strcpy(pre2[pre_num],word);
break;
case 99: /* 99 indicates that the first row of a column header was
encountered. Read in the next three rows and call
routine 'find_col' to set up the column fields.
*/
for (k=1; k<=3; k++) fgets(string, MAX_LENGTH,fp1);
find_col(string,columns);
default: ;
}
)

}
/* The output for the last test data block has not been given yet. */

print_data(name,test_point,parameter,units,qual,min,max,cost,prel,pre2,
pre_num,qual_num FIRSTerror_line_count);
make_big_file(outfile); /* concatenates all the little files */
}

/***
*

* GET_WORD(WORD,STRING,COLUMNS)
*

* This routine receives an input line STRING, and it stores in WORD the
* first group of characters (the first word) at or after location N (N is the

* global variable indicating the position in the input line currently being

* examined). It also returns the number of the column in which the word

* appears. If the end of the string is reached then it returns -1, and if

* a column header is reached 99 is returned. COLUMNS is an array storing

* the locations of each of the columns.
*

% %k %k sk %k %k sk dk ok ok ok %k %k %k %k %k k %k %k %k %k sk %k %k %k %k %k sk % %k %k sk %k ok ok *k %k %k %k %k % sk sk %k k %k %k *k %k % %k % %k k k *k

*/

*
*
*
E
*
*
*
*
%*
*
*
*

get_word(word string,columns)
int columns(];
char *word, *string;
{
charc;
int k, k1, k2, m;
int begin, end; /* begin is the location of the beginning of the word, and
end is the location of the end of the word. */

/* Disregard all spaces and comments before the first character.
*/

89

J. MOLNAR

while (string{N]}=="" Il string[N]=="") {
while (string[N] =="") N++;
if (string[N] ==) {
while (string[N] != T) N++;

N++;

)
}
if (string[N] == \0') return{-1); /* Return -1 if NUL character reached */
begin = N;
k=0;
while (string{N]!=""' && string[N}!=0) /* Store group of characters */

word[k++] = string[N++]; /¥ in word. */
end=N-1;

word{k] ="\0'; /* Place NUL character at end of word. */

if (stremp(word,"$3") == 0) { /* Return 99 if column header found. */
for (k1=N; string[kl] ==""; k1++) ;
if (string[k1] == \0") return(99);

}

/* The rest of the code in this routine determines in which column the word
is located. That column number is then returned.

*/

if (columns[end] == columns[begin]) {
if (columns[end] != 0) return(columns[end]);
k = begin;
while(columns[k]==columns[end] && k!=end) k++;
if (k != end) retum(columns[k]);
for (k1=begin ,k2=end; columns[k1]==columns(k2]; k1-- k2++) ;
if (columns[k1] == columns[end]) return{columns{k2]);
else return(columns(k1]);
}
for (k=begin; (columns[k}==columns[begin] | columns[k]==columns[end] !l
columns[k]==0) && k!=end; k++) ;
if (k != end) return(columns[k});
if (columnsfbegin] == () return(columnsfend]);
if (columns[end] == 0) return(columns[begin]);
for (k1=begin ,k2=end; columns[k1]==columns[begin] & & columns[k2}==
columns[end]; k1++,k2--) ;
if (columns[k2] == columns[end]) return(columns[end]});
else return(columns[begin});

}

/**
*

* FIND_COL(STRING,COLUMNS)
*

* This routine receives STRING, the lowest row in a column header, as input.
* It computes COLUMNS, an array in which each element contains a number
* corresponding to the appropriate column that is loacted there. Columns are
* given increasing numbers starting at one, and those locations between

* ¥ X X X X ¥

90

NRL REPORT 9296

* columns are filled with 0's. For example, the following column header
* (STRING) generates COLUMNS as shown:
*

%*
*
*
* STRING =" Headerl H2 Header3 Head4 ™" *
* COLUMNS = "1111111111002200000333333300444440" *
* *
* Note that leading spaces are filled with 1's. *
* *
%k sk %k %k 3k %k dk sk ok %k ak % 3k %k %k 3k sk %k dk 3k sk %k %k 3k sk 3k %k k %k %k sk k %k %k %k %k %k k %k %k %k *k %k Kk %k k %k k ¥k X ¥k ¥ *k k %k %k %k

*/

find_col(string,columns)
char *string;
int columns(];

{

int k=0, num = 0;

while (string[k] =="") columns[k++] = 1;
if (k == 0) columns[k++] = 1;
while (string[k] !="\0") {
if (string[k] =="") columns[k] = 0;
else if (string[k-1] {="") columns[k] = num;
else columns[k] = ++num;
k++;
}
while (k < 200) columns[k++] = 0;
return;
)

91

J.MOLNAR

% K Kk Kok ok koK ok koK Kok kK ko K ok ok K ok ok ko K kR K koK K KOk K K K K K ok K K Kk K Kk K K Kk
*

* IN(ST,QUAL ,NUM)
*

* stored in the array of strings QUAL. There are NUM+1 strings in QUAL.

*

*

*

* This predicate function returns TRUE if the string ST is one of the strings *
*

%* *
*

% %k sk ok %k ok %k ok %k sk sk sk ok %k sk k sk ok k % %k sk ok sk %k %k %k ok %k %k k %k %k % %k ok ok k ok %k %k k ok %k % *k *k Kk k % ¥ *k >k %k ok ok

*/

in(st,qual,num)
char *st, qual{]{10];
int num;

{

int i;

for (i=0; i<=num; i++)
if (stremp{qual[i],st) == 0) return(TRUE);
return(FALSE);
)

/***
* *
* PRINT_DATA *
% *
* This routine prints the output for one block of test data and initializes *
* all test data variables. The format of the output is described in previous *
* documentation. If an error was found on the input (ER1=TRUE), then an *
* eror message is printed. On the first call to PRINT_DATA (FIRST=TRUE), *

*
*
*

* no data are printed.
*

% ok ok k %k %k dk k %k ok k ok %k ok k k k k k %k %k % K k %k %k %k %k Kk k %k %k %k k *k k %k *k Kk %k %k %k %k ¥k k ¥k k k %k k k k k *k *k %k

*/

print_data(name,test_point,parameter,units,qual,min,max,cost,prel pre2,
pre_num,qual_num,FIRST error_line_count)
char *name, *test_point, *parameter, qual[]1[10], *min, *max, pre1{][30],
pre2[1[30], *cost, *units;
int pre_num, qual_num, FIRST,error_line_count;
{
int k,match=0,i=0, j, valid_test;
char filename[30];
if ({FIRST && !ER1)
{
while (strcmp(terminal_name/i].terminal,"") 1= 0)
if (stremp(test_point, terminal_name{i++].terminal)==0)
(
match =1;
break;
}

92

NRL REPORT 9296

if (stremp(test_point,"")!=0)

strepy(filename, test_point);
fp2 = fopen (filecname,"a+");

else
return(-1);

if (match = Q)
{
strcpy (terminal_name[i++].terminal,test_point);
if (fp2 '=NULL)
fprintf(fp2," (%s\n",test_point);
else
printf ("FP2 IS NULL\n");
i

}

/* check to see if unique test */
valid_test=1;
=0;
while (strcmp(terminal_namefi-1].test[j],"") != 0)
if (strcmp (terminal_name[i-1].test[j++],name)==0)
{
valid_test = 0;
break;
}

if (valid_test)

strepy(terminal_name[i-1].test[j],name);
if ({FIRST && 'ER1) {
fprintf(fp2," (%s %s\n",name,parameter);
fprintf(fp2," ST\n"); /*just a guess */
if (qual_num==1 && min[0]=="\0")
fprintf(fp2,” ((%s) (%es)\n" ,qual[1],qual[0]); /*get into format (ok bad) */
else if (qual_num==2 && min[0]==\0")
fprintf(fp2," ((%os)(%s)(%s))\n" ,qual[2],qual[1],qual[0]); ok lo hi */
else if (qual_num==1)
if (in("bad",qual,1) && in("ok",qual,1))
fprintf(fp2,” {((OK (%s %s)) (BAD (-INF %s) (%s INF))) \n", min,max,min,max);
else if (in("bad",qual,1) && in("good",qual,1))
fprintf(fp2," ((GOOD (%s %s)) (BAD (-INF %s) (%s INF)))\n",
min,max,min, max);
else ERROR;
else if (qual_num==2)
if (in("hi",qual,2) & & in("lo",qual,2) && in("ok",qual,2))

fprintf(fp2," ((OK ((%s %s))) (LO ((-inf %s)\n",
min,max,min);
fprintf(fp2," (HI ((%s inf)))\n",
max);
}

93

J. MOLNAR

else if (in("hi",qual,2) && in("lo",qual,2) && in("good",qual,2))

{
fprintf(fp2,” ((GOOD (%s %s))) (LO ((-INF %s)))\n",
min,max,min);
fprintf(fp2,” (HI ((%s INF))))\n",
max);
}
else ERROR;
else ERROR;
fprintf(fp2," %s\n" ,units);
fprintf(fp2," D\n");
fprintf(fp2," 10\n™);
fprintf(fp2,” NIL)\n");
}
}
/* Print error message if ER1=TRUE. */
if (ER1) {

fprintf(fp3,ER_MSG);
fprintf(fp3,"#%d\n" error_line_count);
ER1 = FALSE;

]

/* Initialize test data variables */

test_point[0] = \0';
parameter[0] = \0";
units{0] = \0;

min[0] = \O";
max[0] ="\0';
cost[0] = \0';

for (k=0; k<=2; k++) qual[k][0] = \O";
for (k=0; k<=14; k++) {

prel[k][0] = \O';

pre2[k][0] = N0,
}

fclose (fp2);

return;
/***
% *
* PRINT_PRE *
* *
* This routine prints the preconditions and cost field (format described in *
* previous documentation). The thirteen preconditions are defined in array *
* strings (note the zeroth element is a dummy string) *
% *
% %k %k sk sk ok ok W %k %k sk Kk 3k ko sk sk ok ok k %k %k %k %k sk sk %k k %k %k %k %k k %k %k %k ok k %k %k K ok ok %k ¥ ¥ % %k %k %k * %k k k k *k ¥ %k

*/
print_pre(prel,pre2,pre_num,cost)

char pre1[1[30], pre2[][301, *cost;
int pre_num;

94

NRL REPORT 9296

{
int n, n1, LOOP;
static char strings[14][15] = {

"zzz", "active_mode", "unit-26_door", "26A1_drawer", "unit-34", "scope”,
"unit-34_brg", "probe_on", "ac_diff_mtr", "counter”, "diff_scope”,
"diff_counter”, "PMFL_f", "PMFL_s"

K

/* Print the cost field */

if (cost{0] !="\0")
fprintf(fp3," (1%sl" ,cost);
else
fprintf(fp3,"(1zI");

/* Print each of the thirteen preconditions */

for (n=1; n<=13; n++) {
LOOP = TRUE,
/* Find a precondition that matches strings[n] */
for (n1=0; nl<=pre_num && LOOP==TRUE; nl++)
if (stremp(prel[n1],strings[n]) == 0) LOOP = FALSE,
nl--;
if (n==2 Il n==6 Il n==10)
fprintf(fp3,"\n ");
if (LOOP == FALSE) /* A precondition was found that matches string[n] */
fprintf(fp3.” 1%s %sl|",pre1[nl],pre2{n1]);
else /* LOOP = TRUE; a precondition was not found */
fprintf(fp3," 1zI");
}
}

make_big_file(outfile)
char *outfile;

{
char names2[50],string[1000],0ld_file[50];
int i=0,0one=0;

while(stremp(terminal_name[i].terminal,"")!=NULL)
{
if (one)
strcpy(names2,"HUMPTY™");
else
strcpy(names2,"dumpty™);
strepy(string,”");
strcpy(string,“cat ");
strcat(string,old_file);
strcat(string,” ");
strcat(string,terminal_namefi].terminal);
strcat(string,” > "
strcat(string, names2);

95

J.MOLNAR

strcpy(old_file,names2);
system(string);
if (one ==0)
one =1;
else
one = (;
++i;
}
/* copy to the user defined outfile name */
strepy(string,"");
strepy(string,“cp ");
if (lone)
strcat(string,” HUMPTY ");
else
strcat(string," dumpty ");

strcat(string,outfile);

system(string);

}

96

Appendix I
SEMIAUTOMATIC CONVERSION PROGRAM FOR TEST DATABASE

#include <stdio.h>

#define MAX TENGTH 200 /* maximum length of input string */
#define ER_MSG "***Error on this line***"

#define ERROR ER1 = TRUE

#define ASSIGN(X) if (X[0] == \0") strcpy(X,word); else ERROR; break
#define TRUE 1

#define FALSE 0

struct
{
char terminal [30];
char test [501{301;
}

terminal_name[300];

int N, ER1;
FILE *fp1, *fp2,*fp3;

main()
{
char stringlMAX_LENGTH]; /* array into which input line is placed */
char infile[30], outfile[30]; /* input, output files */
int columns[MAX_LENGTH]; /* column identification array */
char word[100], c[6];
/* The following character arrays store the nine data fields for each block
of test data. Note that prel is the first prerequisite field (the
identifier) and pre2 the secound (the variable descriptor).
*/
char name[30], test_point[30], parameter[30], min[10], max[10], cost[30],
pre1{15]1(301, pre2[15]{30], qual[3][10], units[30];
int qual_num, pre_num; /* array indexers for qual and prel and pre2 */
int num, L, FIRST, i, k, a, j, error_line_count=0;

/* initalize the array */
i=0;
1=0;
for (i=0;i<300;++i)

strcpy (terminal_namel[i].terminal,"");

for (j=0; j<=50; ++j)

strcpy (terminal_namel[i].test,”");
ER1 = FALSE; /* ER1=TRUE when an error on the input occurs */

97

J.MOLNAR

do { /* Read in the input file name */
printf("Enter the name of the input file... ");
scanf("%s" infile);
if ((fp1=fopen(infile,"r")) == NULL)
printf("No such file exists.\n");
} while (fpl == NULL) ;
printf("Do you wish the output to be sent to the screen (s) or a file (f) ");
scanf("%s" c);
if (c[0]=="T)
do { /* Read in the output file name */
printf("Enter the name of the output file... ");
scanf("%s" outfile);
if ((a=access(outfile,0)) == 0) {
printf("The file already exists.\n");
printf("Do you wish to write over it (y or n)? ");
scanf("%s".c);
)
if ((a==0 && (c[0]=="y' Il c[0]=="Y")) Il a!=0)
fp3= fopen(outfile,"w");
} while (a==0 && (c[0]=="n" Il c[0}=="N");
else fp3 = stdout; /* stdout is the screen */
printf("™n\n");

FIRST = 1;

/*
This is the main loop (highest level) loop in the program. A line of input
is read and stored in 'string’. L indicates the length of the string and N
is the current point in the string that is being examined. Note that N is
global and is updated in routine 'get_word', which returns the next word

(group of characters) to 'word' and the column header number under which the
word is located.

*/
while (fgets(string,200,fp1) != NULL) {
error_line_count++;
string[strcspa(string,™n")} = \0’;
L = strlen(string);
N=0;
while (N <L) {
if (string[0] == "*")
break; /* erroneous line */
num=get_word(word,string,columns);
switch(num) {
case 1: /* The current word is a module name. Print out data for
previous test data block, initialize pre_num, qual_num,
and FIRST, and set name equal to the current word.
*/
print_data(name,test_point,parameter,units,qual,min,max,
cost,prel pre2,pre_num,qual_num,FIRST ,error_line_count);
pre_num = -1;
qual_num = -1;
FIRST = 0;
strcpy(name,word);
break;

98

NRL REPORT 9296

case 2: ASSIGN(test_point); /* current word is test_point */
case 3: ASSIGN(parameter); /* current word is parameter */
case 4: ASSIGN(units); /* current word is units ~ */
case 5: /* Current word is one of the descriptors in the POSS QUAL
column. Increment the gaul_num index and store word
in the qual array.
*/ if (++qual_num > 2) ERROR;
else strepy(qual{qual_num],word);
break;
case 6: ASSIGN(min); /* current word is the min value */
case 7: ASSIGN(max); /* current word is the max value */
case 8: /* The current word is in the cost field. Since several
strings in a test data block may be assigned to this
field (because of constructs such as "10 + ping_cycle_
time") each word must be appended to the previous value
of cost with a space in between (unless, of course, the
current word ends with an underscore, in which case the
rest of that word is on the next line and the two must
be appended without the space).
*/
if (cost[0] == \0') strcpy(cost,word);
else {
k = strlen(cost);
if (cost[k-1] 1="_") cost[k++] ="";
for (i=0; word[i]!="\0"; i++, k++)
cost[k] = word[i];
cost[k] = \O';
)
break;
case 9: /* The current word is the first part of a prerequisite
field. Increment the pre_num index and store it in the
prel array. Then get the next word. It should be the
second part of the prerequisite field; store it in pre2.
*/
strepy(prel[++pre_num],word);
if (get_word(word,string,columns) != 9) ERROR;
else strcpy(pre2[pre_num],word);

break;
case 99: /* 99 indicates that the first row of a column header was

encountered. Read in the next three rows and call
routine 'find_col' to set up the column fields.
*/
for (k=1; k<=3; k++) fgets(string, MAX_LENGTH,fp1);
find_col(string,columns);
default: ;
}
}
)
/* The output for the last test data block has not been given yet. */
print_data(name,test_point,parameter,units,qual, min,max,cost,prel,pre2,
pre_num,qual_num,FIRST error_line_count);

99

J. MOLNAR

/**

*

* GET_WORD(WORD,STRING,COLUMNS)
*

* This routine receives an input line STRING, and it stores in WORD the first

* group of characters (the first word) at or after location N (N is the

* global variable indicating the position in the input line currently being
* examined). It also returns the number of the column in which the word
* appears. If the end of the string is reached then it returns -1, and if

* a column header is reached 99 is returned. COLUMNS is an array storing the

* locations of each of the columns.
%*

OX K K ¥ ¥ R X ¥ O ¥

s %k ok dk ok ok %k % dk dk dk %k sk ok sk %k sk ck %k %k dk dk K k %k %k ¥k %k %k 3k %k %k %k %k %k %k %k %k %k %k k %k k ok % k %k k %k ¥ k¥

*/

get_word(word,string,columns)
int columnsf{];
char *word, *string;
{
char c;
int k, k1, k2, m;
int begin, end; /* begin is the location of the beginning of the word, and
end is the location of the end of the word. */

/* Disregard all spaces and comments before the first character.
*/
while (string[Nj==""1l string[N]=="[") {
while (string[N] =="") N++;
if (string[N] =) {
while (string[N] !="]") N++;
N++;
}
)

if (string[N] = \0') return(-1); /* Return -1 if NUL character reached */

begin = N;

k=0;

while (string[N}!=""' && string[N]!=0) /* Store group of characters */
word[k++] = string[N-++]; /* in word. */

end=N-1;

word[k] = N\0'; /* Place NUL character at end of word. */

if (stremp(word,"$3") == 0) { /* Return 99 if column header found. */
for (k1=N; stringfk1] ==""; k1++) ;
if (string[k1] == N\0") return(99);

)

/* The rest of the code in this routine determines in which column the word
is located. That column number is then returned.
*/

if (columns[end] == columns[begin]) {
if (columnsfend] != 0) return(columns[end]);

100

NRL REPORT 9296

k = begin;
while(columns[k]==columns[end] && k!=end) k++;
if (k != end) return(columns(k]);
for (k1=begin k2=end; columns[k1}==columns[k2]; k1--k2++) ;
if (columnsfk1] == columns[end]) return(columns[k2]);
else return(columns[k1]);
}
for (k=begin; (columns[k]==columns[begin] # columns[k]==columns[end] Il
columns[k]==0) && k!=end; k++) ;
if (k != end) retum(columns[k]);
if (columns[begin] == 0) return(columns{end});
if (columns[end] == 0) return(columns{begin]);
for (k1=begin k2=end; columns[k1]==columns[begin} && columnsk2]==
columns[end]; k1++,k2--) ;
if (columns[k2] == columns[end]) return(columns[end]);
else return(columnsfbegin]);

}

/**

*

* FIND_COL(STRING,COLUMNS)
*

* This routine receives STRING, the lowest row in a column header, as input.
* It computes COLUMNS, an array in which each element contains a number
* corresponding to the appropriate column that is located there. Columns are
* given increasing numbers starting at one, and those locations between

* columns are filled with 0's. For example, the following column header

* (STRING) generates COLUMNS as shown:

* .

* STRING =" Headerl H2 Header3 Head4 "
* COLUMNS = "1111111111002200000333333300444440"

*

* Note that leading spaces are filled with 1's.

*

L N R I R R I R K I R R

% %k %k %k %k %k %k %k %k k k Kk %k ok sk Kk ¥ k k % %k ¥k % %k ¥k 3k ¥ ¥k 3k %k ¥ k k k %k k k %k *k *k k k *k ¥k k k k k *k *k kK

*/

find_col(string,columns)
char *string;
int columns(];

{

int k = 0, num = 0;

while (string[k] =="") columns[k++] = 1;
if (k == 0) columns[k++] = 1;
while (string[k] = "\0") {
if (string[k] == "'") columns[k]} = 0;
else if (string[k-1] !="") columns[k] = num;
else columnsfk] = ++num;
k++;
)
while (k < 200) columns(k++] = 0;
return;

}

101

J.MOLNAR

/**
*

* IN(ST,QUAL NUM)

* This predicate function returns TRUE if the string ST is one of the strings
* stored in the array of strings QUAL. There are NUM+1 strings in QUAL.

*

* R X X X X

sk % ok %k ok ok ok ok ok ok ok sk ok ok 3k 3k ok k %k k %k sk %k ok ok ok ok ok k ok %k k dk %k dk %k k %k %k k k %k *k *k ¥k %k k ok k *k k¥

*/

in(st,qual,num)
char *st, qual[][10];
int num;

{

int i;

for (i=0; i<=num; i++)
if (stremp(qual[i],st) == 0) return(TRUE);
return(FALSE);
}

/**
*

* PRINT_DATA

*

* This routine prints the output for one block of test data and initializes

* all test data variables. The format of the output is described in previous

* documentation. If an error was found on the input (ER1=TRUE), then an

* error message is printed. On the first call to PRINT_DATA (FIRST=TRUE), no

* data are printed.
*

¥R X X ¥ X X X ¥

% o %k ok ok %k dk ok sk %k ok ok ok sk sk %k 3k %k %k ok %k ok >k vk ok sk ok K %k ok %k ok Ak dk dk sk ok %k %k 3k k %k k *k %k ok %k ok *k *k *kxk

*/

print_data(name,test_point,parameter,units,qual,min,max,cost,prel,pre2,
pre_num,qual_num,FIRST error_line_count)
char *name, *test_point, *parameter, qual[]{10], *min, *max, pre1{J[30],
pre2[1{30], *cost, *units;
int pre_num, qual_num, FIRST error_line_count;
{
int k,match=0,i=0, j, valid_test;
char filename[30];
if ({FIRST && !ER1)
{
while (strcmp(terminal_name[i].terminal,"") != 0)
if (stremp(test_point, terminal_nameli++].terminal)==0)
{
match =1;
break;
}
if (strcmp(test_point,"")!=0)
{

strepy(filename, test_point);

102

NRL REPORT 9296

fp2 = fopen (filename,"a+");
}
else
return(-1); if (match == Q)

{

strcpy (terminal_name[i++].terminal,test_point);
if (fp2 == NULL)

printf ("FP2 IS NULL\n");
}

}

/* check to see if unique test */
valid_test=1;
=0;
while (strcmp(terminal_name[i-1].test[j],"") 1= 0)
if (strcmp (terminal_name[i-1].test{j++],name)==0)
{
valid_test = 0;
break;
}

if (valid_test)
{
strcpy(terminal_name(i-1].test[j],name);
if ({FIRST && !ER1) {
fprintf(fp2,"%s %s s1 ",name,parameter);
if (qual_num==1 && min[0]=="\0")
fprintf(fp2,"((%s) (%s)) " ,qual[1],qual[0]);
else if (qual_num==2 && min[0}==\0")
fprintf(fp2,"((%s)(%s)(%s)) " ,qual{2],qual[1],qual[0]);
else if (qual_num==1)
if (in("bad",qual,1) && in("ok",qual,1))
fprintf(fp2,"((OK (%s %s)) (BAD (-INF %s) (%s INF))) ", min,max,min,max);
else if (in("bad",qual,1) && in("good",qual,1))
fprintf(fp2," ((GOOD (%s %s)) (BAD (-INF %s) (%s INF))) ",
min,max,min, max);
elsc ERROR;
else if (qual_num==2)
if (in("hi",qual,2) && in("lo",qual,2) && in("ok",qual,2))
{
fprintf(fp2,"((OK ((%s %s))) (LO ((-inf %s))) ",
min,max,min);
fprintf(fp2,"(HI ((%s inf)))) ",

max);
)
else if (in("hi",qual,2) && in("lo",qual,2) && in("good",qual,2))
{
fprintf(fp2,"((GOOD (%s %s))) (LO ((-INF %s)))",
min,max,min);
fprintf(fp2,"(HI ((%s INF)))) ",

max);
}

else ERROR;

103

else ERROR;
fprintf(fp2,"%s ",units);
fprintf(fp2,"diag 10 nil\n");
}
1

/* Print error message if ERI=TRUE. */
if (ER1) {
fprintf(fp3,ER_MSG);
fprintf(fp3," #%d\n" error_line_count);
ER1 = FALSE;
]

/* Initialize test data variables */

test_point[0] = \0';
parameter{0] = \0";
units[0] = \);

min{0] = \(;
max[0] = \0';
cost[0] = \O';

for (k=0; k<=2; k++) qual[k][0] = \D;
for (k=0; k<=14; k++) {
prel1[K][0] = N0’
pre2(k1[0] = \0;
}
fclose (fp2);
return;

}

J. MOLNAR

/**

*

* PRINT_PRE

*

* This routine prints the preconditions and cost field (format described in
* previous documentation). The thirteen preconditions are defined in array

* strings (note the zeroth element is a dummy string)

*

* X X ¥ OH X ¥

%k ok k %k %k 3k ok ok %k k %k %k k %k k %k sk %k dk %k k %k %k k %k Kk dk sk %k %k %k %k k %k %k %k d ok ok Kk ¥k %k sk ok k k ¥k k %k kok

*/

print_pre(prel,pre2,pre_num,cost)
char pre1{}{30], pre2{][30], *cost;
int pre_num;
{

int n, n1, LOOP;

static char strings{14][15] =

"zzz", "active_mode", "unit-26_door", "26A1_drawer", "unit-34", "scope",
"unit-34_brg", "probe_on", "ac_diff_mtr", "counter”, "diff_scope",

"diff_counter”, "PMFL_f", "PMFL_s"
|

/* Print the cost field */

104

}

NRL REPORT 9296

if (cost[0] 1="0")
fprintf(fp3,"(1%s!" cost);
else
fprintf(fp3,"(IzI");

/* Print each of the thirteen preconditions */

for (n=1; n<=13; n++) {
LOOP = TRUE;
/* Find a precondition that matches strings[n] */
for (n1=0; nl<=pre_num && LOOP==TRUE; nl++)
if (strcmp(prel[n1],strings[n]) = 0) LOOP = FALSE;
nl--;
if (n==2 I n==6 Il n==10)
fprintf(fp3,™n ");
if (LOOP == FALSE) /* A precondition was found that matches string[n] */
fprintf(fp3." 1%s %sl" prel[n1],pre2[nl]);
else /* LOOP = TRUE; a precondition was not found */
fprintf(fp3," 1z!");
)

105

Appendix J
TEST DATABASE INSTRUCTION INDEX PROGRAM

/¥
CON3

This program converts test data given in tabular form to a LISP list defined
by the LISP function 'instr-list. The format of the input file is the same
as that described in CON2, except that two more columns are recognized.
Column ten is the instruction name and column 11 the text parameters. The
headers should look as follows:

. INSTR TEXT
NAME NAME PARAMETERS

The LISP function generated has the following format:

(defun instr-list ()
(
(test_pointl
(parameter instr_name (min max) record [text_par1] [text_par2])
{parameter instr_name (min max) record {text_par1] [text_par2])

(test_point2

))

Note that the text parameters are optional and appear only if given on the
input. If min and max are not given on the input, then '(nil nil)' will
substitute min and max.

The list is arranged such that all test data with the same test point are
grouped as sublists under that test point. This allows for a quicker lookup
in the LISP searching routines.

Program flow and execution are very similar to CON2, except that after each
data block has been read in, it must be stored instead of immediately being
printed out because of the ordering as described. Because of the possible
size of the input file, a linked list structure is used, thereby minimizing
necessary memory.

NOTE: this program needs two input files. One which he describes and
another which lists all of the testmames (testlist.all).

*/

107

J.MOLNAR

#include <stdio.h>
#define TRUE 1
#define FALSE 0
#define MAX_LENGTH 200 /* maximum length of input string */
#define ER_MSG "***Error on this line***\n"
#define ERROR ER1 = TRUE
#define ASSIGN(X) if (X[0] == 0" strcpy(X,word); else ERROR; break
#define STR_CPY(S) strcpy((S)->parameter,parameter); strepy((S)->min,min); \
strepy((S)->max,max); strepy((S)->textl,&text1[3]); \
strepy((S)->text2,&text2[3]),strepy((S)->instr,instr); (S)->p2 = NULL
#define RECSIZE 512
/* the following 3 constants indicate the maximum size of a parameter to a
test instruction, */
#define INSTNAMESIZE 30
#define MINMAXSIZE 10
#define TEXTSIZE 30
struct s1 {
char test_point{INSTNAMESIZET,
struct s1 *pl;
struct s2 *p2;
h
struct s2 {
char parameter[INSTNAMESIZE];
char minf MINMAXSIZE];
char max[MINMAXSIZE];
char text1[TEXTSIZE];
char text2[TEXTSIZE];
char instr[INSTNAMESIZE];
struct s2 *p2;
K
/* This structure keeps track of all the instruction names */
struct inst_name_struct {
char instr{INSTNAMESIZE];
int position;
struct inst_name_struct *next;
} *test_name_head; /* the head of the instruction list. Used by get_record */
int N, ER1;
FILE *fpl, *fp2, *fp3;
char infile[30], outfile[30], instruction[30]; /* input, output, instruction files */

main()
{
char stringlMAX_LENGTH]; /* array into which input line is placed */
int columns[MAX_LENGTH]; /* column identification array */
char word[133], c[MINMAXSIZE};
char test_point[INSTNAMESIZE], parameter[INSTNAMESIZE], min[MINMAXSIZE],
max[MINMAXSIZE], instr[INSTNAMESIZE], text1[TEXTSIZE], text2[TEXTSIZE];
int num, L, FIRST, LOOP, i, k, a, CONT;
struct s1 *head, *tp, *tp1, *tp2;
struct s2 *par, *parl;

test_name_head=NULL;

ER1 = FALSE; /* ER1=TRUE when an error on the input occurs */

108

NRL REPORT 9296

do { /* Read in the input file name */
printf("Enter the name of the input file... ");
scanf("%s" infile);
if ((fp1=fopen(infile,"r")) == NULL)
printf("No such file exists.\n");
} while (fpl == NULL) ;

do { /* Read in the instruction file name */
printf("Enter the name of the instruction file... ");
scanf("%s" instruction);
if ((fp3=fopen(instruction,"r")) == NULL)
printf("No such file exists\n");
} while (fp3 == NULL) ;

printf("Do you wish the output to be sent to the screen (s) or a file (f) ");

scanf("%s"c);
if (c[0] =="'T)
do { /* Read in the output file name */
printf("Enter the name of the output file... ");
scanf("%s" outfile);
if ((a=access(outfile,0)) == 0) {
printf("The file already exists.\n");
printf("Do you wish to write over it (y or n)? ");
scanf("%s" ¢);
}
if ((a==0 && {(c[0]=="y' I c[0]=="Y")) I a!=0)
fp2 = fopen(outfile,"w");
} while (a==0 && (c[0]=="n"ll c[0]=="N"));
else fp2 = stdout; /* stdout is the screen */
printf("™n\n");

FIRST = TRUE;
head = NULL;
CONT = TRUE;
while (CONT == TRUE) {
if (fgets(string, MAX_LENGTH,fp1) == NULL) {
strepy(string,"***LAST***");
CONT = FALSE;
}
string[strcspn(string, ™n")} = \0;
L = strlen(string);
N=0;
while (N <L) {
num=get_word(word,string ,columns);
switch(num) {
case 1: if (IFIRST) {
tp1 = head;
LOOP = TRUE;

for (tp=head; tp!=NULL && LOOP==TRUE; tp=tp->pl)

if (stremp(tp->test_point,test_point) == 0) {

for (par=tp->p2; par->p2 != NULL; par=par->p2);

parl =(struct s2 *) malloc (sizeof (struct s2));
par->p2 = parl;
STR_CPY(parl);

109

J.MOLNAR

LOOP = FALSE;
)
else tpl = tp;
if (LOOP) {
tp2 = (struct s1 *)malloc (sizeof (struct s1));
if (tpl == NULL) head = tp2;
else tpl->pl = tp2;
strepy(tp2->test_point,test_point);
tp2->pl1 = NULL,;
par = (struct s2 *)malloc (sizeof (struct s2));
tp2->p2 = par;
STR_CPY (par);
)
}
parameter[0] = \O;
min[0] = \0";
max [0] = \0
text1[3]1 = \0';
text2[3] = \0;
instr[0] = \O';
test_point[0] = \0';
FIRST = FALSE;
break;
case 2: ASSIGN(test_point); /* current word is test_point */
case 3: ASSIGN(parameter); /* current word is parameter */
case 6: ASSIGN(min); /* current word is the min value */
case 7: ASSIGN(max); /* current word is the max value */
case 10: ASSIGN(instr);
case 11: if (text1[3] == \O') strcpy(textl,word);
else strepy(text2,word);
break;
case 99: /* 99 indicates that the first row of a column header was
encountered. Read in the next three rows and call
routine 'find_col’ to set up the column fields.
*/
for (k=1; k<=3; k++) fgets(string, MAX_LENGTH,fp1);
find_col(string,columns);
default: ;
}
}
}

fprintf(fp2,"(defun instr-list O\n = '(\n");
for (tp=head; tp {= NULL,; tp=tp->p1) {

fprintf(fp2," (%s" tp->test_point);
for (par=tp->p2; par != NULL; par=par->p2) (
fprintf(fp2,"™\n (%s %s " ,par->parameter, par->instr);

if (par->min[0}=N0") fprintf(fp2,"(nil nil)");

else fprintf(fp2,"(%s %s)" ,par->min,par->max);

fprintf(fp2," %d",get_record(par->instr)); /* indicates where the */
/* instruction text is */

if (par->text1[0] != \0") fprintf(fp2," %s" par->textl);

if (par->text2[0] != \0") fprintf(fp2," %s" par->text2);

fputc()"fp2);

110

}

NRL REPORT 9296

)
fprintf(fp2,")\n");
fprintf(fp2,”))");

/**

*

* GET_WORD(WORD,STRING,COLUMNS)
*

* This routine receives an input line STRING, and it stores in WORD the first
%k

*

group of characters (the first word) at or after location N (N is the
global variable indicating the position in the input line currently being

* examined). It also returns the number of the column in which the word
* appears. If the end of the string is reached then it returns -1, and if

* a column header is reached 99 is returned. COLUMNS is an array storing the

* Jocations of each of the columns.

*

¥ ¥ X K OF K X X ¥ ¥ %

%k %k %k %k 3 skosk sk sk ok k ko k %k %k %k vk %k %k %k %k %k ok %k %k %k ko k %k %k ok ok %k ok ok ok ok ok ok k ok ok k %k k k k k ok kk

*/

get_word(word,string,columns)
int columns(];
char *word, *string;

(

char c;

int k, k1, k2, m;

int begin, end; /* begin is the location of the beginning of the word, and
end is the location of the end of the word. */

/* Disregard all spaces and comments before the first character.
*/
while (string[N]==""1l string[N]=="T"} {
while (string[N] =="") N++;
if (string[N] == ") {
while (string[N] !="T") N++;

N++;

}
}
if (string[N] == \0') return(-1); /* Return -1 if NUL character reached */
begin = N;
k= 0;
while (string[N]!="" && string[N]!=0) /* Store group of characters */

word[k++] = string[N++]; /* in word. */
end=N-1;

word[k] =\0"; /* Place NUL character at end of word. */

if (stremp(word,"$3") == 0) { /* Return 99 if column header found. */
for (k1=N; string[kl] ==""; k1++) ;
if (string[k1] == \0') return(99);

}

if (stremp(word,"***LAST***") == () return(1);

111

J.MOLNAR

/* The rest of the code in this routine determines in which column the word
is located. That column number is then returned.

*/

if (columns[end] == columns[begin]) {
if (columns[end] != 0) return(columns[end]);
k = begin;
while(columns[k]==columns[end] && k!=end) k++;
if (k != end) retumn(columns(k]);
for (k1=begin k2=end; columns[k1}==columns[k2}; k1-- k2++) ;
if (columns[k1] == columns[end]) return(columns[k2]);
else return(columnsfk1]);
)
for (k=begin; (columns[k]==columns[begin] Il columns[k]==columnsfend] !
columns{k]==0) && k!=end; k++) ;
if (k !'= end) return(columns[k]);
if (columns[begin] == 0) return(columns[end]);
if (columns(end] = 0) return{columns[begin]);
for (k1=begin k2=end; columns[k1]==columns[begin] & & columnsk2}==
columns[end]; k1++k2--) ;
if (columns[k2] == columns[end]) return(columns{end]);
else return(columnsfbegin]);

}

/**

*

* FIND_COL(STRING,COLUMNS)
*

* This routine receives STRING, the lowest row in a column header, as input
* It computes COLUMNS, an array in which each element contains a number
* corresponding to the appropriate column that is located there. Columns are

* given increasing numbers starting at one, and those locations between

* columns are filled with ('s. For example, the following column header

* (STRING) generates COLUMNS as shown:

*

* STRING =" Headerl H2 Header3 Head4 "
* COLUMNS = "1111111111002200000333333300444440"

*

* Note that leading spaces are filled with 1's,

*

¥ OF R R X X ¥ X K X ¥ X ¥ ¥ X

% ok ok ko ok ko sk %k dk %k ok ok ok %k %k ok ok ok k ok ok ok %k %k ko sk sk ok ok N sk %k ok ok ok ok ok ok ok k %k %k ok ok %k k ok k kk

*/

find_col(string,columns)
char *string;
int columns(];
{
intk = 0, num = 0;
while (string[k] =="'") columns[k++] = 1;
if (k == 0) columns[k++] = 1;
while (string[k] !'=\0") {
if (string[k] =="") columns[k] = 0;
else if (string[k-1] !="") columns[k] = num;

112

NRL REPORT 9296

else columnsfk} = ++num;

k++;
}
while (k < 200) columns[k++] = 0;
return;

}

ﬂf** % %k %k ok %k %k ok %k ko k %k Kk %k %k ok 3k k ok ok %k k ok dk k %k k Kk ok Kk K K k k ok %k %k %k k k k ¥k k k % k k k k¥
*

* IN(ST,QUAL ,NUM)
*

* This predicate function returns TRUE if the string ST is one of the strings
* stored in the array of strings QUAL. There are NUM+1 strings in QUAL.

*
sk sk %k ok ok % sk sk sk %k dk %k sk ok 3 ok %k sk sk ook %k ok sk %k %k %k %k Kk ok %k %k %k %k sk %k %k %k %k sk k ¥ K Kk K k k k k **8

*/

* XK X ¥ ¥ *

in(st,qual,num)
char *st, qual[][10];
int num;

{

int i;

for (i=0; i<=num; i++)
if (stremp(qual[i],st) == 0) return(TRUE),
return(FALSE);
|5

/**
*

* get_inst_location does a search for a given instruction number, inst_name,

* and returns it's record number in the instructions file. If it

* does not exist, a message is printed indicating so. Record numbers
* start at zero.

*

**/

int get_inst_location(inst_name)
char *inst_name;
{
int inst_rec;
char read_inst_name[{INSTNAMESIZE];
inst_rec=0;
do
fseek(fp3,inst_rec*RECSIZE,0);
inst_rec++;
} while ((fscanf(fp3,”%s" read_inst_name)!=EOF) && (strcmp(inst_name,read_inst_name)!=0));
if (strcmp(read_inst_name,inst_name)!=0) {
printf("The instruction to %s, a test in %s\n",inst_name,infile);
printf("has no corresponding instruction in %s\n" instruction);
)
--inst_rec;
return(inst_rec);

}

113

J.MOLNAR

/**
*

* get_record returns the record number of a given instruction name inst_name.
* It builds a list of instructions that it has found, so that it doesn't
* have to search the disk twice for the same instruction number.

* The list is built as each new instruction comes along.
***/

int get_record(inst_name)
char *inst_name;
{
struct inst_name_struct *list; /* current instruction pointer */
int rec_num,; /* returned value from get_inst_location */
/* this test is true if this is the first time this routine is called */
/* if it is the first time, search the disk for the instruction num. ¥/
if (test_name_head == NULL) {
test_name_head=(struct inst_name_struct *)
malloc (sizeof (struct inst_name_struct));
strcpy(test_name_head->instr,inst_name);
test_name_head->next=NULL;
test_name_head->position=get_inst_location(inst_name);
return(test_name_head->position);

b

/* look for the instruction in the list */

list=test_name_head;

while ((strcmp(inst_name,list->instr)!=0) && (list->next {= NULL))
list=list->next;

if (stremp(inst_name list->instr)==0) return (list->position);

/* not in list, add it to the end */

list->next=(struct inst_name_struct *)
malloc (sizeof (struct inst_name_struct));

rec_num=get_inst_location(inst_name);

list=list->next;

list->position=rec_num;

strepy(list->instr,inst_name);

list->next=NULL,;

return(list->position);

I

114

Appendix K
CONVERSION OF INSTRUCTION DATABASE PROGRAM

/*
CON4

This program converts an instruction file into a direct access file named
'instructions.’ This file is used by 'print-instruction’,

a function written by M. Erdly. The function was modified in 10/88 to
generate a direct access file. The input file has the following format:

Instruction Name: instr_namel
"instructions..." $N "instruction..." $2 ...
Instruction Name: instr_name?2
"instructions..." $3 ...

$N denotes variable number N. ($2 and $3 are just examples above). Anything
else in the file is ignored. The output list has the following form:

instr_namel "instructions..." N "instructions..." 2 ..
--512 byte boundry--

instr_name?2 "instructions..." 3 ...

--512 byte boundry--

For a description of the meaning of N, see the external documentation.
CON4 does recognize and delete the following line:
{Il’$3’" } "

Note that anything in the input file that does not appear within quotes is
ignored, except for variable strings (identified by '$") and the instruction
name identifier (Instruction Name: instr_name').

*/

#include <stdio.h>

#idefine TRUE 1

#define FALSE O

#define MAX_LENGTH 200 /* maximum length of input string */
#define ER_MSG "***Error on this line***\n"

#define RECSIZE 512

FILE *fpl, *fp2;

115

J.MOLNAR

main()
{
char string[MAX_LENGTH]; /* array into which input line is placed */
char infile[30], outfile{30]; /* input, output files */
char c[6];
int PP, FIRST, mode, a, tab, n, length, num, k, k1, k3;
long int numchar; /* to handle files longer than 32k bytes */
do { /* Read in the input file name */
printf("Enter the name of the input file...);
scanf("%s" infile);
if ((fp1=fopen(infile,"r")) == NULL)
printf("No such file exists\n");
} while (fpl == NULL) ;

printf("Do you wish the output to be sent to the screen (s) or a file (f) ");
scanf("%s",c);
if (c[0] =="T)
do { /* Read in the output file name */
printf("Enter the name of the output file... ");
scanf("%s" outfile);
if ((a=access(outfile,0)) == 0) {
printf("The file already exists.\n");
printf("Do you wish to write over it (y or n)? ");
scanf("%s" c);
}
if ((a==0 && (c[0]=="y' Il c[0]=="Y")) Il a!=0)
fp2 = fopen(outfile,"w");
} while (a==0 && (c[0]=="n"ll c[0]=="N"));
else fp2 = stdout; /* stdout is the screen */
printf("\n\n");

numchar=0; /* the number of characters already put in file. Used to
do record formatting. Instructions begin on 512 byte boundries. */
mode = 0;

FIRST = TRUE;
tab = 0;
while ((num=gets_1(string)) !=999) {
PP = FALSE;
if (mode==0 && strncmp("Instruction Name:",&string[num],17)==0) {
for (k=num+17; string[k]==""1l string[k]=="\t"; k++) ;
for (k1=k; string[k1]!=""' && string(k1]!1=N0"; k1++) ;
string[k1] = \0';
if (FIRST) {

fprintf(fp2,"%s ",&string[k]);
numchar+=k1-k+1;
FIRST = FALSE,;
)
else {
for (k3=0; k3<RECSIZE - numchar % RECSIZE; k3++) fputc (' 'fp2);
printf("%d characters were printed; filled at end with %d chars\n",
numchar, RECSIZE - numchar % RECSIZE);
fprintf(fp2,"%s ", &string[k]);
numchar=k1-k+1;

)

116

NRL REPORT 9296

tab = num;
}
else if (stmemp(" {\",$3 \"\"",&string[num],9) == 0) mode = 0;
else if ((length=strlen(string))<=tab Il strspn(string," \t")==length) ;
else {
if (mode==1) {
fputc(\",fp2);
numchar+=1;
1
for (n=tab; n<=length-1; n++)
if (string[n} == "\") {
if (mode == 1) mode = 0;
else mode = 1;
fputc(\".fp2);
numchar+=1;
PP = TRUE;
}
else if (mode==0 & & string[n]=="$") (
fprintf(fp2,” %c ",string[n+1]);
numchar+=3;
PP = TRUE;
}
~ else if (mode == 1) {
fputc(string[n],fp2);
numchar+=1;
PP = TRUE;
}
}
if (PP && mode==1) {
numchar+=4;
if (mumchar > RECSIZE) {
fprintf(fp2,"\" -1 ");
numchar=numchar-RECSIZE+1;
}
else fprintf(fp2,"\" 0 ");
}
else if (PP) {
fprintf(fp2,” ");
numchar+=1;
)i
}
close(fp2);
close(fpl);
)

gets_1(string)

char *string;

{
int k;
if (fgets(string, MAX_LENGTH,fp1) == NULL) return(999);
for (k=0; string[k]=="" Il string[k]=="t"; k++) ;
string[strcspn(string, \n")] = \0";
return(k);

117

Appendix L
CONVERSION PROGRAM TO RESTORE DATABASE FORMAT

/*
*/
[*declarations:*/

#include <stdio.h>;

#include <sys/file.h>;
#include “string.h"

#define LINE_LENGTH 145

struct lines
{

char info[LINE_LENGTH];
} data[10000];

char response[30], answer, answer1[5], *temp, module{30], cause[50],
effect[50], precondition[30], name[30], test_point[30], parameter{30],
units[20], okreadin[10], okreadin2{10], okreadin3[10],
min[10], max{10], lilnum[10};

int ch, chl, i, ii, filelength, counter2, length, space, numone,
column[LINE_LENGTH], col, storenum, nextone, place;

FILE *fopen(), *fp1, *fp2, *fp3;

main()
{
/*open input file*/
do
{
printf("What is the name of your rule file? ");
scanf("%s", response);
if ((fp1=fopen(response, "r")) == NULL)
printf("File doesn't exist\n");
} while (fpl == NULL);

do
{
printf("What is the name of your test file? ");
scanf("%s", response);
if ((fp3=fopen(response, "r")) == NULL)
printf("File doesn't exist.\n");
} while (fp3 == NULL);

119

J.MOLNAR

/*open output file*/
do
{
printf("What is the name of the output file? ");
scanf("%s", response);
if (ch=access(response, 0) == 0)
{
printf("The file already exists. Overwrite Y/N? "),
scanf("%s", answerl);
}
if ((ch==1 && (answerl[0]=="y' Il answer1[0]=="Y")) lich !=1)
fp2=fopen(response, "w");
} while (ch == 1 && (answerl[0]=='N' Il answer1[0]=="n"));

[*write & read*/
filelength=0;
numone=0;
while (answer=fgets(data[filelength].info, LINE_LENGTH, fp1) != NULL)
++filelength;
fprintf(fp2, "NIL\aNIL\aNIL\n(");
i=0; [*filelength is how long file is*/
do
{
if ((temp=strpbrk(data[i].info, "W")) 1= NULL)
if (sttncmp (temp, "WORKING", 7) == 0) /*skip 2 lines if W is found*/
i=i+2;
if (((temp=strpbrk(data[i].info, "M")) = NULL) && (stmcmp (temp, "Modu", 4) ==0))
/*¥look for the letter M*/
{

if (numone != 0)

{
numone=0: /*print control*/
fprintf(fp2,")))\n");

for (counter2=0; counter2<=30; ++counter2)
module[counter2]=N)";
for (ii=8; templii] != \n'; ++ ii)
module[ii-8)=templii};
i=i+3;
fprintf(fp2, " (NAME %s) (FRATE 1)\n (CAUSAL-RULES\n", module);
}
else
{
1i=0;
place=3;
if ((length=strlen(data[i].info)) > 15)
if (((strpbrk(data(i].info, "[")==NULL) && (datafi}.info[ii]!="N")) i
" (((temp=strpbrk(data[i].info, "["))!=NULL) && (strlen(data[i].info)-strlen(temp)>5)))
{ [*is the line [deleted] 7 */
ii=85;
for (counter2=85; data[i].info{counter2]} != \n'; ++counter2)
if (data[i].info[counter2] !="")
precondition[counter2-ii]=data[i}.info{counter2];
else

120

NRL REPORT 9296

++ii;
space=0;
for (counter2=3; counter2<=Iength && space != 5; ++counter2)
if ((cause[counter2-3]=data[i].info[counter2]) == "'")
++space;
space=0;
for (counter2=40; counter2<=length && space != 4; ++counter2)
if ((effect[counter2-40]=datal[i).info[counter2]) =="")
++space;
if (numone == 0)
{
++numone;
fprintf(fp2, " (n");
)
/*find if the cause is the same as the module*/
if (strien(strpbrk(cause, " ")) < 5)

fprintf(fp2," (%s %s\n (%s)\n" precondition,cause, effect);
else
fprintf(fp2," (%s (%s)\n (%s))\n" precondition, cause, effect);

}
}
[*clean up the variables*/
for (counter2=0; counter2<=50; ++counter2)
{
cause[counter2]=N\0'";
effect[counter2]=N0";
}
for (counter2=0; counter2<=30; ++counter2)
precondition[counter2]=\0";
++1;
} while (ic=filelength);
fprintf(fp2,")))\nn");

[*rules database*/
filelength=0;
while (answer=fgets(data[filelength].info, LINE_LENGTH, fp3) != NULL)
++filelength;
fprintf(fp2, "(");
1=0;
ch=4;
if (ch<filelength)
find_col(data[ch].info, column); /*sets up the columns into int array column*/
do
{
if ((strpbrk(datali].info, "*™)) != NULL) /*skip over any line with **'s */
++i;
else
{
1i=0;
answer=data[i].info[ii];
if (((length=strlen(datafi].info)) > 55) & & (answer !=""))
{ f*does it begin with a character?*/
col=1; /*this is the column number*/
storenums= -1;

121

J.MOLNAR

for (counter2=0; counter2<=length && col < 6; counter2++)

if (data[i].info{counter2] !=""||
(data[il.info[counter2] == "' && column[counter2] != 0))
switch(col)
{ /*set up variables depending on column*/
case 1: if (storenum == -1) storenum=counter2;
name[counter2-storenum]=data[i].info{counter2];
nextone=1;
break;
case 2: if (storenum == -1) storenum=counter2;
test_point[counter2-storenum}=data[i].info[counter2];
nextone=1;
break;
case 3; if (storenum == -1) storenum=counter2;
parameter[counter2-storenum}=data[i].info[counter2];
nextone=1;
break;
case 4: if (storenum == -1) storenum=counter2;
units[counter2-storenum}=data[i].info[counter2];
nextone=1;
break;
case 5: if (storenum == -1) storenum=counter2;
okreadin[counter2-storenum]=data[i].info[counter2];
nextone=1;
break;
)
else

if (nextone == 1)
{
++col; /*increment the column number*/
nextone=0; /*skip over spaces between columns without
incrementing col */
storenum= -1; /*the starting place for indivdual variables*/

}

/***
* hi lo ok value (ok (min max) lo (-inf min) hi (max inf))

* hi lo ok noval (ok lo hi)

* ok bad value (ok (min max) bad (-inf min) (max inf))

* ok bad noval (ok bad)

***/

[*the following method is used instead of the above column method because
sometimes the data doesn't exist and the program looks for nothing or
misinterprets data found*/

ch=63;
if (data[i].info[ch] !="") /*there's s.t. there!!!1*/
{
for (counter2=63; datalil.info[counter2] !=""; ++counter2)
min[counter2-63]=data[i].info[counter2];
if (strlen (min) < 6)
for (counter2=69; datalil.info[counter2] !=""1l counter2<70; ++counter2)
max[counter2-69]=data[i].info[counter2];

122

NRL REPORT 9296

else

{

ch1=67;

if (datafi+1].infofch1] != \0")

for (counter2=67; data[i+1].info[counter2] != "'} counter2<70; ++counter2);
)

max[counter2-67]=data[i+1].info[counter2];

[*the data[i+1] is used above because if the qual val is to long,
there's no space for the second on the same line, and it's
located underneath*/

}
else
if (data[i).info[ch+1]} !="")

{

for (counter2=64; data[i].info[counter2] !=""; ++counter2)
min[counter2-64}=data[i].info[counter2];

if (strlen (min) < 6)
for (counter2=70; data[i].info[counter2] {=""1|| counter2<71; ++counter2)
max[counter2-70]=data[i].info[counter2];
else
{
ch1=68;
if (data[i+1].info[ch1] !="\0")
for (counter2=68; data[i+1].info[counter2] !=""l
counter2<71; ++counter2)
max[counter2-68]=data[i+1].info[counter2];
}
}
if (atof(min) > atof(max))
printf("Problem with min max values in %s %s.\n", name, test_point);
f*if the min is greater than the max, there's a problem.*/
1i=58; /*this is done because sometimes the data's in the wrong space*/
for (counter2=58; counter2<60; ++counter2)
if (data[i+1].info[counter2] 1="")
okreadin2[counter2-iij=data[i+1].info[counter2];

else
++ii;

if (strlen{data[i+2].info) >58)
for (counter2=>58; data[i+2].info[counter2] ="' &&

counter2<strlen(data[i+2].info); ++counter2)

okreadin3[counter2-58]=datali+2].info[counter2];

ii=77;

for (counter2=77; counter2<80; ++counter2)
if (data[i].info[counter2] !="")
lilnum[counter2-ii]=data[i).info[counter2];

else
++ii;

/******** pnnmg time *********/
fprintf(fp2, " (%s (%s %s\n S1\n",
name, test_point, parameter);
if ((okreadin[0] == ') && (okreadin2[0] == '0"))
fprintf(fp2, " ((ok) (faulted))\n");
if ((okreadin[0] == 'a') && (okreadin2[0] == '0"))

123

J.MOLNAR

fprintf(fp2, " ((absent) (ok))\n");

if ((okreadin[0] == 'p") & & (okreadin2{0] =='0")
fprintf(fp2, " ((ok) (present))\n");

if ((okreadin[0] == '0") & & (okreadin2[0] =='0"))
fprintf(fp2, " ((ok) (om))\n");

if ((okreadin[0] == 'b") & & (okreadin2[0] == '0"))
if (min[0] = \0")

fprintf(fp2, " {(ok) (bad))\n™);
else
fprintf(fp2," ((ok (%s %s)) (bad (-inf %s) (%s inf)))\n",

min, max, min, max);
if ((okreadin[0] == 'h") & & (okreadin2[0] == T))
if (min[0] = \0")

fprintf(fp2, ((ok) (lo) (hi))\n");

else

fprintf(fp2,

" ((ok ((%s %s))) (lo ((-inf %s))) (hi ((%s inf)))\n",

min, max, min, max);

fprintf(fp2, " %os\n D\n", units);
fprintf(fp2, " %os\n NILY\n", lilnum);
)
)
for (counter2=0; counter2<=30; ++counter2)
{

name[counter2}=N\0";
test_point{counter2]=N\0"; f*cleaning up the variables*/
parameter[counter2]=N0";
}
for (counter2=0; counter2<=20; ++counter2)
units{counter2]="0"
for (counter2=0; counter2<=10; ++counter2)
{
okreadin{counter2]=\0";
okreadin2{counter2]=N\0'";
okreadin3[counter2]=N\0";
lilnum{counter2]=\0";
min[counter2]=N)";
max[counter2]=N\0";
)
++i;
} while (i<=filelength);
fprintf(fp2," \n");
fprintf(fp2,"NIL\aNIL\aNIL\n "),
close(fpl);
close(fp3);
close(fp2);
}

/*************************** FUNC’I‘IONS *****************************/

find_col (string, columns)

char *string;

124

NRL REPORT 9296

int columns[];

{
int k=0, num=0;

while (string[k] =="'") columns{k++]=1;
if (k==0) columns[k++]=1;
while (string{k] !="\0")

{
if (stringfk}=="") columns(k]=0;
else
if (string[k-1] !="") columns[k] = num;
else
columns[k] = ++num;
k++;
}
while (k < LINE_LENGTH) columns[k++]=0;
return;

}

/**

* This function looks at a header and develops column fields:
*

* Headerl H2 Head3 Header4
* 11111111110002200333330000000444444400000

*
* as such, to find out what column a specific piece of data

* is in,
**/

125

Appendix M
SAMPLE DATA OUTPUT FORMAT FROM RULE VERIFIER

NODE PARENT PRE CHILD PRE
(A10J1 CIRCULATE BAD) (A26-35 CIRCULATE BAD) T (A10J9 RE1 BAD) T
A1A1071
(A10J2 LOGIC_LEVELS BAD) (A77J4 VOLTS BAD) T (A10J2 RE2 BAD) T
A10_DELAY_LINE T
(A10J2 RE2 BAD) (A26-15 RE2 BAD) T (A10J9 RE1 BAD) T
(A10J2 LOGIC_LEVELS BAD) T A1A1002

(A10J3 END_CLEAR BAD) (A26A1S8-3 END_CLEAR BAD) END_CLEAR_USED (A10J9 RE1 BAD) T

A1A10J3
(A10J4 LOAD_END_REF BAD) (A26-5 LOAD_END_REFBAD) T (A10J9 REl1 BAD) T
(A10J4 LOGIC_LEVELS BAD) T A1A10J4
(A10J4 LOGIC_LEVELS BAD) (A77J4 VOLTS BAD) T (A10J4 LOAD_END_REF BAD) T

Al10_DELAY_LINE T

(A10J5 LOAD_END_ADVANCE BAD) (A26-32 LOAD_END_ADVANCE BAD) T (A10J9 RE1 BAD) T

A1A1055
(A10J6 ST1 BAD) (A10-9 ST1 BAD) T (A10J9 RE1 BAD) T
A1A106
(A10J7NOT_CL1BAD) (A10-21 NOT_CL1 BAD) T (A10J9 RE1 BAD) T
AlA1077
(A10J8 DST1 BAD) (A29-9 DST1 BAD) T (A10J9 RE1 BAD) T
A1A1078
(A10J9 LOGIC_LEVELS BAD) (A77J4 VOLTS BAD) T (A10J9 RE1 BAD) T

Al10_DELAY_LINE T

(A10J9 LOGIC_LEVELS BAD)

127

J.MOLNAR

(A10J9 RE1 BAD) (A10J1 CIRCULATE BAD) T (A26-13 RE1 BAD) T
(A10J5 LOAD_END_ADVANCE BAD) T(A10-10 NOT_RE1 BAD) T
(A10J4 LOAD_END_REF BAD) T A1A10J9
(A10J8 DST1 BAD) T
(A10J6 ST1 BAD) T
(A10J7 NOT_CL1BAD) T
(A10J3 END_CLEAR BAD) T
(A77J4 VOLTS BAD) T
(A76J3 VOLTS BAD) T
A10_ DELAY LINE T
(A10J2 RE2 BAD) T
(A10J9 LOGIC_LEVELS BAD) T

(A11J10 ATOD_CLEAR BAD) (A14-23 ATOD_CLEAR BAD) T (A23 AMPLITUDE BAD) T
(A18-22 ATOD_CLEAR_AMPL BAD) TAD_CLEAR

(A11J11 ATOD_SET_SIGN BAD) (A14-24 ATOD_SET_SIGN BAD) T (A23-3 INVERTED_SIGN BAD) T

(A23-6 SIGN BAD) T
AD_SET_SIGN

(A11J12 ATOD_CLOCK BAD) (A14-7 ATOD_CLOCK BAD) T (A23 AMPLITUDE BAD) T
AD_CLOCK

(A11714 GATE_4 BAD) (A15 FUNCTIONS BAD) T (A15-38 SIGNAL FAULTED) T

(A61J7 GATE_SELECT BAD) T

(A22 GATES_OR_PWR_OR_MODULE
BAD) T

AlA11J14

(Al11J15 NOT_LOAD_REF BAD) (A15-14 NOT_LOAD_REF BAD) T (A26-5LOAD_END REFBAD) T
AlA11J15

(A11J15 NOT_LOAD_REF BAD)

(A11J16 STORE_LEFT_BEAM BAD) (A15-3 STORE_LEFT_BEAM BAD) T (A7J4 SIGN_LEFT_BEAMS BAD)
T
(A17-OUT AMPL_LEFT_BEAMS BAD)

T
ST _LEFT_BM

(A11J18 SYNC BAD) (A15-2SYNCBAD) T (A26E3-Q END_SYNC BAD) T
AlA11718

(A11J2 CL1 BAD) (A14-10 CL1 BAD) T (A7-20 CL1 BAD) T
(A10-20 CL1 BAD) T
A1A11)2

(A11J3 CL2 BAD) (A14-35 CL2 BAD) T (A4-20 CL2 BAD) T

(A2-22 NOT_CL2 BAD) T
A1A1113

128

NRL REPORT 9296

(A11J4 ST3 BAD) (Al4 FUNCTIONS BAD) T

(A15FUNCTIONS BAD) T
(A18 CONTROL_FUNCTIONS BAD) T
AlA11J4

(A11J5NOT_ST1BAD) (Al4-4 NOT_ST1 BAD) T

(A7-8 NOT_ST1 BAD) T
(A10-8 NOT_ST1 BAD) T
AIA11JS

(A11J6 NOT_ST2 BAD) (A14-5NOT_ST2BAD) T

(A4-9 ST2 BAD)
(A1-9 ST3 BAD)
A1A11J6

- -

(A11J7 WAVEFORM BAD) (A14-15G1 BAD) T

(A5817 GATE_SELECT BAD) T
(A59J7 GATE_SELECT BAD) T
(A60J7 GATE_SELECT BAD) T

(A11J7 WAVEFORM BAD)

(A61J7 GATE_SELECT BAD) T
AlA1117

(A11J8 G2 BAD) (A14 FUNCTIONS BAD) T

(A15 FUNCTIONS BAD) T

(A18 CONTROL_FUNCTIONS BAD) T
(A27]4 G2 BAD) T
A1A11J8

(A11J9 WAVEFORM BAD)(A14 FUNCTIONS BAD) T

AlA11J9

(A13J1 FREQUENCY HI)(A13]1 WAVEFORM BAD) T

Al1A13J1_F

(A13J1 FREQUENCY LO)(A13J1 WAVEFORM BAD) T

AlA13J1_F

(A1371 LOGIC_LEVELS BAD) (A13J]1 WAVEFORM BAD) T

AlA1311_ L

(A13J1 WAVEFORM BAD) TIMING T
(A77J4 VOLTSBAD) T
(A77J7VOLTSBAD) T
(A76J3 VOLTSBAD) T

(A13J1 LOGIC_LEVELS BAD) T
(A13J1FREQUENCYHI) T
(A13J1 FREQUENCYLO) T
(A14 FUNCTIONS BAD) T
(A19J7 SIGNAL FAULTED) T

(A1J1 NOT_MTS_GATE BAD) (A15-5 NOT_MTS_GATE BAD) T(A1-13 BIT_0_LEFT_BEAMS BAD) T

AlAL

(A1J3 END_CLEAR BAD)(A26A1S8-3 END_CLEAR BAD) END_CLEAR_USED (A1-13 BIT_0_LEFT_BEAMS

BAD) END_CLEAR_USED

AlA1J3

129

J.MOLNAR

(A1J4 BIT_0_LEFT_INPUT BAD) (A22_A17-OUT BEAM_1_WAVE BAD) T (A1-13 BIT_0_LEFT_BEAMS

BAD) T

(A22_A17-OUT BEAM_2_WAVE BAD) T
(A22_A17-OUT BEAM_3_WAVE BAD) T

(A1J4 BIT_O_LEFT_INPUT BAD) (A22_A17-OUT BEAM_4 WAVEBAD)T (A1J4LOGIC_LEVELS BAD)T

(AUJ4LOGIC_LEVELS BAD) (A77J4 VOLTSBAD) T

Al_DELAY_LINE T

(A1J4 BIT_O_LEFT_INPUT BAD) T
AlAl1l4

(A1JS MTS_GATE BAD) (A154 MTS_GATEBAD) T

(A1-13 BIT_O_LEFT_BEAMS BAD) T
AlA1JS

(A1J6 ST3 BAD)

(A1-9 ST3 BAD) T

(A1-13 BIT_O_LEFT_BEAMS BAD) T
AlA1J6

(A1J7NOT_CL2 BAD)

(A2-22 NOT_CL2BAD) T

(A1-13BIT_0_LEFT BEAMS BAD) T
AlA1J7

(A1J8 DST3 BAD)

(A3-9 DST3 BAD) T

(A1-13 BIT_O_LEFT_BEAMS BAD) T
AlA1J8

(A1J9 LOGIC_LEVELS BAD) (A77J4 VOLTS BAD) T

Al_DELAY_LINE T

(A1-13 BIT_O0_LEFT_BEAMS BAD) T
AlA1J9

(A20J11 NOT_PC BAD) (A18 CONTROL_FUNCTIONS BAD) T

(A27-34 SIGNAL FAULTED) T
(A20712 PC BAD) T
A1A20711

(A20513 SIGNAL FAULTED) (A17 AMPL_CORREL_LEFT_BEAMS BAD) T (A27-15 SIGNAL FAULTED) T

(A18 LEFT_TEST BAD) T
(A21]5 SIGNAL FAULTED) T

(A27-34 SIGNAL FAULTED) T
A1A20513

(A20J2 GATE_1 BAD)

(A15-13 NOT_GATE lBAD)]T
TIMING

(A30 FUNCTIONS BAD) T
A1A202

(A2012 GATE_1 BAD)

(A20J3 GATE_2 BAD)

(A15-15 NOT_GATE_2 BAD) T
TIMING T

(A31 FUNCTIONS BAD) T
A1A2013

(A20]J4 GATE_3 BAD)

(A15-6 NOT_GATE_3 BAD) T
TIMING T

(A32 FUNCTIONS BAD) T
A1A20J4

(A20J5 GATE_4 BAD)

(A15-TNOT_GATE_4 BAD) T
TIMING

(A33 FUNCTIONS BAD) T
A1A20]5

130

NRL REPORT 9296

(A20J6 ATOD_CLEAR_SIGN BAD) (A18-25 ATOD_CLEAR_SIGN BAD) T(A23-3 INVERTED_SIGN BAD) T

(A23-6 SIGN BAD) T
AD_CLR_SIGN
(A20J8 ATOD_SETBAD) (A18-45 ATOD_SET BAD) T (A23-3 INVERTED_SIGN BAD) T
(A23-6 SIGN BAD) T
(A23 AMPLITUDEBAD) T
AD_SET
(A20J9 NOT_PE BAD) (A18 CONTROL_FUNCTIONS BAD) T (A20710 PE BAD) T
A1A20]9
(A21J11 END_SYNC BAD) (A26-18 END_SYNC BAD) T (A18 CONTROL_FUNCTIONS BAD) T
AlA21J11
(A21713 RE3 BAD) (A26-29 RE3 BAD) T (A17 AMPL_CORREL_LEFT_BEAMS
BAD) T
A1A21J13
(A21314 NOT_RE3 BAD) (A26-30 NOT_RE3 BAD) T (A17 AMPL_CORREL_LEFT_BEAMS
BAD) T
AlA21J14

(A21J5 LEFT_TEST_NOT_SIGN BAD) (A22-3 LEFT_TEST_NOT_SIGN BAD) T LFT_TST_SGN

(A21J5 SIGNAL FAULTED) (A22-3 LEFT_TEST_NOT_SIGN BAD) T (A20J13 SIGNAL FAULTED) T

(A21J8 REF BAD) (A26-9 REF BAD) T AlA21J8

(A2411 TEST_VOLTS BAD) (A26A1510-2 VOLTS BAD) A26A1S9 NOT_SET TO_OPER (A24]1
TIME_SLOT_1_VOLTS HI) A26A1S9_NOT_SET_TO_OPER

(A26A1S10-2 VOLTS BAD) A26A1S9_NOT_SET_TO_OPER (A24]1
TIME_SLOT_4_VOLTS HI) A26A1S9_NOT_SET_TO_OPER

(A24-10 VOLTS BAD) A26A1S9_NOT_SET TO_OPER (A24]1
TIME_SLOT_7_VOLTS HI) A26A189_NOT_SET_TO_OPER

(A24-8 VOLTS BAD) A26A1S9_NOT_SET TO_OPER (A24J1
TIME_SLOT_10_VOLTS HI) A26A1S9_NOT_SET_TO_OPER

(A24-6 VOLTS BAD) A26A1S9_NOT_SET_TO_OPER (A2471
TIME_SLOT_1_VOLTS LO) A26A1S9_ NOT_SET TO_OPER

(A24-13 VOLTS BAD) A26A1S9_NOT_SET_TO_OPER (A24]1
TIME_SLOT 4_VOLTS LO) A26A1S9_NOT_SET TO_OPER

(A24-10 VOLTS BAD) A26A1S9_NOT_SET_TO_OPER (A24]1
TIME_SLOT_7_VOLTS LO) A26A1S9_NOT_SET_TO_OPER

(A24-8 VOLTS BAD) A26A1S9_NOT_SET_TO_OPER (A24J1
TIME_SLOT_10_VOLTS LO) A26A1S9_NOT_SET_TO_OPER

(A24-6 VOLTS BAD) A26A1S9 NOT_SET_TO_OPER

(A24-13 VOLTS BAD) A26A1S9 NOT_SET TO_OPER

131

J.MOLNAR

(A24]1 TIME_SLOT_10_VOLTS HI) (A26A189-1 TIME_SLOT_10_VOLTS HI) A26A1S9_SET_TO_OPER
(A24J2 TIME_SLOT_10_VOLTS HI) T
(A2411 TEST_VOLTS BAD) A26A1S9_NOT_SET_TO_OPER (A24J1 VOLTS HI)
T
(A2412 TIME_SLOT_10_VOLTS HI) T
(A24]1 VOLTS HI) T
MUX_AMPI1_10

(A24J1 TIME_SLOT_10_VOLTS LO) (A26A159-1 TIME_SLOT_10_VOLTS LO) A26A1S9_SET_TO_OPER
(A24)2 TIME_SLOT_10_VOLTSLO) T
A26A1S9 A26A1S9_SET_TO_OPER (A24]J1 VOLTS LO) T
(A24]1 TEST_VOLTS BAD) A26A159_NOT_SET_TO_OPER (A24]2
TIME_SLOT_10_VOLTSLO) T
(A24]J1 VOLTS LO) T
MUX_AMPI1_10

(A2471 TIME_SLOT_10_WAVEFORM BAD) (A26A159-1 TIME_SLOT_10_WAVEFORM BAD)
A26A1S9_SET_TO_OPER (A24J2 TIME_SLOT_10_WAVEFORM BAD) T

(A24J2 TIME_SLOT_10_WAVEFORM
BAD) T

(A24]1 TIME_SLOT_10_WAVEFORM BAD)

(A24)1 TIME_SLOT_1_VOLTS HI) (A26A1S59-1 TIME_SLOT_1_VOLTS HI) A26A1S9_SET_TO_OPER
(A24]2 TIME_SLOT_1_VOLTSHI) T
(A24J1 TEST_VOLTS BAD) A26A1S9_NOT_SET_TO_OPER (A24J1 VOLTS HI)
T
(A24)2 TIME_SLOT_1_VOLTS H) T
(A24J1 VOLTSHI) T
MUX_AMPJ1_1

(A24J1 TIME_SLOT_1_VOLTS LO) (A26A1S59-1 TIME_SLOT_1_VOLTS LO) A26A1S9_SET_TO_OPER
(A24)2 TIME_SLOT_1_VOLTS LO) T
A26A1S A26A1S9_SET_TO_OPER (A24J1 VOLTSLO) T
(A24]1 TEST_VOLTS BAD) A26A1589_NOT_SET_TO_OPER (A24]2
TIME_SLOT_1_VOLTSLO) T
(A24J1 VOLTSLO) T
MUX_AMPJI1_1

(A24)1 TIME_SLOT_1_WAVEFORM BAD) (A26A1S59-1 TIME_SLOT_1_WAVEFORM BAD)
A26A1S9_SET_TO_OPER (A24J2 TIME_SLOT_1_WAVEFORM BAD) T

(A24J2 TIME_SLOT_1_WAVEFORM
BAD)T

(A24]1 TIME_SLOT_4_VOLTS HI) (A26A1S9-1 TIME_SLOT_4_VOLTS HI) A26A1S9_SET_TO_OPER
(A2472 TIME_SLOT 4_VOLTS HI) T
(A2471 TEST_VOLTS BAD) A26A1S9_NOT_SET_TO_OPER (A24J1 VOLTS HI)
T
(A2472 TIME_SLOT_4_VOLTS H) T
(A2471 VOLTS HI) T
MUX_AMPJ1_4

132

NRL REPORT 9296

(A2471 TIME_SLOT_4_VOLTS LO) (A26A1S9-1 TIME_SLOT_4_VOLTS LO) A26A1S9_SET_TO_OPER
(A2412 TIME_SLOT_4_VOLTS LO) T
A26A1S9 A26A1S9_SET_TO_OPER (A24]1
VOLTS LO) T
(A2471 TEST_VOLTS BAD) A26A1S9_NOT_SET_TO_OPER (A24]2
TIME_SLOT 4_VOLTSLO) T
(A2411 VOLTSLO) T
MUX_AMPJ1_4

(A24]1 TIME_SLOT_4_WAVEFORM BAD) (A26A159-1 TIME_SLOT_4_WAVEFORM BAD)
A26A1S9_SET_TO_OPER (A24J2 TIME_SLOT_4_WAVEFORM BAD) T

(A24J2 TIME_SLOT_4_WAVEFORM
BAD) T

(A24J1 TIME_SLOT_7_VOLTS HI) (A26A159-1 TIME_SLOT_7_VOLTS HI) A26A189_SET_TO_OPER
(A24)2 TIME_SLOT_7_VOLTSHI) T
(A24J1 TEST_VOLTS BAD) A26A1S9_NOT_SET_TO_OPER (A24J1 VOLTS HI)
T
(A24J2 TIME_SLOT_7_VOLTSHI) T
(A24J1 VOLTSHI) T
MUX_AMPJ1_7

(A24J1 TIME_SLOT_7_VOLTS LO) (A26A1S9-1 TIME_SLOT_7_VOLTS LO) A26A189_SET_TO_OPER
(A24J2 TIME_SLOT_7_VOLTSLO) T
A26A1S9 A26A1S9_SET TO_OPER (A24J1 VOLTSLO) T
(A24J1 TEST_VOLTS BAD) A26A1S9_NOT_SET_TO_OPER (A24J2
TIME_SLOT_7_VOLTSLO) T
(A24]1 VOLTSLO) T
MUX_AMPJ1_7

(A24]1 TIME_SLOT_7_WAVEFORM BAD) (A26A159-1 TIME_SLOT_7_WAVEFORM BAD)
A26A159_SET_TO_OPER (A24J2 TIME_SLOT_7_WAVEFORM BAD) T
(A2412 TIME_SLOT_7_WAVEFORM BAD) T

(A24]1 VOLTS HI) (A24]1 TIME_SLOT_1_VOLTSHI)T MUX_AMPJ1_AV
(A24]J1 TIME_SLOT_4_VOLTSHI) T
(A24]1 TIME_SLOT_7_VOLTS HI) T
(A24J1 TIME_SLOT_10_VOLTS HI) T
(A24J1 TIME_SLOT_1_VOLTSHI) T
(A24]1 TIME_SLOT_4_VOLTSHI) T
(A24]1 TIME_SLOT_7_VOLTSHI) T
(A24J1 TIME_SLOT_10_VOLTS H)) T

(A24]J1 VOLTS LO) (A24J1 TIME_SLOT_1_VOLTSLO)T MUX_AMPJ1_AV
(A24J1 TIME_SLOT_4_VOLTSLO)T
(A24J1 TIME_SLOT_7_VOLTSLO) T
(A24J1 TIME_SLOT_10_VOLTSLO) T
(A24J1 TIME_SLOT_1_VOLTSLO)T
(A24)1 TIME_SLOT_4_VOLTSLO)T
(A24)1 TIME_SLOT_7_VOLTSLO) T

133

J.MOLNAR

(A2471 VOLTS LO) (A24J1 TIME_SLOT_10_VOLTS LO) T

(A24J2 TIME_SLOT_10_VOLTS HI) (A2471 TIME_SLOT_10_VOLTS HI) T (A24J2 VOLTS HI) T

(A24 FUNCTIONS BAD) T (A24J2 VOLTS HI) T

(A24J1 TIME_SLOT_10_VOLTS HI) T (A23_OUTPUT TIME_SLOT_10_AMPL
H)T

(A24 FUNCTIONS BAD) T MUX_AMPJ2_10

(A24J2 TIME_SLOT_10_VOLTS LO) (A24J1 TIME_SLOT_10_VOLTS LO) T (A24J2 VOLTSLO) T

(A24 FUNCTIONS BAD) T (A2412 VOLTS LO) T

(A2471 TIME_SLOT_10_VOLTS LO) T (A23_OUTPUT TIME_SLOT_10_AMPL
LO)T

(A24 FUNCTIONS BAD) T MUX_AMPJ2_10

(A24J2 TIME_SLOT_10_WAVEFORM BAD) (A24]J1 TIME_SLOT_10_WAVEFORM BAD) T (A23_OUTPUT
TIME_SLOT_10_WAVE BAD) T

(A24 FUNCTIONS BAD) T
(A24]1 TIME_SLOT_10_WAVEFORM BAD) T
(A24 FUNCTIONS BAD) T
(A24]2 TIME_SLOT _1_VOLTS HI) (A24J1 TIME_SLOT_1_VOLTS HI) T (A24J2 VOLTS HI) T
(A24 FUNCTIONS BAD) T (A24)2 VOLTS HI) T

(A24J1 TIME_SLOT_1_VOLTSHI) T (A23_OUTPUT TIME_SLOT_1_AMPL

HDT
(A24 FUNCTIONS BAD) T MUX_AMPJ2_1

(A2432 TIME_SLOT_1_VOLTS LO) (A24J1 TIME_SLOT_1_VOLTS LO) T (A24J2 VOLTS LO) T
(A24 FUNCTIONS BAD) T (A2412 VOLTS LO) T
(A2471 TIME_SLOT_1_VOLTSLO) T (A23_OUTPUT TIME_SLOT_1_AMPL
LO)T
(A24 FUNCTIONS BAD) T MUX_AMPJ2_1

(A24)2 TIME_SLOT_1_WAVEFORM BAD) (A24J1 TIME_SLOT_1_WAVEFORM BAD) T (A23_OUTPUT
TIME_SLOT_1_WAVEBAD) T

(A24 FUNCTIONS BAD) T

(A24J1 TIME_SLOT_1_WAVEFORM BAD) T

(A24 FUNCTIONS BAD) T

(A24J2 TIME_SLOT_1_WAVEFORM BAD)

(A2472 TIME_SLOT_4_VOLTS HI) (A24J1 TIME_SLOT_4_VOLTS HI) T (A24J2 VOLTS HI) T
(A24 FUNCTIONS BAD) T (A24J2 VOLTS HI) T
(A24]1 TIME_SLOT_4_VOLTS H) T (A23_OUTPUT TIME_SLOT 4_AMPL
HDT
(A24 FUNCTIONS BAD) T MUX_AMPI2_4

(A24)2 TIME_SLOT_4_VOLTS LO) (A24]1 TIME_SLOT_4_VOLTS LO) T (A24J2 VOLTSLO) T
(A24 FUNCTIONS BAD) T (A24)2 VOLTS LO) T
(A24J1 TIME_SLOT_4_VOLTSLO) T (A23_OUTPUT TIME_SLOT_4_AMPL
LO)T
(A24 FUNCTIONS BAD) T MUX_AMPJ2_4

134

NRL REPORT 9296

(A24J2 TIME_SLOT_4_WAVEFORM BAD) (A24J1 TIME_SLOT_4_WAVEFORM BAD) T (A23_OUTPUT
TIME_SLOT 4 WAVE BAD) T

(A24 FUNCTIONS BAD) T

(A24]1 TIME_SLOT_4_WAVEFORM BAD) T

(A24 FUNCTIONS BAD) T

(A24J2 TIME_SLOT_7_VOLTS HI) (A24J1 TIME_SLOT_7_VOLTS HI) T (A24J2 VOLTS HI) T
(A24 FUNCTIONS BAD) T (A2412 VOLTS HI) T
(A24]1 TIME_SLOT_7_VOLTSHI) T (A23_OUTPUT TIME_SLOT_7_AMPL
HDT
(A24 FUNCTIONS BAD) T MUX_AMPI2_7

(A24]2 TIME_SLOT_7_VOLTS LO) (A24J1 TIME_SLOT_7_VOLTS LO) T (A24]2 VOLTSLO) T

(A24 FUNCTIONS BAD) T (A24]12VOLTSLO) T

(A24J1 TIME_SLOT_7_VOLTSLO)T (A23_OUTPUT TIME_SLOT_7_AMPL
LOT

(A24 FUNCTIONS BAD) T MUX_AMPJ2 7

(A24J2 TIME_SLOT_7_WAVEFORM BAD) (A24J1 TIME_SLOT_7_WAVEFORM BAD) T (A23_OUTPUT
TIME_SLOT 7 WAVE BAD) T

(A24 FUNCTIONS BAD) T

(A24J1 TIME_SLOT_7_WAVEFORM BAD) T

(A24 FUNCTIONS BAD) T

(A24]J2 VOLTS HI) (A24]2 TIME_SLOT_1_VOLTSHI) T MUX_AMPJ2_AV
(A24]2 TIME_SLOT_4_VOLTSHD) T
(A24]2 TIME_SLOT_7_VOLTSHI) T
(A24J2 TIME_SLOT_10_VOLTSHD) T
(A24J2 TIME_SLOT_1_VOLTSHI) T
(A24J2 TIME_SLOT_4_VOLTSHI) T
(A24)2 TIME_SLOT_7_VOLTSHI) T
(A24)2 TIME_SLOT_10_VOLTS H)) T

(A24J2 VOLTS LO) (A24]J2 TIME_SLOT_1_VOLTSLO)T MUX_AMPJ2_AV
(A24J2 TIME_SLOT_4_VOLTSLO) T
(A2412 TIME_SLOT_7_VOLTSLO) T
(A24J2 TIME_SLOT_10_VOLTSLO) T
(A24J2 TIME_SLOT_1_VOLTSLO) T
(A24]2 TIME_SLOT_4_VOLTSLO) T
(A24J2 TIME_SLOT_7_VOLTSLO)T
(A24J2 TIME_SLOT_10_VOLTSLO) T

(A24J4 DELTIC_REF BAD) (A43J3 DELTIC_REF BAD) T (A24]5 DELTIC_REF BAD) T
CORRELATOR REF T (A24]5 DELTIC_REF BAD) T

A1A2414
(A24]5 DELTIC_REF BAD) (A24J4 DELTIC_REF BAD) T (A264 DELTIC_REF BAD) T

CORRELATOR_REF T AlA24]5

135

J.MOLNAR

(A76]3 VOLTS BAD) T
(A57-21 VOLTS BAD) T
(A24J4 DELTIC_REF BAD) T
A24_AMP T
(A76]3 VOLTS BAD) T
(A57-21 VOLTS BAD) T

(A26A1DS8 ALL, BEAMS_ERR BAD) (A27-2 ALL_BEAMS_ERR BAD) T NIL
PMFL T
(A77J4 VOLTS BAD) T

(A26A1DS8 ALL_BEAMS_ERR ON) (A27-2 ALL. BEAMS_ERRON) T DS§_ALL

(A26A1DS8 BEAMS_1-4_ERR BAD) (A27-2 BEAMS_1-4_ERR BAD) T NIL
PMFL T
(A77J4 VOLTSBAD) T

(A26A1DS8 BEAMS_1-4_ERR ON) (A27-2 BEAMS_1-4_ERR ON) T DS8_1-4

(A26A1DS8 LIGHT OFF) (A27-2 OFF_POSITION BAD) T NIL
PMFL T
(A7774 VOLTS BAD) T

(A26A1J10 DTOA_POWER HI) (A42-10 DTOA_POWER HI) T 26A1J10_SC

(A26A1J10 DTOA_POWER LO) (A42-10 DTOA_POWER LO) T 26A1J10_SC

(A26A1)9 DTOA_INHIBIT HI) (A42-5 DTOA_INHIBITHI) T 26A1J9_SC

(A26A1J9 DTOA_INHIBIT LO) (A42-5 DTOA_INHIBITLO) T 26A1J9_SC

(A29J6 ST1 BAD) (A10-9 ST1 BAD) T A1A29J6

(A29J7 NOT_CL1 BAD) (A10-21 NOT_CL1 BAD)T A1A29)7

(A29]J8 DST1 BAD) (A29-9 DST1 BAD) T A1A29]8

(A2)6 ST3 BAD) (A1-9 ST3BAD) T A1A2J6

(A3011 SIGN BAD) (A22-2 SIGN_BEAM_1BAD) T (A30 FUNCTIONS BAD) T

A1A30]1

136

NRL REPORT 9296

(A30J2 BIT_1 BAD) (A17 AMPL,_BEAM_1 BAD) T (A30 FUNCTIONS BAD) T
(A30J2 LOGIC_LEVELS BAD) T

(A30J2 LOGIC_LEVELS BAD) (A30J12BIT_1BAD) T Al1A30J2

(A30J3 BIT_0BAD) (A17 AMPL_BEAM_1BAD) T (A30 FUNCTIONS BAD) T
(A30I13 LOGIC_LEVELS BAD) T

(A30J3 LOGIC_LEVELS BAD) (A30J3BIT_0BAD) T A1A30J3

(A30J4 AMPLITUDE HI)(CORRELATOR-OUT BEAM_1_AMPL HI) T (A45J2 AMPLITUDE HI) T
(A42-10 DTOA_POWER HI) T (A30J4 POS_PEAK HI) T
(A30 FUNCTIONS BAD) T (A30J4 NEG_PEAK HI) T
(A30J4 TEST_188_VOLTS HI)
A26A1S9_NOT_SET_TO_OPER
(A3074 TEST_212_VOLTS HI)
A26A1S9 NOT_SET_TO_OPER
(A30J4 TEST_424_VOLTS HI)
A26A1S9_NOT_SET_TO_OPER
(A30J4 TEST_636_VOLTS HI)
A26A1S9_NOT_SET_TO_OPER

(A30J4 AMPLITUDE LO)Y(CORRELATOR-OUT BEAM_1_AMPL LO) T (A45]2 AMPLITUDELO) T
(A42-10 DTOA_POWERLO) T (A30J4 POS_PEAK LO) T
(A30 FUNCTIONS BAD) T (A30J4 NEG_PEAK LO) T
(A30J4 TEST_188_VOLTS LO)

A26A1S9_NOT_SET_TO_OPER
(A30J4 TEST_212_VOLTS LO)

A26A1S9_NOT_SET_TO_OPER
(A30J4 TEST_424_VOLTS LO)

A26A1S9_NOT_SET_TO_OPER
(A30J4 TEST_636_VOLTS LO)

A26A1S9_NOT_SET_TO_OPER

(A30J4 NEG_PEAK HI) (A30J4 AMPLITUDE HI) T AlA30J4_NEG
(A30J4 NEG_PEAK LO) (A30J4 AMPLITUDE LO) T A1A30J4_NEG
(A3034 POS_PEAK HI) (A30J4 AMPLITUDE HI) T AlA30J4_POS
(A30J4 POS_PEAK LO) (A30J4 AMPLITUDE LO) T A1A30J4_POS

(A30J4 TEST_188_VOLTS HI) (A30J4 AMPLITUDE HI) A26A1S9_NOT_SET_TO_OPER AD_1_188_P

137

J. MOLNAR

(A30J4 TEST_188_VOLTS LO) (A30J4 AMPLITUDE LO) A26A1S9_NOT_SET_TO_OPER AD_1_188_P

(A30J4 TEST_212_VOLTS HI) (A30J4 AMPLITUDE HI) A26A1S9_NOT_SET_TO_OPER AD_1_212 P

(A30J4 TEST_212_VOLTS LO) (A30J4 AMPLITUDE LO) A26A1S9_NOT_SET_TO_OPER AD_1_212 P

(A30J4 TEST_424_VOLTS HI) (A30J4 AMPLITUDE HI) A26A1S9_NOT_SET_TO_OPER AD_1_424_P

(A30J4 TEST_424_VOLTS LO) (A30J4 AMPLITUDE LO) A26A1S9_NOT_SET_TO_OPER AD_1_424_P

(A30J4 TEST_636_VOLTS HI) (A30J4 AMPLITUDE HI) A26A1S9_NOT_SET_TO_OPER AD_1_636_P

(A30J4 TEST_636_VOLTS LO) (A3014 AMPLITUDE LO) A26A159_NOT_SET_TO_OPER AD_1_636_P

138

Appendix N

SAMPLE DATA OUTPUT FORMAT FROM AMBIGUITY SET VERIFIER

Test No. Abnormality Module Immediate Effect

26A1J10_SC HI MOD_REFER (A42-10 DTOA_POWER HI)
26A1J10_SC HI POWER (A26_CABINET_PWR VOLTS BAD)
26A1J10_SC LO MOD_REFER (A42-10 DTOA_POWER LO)
26A1J10_SC LO POWER (A26_CABINET_PWR VOLTS BAD)
26A1J9_SC HI MOD_REFER (A42-5 DTOA_INHIBIT HI)
26A1J9_SC LO MOD_REFER (A42-5 DTOA_INHIBIT LO)
AlA10]1 BAD A26_REFERENCE_CONTROL (A26 FUNCTIONS BAD)
AlA10J1 BAD POWER (A26_CABINET_PWR VOLTS BAD)
Al1A10J1 BAD TIMING (A13J1 WAVEFORM BAD)
Al1A10J1 BAD TIMING (A14 FUNCTIONS BAD)

AlA10J1 BAD TIMING (A15 FUNCTIONS BAD)

AlA10]1 BAD TIMING (A21J9 END_BEAM_STORE BAD)
Al1A10J2 BAD Al10_DELAY_LINE (A10J2 LOGIC_LEVELS BAD)
Al1A10J2 BAD Al10_DELAY_LINE (A10J9 LOGIC_LEVELS BAD)
AlA10J2 BAD A10_DELAY_LINE (A10-21 NOT_CL1 BAD)

Al1A10J2 BAD Al10_DELAY_LINE (A10-9 ST1 BAD)

AlA10J2 BAD A10_DELAY_LINE (A10J4 LOGIC_LEVELS BAD)
AlA1012 BAD Al10_ DELAY_LINE (A10-10 NOT_RE1 BAD)

Al1A10J2 BAD Al10_DELAY_LINE (A10J9 RE1 BAD)

A1A10J2 BAD A24_AMP (A24]5 DELTIC_REF BAD)
Al1A10J2 BAD A26_REFERENCE_CONTROL (A26 FUNCTIONS BAD)
AlA1012 BAD A29 DELAY_LINE (A29-21 NOT_ST1 BAD)

AlA10J2 BAD A29 DELAY_LINE (A29-9 DST1 BAD)

AlA10J2 BAD CORRELATOR_REF (A70J5 FREQ BAD)

Al1A10J2 BAD CORRELATOR_REF (A70J7 FREQ BAD)

Al1A10J2 BAD CORRELATOR_REF (A70J5 VOLTS LO)

AlA10J2 BAD CORRELATOR_REF (A70J7 VOLTS LO)

AlA10J2 BAD CORRELATOR_REF (A70J5 VOLTS HI)

Al1A10J2 BAD CORRELATOR_REF (A70J7 VOLTS HI)

Al1A10J2 BAD CORRELATOR_REF (A43J1 DELTIC_REF BAD)
Al1A10]2 BAD CORRELATOR_REF (A43J3 DELTIC_REF BAD)
AlA10J2 BAD CORRELATOR_REF (A24)J4 DELTIC_REF BAD)
A1A10J2 BAD CORRELATOR_REF (A24]5 DELTIC_REF BAD)
AlA10J2 BAD MUX_REF (A70]7 FREQ BAD)

AlA10J2 BAD MUX_REF (A70J7 VOLTS LO)

AlA10J2 BAD MUX_REF (A70J7 VOLTS HI)

AlA10J2 BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A10]2 BAD TIMING (A13J1 WAVEFORM BAD)
Al1A10J2 BAD TIMING (A14 FUNCTIONS BAD)

AlA10J2 BAD TIMING (A15 FUNCTIONS BAD)

AlA10J2 BAD TIMING (A21J9 END_BEAM_STORE BAD)

139

J.MOLNAR

AlA10J4 BAD A10_DELAY_LINE (A10J4 LOGIC_LEVELS BAD)
A1A10J4 BAD A10_DELAY_LINE (A10J9 LOGIC_LEVELS BAD)
Al1A10J4 BAD Al10 DELAY_LINE (A10J2 LOGIC_LEVELS BAD)
A1A10J4 BAD A10_DELAY_LINE (A10-21 NOT_CL1 BAD)

Al1A10J4 BAD A10_ DELAY_LINE (A10-9 ST1BAD)

A1A10J4 BAD A10_DELAY_LINE (A10J9 RE1BAD)

AlA10J4 BAD A10_DELAY_LINE (A10-10 NOT_RE1 BAD)

A1A10J4 BAD A24_AMP (A24J5 DELTIC_REF BAD)
Al1A10J4 BAD A26_REFERENCE_CONTROL (A26 FUNCTIONS BAD)
A1A10J4 BAD A29 DELAY_LINE (A29-21 NOT_ST1 BAD)

A1A10J4 BAD A29 DELAY_LINE (A29-9 DST1 BAD)

A1A10J4 BAD CORRELATOR_REF (A70]5 FREQ BAD)

Al1A10J4 BAD CORRELATOR_REF (A70]7 FREQ BAD)

A1A10J4 BAD CORRELATOR_REF (A70J5 VOLTS LO)

A1A10J4 BAD CORRELATOR_REF (A70]7 VOLTS LO)

AlA10J4 BAD CORRELATOR_REF (A70J5 VOLTS HI)

A1A10J4 BAD CORRELATOR_REF (A70J7 VOLTS HI)

Al1A10J4 BAD CORRELATOR_REF (A43J1 DELTIC_REF BAD)
Al1A10J4 BAD CORRELATOR_REF (A43J3 DELTIC_REF BAD)
AlA10J4 BAD CORRELATOR_REF (A24J4 DELTIC_REF BAD)
Al1A10J4 BAD CORRELATOR_REF (A24]J5 DELTIC_REF BAD)
Al1A10J4 BAD MUX_REF (A70]7 FREQ BAD)

Al1A1014 BAD MUX_REF (A70J7 VOLTS LO)

A1A10J4 BAD MUX_REF (A70J7 VOLTS HI)

Al1A10J4 BAD POWER (A26_CABINET_PWR VOLTS BAD)
Al1A10J4 BAD TIMING (A21J9 END_BEAM_STORE BAD)
A1A10J4 BAD TIMING (A13J1 WAVEFORM BAD)
A1A10]4 BAD TIMING (A14 FUNCTIONS BAD)

A1A10J4 BAD TIMING (A15 FUNCTIONS BAD)

A1A10J5 BAD A26_REFERENCE_CONTROL (A26 FUNCTIONS BAD)
A1A10J5 BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A10J5 BAD TIMING (A13J1 WAVEFORM BAD)
AlA10J5 BAD TIMING (A14 FUNCTIONS BAD)

A1lA10J5 BAD TIMING (A15 FUNCTIONS BAD)

A1A10J5 BAD TIMING (A21J9 END_BEAM_STORE BAD)
Al1A10J6 BAD A10_DELAY_LINE (Al10-9 ST1BAD)

A1A10J6 BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A10J6 BAD TIMING (A13J1 WAVEFORM BAD)
A1A10J6 BAD TIMING (A14 FUNCTIONS BAD)

A1A10J7 BAD A10_DELAY_LINE (A10-21 NOT_CL1 BAD)

Al1A10J7 BAD POWER (A26_CABINET_PWR VOLTS BAD)
Al1A10J7 BAD TIMING (A13J1 WAVEFORM BAD)
A1A1017 BAD TIMING (A14 FUNCTIONS BAD)

A1A10J8 BAD Al10_DELAY_LINE (A10-9 ST1BAD)

AlA10J8 BAD A29 DELAY LINE (A29-21 NOT_ST1BAD)

A1A10J8 BAD A29 DELAY LINE (A29-9DST1 BAD)

A1A10J8 BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A10J8 BAD TIMING (A13J1 WAVEFORM BAD)
A1A10J8 BAD TIMING {A14 FUNCTIONS BAD)

A1A10J9 BAD A10_DELAY_LINE (A10J9 LOGIC_LEVELS BAD)
A1A10J9 BAD A10_DELAY_LINE (A10J2 LOGIC_LEVELS BAD)
A1A10J9 BAD Al10_DELAY_LINE (A10-21 NOT_CL1 BAD)

A1A10J9 BAD Al10_DELAY_LINE (A10-9 ST1BAD)

140

NRL REPORT 9296

Al1A10J9 BAD Al1Q0_DELAY_LINE (A10J4 LOGIC_LEVELS BAD)
A1A10J9 BAD Al10_DELAY_LINE (A10-10 NOT_RE1 BAD)

A1A10J9 BAD A10_DELAY_LINE (A10J9 RE1BAD)

A1A10J9 BAD A24_AMP (A24J5 DELTIC_REF BAD)
A1A10J9 BAD A26_REFERENCE_CONTROL (A26 FUNCTIONS BAD)
A1A1019 BAD A29 DELAY_LINE (A29-21 NOT_ST1 BAD)

A1A10J9 BAD A29 DELAY_LINE (A29-9 DST1 BAD)

A1A10J9 BAD CORRELATOR_REF (A70J5 FREQ BAD)

A1A10J9 BAD CORRELATOR_REF (A70J7 FREQ BAD)

A1A10J9 BAD CORRELATOR_REF (A70J5 VOLTS LO)

A1A10J9 BAD CORRELATOR_REF (A70J7 VOLTS LO)

Al1A10J9 BAD CORRELATOR_REF (A70J5 VOLTS HI)

A1A10J9 BAD CORRELATOR_REF (A70J7 VOLTS HI)

A1A10J9 BAD CORRELATOR_REF (A43J1 DELTIC_REF BAD)
A1A10J9 BAD CORRELATOR_REF (A43]3 DELTIC_REF BAD)
A1A10J9 BAD CORRELATOR_REF (A24]J4 DELTIC_REF BAD)
A1A10J9 BAD CORRELATOR_REF (A24]5 DELTIC_REF BAD)
A1A1019 BAD MUX_REF (A70J7 FREQ BAD)

Al1A10J9 BAD MUX_REF (A70J7 VOLTS LO)

A1A10J9 BAD MUX_REF (A7017 VOLTS HI)

A1A10J9 BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A10J9 BAD TIMING (A13]1 WAVEFORM BAD)
A1A10]9 BAD TIMING (A14 FUNCTIONS BAD)

A1A10J9 BAD TIMING (A15 FUNCTIONS BAD)

A1A10]9 BAD TIMING (A21J9 END_BEAM_STORE BAD)
AlAll1J14 BAD POWER (A26_CABINET_PWR VOLTS BAD)
AlA11)14 BAD TIMING (A13]J1 WAVEFORM BAD)
AlAl11J14 BAD TIMING (A14 FUNCTIONS BAD)

AlAl1)14 BAD TIMING (A15 FUNCTIONS BAD)

AlA11J15 BAD POWER (A26_CABINET_PWR VOLTS BAD)
AlA11J1S BAD TIMING (A13J1 WAVEFORM BAD)
Al1A11J15 BAD TIMING (A14 FUNCTIONS BAD)

A1A11J15 BAD TIMING (A15 FUNCTIONS BAD)

AlA11J18 BAD POWER (A26_CABINET_PWR VOLTS BAD)
AlA11J18 BAD TIMING (A13J1 WAVEFORM BAD)
AlA11]118 BAD TIMING (A14 FUNCTIONS BAD)

AlA11J18 BAD TIMING (A15 FUNCTIONS BAD)

AlA11J2 BAD POWER (A26_CABINET_PWR VOLTS BAD)
AlA11)2 BAD TIMING (A13]1 WAVEFORM BAD)
AlA11J2 BAD TIMING (A14 FUNCTIONS BAD)

AlA1113 BAD POWER (A26_CABINET_PWR VOLTS BAD)
AlA11]3 BAD TIMING (A13J1 WAVEFORM BAD)
AlA11J3 BAD TIMING (A14 FUNCTIONS BAD)

AlAI1J4 BAD POWER (A26_CABINET_PWR VOLTS BAD)
AlAl1J4 BAD TIMING (A13]J1 WAVEFORM BAD)
AlAl1J4 BAD TIMING (A14 FUNCTIONS BAD)

AlA11J5 BAD POWER (A26_CABINET_PWR VOLTS BAD)
AlA1l1J5 BAD TIMING (A13J)1 WAVEFORM BAD)
ALAI1]S BAD TIMING (A14 FUNCTIONS BAD)

AlA11J6 BAD POWER (A26_CABINET_PWR VOLTS BAD)

141

J.MOLNAR

AlA11J6 BAD TIMING (A13J1 WAVEFORM BAD)
AlA11J6 BAD TIMING (A14 FUNCTIONS BAD)

Al1A117 BAD POWER (A26_CABINET_PWR VOLTS BAD)
AlA11J7 BAD TIMING (A13J1 WAVEFORM BAD)
Al1A11)7 BAD TIMING (A14 FUNCTIONS BAD)

A1A11J8 BAD POWER (A26_CABINET_PWR VOLTS BAD)
AlA11J8 BAD TIMING (A13]1 WAVEFORM BAD)
Al1A11J8 BAD TIMING (A14 FUNCTIONS BAD)

AlA11)9 BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A11J9 BAD TIMING (A13]1 WAVEFORM BAD)
AlA11J9 BAD TIMING (A14 FUNCTIONS BAD)
A1A13J1_F LO POWER (A26_CABINET_PWR VOLTS BAD)
AlA13J1_F LO TIMING (A13J1 WAVEFORM BAD)
AlA13J1_F HI POWER (A26_CABINET_PWR VOLTS BAD)
A1A13J1_F HI TIMING (A13J1 WAVEFORM BAD)
A1A13J1_L BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A13J1_L BAD TIMING (A13]J1 WAVEFORM BAD)

AlA1J1 BAD POWER (A26_CABINET_PWR VOLTS BAD)
AlA1N BAD TIMING (A13]J1 WAVEFORM BAD)

AlAlJ1 BAD TIMING (A14 FUNCTIONS BAD)

AlAlJ1 BAD TIMING (A15 FUNCTIONS BAD)

AlAlJ4 BAD Al_DELAY_LINE (A1J4 LOGIC_LEVELS BAD)
AlAlJ4 BAD POWER (A26_CABINET_PWR VOLTS BAD)
AlA1JS BAD POWER (A26_CABINET_PWR VOLTS BAD)
AlA1J5 BAD TIMING (A13J1 WAVEFORM BAD)

AlA1)5 BAD TIMING (A14 FUNCTIONS BAD)

A1A1J5 BAD TIMING (A15 FUNCTIONS BAD)

Al1A1J6 BAD Al_DELAY_LINE (A1-9 ST3 BAD)

AlAlJ6 BAD POWER (A26_CABINET_PWR VOLTS BAD)
AlAl1J6 BAD TIMING (A13J1 WAVEFORM BAD)

AlAlJ6 BAD TIMING (A14 FUNCTIONS BAD)

AlA1)7 BAD A2 _DELAY_LINE (A2-22 NOT_CL2BAD)

AlA1]7 BAD POWER (A26_CABINET_PWR VOLTS BAD)
AlA1)7 BAD TIMING (A13J1 WAVEFORM BAD)

AlA1)7 BAD TIMING (A14 FUNCTIONS BAD)

A1A1J8 BAD Al_DELAY_LINE (A1-9 ST3 BAD)

ATA1J8 BAD A3_DELAY_LINE (A3-9 DST3 BAD)

AlA1J8 BAD POWER (A26_CABINET_PWR VOLTS BAD)
Al1A1J8 BAD TIMING (A13J1 WAVEFORM BAD)

Al1A1J8 BAD TIMING (A14 FUNCTIONS BAD)

Al1A1J9 BAD Al1_DELAY_LINE (A1J9 LOGIC_LEVELS BAD)
Al1A1)9 BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A20J11 BAD A10_DELAY LINE (A10J9 LOGIC_LEVELS BAD)
A1A20]11 BAD A10_DELAY _LINE (A10J2 LOGIC_LEVELS BAD)

142

NRL REPORT 9296

Al1A20J11 BAD A10_DELAY_LINE (A10-21 NOT_CL1 BAD)
Al1A20]11 BAD A10_DELAY_LINE (Al0-9 ST1BAD)

A1A20]11 BAD A10_DELAY_LINE (A10J4 LOGIC_LEVELS BAD)
Al1A20]11 BAD Al10_DELAY_LINE (A1l0J9 RE1BAD)

A1A20111 BAD Al10_DELAY_LINE (A10-10 NOT_REI BAD)
A1A20]11 BAD A24_AMP (A24J5 DELTIC_REF BAD)
A1A20111 BAD A26_REFERENCE_CONTROL (A26 FUNCTIONS BAD)
A1A20111 BAD A29 DELAY_LINE (A29-21 NOT_ST1 BAD)
A1A20111 BAD A29 DELAY LINE (A29-9 DST1BAD)

A1A20111 BAD CORRELATOR_REF (A70J5 FREQ BAD)

Al1A20J11 BAD CORRELATOR_REF (A70]J7 FREQ BAD)

A1A20J11 BAD CORRELATOR_REF (A70J5 VOLTS LO)

A1A20J11 BAD CORRELATOR_REF (A70J7 VOLTS LO)

A1A20]11 BAD CORRELATOR_REF (A70]J5 VOLTS HI)

A1A20J11 BAD CORRELATOR_REF (A70J7 VOLTS HI)

A1A20J11 BAD CORRELATOR_REF (A43]1 DELTIC_REF BAD)
A1A20J11 BAD CORRELATOR_REF (A43J3 DELTIC_REF BAD)
A1A20J11 BAD CORRELATOR_REF (A24]J4 DELTIC_REF BAD)
A1A20711 BAD CORRELATOR_REF (A24]5 DELTIC_REF BAD)
A1A20J11 BAD MUX_REF (A70J7 FREQ BAD)

A1A20J11 BAD MUX_REF (A70J7 VOLTS LO)

A1A20J11 BAD MUX_REF (A70J7 VOLTS HI)

A1A20]11 BAD PMFL (A18 CONTROL_FUNCTIONS BAD)
AlA20J11 BAD POWER {A26_CABINET_PWR VOLTS BAD)
Al1A20J11 BAD TIMING (A13J1 WAVEFORM BAD)
A1A20J11 BAD TIMING (A14 FUNCTIONS BAD)
A1A20J11 BAD TIMING (A15 FUNCTIONS BAD)
A1A20]11 BAD TIMING (A21J9 END_BEAM_STORE BAD)
A1A20J13 FAULTED A10_DELAY_LINE (A10J9 LOGIC_LEVELS BAD)
A1A20J13 FAULTED Al10_DELAY_LINE (A10J2 LOGIC_LEVELS BAD)
A1A20J13 FAULTED A10_DELAY_LINE (A10-21 NOT_CL1 BAD)
A1A20J13 FAULTED Al10_DELAY_LINE (A10-9 ST1BAD)

A1A20]13 FAULTED Al10_DELAY_LINE (A10J4 LOGIC_LEVELS BAD)
A1A20]13 FAULTED A10_DELAY_LINE (A10-10 NOT_RE1 BAD)
A1A20]13 FAULTED Al10_DELAY_LINE (Al0J9 RE1BAD)

A1A20J13 FAULTED A17_AMPL_CONTROL (A17 AMPL_CORREL_LEFT_BEAMS BAD)
A1A20J13 FAULTED A22 SIGN_CONTROL (A22 GATES_OR_PWR_OR_MODULE BAD)
A1A20113 FAULTED A22_SIGN_CONTROL (A7J4 LOGIC_LEVELS BAD)
A1A20113 FAULTED A22 _SIGN_CONTROL (A7J4 SIGN_LEFT_BEAMS BAD)
A1A20]13 FAULTED A24_AMP (A24]5 DELTIC_REF BAD)
A1A20J13 FAULTED A26_REFERENCE_CONTROL (A26 FUNCTIONS BAD)
A1A20]13 FAULTED A29 DELAY_LINE (A29-21 NOT_ST1 BAD)
ATA20J13 FAULTED A29 DELAY LINE (A29-9 DST1 BAD)

A1A20]13 FAULTED A7_DELAY_LINE (A7-9 ST1 BAD)

A1A20]13 FAULTED A7_DELAY_LINE (A7-21 NOT_CL1 BAD)

A1A20]13 FAULTED A7_DELAY_LINE (A7J9 LOGIC_LEVELS BAD)
A1A20]13 FAULTED AT_DELAY_LINE (A7J4 LOGIC_LEVELS BAD)
A1A20J13 FAULTED A7_DELAY_LINE (A7-13 SIGN_LEFT_BEAMS BAD)
A1A20J13 FAULTED A9_DELAY_LINE (A9-9 DST1 BAD)

A1A20J13 FAULTED CORRELATOR_REF (A70J5 FREQ BAD)

A1A20J13 FAULTED CORRELATOR_REF (A70J7 FREQ BAD)

A1A20J13 FAULTED CORRELATOR_REF (A70J5 VOLTS LO)

A1A20J13 FAULTED CORRELATOR_REF (A70J7 VOLTS LO)

A1A20713 FAULTED CORRELATOR_REF (A70J5 VOLTS HI)

A1A20J13 FAULTED CORRELATOR_REF (A70J7 VOLTS HI)

A1A20J13 FAULTED CORRELATOR_REF (A43J1 DELTIC_REF BAD)
A1A20J13 FAULTED CORRELATOR_REF (A43J3 DELTIC_REF BAD)

143

J. MOLNAR

A1A20]13 FAULTED CORRELATOR_REF (A24J4 DELTIC_REF BAD)
A1A20J13 FAULTED CORRELATOR_REF (A24J5 DELTIC_REF BAD)
A1A20]13 FAULTED MUX_REF (A70J7 FREQ BAD)

A1A20J13 FAULTED MUX_REF (A70J7 VOLTS LO)

A1A20]13 FAULTED MUX_REF (A70J7 VOLTS HI)

A1A20J13 FAULTED PMFL (A18 TEST_FUNCTIONS BAD)
A1A20113 FAULTED POWER (A26_CABINET_PWR VOLTS BAD)
A1A20J13 FAULTED TIMING (A13J1 WAVEFORM BAD)
A1A20J13 FAULTED TIMING (A14 FUNCTIONS BAD)
A1A20J13 FAULTED TIMING (A15 FUNCTIONS BAD)
A1A20713 FAULTED TIMING (A21J9 END_BEAM_STORE BAD)
A1A20]2 BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A20]2 BAD TIMING (A13J1 WAVEFORM BAD)
A1A20]2 BAD TIMING (A14 FUNCTIONS BAD)

A1A20]2 BAD TIMING (A15 FUNCTIONS BAD)

A1A20]2 BAD TIMING (A2032 GATE_1 BAD)

A1A20]3 BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A20J3 BAD TIMING (A13J1 WAVEFORM BAD)
A1A20]3 BAD TIMING (A14 FUNCTIONS BAD)

A1A20J3 BAD TIMING (A15 FUNCTIONS BAD)

A1A20]3 BAD TIMING (A2013 GATE_2 BAD)

A1A20J4 BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A20]4 BAD TIMING (A13J1 WAVEFORM BAD)
A1A20]4 BAD TIMING (A14 FUNCTIONS BAD)

A1A20]4 BAD TIMING (A15 FUNCTIONS BAD)

A1A20J4 BAD TIMING (A20J4 GATE_3 BAD)

A1A20]5 BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A20J5 BAD TIMING (A13J1 WAVEFORM BAD)
A1A20]5 BAD TIMING (A14 FUNCTIONS BAD)

A1A20]5 BAD TIMING (A15 FUNCTIONS BAD)

A1A20]5 BAD TIMING (A20J5 GATE_4 BAD)

A1A20J9 BAD A10 DELAY _LINE (A10J9 LOGIC_LEVELS BAD)
AT1A20J9 BAD A10_DELAY_LINE (A10J2 LOGIC_LEVELS BAD)
A1A20J9 BAD A10_DELAY_LINE (A10-21 NOT_CL1 BAD)

A1A20J9 BAD A10_DELAY_LINE (A10-9 ST1 BAD)

A1A2019 BAD A10_DELAY_LINE (A10J4 LOGIC_LEVELS BAD)
A1A20J9 BAD A10_DELAY_LINE (Al0J9RE1 BAD)

A1A20J9 BAD A10_DELAY_LINE (A10-10 NOT_RE1 BAD)

A1A20J9 BAD A24_AMP (A24]5 DELTIC_REF BAD)
A1A20]9 BAD A26_REFERENCE_CONTROL (A26 FUNCTIONS BAD)
A1A20J9 BAD A29 DELAY_LINE A29-21 NOT_ST1 BAD)

A1A20J9 BAD A29 DELAY LINE (A29-9 DST1BAD)

A1A20J9 BAD CORRELATOR_REF (A70J5 FREQ BAD)

ATA20J9 BAD CORRELATOR_REF (A70]7 FREQ BAD)

A1A20J9 BAD CORRELATOR_REF (A70J5 VOLTS LO)

A1A20J9 BAD CORRELATOR_REF (A70J7 VOLTS LO)

A1A20J9 BAD CORRELATOR_REF (A70J5 VOLTS HI)

A1A20]9 BAD CORRELATOR_REF (A70J7 VOLTS HI)

A1A20J9 BAD CORRELATOR_REF (A43J1 DELTIC_REF BAD)
A1A20J9 BAD CORRELATOR_REF (A43J3 DELTIC_REF BAD)
A1A20]9 BAD CORRELATOR_REF (A24J4 DELTIC_REF BAD)
A1A20]9 BAD CORRELATOR_REF (A24J5 DELTIC_REF BAD)
A1A20]9 BAD MUX_REF (A70J7 FREQ BAD)

144

NRL REPORT 9296

A1A20]9 BAD MUX_REF (A70J7 VOLTS LO)

A1A20]9 BAD MUX_REF (A70J7 VOLTS HI)

A1A20J9 BAD PMFL (A18 CONTROL_FUNCTIONS BAD)
A1A20]9 BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A2059 BAD TIMING (A13J1 WAVEFORM BAD)
A1A20J9 BAD TIMING (A14 FUNCTIONS BAD)

A1A20J9 BAD TIMING (A15 FUNCTIONS BAD)

A1A20J9 BAD TIMING (A21J9 END_BEAM_STORE BAD)
AlA21J11 BAD A26_REFERENCE_CONTROL (A26 FUNCTIONS BAD)
AlA21J11 BAD POWER (A26_CABINET_PWR VOLTS BAD)
Al1A21J11 BAD TIMING (A13]J1 WAVEFORM BAD)
A1A21J11 BAD TIMING (A14 FUNCTIONS BAD)
AlA21J11 BAD TIMING (A15 FUNCTIONS BAD)
AlA21311 BAD TIMING (A21J9 END_BEAM_STORE BAD)
AlA21)13 BAD Al10_DELAY_LINE (A10J9 LOGIC_LEVELS BAD)
AlA21J13 BAD Al10_DELAY_LINE (A10J2 LOGIC_LEVELS BAD)
A1A21J13 BAD Al10_DELAY_LINE (A10-21 NOT_CL1 BAD)
A1A21J13 BAD Al10_DELAY_LINE (Al0-9 ST1BAD)

Al1A21J13 BAD Al10_DELAY_LINE (A10J4 LOGIC_LEVELS BAD)
Al1A21]13 BAD Al10_DELAY_LINE (Al10-10 NOT_RE1 BAD)
AlA21]13 BAD A10_DELAY_LINE (A10J9 RE1BAD)

AlA21J13 BAD A24_AMP {A24]5 DELTIC_REF BAD)
AlA21J13 BAD A26_REFERENCE_CONTROL (A26 FUNCTIONS BAD)
A1A21J13 BAD A29 DELAY LINE (A29-21 NOT_ST1 BAD)
AlA21)13 BAD A29 DELAY_LINE (A29-9 DST1 BAD)

Al1A21J13 BAD CORRELATOR_REF (A70J5 FREQ BAD)

A1A21J13 BAD CORRELATOR_REF (A70J7 FREQ BAD)

Al1A21713 BAD CORRELATOR_REF (A70J5 VOLTS LO)

Al1A21J13 BAD CORRELATOR_REF (A70J7 VOLTS LO)

A1A21J13 BAD CORRELATOR_REF (A70J5 VOLTS HI)

A1A21J13 BAD CORRELATOR_REF (A70J7 VOLTS HI)

Al1A21J13 BAD CORRELATOR_REF (A43J1 DELTIC_REF BAD)
A1A21J13 BAD CORRELATOR_REF (A43J3 DELTIC_REF BAD)
AlA21J13 BAD CORRELATOR_REF (A24J4 DELTIC_REF BAD)
Al1A21J13 BAD CORRELATOR_REF (A24]5 DELTIC_REF BAD)
Al1A21J13 BAD MUX_REF (A70J7 FREQ BAD)

Al1A21]113 BAD MUX_REF (A7017 VOLTS LO)

A1A21]13 BAD MUX_REF (A70J7 VOLTS HI)

A1A21]13 BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A21J13 BAD TIMING (A13]J1 WAVEFORM BAD)
Al1A21J13 BAD TIMING (A14 FUNCTIONS BAD)
A1A21J13 BAD TIMING (A15 FUNCTIONS BAD)
AlA21J13 BAD TIMING (A21J9 END_BEAM_STORE BAD)
AlA21J14 BAD Al10_DELAY_LINE (A10J9 LOGIC_LEVELS BAD)
AlA21J14 BAD Al0 DELAY LINE (A10J2 LOGIC_LEVELS BAD)
AlA21]14 BAD Al0_DELAY LINE (A10-21 NOT_CL1 BAD)
AlA21]14 BAD Al10_DELAY_LINE (Al0-9 ST1BAD)

A1A21]14 BAD Al0_DELAY LINE (A10J4 LOGIC_LEVELS BAD)
Al1A21J14 BAD A10_DELAY_LINE (Al10-10 NOT_RE1 BAD)
AlA21]14 BAD Al0_DELAY_LINE (Al0J9RE1 BAD)

Al1A21]14 BAD A24_AMP (A24])5 DELTIC_REF BAD)
Al1A21J14 BAD A26_REFERENCE_CONTROL (A26 FUNCTIONS BAD)
AlA21]14 BAD A29 DELAY_LINE (A29-21 NOT_ST1 BAD)
AlA21J14 BAD A29 DELAY _LINE (A29-9 DST1 BAD)

AlA21]14 BAD CORRELATOR_REF (A70J5 FREQ BAD)

145

J.MOLNAR

Al1A21J14 BAD CORRELATOR_REF (A70]7 FREQ BAD)

Al1A21]14 BAD CORRELATOR_REF (A70J5 VOLTS LO)

A1A21714 BAD CORRELATOR_REF (A70J7 VOLTS LO)

Al1A21J14 BAD CORRELATOR_REF (A70J5 VOLTS HI)

Al1A21]14 BAD CORRELATOR_REF (A70]7 VOLTS HI)

Al1A21J14 BAD CORRELATOR_REF (A43J1 DELTIC_REF BAD)
AlA21]14 BAD CORRELATOR_REF (A43J3 DELTIC_REF BAD)
AlA21]14 BAD CORRELATOR_REF (A24J4 DELTIC_REF BAD)
A1A21]14 BAD CORRELATOR_REF (A24]5 DELTIC_REF BAD)
AlA21714 BAD MUX_REF (A70J7 FREQ BAD)

AlA21J14 BAD MUX_REF (A70)J7 VOLTS LO)

AlA21]14 BAD MUX_REF (A70J7 VOLTS HI)

AlA21]14 BAD POWER (A26_CABINET_PWR VOLTS BAD)
AlA21J14 BAD TIMING (A13J1 WAVEFORM BAD)
Al1A21J14 BAD TIMING (A14 FUNCTIONS BAD)
Al1A21]14 BAD TIMING (A15 FUNCTIONS BAD)
Al1A21]14 BAD TIMING (A21J9 END_BEAM_STORE BAD)
A1A21]8 BAD Al10_DELAY_LINE (A10J9 LOGIC_LEVELS BAD)
A1A21J8 BAD A10_DELAY_LINE (A10J2 LOGIC_LEVELS BAD)
A1A21J8 BAD Al10_DELAY_LINE (Al10-21 NOT_CL1 BAD)
A1A21J8 BAD Al10_DELAY_LINE (A10-9 ST1 BAD)

A1A21J8 BAD A10_DELAY_LINE (A10J4 LOGIC_LEVELS BAD)
Al1A21]8 BAD Al10_DELAY_LINE (A10J9 RE1 BAD)

A1A21]8 BAD Al10_DELAY LINE (A10-10NOT_RE1 BAD)
A1A21]J8 BAD A24_AMP (A24]5 DELTIC_REF BAD)
A1A21J8 BAD A26_REFERENCE_CONTROL (A26 FUNCTIONS BAD)
A1A21J8 BAD A29 DELAY_LINE (A29-21 NOT_ST1 BAD)
A1A21J8 BAD A29_ DELAY_LINE (A29-9 DST1BAD)

A1A21J8 BAD CORRELATOR_REF (A70]5 FREQ BAD)

A1A21]8 BAD CORRELATOR_REF (A70]7 FREQ BAD)

AlA21J8 BAD CORRELATOR_REF (A70J5 VOLTS LO)

AlA21J8 BAD CORRELATOR_REF (A70J7 VOLTS LO)

Al1A21]8 BAD CORRELATOR_REF (A70J5 VOLTS HI)

A1A21J8 BAD CORRELATOR_REF (A70J7 VOLTS HI)

A1A21J8 BAD CORRELATOR_REF (A43J1 DELTIC_REF BAD)
A1A21]8 BAD CORRELATOR_REF (A43]3 DELTIC_REF BAD)
A1A21J8 BAD CORRELATOR_REF (A24J4 DELTIC_REF BAD)
A1A21]8 BAD CORRELATOR_REF (A24]5 DELTIC_REF BAD)
A1A21J8 BAD MUX_REF (A70J7 FREQ BAD)

Al1A21J8 BAD MUX_REF (A7017 VOLTS LO)

A1A21J8 BAD MUX_REF (A70J7 VOLTS HI)

A1A21]J8 BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A21J8 BAD TIMING (A13]J1 WAVEFORM BAD)
Al1A21J8 BAD TIMING (A14 FUNCTIONS BAD)
Al1A21]8 BAD TIMING (A15 FUNCTIONS BAD)
A1A21J8 BAD TIMING (A21J9 END_BEAM_STORE BAD)
Al1A24J4 BAD CORRELATOR_REF (A70J5 FREQ BAD)

A1A24J4 BAD CORRELATOR_REF (A70J7 FREQ BAD)

Al1A24J4 BAD CORRELATOR_REF (A70J5 VOLTS LO)

A1A24J4 BAD CORRELATOR_REF (A70J7 VOLTS LO)

A1A24J4 BAD CORRELATOR_REF (A70J5 VOLTS HI)

AlA24J4 BAD CORRELATOR_REF (A70]7 VOLTS HI)

A1A24J4 BAD CORRELATOR_REF (A43J1 DELTIC_REF BAD)
AlA24]4 BAD CORRELATOR_REF (A43J3 DELTIC_REF BAD)
Al1A2434 BAD CORRELATOR_REF (A24J4 DELTIC_REF BAD)
Al1A24J4 BAD MUX_REF (A70J7 FREQ BAD)

146

NRL REPORT 9296

Al1A24]4 BAD MUX_REF (A70J7 VOLTS LO)

AlA24]4 BAD MUX_REF (A70J7 VOLTS HI)

AlA24)4 BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A24]5 BAD A24_AMP (A24)5 DELTIC_REF BAD)
A1A24]5 BAD CORRELATOR_REF (A70J5 FREQ BAD)

A1A24]5 BAD CORRELATOR_REF (A70J7 FREQ BAD)

A1A24)5 BAD CORRELATOR_REF (A70J5 VOLTS LO)

A1A24]5 BAD CORRELATOR_REF (A70J7 VOLTS LO)

A1A24]5 BAD CORRELATOR_REF (A70J5 VOLTS HI)

A1A24]5 BAD CORRELATOR_REF (A70J7 VOLTS HI)

A1A24]5 BAD CORRELATOR_REF (A43J1 DELTIC_REF BAD)
A1A24]5 BAD CORRELATOR_REF (A43]3 DELTIC_REF BAD)
AlA24]5 BAD CORRELATOR_REF (A24J4 DELTIC_REF BAD)
A1A24]5 BAD CORRELATOR_REF (A24]5 DELTIC_REF BAD)
A1A24]5 BAD MUX_REF (A70J7 FREQ BAD)

A1A24]5 BAD MUX_REF (A7037 VOLTS LO)

A1A24]5 BAD MUX_REF (A70J7 VOLTS HI)

A1A24]5 BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A29]6 BAD Al10_DELAY_LINE (A10-9 ST1BAD)

A1A29J6 BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A29]6 BAD TIMING (A13J1 WAVEFORM BAD)
A1A29]6 BAD TIMING (A14 FUNCTIONS BAD)

A1A2937 BAD Al10_DELAY_LINE (A10-21 NOT_CL1 BAD)

A1A29]7 BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A29]7 BAD TIMING (A13]J1 WAVEFORM BAD)
A1A29]7 BAD TIMING (A14 FUNCTIONS BAD)

A1A29]8 BAD Al10_DELAY_LINE (Al0-9 ST1 BAD)

A1A29]8 BAD A29 DELAY LINE (A29-21 NOT_ST1 BAD)

A1A29]8 BAD A29 DELAY_LINE (A29-9 DST1 BAD)

AI1A29]8 BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A29]8 BAD TIMING (A13]J1 WAVEFORM BAD)
A1A29]8 BAD TIMING (A14 FUNCTIONS BAD)

AlA2]6 BAD Al_DELAY_LINE (A1-9 ST3 BAD)

A1A2J6 BAD POWER (A26_CABINET_PWR VOLTS BAD)
AlA2)6 BAD TIMING (A13]1 WAVEFORM BAD)

A1A2J6 BAD TIMING (A14 FUNCTIONS BAD)

AlA30]1 BAD Al10_DELAY LINE (A10J9 LOGIC_LEVELS BAD)
A1A30]1 BAD A10_DELAY LINE (A10J2 LOGIC_LEVELS BAD)
AlA30J1 BAD Al10_DELAY_LINE (A10-21 NOT_CL1 BAD)

A1A30]1 BAD Al0_DELAY LINE (A10-9 ST1 BAD)

A1A30]1 BAD Al0_DELAY_LINE (A10J4 LOGIC_LEVELS BAD)
A1A30J1 BAD Al0 DELAY LINE (Al0-10 NOT_RE1 BAD)

A1A30]1 BAD Al10_DELAY_LINE (Al0J9 RE1BAD)

A1A30J1 BAD A22_SIGN_CONTROL (A22 GATES_OR_PWR_OR_MODULE BAD)
A1A30]1 BAD A22 SIGN_CONTROL (A7J4 LOGIC_LEVELS BAD)
A1A30J1 BAD A22 SIGN_CONTROL (A7J4 SIGN_LEFT_BEAMS BAD)
A1A30]1 BAD A24_AMP (A24]5 DELTIC_REF BAD)
A1A30J1 BAD A26_REFERENCE_CONTROL (A26 FUNCTIONS BAD)
A1A30J1 BAD A29 DELAY_LINE (A29-21 NOT_ST1 BAD)

A1A30]1 BAD A29 DELAY_LINE (A29-9DST1BAD)

A1A30]1 BAD AT_DELAY_LINE (A7-9 ST1 BAD)

A1A30]1 BAD A7_DELAY_LINE (A7-21 NOT_CL1 BAD)

147

J. MOLNAR

A1A30J1 BAD A7_DELAY_LINE (A7J9 LOGIC_LEVELS BAD)
Al1A30J1 BAD A7 _DELAY_LINE (A7J4 LOGIC_LEVELS BAD)
A1A30J1 BAD A7_DELAY_LINE (A7-13 SIGN_LEFT_BEAMS BAD)
A1A30]1 BAD A9_DELAY_LINE (A9-9 DST1 BAD)

A1A30J1 BAD CORRELATOR_REF (A70]5 FREQ BAD)

A1A30J1 BAD CORRELATOR_REF (A70J7 FREQ BAD)

A1A30J1 BAD CORRELATOR_REF (A70J5 VOLTS LO)

A1A30J1 BAD CORRELATOR_REF (A70J7 VOLTS LO)

A1A30J1 BAD CORRELATOR_REF (A70J5 VOLTS HI)

A1A30J1 BAD CORRELATOR_REF (A70J7 VOLTS HI)

A1A30]1 BAD CORRELATOR_REF (A43]1 DELTIC_REF BAD)
A1A3011 BAD CORRELATOR_REF (A43]3 DELTIC_REF BAD)
Al1A30]1 BAD CORRELATOR_REF (A24J4 DELTIC_REF BAD)
A1A30]1 BAD CORRELATOR_REF (A24]5 DELTIC_REF BAD)
A1A30]1 BAD MUX_REF (A70J7 FREQ BAD)

A1A30]1 BAD MUX_REF (A70J7 VOLTS LO)

A1A30J1 BAD MUX_REF (A70J7 VOLTS HI)

A1A30J1 BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A30J1 BAD TIMING (A21J9 END_BEAM_STORE BAD)
A1A30J1 BAD TIMING (A13J1 WAVEFORM BAD)
A1A30]1 BAD TIMING (A14 FUNCTIONS BAD)

A1A30J1 BAD TIMING (A15 FUNCTIONS BAD)

Al1A30J2 BAD Al0_DELAY_LINE (A10J9 LOGIC_LEVELS BAD)
A1A30J2 BAD AI0_DELAY_LINE (A10J2 LOGIC_LEVELS BAD)
A1A30J2 BAD A10_DELAY_LINE (A10-21 NOT_CL1 BAD)

A1A30J2 BAD Al10_DELAY_LINE (A10-9 ST1BAD)

A1A30J2 BAD Al0_DELAY_LINE (A10J4 LOGIC_LEVELS BAD)
A1A30J2 BAD A10_DELAY_LINE (A10-10 NOT_RE1 BAD)

A1A30J2 BAD Al10_DELAY_LINE (A10J9 RE1BAD)

A1A30]2 BAD A17_AMPIL._CONTROL (A17 AMPL_CORREI,_LEFT_BEAMS BAD)
A1A30J2 BAD A24_AMP (A24]5 DELTIC_REF BAD)
A1A30J2 BAD A26_REFERENCE_CONTROL (A26 FUNCTIONS BAD)
A1A30]2 BAD A29 DELAY_LINE (A29-21 NOT_ST1 BAD)

A1A30J2 BAD A29 DELAY_LINE (A29-9 DST1BAD)

A1A30J2 BAD CORRELATOR_REF (A70J5 FREQ BAD)

A1A30J2 BAD CORRELATOR_REF (A70)7 FREQ BAD)

A1A30]2 BAD CORRELATOR_REF (A70J5 VOLTS LO)

A1A30]2 BAD CORRELATOR_REF (A70]J7 VOLTS LO)

A1A30J2 BAD CORRELATOR_REF (A70J5 VOLTS HI)

Al1A30]2 BAD CORRELATOR_REF (A70J7 VOLTS HI)

A1A3012 BAD CORRELATOR_REF (A43]J1 DELTIC_REF BAD)
A1A3072 BAD CORRELATOR_REF (A43J3 DELTIC_REF BAD)
A1A30]2 BAD CORRELATOR_REF (A24J4 DELTIC_REF BAD)
A1A3012 BAD CORRELATOR_REF (A24J5 DELTIC_REF BAD)
A1A30J2 BAD MUX_REF (A70J7 FREQ BAD)

AIA30J2 BAD MUX_REF (A70J7 VOLTS LO)

A1A30J2 BAD MUX_REF (A70J7 VOLTS HI)

A1A30J2 BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A30]2 BAD TIMING (A13]J1 WAVEFORM BAD)
A1A30J2 BAD TIMING (A14 FUNCTIONS BAD)

A1A30]12 BAD TIMING (A15 FUNCTIONS BAD)

A1A30]2 BAD TIMING (A21J9 END_BEAM_STORE BAD)
A1A30J3 BAD Al0_DELAY_LINE (A10J9 LOGIC_LEVELS BAD)
A1A30J3 BAD Al10_DELAY_LINE (A10J2 LOGIC_LEVELS BAD)
A1A30]3 BAD Al10_DELAY_LINE (A10-21 NOT_CL1 BAD)

Al1A3013 BAD Al0_DELAY_LINE (A10-9 ST1 BAD)

148

NRL REPORT 9296

A1A3013 BAD Al10_DELAY_LINE (A10J4 LOGIC_LEVELS BAD)
A1A3013 BAD A10_DELAY_LINE (A10-10 NOT_REI BAD)

A1A30]3 BAD Al10_DELAY_LINE (A10J9 RE1BAD)

A1A3013 BAD A17_AMPL_CONTROL (A17 AMPL_CORREL_LEFT_BEAMS BAD)
A1A30J3 BAD A24_AMP (A24]5 DELTIC_REF BAD)
A1A30J3 BAD A26_REFERENCE_CONTROL (A26 FUNCTIONS BAD)
A1A30J3 BAD A29 DELAY_LINE (A29-21 NOT_ST1 BAD)

A1A30J3 BAD A29 DELAY_LINE (A29-9 DST1 BAD)

A1A3013 BAD CORRELATOR_REF (A70J5 FREQ BAD)

A1A30J3 BAD CORRELATOR_REF (A70J7 FREQ BAD)

A1A3013 BAD CORRELATOR_REF (A70J5 VOLTS LO)

A1A3013 BAD CORRELATOR_REF (A70J7 VOLTS LO)

A1A3013 BAD CORRELATOR_REF (A70]5 VOLTS HI)

A1A30J3 BAD CORRELATOR_REF (A70J7 VOLTS HI)

AlA30]3 BAD CORRELATOR_REF (A43]1 DELTIC_REF BAD)
A1A30]3 BAD CORRELATOR_REF (A43]3 DELTIC_REF BAD)
A1A30J3 BAD CORRELATOR_REF (A24J4 DELTIC_REF BAD)
A1A30]3 BAD CORRELATOR_REF (A24]5 DELTIC_REF BAD)
A1A3013 BAD MUX_REF (A70J7 FREQ BAD)

A1A3013 BAD MUX_REF (A70J7 VOLTS LO)

A1A30J3 BAD MUX_REF (A70J7 VOLTS HI)

A1A3013 BAD POWER (A26_CABINET_PWR VOLTS BAD)
A1A30]3 BAD TIMING (A13]J1 WAVEFORM BAD)
A1A30J3 BAD TIMING {A14 FUNCTIONS BAD)

A1A3013 BAD TIMING (A15 FUNCTIONS BAD)

A1A30J3 BAD TIMING (A21J9 END_BEAM_STORE BAD)
A1A30J4_NEG LO A10_DELAY_LINE (A10J9 LOGIC_LEVELS BAD)
A1A30J4_NEG LO Al10_DELAY_LINE (A10J2 LOGIC_LEVELS BAD)
AlA30J4_NEG LO Al10_DELAY_LINE (A10-21 NOT_CL1 BAD)
A1A30J4_NEG LO A10_DELAY_LINE (A10-9 ST1BAD)

A1A30J4_NEG LO Al10_DELAY_LINE (A10J4 LOGIC_LEVELS BAD)
ATA30J4_NEG LO Al10_DELAY_LINE (A10-10 NOT_RE1 BAD)
A1A30J4_NEG LO Al10_DELAY_LINE (Al0J9 RE1BAD)

A1A30J4_NEG LO Al17_AMPL_CONTROL (A17 AMPL_CORREL_LEFT_BEAMS BAD)
A1A30J4_NEG Lo Al17_AMPL_CONTROL (A17-OUT AMPL_LEFT_BEAMS BAD)
A1A30J4_NEG LO Al_DELAY_LINE (A19 ST3 BAD)

A1A30J4_NEG LO Al_DELAY_LINE (A1J9 LOGIC_LEVELS BAD)
A1A30J4_NEG LO Al_DELAY_LINE (A1J4 LOGIC_LEVELS BAD)
AlA30J4_NEG LO Al_DELAY_LINE (A1-13 BIT_O_LEFT_BEAMS BAD)
A1A30J4_NEG LO A22_SIGN_CONTROL (A22 GATES_OR_PWR_OR_MODULE BAD)
AlA30J4_NEG LO A22_SIGN_CONTROL (A7J4 LOGIC_LEVELS BAD)
A1A30J4_NEG LO A22 SIGN_CONTROL (A7J4 SIGN_LEFT_BEAMS BAD)
A1A30J4_NEG LO A23_ATOD (A23 AMPLITUDE BAD)
A1lA30J4_NEG LO A23_ATOD (A23-6 SIGN BAD)

AlA30J4_NEG LO A23_ATOD (A23-3 INVERTED_SIGN BAD)
A1A30J4_NEG LO A24_AMP (A24 FUNCTIONS BAD)
A1A30J4_NEG LO A24_AMP (A24]5 DELTIC_REF BAD)
A1A30J4_NEG LO A26_REFERENCE_CONTROL (A26 FUNCTIONS BAD)
A1A30J4_NEG LO A29 DELAY_LINE (A29-21 NOT_ST1 BAD)
A1A30J4_NEG LO A29 DELAY_LINE (A29-9 DST1 BAD)

AIA30J4_NEG LO A2 DELAY_LINE (A2-22 NOT_CL2 BAD)
A1A30J4_NEG LO A30_DTOA (A30 FUNCTIONS BAD)
Al1A30J4_NEG LO A3_DELAY_LINE (A3-9 DST3 BAD)

A1A30J4_NEG LO A4_DELAY_LINE (A4-9 ST2 BAD)

A1A30J4_NEG LO A4_DELAY_LINE (A4-21 NOT_CL2 BAD)
A1A30J4_NEG LO A4_DELAY_LINE (A4J9 LOGIC_LEVELS BAD)
A1A30J4_NEG LO A4_DELAY_LINE (A4J4 LOGIC_LEVELS BAD)

149

A1A30J4_NEG
Al1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
AlA30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
AlA30J4_NEG
A1A30J4_NEG
Al1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
AlA30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
Al1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
Al1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
AlA30J4_NEG
AlA30J4_NEG
A1A30J4_NEG
AlA30J4_NEG
AlA30J4_NEG
A1A30J4_NEG
Al1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
A1A30J4_NEG
Al1A30J4_NEG

e pespespeepegesye-fogesyosfepesyesfos e goryesfocfoc o gesfer s

J.MOLNAR

A4 DELAY LINE
AS5_DELAY LINE
A7 DELAY LINE
A7 _DELAY LINE
A7 DELAY LINE
A7_DELAY_LINE
A7 _DELAY LINE
A9 _DELAY LINE
CORRELATOR_REF
CORRELATOR_REF
CORRELATOR_REF
CORRELATOR_REF
CORRELATOR_REF
CORRELATOR_REF
CORRELATOR_REF
CORRELATOR_REF
CORRELATOR_REF
CORRELATOR_REF
CORRELATOR_REF
MOD_REFER
MOD_REFER
MOD_REFER
MUX_REF
MUX_REF
MUX_REF

PMFL

POWER

TIMING

TIMING

TIMING

TIMING

TIMING
A10_DELAY_LINE
A10_DELAY_LINE
A10_DELAY_LINE
A10_DELAY_LINE
A10 DELAY LINE
A10_DELAY LINE
A10_DELAY _LINE

Al17_AMPIL,_CONTROL (A17 AMPL_CORREL_LEFT_BEAMS BAD)
A17_AMPL_CONTROL (A17-OUT AMPL_LEFT BEAMS BAD)

Al_DELAY_LINE
Al_DELAY_LINE
Al_DELAY_LINE
Al_DELAY_LINE

A22_SIGN_CONTROL (A22 GATES_OR_PWR_OR_MODULE BAD)

(A4-13 BIT_1_LEFT_BEAMS BAD)
(A5-9 DST2 BAD)

(A7-9 ST1 BAD)

(A7-21 NOT_CL1 BAD)

(A7J9 LOGIC_LEVELS BAD)
(A7J4 LOGIC_LEVELS BAD)
(A7-13 SIGN_LEFT_BEAMS BAD)
(A9-9 DST1 BAD)

(A24 FUNCTIONS BAD)

(A70J5 FREQ BAD)

(A70J7 FREQ BAD)

(A70J5 VOLTS LO)

(A70J7 VOLTS LO)

(A70J5 VOLTS HI)

(A7037 VOLTS HI)

(A43J1 DELTIC_REF BAD)

(A43J3 DELTIC_REF BAD)
(A2414 DELTIC_REF BAD)
(A2415 DELTIC_REF BAD)

(A42-5 DTOA_INHIBIT HI)

(A42-5 DTOA_INHIBIT LO)
(A42-10 DTOA_POWER LO)
(A70J7 FREQ BAD)

(A70J7 VOLTS LO)

(A7017 VOLTS HI)

(A18 CONTROL_FUNCTIONS BAD)
(A26_CABINET_PWR VOLTS BAD)
(A2012 GATE_1 BAD)

(A21J9 END_BEAM _STORE BAD)
(A13]1 WAVEFORM BAD)

(A14 FUNCTIONS BAD)

(A15 FUNCTIONS BAD)

(A1079 LOGIC_LEVELS BAD)
(A10J2 LOGIC_LEVELS BAD)
(A10-21 NOT_CL1 BAD)

(A10-9 ST1 BAD)

(A1074 LOGIC_LEVELS BAD)
(A10-10 NOT_RE1 BAD)

(A10J9 RE1 BAD)

(A1-9 ST3 BAD)

(A1J9 LOGIC_LEVELS BAD)
(A1J4 LOGIC_LEVELS BAD)
(A1-13 BIT_0_LEFT_BEAMS BAD)

A22_SIGN_CONTROL (A7J4 LOGIC_LEVELS BAD)
A22 SIGN_CONTROL (A7J4 SIGN_LEFT_BEAMS BAD)

A23_ATOD
A23_ATOD
A23_ATOD
A24_AMP
A24_AMP

(A23 AMPLITUDE BAD)
(A23-6 SIGN BAD)

(A23-3 INVERTED_SIGN BAD)
(A24 FUNCTIONS BAD)
(A24]5 DELTIC_REF BAD)

A26_REFERENCE_CONTROL (A26 FUNCTIONS BAD)

A29 DELAY_LINE
A29 DELAY_LINE
A2 DELAY _LINE
A30_DTOA

150

(A29-21 NOT_ST1 BAD)
(A29-9 DST1 BAD)
(A2-22 NOT_CL2 BAD)
(A30 FUNCTIONS BAD)

NRL REPORT 9296

AlA30J4_NEG HI A3_DELAY_LINE (A3-9 DST3 BAD)

A1A30J4_NEG HI Ad4_DELAY_LINE (A4-9 ST2 BAD)

A1A30J4_NEG HI A4_DELAY_LINE (A4-21 NOT_CL2 BAD)
A1A30J4_NEG HI A4 _DELAY_LINE (A4)9 LOGIC_LEVELS BAD)
A1A30J4_NEG HI A4 _DELAY_LINE (A4J4 LOGIC_LEVELS BAD)
A1A30J4_NEG HI A4_DELAY_LINE (A4-13 BIT_1_LEFT_BEAMS BAD)
A1A30J4_NEG HI AS_DELAY_LINE (AS5-9 DST2 BAD)

A1A30J4_NEG HI A7_DELAY_LINE (A79 ST1 BAD)

AlA30J4_NEG HI A7_DELAY_LINE (A7-21 NOT_CL1 BAD)
A1A30J4_NEG HI A7_DELAY_LINE (A7J9 LOGIC_LEVELS BAD)
A1A30J4_NEG HI A7_DELAY_LINE (A7J4 LOGIC_LEVELS BAD)
A1A30J4_NEG HI AT7_DELAY_LINE (A7-13 SIGN_LEFT_BEAMS BAD)
A1A30J4_NEG HI A9_DELAY_LINE (A9-9 DST1 BAD)

Al1A30J4_NEG HI CORRELATOR_REF (A24 FUNCTIONS BAD)
A1A30J4_NEG HI CORRELATOR_REF (A70]J5 FREQ BAD)

A1A30J4_NEG HI CORRELATOR_REF (A70J7 FREQ BAD)

Al1A30J4_NEG HI CORRELATOR_REF (A70J5 VOLTS LO)

Al1A30J4_NEG HI CORRELATOR_REF (A70J7 VOLTS LO)

A1A30J4_NEG HI CORRELATOR_REF (A70J5 VOLTS HI)

A1A30J4_NEG HI CORRELATOR_REF (A70J7 VOLTS HI)

A1A30J4_NEG HI CORRELATOR_REF (A43]1 DELTIC_REF BAD)
A1A30J4_NEG HI CORRELATOR_REF (A43J3 DELTIC_REF BAD)
A1A30J4_NEG HI CORRELATOR_REF (A24]J4 DELTIC_REF BAD)
A1A30J4_NEG HI CORRELATOR_REF (A24J5 DELTIC_REF BAD)
A1A30J4_NEG HI MOD_REFER (A42-5 DTOA_INHIBIT HI)
A1A30J4_NEG HI MOD_REFER (A42-5 DTOA_INHIBIT LO)
A1A30J4_NEG HI MOD_REFER (A42-10 DTOA_POWER HI)
A1A30J4_NEG HI MUX_REF (A70J7 FREQ BAD)

A1A30J4_NEG HI MUX_REF (A7037 VOLTS LO)

A1A30J4_NEG HI MUX_REF (A70¥7 VOLTS HI)

A1A30J4_NEG HI PMFL (A18 CONTROL_FUNCTIONS BAD)
A1A30J4_NEG HI POWER (A26_CABINET_PWR VOLTS BAD)
A1A30J4_NEG HI TIMING (A20J2 GATE_1 BAD)
A1A30J4_NEG HI TIMING (A21J9 END_BEAM_STORE BAD)
A1A30J4_NEG HI TIMING (A13J1 WAVEFORM BAD)
A1A30J4_NEG HI TIMING (A14 FUNCTIONS BAD)
A1A30J4_NEG HI TIMING (A15 FUNCTIONS BAD)
A1A30J4_POS LO AI10_DELAY_LINE (A10J9 LOGIC_LEVELS BAD)
A1A30J4_POS LO Al10_DELAY_LINE (A10J2 LOGIC_LEVELS BAD)
A1A30J4_POS LO Al10_DELAY_LINE (A10-21 NOT_CL1 BAD)
A1A30J4_POS LO Al10_DELAY_LINE (A1l0-9 ST1BAD)

AlA30J4_POS LO Al10_DELAY_LINE (A10J4 LOGIC_LEVELS BAD)
A1A30J4_POS LO Al0_DELAY_LINE (Al0-10 NOT_RE1 BAD)
A1A30J4_POS LO Al0_DELAY_LINE (A10J9 RE1BAD)

A1A30J4_POS LO A17_AMPL_CONTROL (A17 AMPL_CORREL_LEFT_BEAMS BAD)
A1A30J4_POS LO A17_AMPL_CONTROL (A17-OUT AMPL_LEFT_BEAMS BAD)
A1A30J4_POS LO Al_DELAY_LINE (A19 ST3 BAD)

A1A30J4_POS LO Al1_DELAY_LINE (A1J9 LOGIC_LEVELS BAD)
A1A30J4_POS LO Al_DELAY_LINE (A1J4 LOGIC_LEVELS BAD)
A1A30J4_POS LO Al_DELAY_LINE (A1-13 BIT_O_LEFT_BEAMS BAD)
A1A30J4_POS LO A22 SIGN_CONTROL (A22 GATES_OR_PWR_OR_MODULE BAD)
A1A30J4_POS LO A22_SIGN_CONTROL (A7J4 LOGIC_LEVELS BAD)
A1A30J4_POS LO A22 SIGN_CONTROL (A7J4 SIGN_LEFT_BEAMS BAD)
A1A30J4_POS LO A23_ATOD (A23 AMPLITUDE BAD)
A1A30J4_POS LO A23_ATOD (A23-6 SIGN BAD)

A1A30J4_POS LO A23_ATOD (A23-3 INVERTED_SIGN BAD)
A1A30J4_POS LO A24_AMP (A24 FUNCTIONS BAD)

151

A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A3014_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30]J4_POS
A1A30]J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30]J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
ATA30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1lA30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30J4_POS
A1A30]4_POS

efesyecgeapengocforyoeoryorfocgonyerferyen

J.MOLNAR

A24_AMP

(A24J5 DELTIC_REF BAD)

A26_REFERENCE_CONTROL (A26 FUNCTIONS BAD)

A29 DELAY_LINE
A29 DELAY_LINE
A2 DELAY_LINE
A30_DTOA
A3_DELAY_LINE
A4_DELAY LINE
A4_DELAY _LINE
A4_DELAY_LINE
A4_DELAY _LINE
A4_DELAY _LINE
AS5_DELAY_LINE
A7 DELAY LINE
A7_DELAY LINE
A7 _DELAY LINE
A7_DELAY _LINE
A7 _DELAY LINE
A9 DELAY LINE
CORRELATOR_REF
CORRELATOR_REF
CORRELATOR_REF
CORRELATOR_REF
CORRELATOR_REF
CORRELATOR_REF
CORRELATOR_REF
CORRELATOR_REF
CORRELATOR_REF
CORRELATOR_REF
CORRELATOR_REF
MOD_REFER
MOD_REFER
MOD_REFER
MUX_REF
MUX_REF
MUX_REF

PMFL

POWER

TIMING

TIMING

TIMING

TIMING

TIMING
A10_DELAY_LINE
A10_DELAY_LINE
A10_DELAY_LINE
A10_DELAY_LINE
A10_DELAY_LINE
A10_DELAY LINE
Al10_DELAY LINE

(A29-21 NOT_ST1 BAD)
(A29-9 DST1 BAD)

(A2-22 NOT_CL2 BAD)

(A30 FUNCTIONS BAD)

(A3-9 DST3 BAD)

(A4-9 ST2 BAD)

(A4-21 NOT_CL2 BAD)

(A479 LOGIC_LEVELS BAD)
(A4J4 LOGIC_LEVELS BAD)
(A4-13 BIT_1_LEFT_BEAMS BAD)
(A5-9 DST2 BAD)

(A79 ST1 BAD)

(A7-21 NOT_CL1 BAD)

(A7J9 LOGIC_LEVELS BAD)
(A7J4 LOGIC_LEVELS BAD)
(A7-13 SIGN_LEFT_BEAMS BAD)
(A9-9 DST1 BAD)

(A24 FUNCTIONS BAD)

(A70]5 FREQ BAD)

(A70J7 FREQ BAD)

(A70J5 VOLTS LO)

(A7017 VOLTS LO)

(A70J5 VOLTS HI)

(A7037 VOLTS HI)

(A43J1 DELTIC_REF BAD)

(A43)3 DELTIC_REF BAD)
(A24J4 DELTIC_REF BAD)
(A2435 DELTIC_REF BAD)

(A42-5 DTOA_INHIBIT HI)

(A42-5 DTOA_INHIBIT LO)
(A42-10 DTOA_POWER LO)
(A70]7 FREQ BAD)

(A70J7 VOLTS LO)

(A70J7 VOLTS HI)

(A18 CONTROL_FUNCTIONS BAD)
(A26_CABINET_PWR VOLTS BAD)
(A202 GATE_1 BAD)

(A21J9 END_BEAM_STORE BAD)
(A13J1 WAVEFORM BAD)

(A14 FUNCTIONS BAD)

(A15 FUNCTIONS BAD)

(A10J9 LOGIC_LEVELS BAD)
(A10J2 LOGIC_LEVELS BAD)
(A10-21 NOT_CL1 BAD)

(A10-9 ST1 BAD)

(A1034 LOGIC_LEVELS BAD)
(A10-10 NOT_RE1 BAD)

(A10J9 RE1 BAD)

A17_AMPL_CONTROL (A17 AMPL_CORREL_LEFT_BEAMS BAD)
Al17_AMPL_CONTROL (A17-OUT AMPL_LEFT_BEAMS BAD)

Al_DELAY_LINE
Al_DELAY_LINE
Al_DELAY_LINE
Al_DELAY LINE

(A1-9 ST3 BAD)

(A1J9 LOGIC_LEVELS BAD)
(A1J4 LOGIC_LEVELS BAD)
(A1-13 BIT_0_LEFT_BEAMS BAD)

A22_SIGN_CONTROL (A22 GATES_OR_PWR_OR_MODULE BAD)
A22 SIGN_CONTROL (A7J4 LOGIC_LEVELS BAD)

152

NRL REPORT 9296

A1A30J4_POS HI A22 SIGN_CONTROL (A7J4 SIGN_LEFT_BEAMS BAD)
A1A30J4_POS HI A23_ATOD (A23 AMPLITUDE BAD)
A1A30J4_POS HI A23_ATOD (A23-6 SIGN BAD)

A1A3014_POS HI A23_ATOD (A23-3 INVERTED_SIGN BAD)
A1A30J4_POS HI A24_AMP (A24 FUNCTIONS BAD)
A1A30J4_POS HI A24_AMP (A24]5 DELTIC_REF BAD)
Al1A30J4_POS HI A26_REFERENCE_CONTROL (A26 FUNCTIONS BAD)
A1A3014_POS HI A29 DELAY_LINE (A29-21 NOT_ST1 BAD)
A1A30J4_POS HI A29 DELAY_LINE (A29-9 DST1 BAD)

A1A30J4_POS HI A2 _DELAY_LINE (A2-22 NOT_CL2 BAD)
A1A30J4_POS HI A30_DTOA (A30 FUNCTIONS BAD)
A1A30J4_POS HI A3_DELAY_LINE (A3-9 DST3 BAD)

A1A30J4_POS HI A4_DELAY_LINE (A4-9 ST2 BAD)

A1A30J4_POS HI A4_DELAY_LINE (A4-21 NOT_CL2 BAD)
A1A30J4_POS HI A4_DELAY_LINE (A4J9 LOGIC_LEVELS BAD)
A1A30J4_POS HI A4_DELAY_LINE (A4J4 LOGIC_LEVELS BAD)
A1A30J4_POS HI A4_DELAY_LINE (A4-13 BIT_1_LEFT_BEAMS BAD)
A1A30J4_POS HI AS5_DELAY_LINE (A5-9 DST2 BAD)

A1A30J4_POS HI A7_DELAY_LINE (A7-9 ST1 BAD)

A1A30]J4_POS HI A7_DELAY_LINE (A7-21 NOT_CL1 BAD)
A1A30J4_POS HI A7_DELAY_LINE (A7J9 LOGIC_LEVELS BAD)
A1A30J4_POS HI A7_DELAY_LINE (A7J4 LOGIC_LEVELS BAD)
A1A30J4_POS HI A7_DELAY_LINE (A7-13 SIGN_LEFT_BEAMS BAD)
A1A30J4_POS HI A9 _DELAY_LINE (A9-9 DST1 BAD)

A1A30J4_POS HI CORRELATOR_REF (A24 FUNCTIONS BAD)
A1A30J4_POS HI CORRELATOR_REF (A70J5 FREQ BAD)

A1A30J4_POS HI CORRELATOR_REF (A70J7 FREQ BAD)

A1A30J4_POS HI CORRELATOR_REF (A70J5 VOLTS LO)

A1A30J4_POS HI CORRELATOR_REF (A70J7 VOLTS LO)

A1A30]J4_POS HI CORRELATOR_REF (A70J5 VOLTS HI)

A1A30J4_POS HI CORRELATOR_REF (A70J7 VOLTS HI)

A1A30J4_POS HI CORRELATOR_REF (A43J1 DELTIC_REF BAD)
A1A30J4_POS HI CORRELATOR_REF (A43J3 DELTIC_REF BAD)
A1A30J4_POS HI CORRELATOR_REF (A24J4 DELTIC_REF BAD)
A1A30J4_POS HI CORRELATOR_REF (A24]5 DELTIC_REF BAD)
A1A30J4_POS HI MOD_REFER (A42-5 DTOA_INHIBIT HI)
A1A30J4_POS HI MOD_REFER (A42-5 DTOA_INHIBIT LO)
A1A30J4_POS HI MOD_REFER (A42-10 DTOA_POWER HI)
A1A30J4_POS HI MUX_REF (A70J7 FREQ BAD)

A1A30J4_POS Hi MUX_REF (A70J7 VOLTS LO)

A1A30J4_POS HI MUX_REF (A70J7 VOLTS HI)

A1A30J4_POS HI PMFL (A18 CONTROL_FUNCTIONS BAD)
A1A30J4_POS HI POWER (A26_CABINET_PWR VOLTS BAD)
A1A30J4_POS HI TIMING (A20]2 GATE_1 BAD)
A1A30J4_POS HI TIMING (A21J9 END_BEAM_STORE BAD)
A1A30J4_POS HI TIMING (A13J1 WAVEFORM BAD)
A1A30J4_POS HI TIMING (A14 FUNCTIONS BAD)
A1A30J4_POS HI TIMING (A15 FUNCTIONS BAD)
AlA30J4_WAV BAD Al10_ DELAY_LINE (A10J9 LOGIC_LEVELS BAD)
AlA30J4_WAV BAD Al10_DELAY _LINE (A10J2 LOGIC_LEVELS BAD)
AlA30J4_WAV BAD Al10_DELAY_LINE (A10-21 NOT_CL1 BAD)
AlA30J4_WAV BAD Al10_DELAY_LINE (Al10-9 ST1 BAD)

AlA30J4_WAV BAD Al0 DELAY LINE (A10J4 LOGIC_LEVELS BAD)
AlA30J4_WAV BAD Al10_DELAY_LINE (A10J9 RE1BAD)

AlA30J4_WAV BAD Al10_DELAY_LINE (Al10-10 NOT_RE1 BAD)
AlA30J4_WAV BAD A17_AMPI,_CONTROL (A17 AMPL_CORREL_LEFT_BEAMS BAD)
A1A30J4_WAV BAD A17_AMPL_CONTROL (A17-OUT AMPL_LEFT_BEAMS BAD)

153

Al1A30J4_WAV BAD Al_DELAY_LINE (A19 ST3BAD)

AlA30J4_WAV BAD Al_DELAY_LINE (A1J9 LOGIC_LEVELS BAD)
Al1A30J4_WAV BAD Al_DELAY_LINE (A1J4 LOGIC_LEVELS BAD)
AlA30/4_ WAV BAD Al_DELAY_LINE (A1-13 BIT_0_LEFT_BEAMS BAD)
A1A30J4_WAV BAD A22_SIGN_CONTROL (A22 GATES_OR_PWR_OR_MODULE BAD)
AlA30J4_ WAV BAD A22_SIGN_CONTROL (A7J4 LOGIC_LEVELS BAD)
A1A30J4_WAV BAD A22_SIGN_CONTROL (A7J4 SIGN_LEFT_BEAMS BAD)
AlA30J4_WAV BAD A23_ATOD (A23 AMPLITUDE BAD)
Al1A3004_WAV BAD A23_ATOD (A23-6 SIGN BAD)

AlA30J4_WAV BAD A23_ATOD (A23-3 INVERTED_SIGN BAD)
AlA3004_WAV BAD A24_AMP (A24J5 DELTIC_REF BAD)
AlA30J4_WAV BAD A24_AMP (A24 FUNCTIONS BAD)
Al1A30J4_WAYV BAD A26_REFERENCE_CONTROL (A26 FUNCTIONS BAD)
AlA30J4_WAV BAD A29 DELAY_LINE (A29-21 NOT_ST1BAD)
AlA30J4_WAV BAD A29 DELAY_LINE (A29-9 DST1 BAD)
AlA30J4_WAV BAD A2 DELAY_LINE (A2-22NOT_CL2 BAD)
AlA30J4_WAV BAD A30_DTOA (A30 FUNCTIONS BAD)
Al1A30J4_WAV BAD A3_DELAY_LINE (A3-9 DST3 BAD)

A1A30J4_WAV BAD A4_DELAY_LINE (A4-9 ST2 BAD)

A1A30J4_WAV BAD A4_DELAY_LINE (A4-21 NOT_CL2 BAD)
AlA30J4_WAV BAD A4_DELAY_LINE (A4J9 LOGIC_LEVELS BAD)
AlA30J4_WAV BAD A4_DELAY_LINE (A4J4 LOGIC_LEVELS BAD)
Al1A30J4_WAYV BAD A4_DELAY_LINE (A4-13 BIT_1_LEFT_BEAMS BAD)
AlA30J4_WAV BAD AS5_DELAY_LINE (A5-9 DST2 BAD)

AlA30J4_ WAV BAD AT7_DELAY_LINE (A7-9 ST1 BAD)

AlA30J4_WAV BAD A7_DELAY_LINE (A7-21 NOT_CL1 BAD)
AlA30J4_WAV BAD A7_DELAY_LINE (A7J9 LOGIC_LEVELS BAD)
Al1A30J4_WAV BAD A7_DELAY_LINE (A7J4 LOGIC_LEVELS BAD)
A1A30J4_WAV BAD A7_DELAY_LINE (A7-13 SIGN_LEFT_BEAMS BAD)
Al1A30J4_WAV BAD A9_DELAY_LINE (A9-9 DST1 BAD)

J. MOLNAR

Al1A30J4_WAV BAD
A1A30J4_WAYV BAD
AlA30J4_WAV BAD
AlA30J4_ WAV BAD
AIA30J4_WAV BAD
AlA30J4_WAV BAD
AlA30J4_WAYV BAD
AlA30J4_WAV BAD
Al1A30J4_WAV BAD
AlA30J4_WAV BAD
Al1A30J4_WAYV BAD

CORRELATOR_REF (A70J5 FREQ BAD)
CORRELATOR_REF (A70J7 FREQ BAD)
CORRELATOR_REF (A70J5 VOLTS LO)
CORRELATOR_REF (A70J7 VOLTS LO)
CORRELATOR_REF (A70J5 VOLTS HI)
CORRELATOR_REF (A70J7 VOLTS HI)
CORRELATOR_REF (A43J1 DELTIC_REF BAD)
CORRELATOR_REF (A43J3 DELTIC_REF BAD)
CORRELATOR_REF (A24J4 DELTIC_REF BAD)
CORRELATOR_REF (A24]5 DELTIC_REF BAD)
CORRELATOR_REF (A24 FUNCTIONS BAD)

A1A30J4_WAV BAD MOD_REFER (A42-5 DTOA_INHIBIT HI)
AlA30J4_WAV BAD MOD_REFER (A42-5 DTOA_INHIBIT LO)
AlA30J4_WAV BAD MUX_REF (A70J7 FREQ BAD)
AlA30J4_WAV BAD MUX_REF (A70J7 VOLTS LO)
AlA30J4_ WAV BAD MUX_REF (A70J7 VOLTS HI)

AlA30J4_WAV BAD PMFL (A18 CONTROL_FUNCTIONS BAD)

AlA30J4_WAV BAD POWER (A26_CABINET_PWR VOLTS BAD)
AlA30J4_WAV BAD TIMING (A20J2 GATE_1 BAD)
AlA30J4_WAV BAD TIMING (A21J9 END_BEAM_STORE BAD)
AlA30J4_ WAV BAD TIMING (A13J1 WAVEFORM BAD)
AlA3004_WAV BAD TIMING (A14 FUNCTIONS BAD)
AlA30J4_WAV BAD TIMING (A15 FUNCTIONS BAD)

154

