val Research Laboratory

hington, DC 20375-5000

Parallel Access Main Memory (PAMM)
User’s Manual, Version 1.0

ToDD J. ROSENAU

Integrated Warfare Technology Branch
Information Technology Division

MoNA EL-KaDI

Locus, Inc.
Alexandria, VA 22303

September 15, 1990

Approved for public release; distribution unlimited.

NRL Report 9267

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Pubiic reparting burden for this coliection of infarmation 1 estimated to average t hour per response. ncluging the time for reviewing instructions, searching existing data sources,
gathenng and maniaiming the ¢ata needed. and COMPIEVNg and Teviewing the toltecuon of 1nlOI™3LDN Send (omment regarding This burden sshimale ar any orner aspect of ™his
callectran ol informanion, including suggestiom for reduaing this burden. (o Washington Headquarters Services, Directorate for information Cperations and Reports, 1215 Jetfersan
Davis Highway. Surte 1204, Arlington VA 22202-4302, and to the Otfice of Management and Budget, Faperwork Reduction Project {3704-0188), Washington, DC 20503,

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

3. REPORT TYPE AND DATES COVERED
Final 6/87 — 3/90

4. TTLE AND SUBTITLE

Parallel Access Main Memory (PAMM)
User's Manual, Version 1.0

6. AUTHOR(S}

T. J. Rosenau and Mona El-Kadi*

wu

5. FUNDING NUMBEIRS

PE - 63223C
PN - 55-2354-C-0

- DN155-502

7. PERFORMING ORGANIZATION NAME(S] AND ADDRESS(ES)

Naval Research Laboratory
Washington, DC 20375-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

NRL Report 9267

9. SPONSORING I MONITORING AGENCY NAME{S) AND ADDRESS{ES)

Strategic Defense Initiative Organization
Washington, DC 20301-7100

10. SPONSORING / MONITORING
AGENCY REPQORT NUMBER

11, SUPPLEMENTARY NOTES

*Locus, Inc, Alexandria, VA 22303

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Apnroved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

on a 32-processor BBN Butterfly GP1000 at NRL.

Here we describe the structure and use of the parailel access main memory (PAMM) database
management system (DBMS) interface for C programmers. PAMM is a high-speed, high-throughput
DBMS that allows concurrent access to data stored in a distributed data structure across all of the pro-
cessors in a general-purpose, multiprocessor computer. Concurrency is achieved by allowing several
tasks executing on different processors to access the database at the same time with a minimum of
locking. This allows an application’s tasks to proceed with a minimum of delay. [ts high speed is
achieved by keeping most of the data and index structures resident in main memory, thus reducing the
number of disk accesses performed. The data structure and storage method for the DBMS are a mul-
tidirectory hashing, distributed lock system that Sakti Pramanik and Charles Severance at Michigan
State University developed for the Naval Research Laboratory (NRL). PAMM has been implemented

14. SUBJECT TERMS

Parallel processing Hashing
Database management systems

15. NUMBER OF PAGES
42

14. PRICE CLODE

17. SECURITY CLASSIFICATION 18, SECURITY CLASSIFICATION
OF REPORT OFf THIS PAGE

UNCLASSIFIED UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

UL

NSN 7540-G1-280-5500

UNCLASSIFIED

Standard Form 298 {Rev 2-89)
Prescribed by 4NS S5t Z35.18
298-132

CONTENTS
L0 DN T RO T O L.t e e a e et e st e as e et aat st naan e e et e ar e e enes
2.0 SYSTEM OVERVIEW L. i e e ee e
2.1 Schema Filesccoiiiiiiiiiiiiiiii i e
3.0 INTERFACE DESCRIPTION ..ot

3.1 Initialization ROULNE ..o e it aaes
3.2 Database Manipulationccoiiiiiiiiiii e
3.3 Table Manipulation RoOBHNes ... i e e e
3.4 Record Manipulation ROULINES ...oviiiiiiiiiiiiiiniiri e aaarae s

4.0 PROGRAMMING EXAMPLES ... i ettt eaane

4.1 PAMM InitialiIZAtON ...ocovvniiiiiit it
4.2 Creating a Database ..ot s
4.3 Opening a Databaseocoiiiiiiiiiiiiiii e
4.4 Closing a Databaseoooiiiiiiiii i e e e
4.5 Destroying a Database ..o
4.6 Creating a Table ... e as

4.7 Loadinga Table PP
48 Opening a Table ... e
4.9 Closing a Table ...
4.10 Saving a Table et bttt na et n e et e e e aanerne
4.11 Unloading a Tableo.oiiiiii e
4.12 Deleting a Tableo e
4.13 Inserting a ReCOrdcociiiiiiiiiiiiiiii e
4.14 Reading a Recordooiiiiiiiiii i
4,15 Updating @ RECOIG ..vvr ottt e et v e s e aaaa e e ananraases
4.16 Deleting a Record

4.17 Initiating a Database SE8s10N ...t e
5.0 DEBUGGING PAMM .o ettt aa e e
6.0 EVENT LOGGERot et v e
0 REFERENCES ...ttt et ettt et e aa e naaans

APPENDIX — Parallel Access Main Memory (PAMM) User's Manual,
Command Definiion Pages ... e e

ili

PARALLEL ACCESS MAIN MEMORY (PAMM)
User's Manuai, Version 1.0
1.0 INTRODUCTION

Often, when a data-intensive application is running, the need to access all of the data
efficiently and at random can be the most time-consuming portion of the execution time. This can
happen when the computer application is running or has an insufficient amount of main memory or
slow secondary memory. A conventional database management system (PBMS) running on a
typical computer must also share resources with the application for which it is storing data and any
other applications that may be running that may seriously degrade its performance. What is needed
is a DBMS with an abundance of main memory that has enough computing power to keep all of the
memory busy in which to store data[1].

One computer that satisfies these requirements is BBN's Butterfly GP1000 [2,3]. This
computer can have up to 128 processors with a maximum of 512 Mbytes of main memory. Each
processor is a Motorola 68020, with 4 Mbytes of main memory. The Naval Research Laboratory
(NRL) has developed a high-speed, concurrent-access, main memory DBMS that has been

implemented on a 32-processor GP1000. Here we describe the interface to the parallel access main
memory (PAMM)} DBMS on the GP1000.

PAMM is based on research by Sakti Pramanik and Charles Severance at Michigan State
University. They developed multidirectory hashing [4], which is a data-hashing scheme involving
multiple hash tables instead of just one. This hashing method was then modified [5-8] to allow
concurrent access to the multiple hash tables by multiple processors across distributed, shared
memory. The PAMM DBMS is a working prototype that uses these algorithms; it can be used as
the data manager for an application running on the Butterfly GP1000.

1wl LUl ail

2.0 SYSTEM OVERVIEW

PAMM was developed as a high-speed, high-throughput, concurrent-access DBMS for use
on a general-purpose parallel processor such as the GP1000 [9]. It maintains data records in a
dynamic, distributed data structure [10] that allows concurrent access to records within the PAMM
structure with a minimum of locking. Access to data is through a two-phase hashing function to
distributed hash tables (Fig. 1). The first phase of the hash function determines the hash table or
directory in which the data record must be placed and the second phase determines where in this
directory the record must go. The number of directories is much greater than the number of
processors used, so each processor has several different directories resident within its memory.
Once the directory is determined, the record will be hashed into a chain-linked hash table in that
directory. Thus, to determine where a record will be located, two separate hash function
computations must be performed. If a maximum limit can be placed on the ime to search a chan,
then the access time to insert, find, update, or delete a record should be upper bounded by some
constant.

Manuscript approved May 22, 1990.

ROSENAU AND EL-KADI

Data Reconstruction
Stage
Dir. No. 1 _
Data Distribution
Stage
- Dil' 110 2 Ll
Data Dir, Ne. 3 g
Dir. No. N -

Fig. 1 - Two-phase hashing method

This method works fine until the number of records within a single directory increases to
the point where searching the linked list of records becomes a major component of the time to find
a record. Once this point is reached, performance begins to degrade unless the size of each
directory is reduced. At a user-specified threshold, PAMM creates a new directory, and the
records from the overfilled directory are redistributed between the old and the new directories.
Statistics for each directory are kept so that memory use and average chain length can be
monitored. Thus, PAMM is a dynamic, concurrent-access DBMS with a user definable upper
bound on the maximum access time.

Since PAMM is a usable DBMS, it has long-term storage mechanisms for maintaining
table structure and table data over multiple sessions. Long-term storage is facilitated by using data
dictionaries to store information about tables and their attributes. When the database is open
(loaded into main memory), the dictionaries and tables are loaded into main memory as PAMM
structures; otherwise, they are stored as Mach 1000 (UNIX) files. Two dictionaries are associated
with each database, where each database is a separate collection of tables and data and has a unique
name. The main dictionary is the table dictionary, which stores necessary, long-term information
about each table. The other dictionary is the atiribute dictionary, which stores information about
every attribute in each table. Since each dictionary is also a table, each is described in both
dictionaries. The table and attribute dictionaries are named "db_named" and "db_name.ad,"
respectively, where "db name" is the name of the current database. Besides the file extensions
".td" and ".ad" for data dictionaries, table names end in ".dat" and table schema files end with
".scm". These are described in more detail.

2,1 Sehema Files

For the database to create new tables {including the dictionaries), information about the
structure of the new table must be passed into the system. One method of accomplishing this task
is to pass a list or data structure of table format parameters to the create table routine. This is
awkward and difficult to code into an application program. Instead we have chosen to associate a

NRL REPORT 9267

schema file with every table and data dictionary within a database. A schema file is a separate file
associated with a table and contains instructions specifying the exact structure of the respective
table. This method allows all table formats to be viewed and modified without having to change
any code. Schema files have a uniform, simple layout for easy, fast creation or modification of a
table's format. The syntax of a schema file is as follows:

database db_name

attr attributel name, type field type, key 1
attr attribute2 name, type field type, key 0
attr attribute3 name, type field type, key 0
attr attributeN name, type field type, key O

end

A schema file consists of several lines of text describing various features of the table. In
the example above, all necessary keywords are shown in bold including commas. The first line in
a schema file specifies the name of the database in which this file belongs. The keyword
database must be the first word in the schema file, followed by the name of the database to which
this table belongs. Following this line are the descriptions of all attributes within this table. For
clarity, each line describes only one attribute. The first word in an attribute description line is the
keyword attr, followed by the name of the attribute. The only restrictions on an attribute’s name
are that it can be no longer than 31 characters and cannot contain a comma. The attribute’s name is
then followed by a comma and the keyword type. After the keyword, the type of the attribute is
specified, followed by another comma. The last section in the attribute description is signaled by
the keyword key, followed by a number specifying whether or not the attribute is a key field. If
the number is a zero, the attribute is not a key field. Otherwise, the integer value represents the
ranking of the attribute in the key (1 is the primary field in the key, 2 is the secondary field in the
key, etc.). Unfortunately, at this point in development, the only valid values for the key priorities
are zero and one, and the key field must be an integer.

TYPE CTYPE SIZE DESCRIPTION

char char 1 byte 8-bit character

short short 2 bytes 16-bit short integer

integer int 4 bytes 32-bit integer

long long 4 bytes 32-bit integer

float float 4 bytes 32-bit, single-precision, floating point

double double 8 bytes 64-bit, double-precision, floating
point

string N char[N} N bytes N-1 byte character string, plus null
terminator

The valid types for an attribute are char, short, integer, long, float, double, and
string N. The type char (C type: char) is for storing a single character (or other 8-bit field), and
occupies one byte of memory. The type short (C type: short) is a 16-bit integer that occupies two
bytes of memory. The type integer (C type: int} is a 32-bit integer field that occupies four bytes
of memory. The type long (C type: long) is also a 32-bit integer field that occupies four bytes of
memory. Although these two fields are the same size, the provision is made to handle both data
types for those applications that use both, or PAMM may be ported to a multiprocessor that does.
The next field is float (C type: float), a single-precision, floating-point variable of length 32-bits

ROSENAU AND EL-KADI

(four bytes). The type double (C type: double) is a double precision, floating-point variable of
Iength 64-bits (8 bytes). Lastly, the type string N (C type: char[}) is a character string of length
N, including a null terminator.

Both data dictionaries are stored as tables and thus have corresponding schema files. The
table dictionary's schema file is listed below as an example and provides a definition of its
attributes:

table_dict.sem — table dictionary schema file

datazbase master

attr table id, type long, key 1
attr table_name, type string 32, key 0
attr num_attrs, type short, key O
attr first attr, type long, key ©
attr rec_length, type short, key O
attr max_chains, type integer, key 0O
attr split val, type float, key O
attr overflow, type float, key 0
attr initial m, type integer, key ©
attr max dirs, type integer, key O
attr sup_dups, type short, key 0
attr sort chain, type shorrt, key O

end

The database name associated with both dictionaries is master, which is ignored when the
dictionaries are created. Instead, the database name is assigned when the application creates a new
database and is stored in the name of both dictionaries (i.e., db_name.td and db_name.ad, where
db_name is the name of the database). Since the table and attribute dictionary schema files are the
same for all databases, they are named "table_dict.scm” and "atr_dict.scm,” respectively.

The first attribute of the table dictionary is the key field named table_id of type long. At
this stage in PAMM's development, the only key field allowed is a 32-bit integer value that must be
the first four bytes in every record. The second attribute is rable_name, which is of type string
32. Because of internal PAMM design decisions, database, table, and attribute names can be a
maximum of MAX _NAME (32) characters, including file extensions and null terminators. Thus,
database names can be 28 characters plus extension (".td\0" or “.ad\}"); table names can be a
maximum of 27 characters plus extension (".dai\0"); and attributes can be a maximum of 31
characters plus null terminator ("\0"). The third attribute is num_artrs of type short. This field
contains the number of attributes in the table being described. The fourth attribute is first_attr, of
type long. It contains the attribute ID for the first attribute in the attribute dictionary. The attribute
IDs for a particular table are sequentially increasing integers ranging from first_atr to (firss_aostr +
num_ars -1), and are disjoint from any other tables’ attribute IDs. The fifth attribute is rec_length
of type short — the length of the table's record in bytes. The sixth attribute is max_chains of type
integer, and specifies the maximum number of linked lists or chains allowed in each directory.
The seventh attribute is split_val of type float; this floating point number specifies the splitting
threshold for a P directory. If the current directory is number P and the average chain length is
greater than or equal to spliz_val, this directory can be split in two. Average chain length is
computed as follows:

NRL REPORT 9267

number of records in directory

number of nonempty chains in directory

The eighth attribute is overflow of type float. It also specifies a splitting threshold for a directory
that is not the P directory. The ninth attribute is initial m of type integer. When a table is first
loaded into memory, 2 defauls number of empty directories can be created — a number set by the
user ahead of time. The tenth attribute is max_dirs of type integer; this specifies the maximum
number of directories allowed for a particular ‘table. The eleventh attribute is sup_dups of type
short; this is a Boolean value, which is set to TRUE if duplicate records are to be suppressed and
FALSE if duplicates are allowed. The tweifth and last attribute is sort_chain of type short; this is
also a Boolean vaiue, which is TRUE if the chains in each directory are to be kept sorted and
FALSE if the chains are not sorted.

Another dictionary schema file is listed for the attribute dictionary, "attr_dict.scm:"

attr_dict.sem — attribute dictionary schema file

database master

attr attr_id, type long, key 1
attr attr name, type string 32, key O
attr table id, type long, key O
attr attr type, type short, key ©
attr attr pos, type shert, key 0O
attr attr offset, type short, key O
attr attr length, type short, key O
attr attr priority, type short, key O

end

The first attribute is attr_id of type long; it is the attribute ID for this particular attribute. A unique,
long integer ID exists for ail attributes in the tables. The second atribute is affr_name of type
string 32; it is a character string of length 32 characters. With the null terminator ("\0"), the
maximum length of an attribute name is 31 characters. The third attribute is table_id of type long;
this is the table ID for the table to which the attribute belongs. The fourth attribute is attr rype of
type short, which specifies the data type of the atiribute. The set of possible types are: {char,
short, integer, long, float, double, string N}. The fifth attribute is attr_pos of type short;
this specifies the position of the attribute within the record with the first attribute's position set to
one. The sixth atwibute is antr_offset of type short; this specifies the byte offset of the attribute
within the record relative to the first attribute in the record The byte offset of the first attribute ina
record is always zero. The seventh attribute is artr_length of type short; this number stores the
size of the attribute in bytes . The eighth and last attribute is key_priority of type short; this
number determines whether or not the attribute is a part of the key. If this value is zero, itisnot a
part of the key; otherwise, the value will determine the attribute's ranking within the key (i.e., one
is the major component of the key field, two is the second major component of the key, etc.. At
this point in PAMM's devclopment the key field can consist of only one attribute, and it must be
an integer field in the first position in the record.

ROSENAU AND EL-KADIL

3.0 INTERFACE DESCRIPTION

PAMM is implemented as a library of routines that is compiled with the application
program. It was written in the C programing language. A simple interface accesses the underlying
data structures. The interface routines to PAMM are divided into four distinct groups:
initialization, database manipulation, table manipulation, and record manipulation. The
initialization routine creates all necessary global data structures and makes them available to all of
the future child tasks. Database manipulation routines allow a database to be created, opened,
closed and destroyed. Table routines allow specified tables to be created, opened, loaded,
unloaded, saved, closed, and destroyed. Record routines allow data records to be inserted, read,
updated, and deleted.

Application programs that use the PAMM DBMS must contain the include file "pamm.h”
in all source code modules. For all applications, the command "#define MAIN" must precede the
command "#include <pamm.h>" in one and only one source code moduie (preferably the module
with the main routine declared in it). I the application has more than one source code module, the
remaining modules must cali the command "#undef MAIN" before calling the command “#incinde
<pamim.h>". All interface routines return an integer value displaying the status of the returning
routine that can be found in the pamm.h include file. The interface routines are described below.

3.1 Initialization Routine

P_init() — This function allocates and initializes all of the global data structures that PAMM uses.
It must be called before any other PAMM routine except P_create DB(), P destroy DB(),
P _create() and P_delete_table(), and it must be called by the parent task of all tasks that will
access the PAMM structures, because this function will set the memory inheritance for all
global memory. It returns the values OK if P_init(} completed successfully or NOT_OK if
an error occurred,

3.2 Database Manipulation

P create_ DB("DB name") — This function verifies that a database with the name "DB name”
does not already exist and then makes a new database by creating a data dictionary and an
attribute dictionary named "DB_name.td” and "DB_name.ad,” respectively. It returns the
values OK if P_create_DB() completed successfully, DB_ALREADY_EXISTED if there
previously existed a database with the same name, or DB_CREATE_FAILED if an error

occurred.

P_open_DB("DB_name”) — This function opens the database named "DB_name" and loads the
two dictionaries into PAMM tables. P_open_DB() must be called before any of the table
and record manipulation routines, but after P_iniz(). It returns the v_alues OK if
P _open_DB(} completed successfully, DB_DICTIONARY_DAMAGED if one of the
dictionaries became corrapted, or DB_OPEN_FAILED if an error occurred.

P_close_DB("DB_name", wait) — This function closes the database named "DB_name." 1t takes
two parameters: DB_name and wait. "DB_name" is the database 10 be closed and wait is
of type BOOLEAN that specifies whether P_close_DB() should wait for all tables to close

before closing the database, or, if any tables are still open, return immediately with a code.

Bt s D T Ta aTl snthlan otill waciding in snin maamsargy an DAMA tahlac intn
£ cioSe psb{; UMioa0s Al 1a0iES 51 TUSIGINE ii INall ILCinory M3 £ Adyuv sathive Ly

NRL REPCRT 9267

secondary storage. Finally, it closes and unloads the two dictionary tables. The routine
P close DB() returns the values OK if it completed successfully,
OPEN_TABLE_BUT_CANT_WAIT if tables are still open but the wait variable was not
set, or DB_CLOSE_FAILED if an error occured.

P_destroy_DB("DB_name'") — This function destroys the two dictionaries and all tables belonging
to the database named "DB_name" by physically removing the Mach (UNIX) files from
disk; thus this operation is nonreversible. The database to be destroyed must not be open
or it will fail. P_destroy DB() returns the values OK if it completed successfully,
DB DID NOT_EXIST if the database to be destroyed did not exist, or
DESTROY_DB_FAILED if an error occurred.

ki
o

P_create("table_name") — This function creates a new table called "table_name.dat" according to
the description in the new table's schema file. Every table has a corresponding schema file,
including both dictionaries (see Section 2.1) that tells which database the table belongs in
and the names and descriptions of all the attributes in the table. This routine must be called
before P_open_DB(} because it will add the new table's description directly into the two
dictionary files in secondary storage — not into the dictionaries’ PAMM structures in main
memory. P_create() returns the values OK if the routine is completed successfully,
SCHEMA _NOT_FOUND if the tabie's schema file was not present,
SCHEMA_SYNTAX_ERROR if the schema file description had an error,
TABLE_ALREADY_EXISTS if that table already existed, or CREATE_FAILED if an
error occurred.

P_load("table_name”, &new_parameters) — This function loads the records from the file
“table_name.dat" into a PAMM table in main memory. The table's database must aiready
be open, and the table must already have been created. P_load() must be called before the
table can be opened (P_open()) for access even if there are no records to be loaded, because
P_load() creates the new PAMM data structures in main memory. If it is desired that the
PAMM table parameters be changed from the default values, new_parameters will be
passed in with the new set of parameters. New_parameters is of PARM_TYPE, which can
be found in pamm.h, along with the default values stored in the variable, initial_rable.
P_load() returns OK if it completed successfully, TABLE_NOT_EXIST if that table was
not listed in the table dictionary, TOO_MANY _TABLES if there are too many loaded
tables, _OPEN_TABLE = 20) or LOAD_FAILED if an error occurred.

P_open(“table_name", access_mode, &tdy — This function opens the table called “1able_name.”
The table must already be loaded before it can be opened. The variable td must be declared
as a record of type PAMM_TYPE in the calling program, and its address is passed into
P_open(). Upon returning from P_open(), td is a valid table descriptor. The table is
opened with the permission level given by access_mode. Valid access types are READ,
WRITE, and READ_WRITE. P_open() returns OK if the table was opened successfully,
TABLE_NOT_EXIST if the table was not found in the table dictionary,
TABLE_NOT _LOADED if the table was not loaded inio main memory, of
INVALID ACCESS_TYPE if it was opened with an incorrect access type.

P_close{&#d) — This function closes the table referenced by the table descriptor td and invalidates
the table descriptor when it returns. P_close() returns OK if the table was closed
successfully or TABLE_NOT_OPEN if the table was not previously open.

ROSENAU AND EI-KADI

P_save("table_name", "disk_file_name") — This function unloads the data in main memory from
the table named table name into a file on disk called "disk file name"; it does not remove
the table from the main memory database, but it makes a copy of the table onto disk, This
routine saves the contents of a table without having to close the table. We recommend that
“disk_file_name” not equal "table_name.dat" because the intermediate file will be
overwritten when the table is unloaded. P_save() returns OK if it completed successfully,
TABLE_NOT_EXIST if rable_name is not in the database, or SAVE_FAILED if an error
occurred.

P_unload("table_name") — This function unloads the data in main memory from the table named
"table name" into the file on disk, “table_narme.dat,” and then removes the table from main
memory. A table that is open cannot be unloaded. P_unload(} will return OK if it
completed successfully, TABLE_NOT_EXIST if “table name" is not in the database,
TABLE_STILL_OPEN if "table_name" is still open, or UNLOAD_FAILED if an error
occurred.

P_delete_table("table_name") — This function deletes a table with the name “table_name.dat.” It
requires that a schema file of the correct format exists called "rable_name.scm.”
P _delete table() deletes the given table's information from both data dictionaries without
loading the database into main memory and also deletes the data file for the table, which is
called “table_name.dat." Thus the P_delete_table() must be called before P_open DB() or
after P close DB(). P delete table() returns OK if the table was deleted successfully from

the database, SCHEMA_NOT FOUND if the schema file named "table_name.scm" was
not found. SCHEMA SYNTAX ERROR if the schema file "table name.scm” was not in

S A RAiia,y WANcA Al Yalh A0 a2 SRR SelNANASS N Ak e Shedilelli 2220 eIl

the correct form, TABLE_NOT_EXIST if the table was not in the table dictionary, or
DELETE_TABLE_FAILED if an error occwred.

3.4 Record Manipulation Routines

P_insert(&td, &data_rec) — This function inserts a record pointed to by data_rec into the table
described by td. The key for the record is assumed to be the first four bytes of data_rec.
P insertt) revarns OK if the record was inserted QII(‘,{‘,EQQ'FI1ny,, NO WRITE PERM if the

PIRUGT B J AWAULLILD WAn LR AW AWAUANE VY e LIL0WE LLAL Dbl RaAS LoIh A1 1L

table was not opened with WRITE or READ_WRITE permission, or DUPLICATE_KEY
if a record with that key is already in the table and duplicate suppression is turned off.

P_read(&:d, key, &data_rec) — This function reads a record from the table described by td with
the key, and key into a buffer pointed to by data_rec. Data_rec must be the address of a
buffer that exists in the calling program's memory. The table must be open for READ or
READ_WRITE permission. P_read() returns OK if the record was read successfully,

TABLE_NOT_OPEN if the table was not open or the permissions were wrong, or

RECORD_NOT_FOUND if the record with key, key, is not in the table,

P_update(&sd, &data_rec) — This function replaces a record in the table described by #d with the
contents of data_rec. The key for the record is assumed to be the first four bytes of
data rec. P_update()rerarns OK if it completed successfully, NO_WRITE_PERM if the
table was not opened with WRITE or READ_WRITE permission, or
RECORD_NOT_FOUND if the record with the specified key was not found.

NRL REPORT 9267

P_delete{&id, keyy — This function deletes a record with key, key, from the table described by 1d.
P delete() returns QK if the record was deleted successfully, NO_WRITE_PERM if the

table was not opened with WRITE or READ_WRITE permission, or
RECORD_NOT_FOUND if a record with the specified key is not found,

4.0 PROGRAMMING EXAMPLES

All PAMM interface routines return an integer status variable that can be found in the
include file pamm.h. For the following examples, we use an integer variable named result for
storing all status values.

i PAMM Initialization

Before PAMM can be used, it must be initialized by calling P_init(}; this allocates and
initializes all global data structures that PAMM needs. Thus, P_inisg(} must be called before any
routine that accesses the PAMM tables (all routines except P_create DB(), P_destroy_DB(),
P _create(), and P_delete_table()). P_init() must also be called in the task that is a common
ancestor to all tasks that access the PAMM tables because only those tasks that are its children
inherit its memory address space. The code for initializing PAMM in an application program is:

if ((result = P _init()) != OK)
{

print £ ("ERROR P_init returned %d\n", result);
}

4.2 Creating a Database

Tea praata o datablnca tun filac mnat avict in the Hn—ar\fnﬁr nF tha Aatalhinea "attr A1f-f o
LiF wiwddil O uuauvuav LPYLS LAA0D IO WALDL A1) M L AV SR T LR URTRETRE Nt PRE (AR R SR LT BN {0 A 1Y

d "table_dict.scm." These two files come with the PAMM package and can be moved or copied
but must never be altered. The ".scm" suffix on a file name means that the file is a schema file and
that it specifies the structure of a table, such as the number, type, and order of the attributes (see
Section 2.1). The command P_create DB(database_name) creates the atiribute and table
dictionaries for the database name passed in the parameter database name according to the two
schema files. The code for creating a new database is:

char database name(29];

strcpy (database name, "DB_name"};
if ((result = P create DB(database _name)} = COK)
{
printf ("ERROR P_create DB returned %d\n", result);
}

where "DB name can be any a}phabetic character su*in g no longer than 28 charactcrs After this

code is run, ihe files "DB_name.id" and "DB_name.ad"” will exisi in the directory, and tables may

then be put in the database.

ROSENAU AND EL-KADI

4.3 Opening a Database

To open a database, the command P_open_DB(database_name) must be called. The
parameter database_name specifies the name of the database to be opened. As before, the
maximum length of the name of the database is 28 characters (excluding file extension). This
operation allocates and initializes all global data structures that PAMM needs. P_open DB() then
loads into PAMM tabies both data dictionaries (named “DB_name.td” and "DB_name.ad"), where
"DB_name" is the name of our example database. The code for opening a database is:

strcpy (database name, "DB name");

if ((result = P_open DB(database name}} != OK}
{

printf ("ERROR P_open DB returned %d\n", result);
}

4.4 Closing a Database

To close a database, the command P_close_DB(database _name, wait) must be executed.
This command unloads all tables currently in main memory back 1o secondary memory that belong
to the database specified by the parameter darabase_name. The wait parameter specifies if
P_close_DB() should wait for any open tables to be closed (wait = TRUE) or if it should return

immediately without closing the rest of the database (wait = FALSE). The code for closing a
database is:

int wait;
char database_name [29];

wait = FALSE;

mmmmm Frd=d =

-

]

St:..uy_y \uat_.abaSE_ ame, uBh ame”) ;
if ((result = P_close_ DB{database_ name, wait)) != OK)
{

printf("ERROR P_close DB returned %d\n”, result};
}

4.5 Destroying a Database

To destroy a database and all of its tables, the command is P_destroy DB(database name).
This command deletes all the .dat files of the tables in the database whose names are specified by
the parameter database_name and also deletes the two data dictionaries, "database_name.ad" and
"database _nameid." Al of the tables and the database must be closed before executing. The code
for deql:nyipg a database is:

2 awedas 57 a oAt L

10

NRL REPCORT 9267

char database name[29];

strcpy (database name, "DB name”);

if ((result = P_destroy_ DB(database name)) != OK)
{

}

printf {"ERROR P_destroy DB returned %d\n”, result);

4.6 Creating a Table

To create a new table, the command is P_create(table_name). A table is created in the same
directory as the database to which it will belong, and its name will be specified in the parameter
table_name. The table name must be no longer than 27 characters, excluding the file extension,
".datN0." This command searches in the same directory for a schema file named

"table name.scm,” which must be in the correct format (see Section 2.1 for format details).
P _create() must be called before P_open DB{() or after P_close DB{) because it places the
information about the table and its attributes dxrcctly into the two data dictionary files, not into a
PAMM structure. The code to create a new table is:

char table name[28];

strepy(table name, "tablel");
if ((result = P create(table_name))} != OK}

4.7 Loading a Table

When a database is opened, only the two data dictionaries are loaded into the main memory
data structure. It is up to the application to load into memory whatever database tables it wants o
use. Loading a table into memory is done with the P_load(table_name, &new_parm) function,
which takes two parameters — table_name and new_parm. The name of the table to be loaded is
passed in the character string variable table_name. The parameter new_parm is of type
PARM_TYPE, which is defined in pamm.h. Tt lists the parameters for the table that can be
adjusted at load time to alter database performance. If no changes are desired, the value NULL
should be passed in new_parm's position. M the parameters are changed, they replace the defanlt
values for all subsequent table loadings until they are changed again. The parameters are:

max_chains — The maximum number of record chains allowed in each directory block.
DEFAULT = 11

split_val — The maximum average nonzero record chain length allowed in the P directory
block before a split must occur.
DEFAULT = 1.0

overflow — The maximum average nonzero record chain length allowed in a non-P
directory block before a split must occur in that block.
DEFAULT = 1.5

11

ROSENAU AND EL-KADI

initial_m — The initial value for 34, or the initial number of directories when loading the
table (should be a power of 2). '
DEFAULT=2

max_dirs — The maximum number of directories allowed per open table (should be a
power of 2).

DEFAULT = 2048

sup_dups — True to suppress duplicate record keys; false to allow duplicate record keys.
DEFAULT =TRUE

sort_chgin — True if record chains are to be kept sorted; false if record chains are not to be
kent sorted

A WWFL Ve

DEFAULT = TRUE
The code for Ioading a table named "table1" into a previously opened database is:

char table_name [28};
PARM TYPE new_parm;

Nl a1 By -
LR = SN B =N S I)

S
load({table_name, &new parm)) != OK)

t
if _
{ ,
printf{"ERROR P_load returned %d\n", result);
3

4.8 Opening a Table

To open 2 table that has already been loaded, the command is P_open{table name,
access_mode, &id}, where the name of the table to be opened is passed in the parameter
table_name. The access permission is passed in a variable of type ACCESS_TYPE, and the only
permissible values are READ, WRITE, and READ_WRITE, which are defined in pamm.h, The
third parameter to P_open(} is the address of a table descriptor (&zd) that is used for all successive
table accesses for the opening process. The iable descriptor is of type PAMM_TYPE and must be
allocated before P_open() is called. For successful execution, each process that accesses a PAMM
table must perform its own P_open(j on that table. Upon successful completion, P_open() returns
a valid table descriptor, which is used to access the table. The code for opening a table that was
previously loaded is:

char table name([281];
ACCESS TYPE access mode;
PAMM TYPE td;

strepy{table name, "tablel”);
access_mode READ WRITE;
if {{result P openi{table name,access_mode, &td)} != OK}

{
}

ol

printf ("ERROR P_open returned %d\n”, result);

12

NRL REPORT 9267

4.9 Closing a Table

To close a table, the command is P_close(&td), where td is a valid table descriptor of the
table to be closed. When P_close() returns, the table descriptor is no longer valid. Further
accesses with the table descriptor return an error message. P_close() does not unload the table but
simply decrements its open count. The code for closing a table is:

PAMM TYPE td;

if ((result = P close(&td)) != OK)
{

}

printf ("ERROR P_close returned %d\n”, result);

4.10 Saving a Table

To save an intermediate copy of a loaded table to disk, the command is P_save(table name,
save_file name). The maximum length of the table name is 27 characters, excludmg file extension
(".dat\0"), and the maximum length of the saved file name is 31 characters. It is recommended that
the new saved file name not be the same as the table name plus file extension (“.dat”) because
when the table is unloaded, it overwrites the intermediate copy. The code to save a table is:

r 1
L Jd
ave_file name{32];

strcpy(table name, "tablel");
strcpy(save_file name, '"new file name");
if ((result = P_save (table_name, “save_file name)) != OK)

{
1

printf ("ERROR P_save returned %d\n”, result);

4.11 Unloading a Table

To unload a table that is no longer open, the command is P_unload(table _name). If the
table is still open by any process, P_unload(} fails, immediately returning TABLE_ STILL_OPEN.
The code to unload a table is:

char table name[28];

strcpy (table name, "tablel");

if ((result = P _unlcad(table name)) != OK)
{

}

printf {"ERROR P unload returned %d\n", result);

13

ROSENAU AND E1-KADI

4.12 Deleting a Table

To delete a tablc, the command is P_delete table(table_name). This command deletes the
data file table_name.dat and removes the information about the table and its attributes from the two
data dictionaries. This command must be called before P _open_DB() or after P_close DB()

because it strictly alters the disk versions of the data dictionaries, not the PAMM structures. This
operation is nonreversible. The code to delete a table is:

char table name([28];

strcpy(table name, "tablel");
if ((result = P_delete table(table name}) != OK)
{

printf ("ERROR P_delete_table returned %d\n", result);
}

4.13 Inserting a Record

To insert a record into a table, the command is P msert(&rd record_ptr), where td is a
tabhla dpemptnr of f};i)p P‘Alﬂﬂ TVDR arnd worne

tha An et busdes . |
A MM TYPE and record pf}" is& yuuue; iG tnc 4ata record OCIng ule.l (4N

Currently the record's key field must be the first four bytes (an integer) of the data record,
however, this restriction may be removed in later versions of PAMM. P _insert(j will retum the
value OK if the insertion completed successfully, NO_WRITE_PERM if the table was not opened
with WRITE or READ_WRITE permission, or DUPLICATE_KEY if a record with that key is
already in the table and duplicate suppression is turned off. The code to insert a record is:

PAMM TYPE td;
char *record ptr;

/* data_record is defined and allocated elsewhere */
record ptr = &data_record;
if ({result = P_insert(&td, record ptr)) != OK)
!
L .

printf ("ERROR P_insert returned %d\n", result);
Y

ecord

4.14 Reading a R

To read a record from a table, the command is P read(&td, key, record_pitr), where idis a
table descriptor of type PAMM_TYPE, key is a 32-bit integer key value of the record to be
retrieved, and record pir is a pointer to a previously allocated buffer where the retrieved record can
be placed P_read() ‘will return OK if it found the record, TABLE _NOT_OPEN if the table was

not open or the permissions were wrong, or RECORD_NOT_FOUND if the record was not found
in the table. The code to insert a record is:

int key;
char *record ptr;
PAMM TYPE td;

14

NRL REPORT 9267

/* data record is defined and allocated elsewhere */
record ptr = &data record;

key = *((int *) record ptr);

if ((result = P_read(&td, key, record ptr)) != OK)

{

printf ("ERROR P_read returned %d\n", result);
3

4.15 Updating a Record

To update a record in a table, the command is P_update(&td, record_ptr), where td is a
table descriptor of type PAMM_TYPE and record ptr is a pointer to a record whose contents will
replace the record in the table with the same key field. The key of the record to be updated is found
in the first four bytes of the record pointed to by record_prr. If there is no record with that key in

the table, an error message will be printed and the value RECORD_NOT_FOUND will be
returned. The code to vpdate a record is:

char *record ptr;
PAMM TYPE td;

/* data record is defined and allocated elsewhere */
record_ptr = &data_record;

if {((result = P_update({&td, record_ptr)) != OK)

{

printf ("ERROR P update returned %d\n", result);
}

4.16 Deleting a Record

To delete a record from a table, the command is P_delete(&td, key), where td is a table
descriptor of type PAMM_TYPE and key is a four-byte integer whose value is the key of the
record to be deleted. P_delete() removes the record from the table, but it does not release the

memory back to the system for reuse until the database is closed (P _close DB()). The code to
delete a record is:

int key;
char *record ptr;
PAMM TYPE td;

/* data record is defined and allocated elsewhere */
record ptr = &data_record;
key = *({(int *) record ptr);
if ((result = P delete(&td, key)) != OK)
{

printf ("ERROR P_delete returned %d\n", result);
}

15

ROSENAU AND EL-KAD}

4.17 Initiating a Database Session

As an example, we show a portion of a C program that opens a previously created database
named "DB_name” and then loads two tables named "table1” and "table2" into PAMM structures.
At this point, it copies 1000 records from “tablel" into “table2" by forking 10 processes and letting
each process copy a block of 100 records. Then it unloads both tables and closes the database.

“tablel” will have its PAMM structure parameters modified for different performance. The code is
as follows:

int result;

char database name[29];
char table namel[28];
char table nameZ(28];

PARM TYPE new_parm;
/* PAMM is initialized just once in a program, */
/* before any other PAMM calls are made. */
if {(result = P_init({}) != OK)
{

printf {"ERROR F_init returned %¥d\n", result);
} ' .

/* Open the database */
/* The name of our example database is "DB name" */
strcpy(database name, "DB name”};
if {(result = P_open DB{database name}) != OK)
{

printf ("ERROR P_open DB returned %d\n", result);
¥

/* Load “tablel” and change its PAMM table parameters */
strepy (table namel, "tablel");

new parm.max_chains = 512;

new parm.split_val = 3.01;

new:parm.overflow = 5.01;

new parm.initial m = 32;

new parm.max _dirs = 27;

new parm,.sup_dups = TRUE;

new_parm.sort_chain = FALSE;

if ({result = P_load(table name, &new_parm)) != OK)

/* Load “table2® but don'‘t alter PAMM table parameters*/
strcpy({table name2, "table2");
if ((result = P_load(table_name, NULL}) = CK}
{
printf ("ERROR P_load returned %d\n", result};

l

/* Fork some processes to do concurrent database work */

16

NRL REPORT 9267

/* and wait for them to finish */
for (i=0; 1 < 10; i++)

{

if (f

{
}

el (Y == N4
[R ay A]

task (1) ;

!
for (i=0; i1 < N_tasks; i++)

{
wait (};
¥
/* Unload the tables with their new or altered data */
if ((result = P_unload(table namel}) != OK)
{
printf ("ERROR P_unload returned sd\n"“, result);
}
if ((result = P_unload(table_nameZ)) != OK)

printf ("ERROR P unload returned %d\n", result); '

/* And close the database */
if ((result = P_close DB(database name, FALSE)) != OK)
printf ("ERROR P_close DB returned %d\n", result);

}

Each task opens both tables; "tablel” is opened with read permission and "table2" is
opened with write permission. Records are read from "tablel" into a buffer named buf[] and then
written into “table2" from that buffer. Record keys are computed by allocating each process a
block of 100 records. Thus, process 1 copies records with keys in the range of O to 99, and
process 2 copies records with keys in the range of 100 to 199, etc. Then both tables will be

closed. The code for each task is:

task (no)
int no;
{
int key
PAMM TYPE tdl;
PAMM TYPE td2;
char buf[1000];

/* Open both tables */
if ({result = P open("tablel”, READ, &tdl}) = QK)
{

}
if ((result = P_open("table2”, WRITE, &td2z2)) != OK}

{

printf ("ERROR P_open returned %d\n", result);

printf ("ERROR P open returned %d\n", result);

1
i

17

ROSENAU AND EL-KADI

/* Copy 100 records from tablel to table2 */
for (i=0; i < 100; i++)
{

key = {(no * 100) + i;

if ((result = P_read(&tdl, key, buf}) ![= OK)

Ll L]

if {(result = P_insert{&td2, buf) != 0K}
{
printf ("ERROR P_insert returned %d\n",result);

}

if ({result = P_close({&tdl}) != OK)
{
printf ("ERROR P_close returned $d\n", result);
3
if ((result = P_close(&td2)) != OK)
{

)

printf ("ERROR P_close returned %d\n", result};

h

5.0 DPEBUGGING PAMM

In the unlikely occurrence that PAMM contains software bugs, debugging messages have
been included throughout the PAMM source code. They are turned off by default but are easily
activated by editing pamm.h and removing the character X' (capital X) from in front of any

debug macros (they are all in one debug section). Each debug macro corresponds with a particular
PAMM source code module (except for one macro: DEBUG, which is a catchall for some lower
level routines) and are easily correlated. The application program and the PAMM must then be
recompiled (PAMM using the make file). To turn the debug messages off again, place the X' in
front of the debug macros that had been activated and recompile the source code. When they are
turned off, they do not affect the performance of PAMM because they are not compiled into the
code.

When the debugging messages are activated, they will be printed on the screen. If that is
undesirable, they may be printed to a file named "PAMM_debug_messages” by editing pamm.h
and removing the "X’ from in front of the macro "DEBUG_FILE_ON" and recompiling PAMM
and the application source code. I the application is executed a second time, the contents of the

debug messages file from the previous execution will be lost if not saved.
6.0. EVENT LOGGER
The GP1000 can log histories of events that occur during a program's execution. We have

. el l Loniliz: Lo senoindboede " fewmired ! vy
included this facility for monitoring and optimizing PAMM's performance. Macro calls are

inserted into the code at specific locations to record the time that a process executes that command.

18

NRL REPORT 9267

The time stamps are saved in a file that is later viewed on an X terminal by vusing the "gist"
command. (See the Mach 1000 operating system manuals for using the event logger and gist.)

Events have been inserted into the PAMM source code for recording events. To turn this
feature on, uncomment (or define) the macro ELOG in pamm.h and recompile (using the make
file) the PAMM code and the application program. If events are desired in the application code,
they may be added also. For each forked process that wants to log events, two macros must be
calied: TASK_START_UP and TASK_CLEAN_UP. Both macros can be found in pamm.h.

This feature is useful for finding performance bottlenecks in the application code. The

event logging facilities are turned off by default and, when turned off, do not affect the
verformance of PAMM because they are not compiled into the code. When the event]ncrmnu

peiiliiaaidlietly Ui DORAYAVS DRGSOV AV e Al RIS =i & SAT AN amaal

facilities are turned on, the overhead incurred is m1mrnaI so performance should not be altered
significantly.

7.0 References

[1] T. Rosenau and S. Jajodia, "Basic Database Operations on the Butterfly Parallel Processor
Experiment Results," NRL Memorandum Report 6173, Mar. 1988.

[21 BBN Advanced Computers Inc., Butterfly GP1000 Overview, November 10, 1988 (sales
brochure).

[3] BBN Advanced Computers Inc., Butterfly GP1060 Switch Tutorial, 1989 (sales
brochure).

(41 S. Pramanik and H. Davies, "Multi-Directory Hashing," Technical Report, Department of
Computer Science, Michigan State University, Aug. 1988.

[51 S. Pramanik, "Key-Based, Distributed Locked RAM File System for Butterfly Machine
Using Multi-Directory Hashing," Michigan State University, 1987,

[6] S. Pramanik and M. H. Kim, "Generalized Parallel Processing Models for Database
Systems," 1988 International Conference on Parallel Processing, St. Charles, IL, Aug.
1688.

[7] S. Pramanik, C. cherance, and T. Rosenau, "A ngh Speed KDL RAM Filc System for

A TET 1 Oy

Paralfel L,ompulers rroceeamgs of PARBASE-S VU, Miami Dc:u.,n, PIUHU:I, Mar. 1990.

[8] C. Severance, T. Rosenau, and S. Pramanik, "A High Speed KDL-RAM File System for
Parallel Computers,” NRL Report 9259, Nov. 1989.

9] T. Rosenau and M. El-Kadi, "The Design of a Parallel Access Main Memory (PAMM)
DBMS on a Butterfly GP1000," NRL Report 9266 (in process).

) PR, Y g S UL Y Fo e

[10] R. Rettberg and R. Thomas, "Contention is no Obstacle to Share

Multiprocessing,” Commun. ACM, 29(12), 1202-1212 (1986).

19

Appendix

PARALLEL ACCESS MAIN MEMORY (PAMM) User's Manual,
Command Definitions

{Alphabeiically Soried)

21

ROSENAU AND EL-KADI

PAMM Command Definitions

NAME
P _close
SYNOPSIS
#include <pamm.h>
ret = P_close(td};
int ret;
PAMM TYPE *td;
DESCRIPTION

table's open count. It also invalidates #d for later use in the calling program.

RETURN VALUES
OK table was closed successfully
TABLE_NOT_OPEN td is not a valid table descriptor

22

NRL REPORT 9267

PAMM Command Definitions

P_close_ DB

SYNOPSIS
#include <pamm.h>

ret = P close DB(db_ name, wait);
int ret;

char db namel];

BOCLEAN wait;

DESCRIPTION

P close DB() closes the database called db_name. It unloads all the tables
currently residing in the main memory data structure onto the disk and unloads the
data dictionaries. The database cannot be closed while tables remain open. If one
or more tables remain open, the wair parameter allows the calling program to
specify whether P_close_DB() should wait for all tables to be closed before closing
the database or fail and return an error message. If wait = TRUE (1),
P close DB() will wait, but if wait = FALSE (0), P_close_DB() will fail, returning
the code OPEN_TABLE_BUT_CANT_WAIT.

RETURN VALUES

OK database was closed successfully

DB_CLOSE_FAILED a fatal error occurred

OPEN_TABLE_BUT_CANT WAIT tables are still open and wait was set
to FALSE (no wait)

23

ROSENAU AND EL-KADI

PAMM Command Definitions

NAME
P _create
SYNOPSIS
#include <pamm.h>
ret = P_create(table_name);
int ret;
char table namel]:;
DESCRIPTION
P_create(} creates a table called table_name. A file called "table_name.scm” must
exist in the current directory, which must be the schema file for the requested table,
and it must be of the format described in NOTES below. P_create() adds the new
tabie's information to the data dictionaries without loading the database into main
memory. P _create() also creates an empty data file for the table named
"table name.dat”. P _create() must be called before P _open DB(), i.e., the
database cannot be already loaded into main memory.
NOTES
The schema file format is as follows, where the reserved words are in bold and the
user-supplied variables are in plain text:
database db_name
attr attrl_name, type attrl_type, key 1
attr attr2_name, type atr2_type, key 2
at{r attr3 name, type attr3_type, key 0
' e
attr attrN_name, type attrN_type, key O
end
Allowable values for type are:
TYPE CTYPE SIZE DESCRIPTION
char char 1 byte 8-bit character
short short 2 bytes 16-bit, short integer
integer int 4 bytes 32-bit integer
long long 4 bytes 32-bit integer o _ .
float float 4 bytes 32-bit, single-precision floating point
doublie double 8 bytes 64-bit, double-precision floating point
string N char{N} N bytes N-1 byte character string plus nuli
1 llls iy lgipiv] g : - f - o
terminator

In the current version, the values for key have no meaning and the first attribute
must always be of type integer.

24

NRL REPORT 9267

RETURN VALUES
OK
SCHEMA_NOT_FOUND
SCHEMA_SYNTAX_ERROR
TABLE_ALREADY_ EXISTS
CREATE_FAILED

25

the table was created successfully
“table_name.scm" does not exist
schema file is not in correct format
table already created in the database
a fatal error occurred

ROSENAU AND EL-KADI

PAMM Command Definitions

NAME
P_create DB
SYNOPSIS
#incliude <pamm.h>
ret = P_create_DB(db_name);
int ret;
char db_namel];
DESCRIPTION

P _create DB(} creates a new database with the name passed in db_name. If the

I e TR UL - PIPUI » SN [23+ VAW -3 PR B ey O PO
Haialaost altaly LXisty, I’ L/CGIE L0) latts dilld P dil CLIOD HICSSdEC. 1L LItdlcs

and initializes the data dictionaries for the new database. It does not involve the
main memory data structure.

RETURN VALUES

OK database was created successfully
DB_ALREADY_EXISTS dictionaries for db_name already exist
DB_CREATE_FALLED a fatal error occurred

26

NRL REPORT 9247

PAMM Command Definitions

NAME
P_delete

SYNOPSIS
#include <pamm.h>

ret = P_delete(td, keyj};
int ret;

PAMM TYPE *td;

int key;

DESCRIPTION
P_delere() deletes a record with integer key, key, from the table described by #d.

RETURN VALUES

OK record was deleted successfully
NO_WRITE_PERM table is not open with write permission
RECORD_NOT_FOUND key does not exist in table 4

27

ROSENAU AND Ei-KADI

PAMM Command Definitions

NAME
P_delete_table
SYNOPSIS
#include <pamm.h>
ret = P_delete_table(table_ name};
int ret;
char table name(l};
DESCRIPTION

P_delete_table() deletes a table with the name rable_name. It requires that a schema
file of the correct format (see P_create()) exists called "table_name.scm". It deletes
the given table's information from the dictionaries without loading the database into
main memory. It also deletes the data file for the table, which is named
"table_name.dat". It must be called before P_opern_DB(), i.e., the database cannot
be already loaded in main memory.

RETURN VALUES

OK table was deleted successfully
SCHEMA_NOT_FOUND "table_name.scm” does not exist
SCHEMA_SYNTAX_ERROR "table_name.scm” is not in the correct format
TABLE_NOT_EXIST table name was not found in the dictionaries
DELETE_TABLE FAILED a fatal error occurred

28

NRL REPORT 9267

PAMM Command Definitions

NAME
P_destroy DB
SYNOPSIS
#include <pamm.h>
ret = P_destroy DB(db_name);
int ret;
char db name{];
DESCRIPTION

P_destroy_DB() destroys the database called db_name. It removes the data
dictionaries and all data files belonging to its tables. It is not called on an open
database.

RETURN VALUES
OK database was destroyed successfully
DB _DID NOT_EXIST db_name does not exist
DESTROY_DB_FAILED a fatal error occurred

29

ROSENAU AND EL-KADI

PAMM Command Definitions

NAME

P_init

SYNOPSIS
#include <pamm.h>

ret = P_init();
int ret;

DESCRIPTION
P _inix(} allocates and initializes all of the global data structures that PAMM uses. It
must be called before any other PAMM routine except FP_create_DB(],
P_destroy DB(), P_create(), and P_delete_table(). It must be called by the parent
task of all tasks that access the PAMM structures because this function sets the
mermory inheritance for all global memory. It returns the values OK if P_init(}
completed successfully or NOT_OK if there was an error.

RETURN VALUES

OK PAMM was initialized successfully
NOT_OK a fatal error occurred

30

NRL REPORT 9267

PAMM Command Definitions

NAME
P _insert
SYNOPSIS
#include <pamm.h>
ret = P_insert(td, data_recj};
int ret;
PAMM TYPE *td;
char data_rec(];
DESCRIPTION

P_insery() inserts a record, data_rec, into the table described by td. The key for the

record is assumed to be an integer in the first four bytes of data_rec.

RETURN VALUES

CK record was inserted successfully
NO_WRITE_PERM table is not open or only open with read permission
DUPLICATE KEY key already exists and duplicates are suppressed

31

NAME

ROSENAU AND EL-KADI

PAMM Command Definitions

P_locad

#include <pamm.h>

ret = P load{table name, new parm};
int ret;:

char table namel];

PARM TYPE *new parm;

DESCRIPTION

NOTES

P_load(} loads the data from the table on disk, rable_name.dat, into the main
memory PAMM data structure. It then makes table _name available to be opened for
use. The parameter new parm specifies many different parameters for the control
of the table. It is described in NOTES below. P_load(} must be called before
P _open(), even if the table is empty because it creates the table's directory structure.

The type PARM_TYPE is defined in pamm.h. These parameters can be adjusted
to improve the efficiency of the database.

typedef struct parm type x
{

int max chains;
float split wval;
Flmat emermas - W

A lvaL WV L LA,
int initial m;
int max_dirs;

BOOLEAN sup dups;
BOOLEAN sort_chain;
} PARM TYPE;

max_chains - The maximum number of record chains allowed in a directory
block. DEFAULT =11

split_val - The maximum average nonzero record chain length allowed in the P
directory block before a split must occur. DEFAULT = 1.0

overflow - The maximum average nonzero record chain length allowed in a non-
P directory block before a split must occur in that block. DEFAULT = 1.5

initial_m - The initial value for M at the opening of the database (should be a
power of 2). DEFAULT =2

32

NRL REPORT 9267

max_dirs - The maximum number of directories allowed per open table (should be
a power of 2). DEFAULT = 2048

sun dumns - TRUE to suppress dun

allowed. DEFAULT = TRUE
sort_chain - TRUE if record chains are to be sorted, FALSE if record chains are

- e g—

kept unsorted. DEFAULT = TRUE

- OK table_name was loaded successfully

QT tahle mame Adnec nat avict in thic r‘nfnhncp
W A SLALS B ’w"(v WLNAYD LIVL WADL A4 ALY

TOO_MANY_TABLES too many tables are currently open (20)
LUAD_FALLED a Ia[al €ITor occumm

