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INTERFERENCE REJECTION AND DETECTION PERFORMANCE
OF THE “SMALLEST OF”’ CIRCUIT

BACKGROUND

A method of rejecting asynchronous pulsed interference was proposed [1]. In this method the smaller
of two amplitudes in two consecutive radar sweeps is selected for every pair of range samples. Figure 1
shows a diagram of the circuit. If a large signal occurs only in one of the two sweeps, the circuit chooses the
smaller signal and rejects the larger. Signals from targets are usually present (at the same range) in a number
of consecutive sweeps, and the circuit passes these signals with only a small amplitude reduction. This
circuit has been built and tested on two SPS-10 radars [2].

Smallest D/A
of

RADAR
VIDEOD

A/D PRF Delay

Fig. 1 — Smallest of interference rejection circuit

The use of an M-out-of-N detector is a more conventional way for eliminating asynchronous
interference. Radar video is thresholded, and one or more sweeps are saved in a memory. When threshold
crossings occur at the same range in more than one sweep, a valid return is declared. If the analog to digital
(A/D) converter is reduced to one bit, then the smallest of circuits is nearly identical to a 2 out of 2 detector.
The disadvantages of using the single bit interference eliminators are that the video amplitude information is
lost, the detection performance is poor [3], and usually a constant false alarm rate (CFAR) is needed to
adjust the threshold. The smallest of circuits retains amplitude information and requires no CFAR for
proper operation.

Figure 2 shows two examples of the circuit’s operation with video interference injected into the radar;
for Fig. 2(b) the smallest of circuit was active to a range of 80 nmi, and the range rings are at 40 and 80 nmi.
Since no CFAR was used, extended land targets retain their proper shape. Some loss in detectability is
expected because the smallest of two consecutive radar sweeps is chosen; however, the same logic operates
on noise and also reduces the noise level. To obtain a quantitative value for the effect on detection
performance, a computer simulation was performed.

SIMULATION OF SMALLEST OF

The smallest of processor was compared to a moving window reference processor that integrates
detected signal returns during an antenna dwell. The signals were weighted uniformly; so while the
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{a) ®)

Fig. 2 — PPI photographs showing interference without use of the circuit
(a) and rejection of interference with use of the circuit (b)

reference processor is not optimum, it should be within ~ 0.5 dB of an optimum processor [3]. Figure 3 is
a diagram of the simulation showing the processors and the signal and noise generators. The antenna
pattern and the number of pulses in 2 dwell were chosen to approximate those of the SPS-10 radar. A sin
(x)/x function was used for the one-way antenna pattern scaled to a 3 dB beamwidth of 1.45°. At the normal
rotation rate and pulse repetition frequency (PRF) 10 pulses are within a beamwidth, Only one computation
was done per dwell; the peak of the beam was approximately centered in the integration window. From
dwell-to—-dwell the location of individual pulses was randomized by +0.6 of the pulse-to-pulse spacing.
Figure 4 shows envelopes of the normal signal and the smallest of as they enter the integrator in a noise—free
case. The smallest of processor needs an initial value so that 10 outputs can be integrated by both
processors. As in a real system, the initial value comes from a pulse prior to the group of pulses used in the
integration window. To generate the curves shown in Fig. 4 the processing was started at negative angular
displacements and moved to the right; the output of the smallest of is less than the normal output until the
peak of the beam is passed, then both processors have nearly the same outputs. In the example used, the

peak output from the smallest of processor lags the normal peak by 5% of the beamwidth.
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Fig. 3 — Simulation process used to calculate detection performance
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The additive noise has a uniform phase distribution and a Gaussian amplitude distribution given by
Iy = Bcos 2xR,
On = B sin 2xR, and

Pe a1

B = of—2InR)1?,

where Iy and Qy are the inphase and quadrature components of noise, and R is a uniformly distributed
random number between 0.0 and 1.0.

Figures 5 and 6 show histograms of noise distributions and signal, plus noise distributions, prior to the
integrator. Figure 5 shows only noise as the smallest of circuit reduces the number of occurrences of larger
amplitudes. A signal ~ 3.6 times the root-mean-square noise amplitude was added to the noise for the
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Fig. 5 — Distribution of noise used in simulation showing the
effect of the smallest of process
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Fig. 6 — Distributions of noise + signal prior to integration
SIMULATION RESULTS

The first step in the simulation is to determine the threshold setting T for various false alarm rates.
Figure 7 shows the results that were obtained by setting the input signal to zero and measuring the
probability of false alarm (Pg,) as a function of the threshold setting. Approximately 107 trials were used.
Now, one can use threshold settings at a desired Py and measure the probability of detection (P;) by running
the simulation with various values of signal amplitude.

187,
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Fig. 7 — Probability of false alarm as a function of threshold level
using pulses from an antenna dwell
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Figure 8 shows the detection results for false alarm rates of 10-3 and 10-5. The input signal-to-noise
ratio (SNR) is plotted as a function of P; for both processors. For values of Py near 0.9 the smallest of

nan Tha A:£F. |
processor requires ~ 0.7 dB more signals than the moving window integrator does. The difference between

the two processors is fairly constant with increasing advantage for the moving window at higher values of
P4 and higher Pg,. As a check of the simulation, a simplified case was run where an optimum processor was
compared to a version of the smallest of.
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Fig. 8 — Probability of detection as a function of the input signal-to-noise ratio for
a processor that uses pulses from an antenna dwell
TWO-PULSE SIMULATIONS

A second case was tried by processing groups of two equal-amplitude pulses. The reference processor
adds two pulses while the srallest of chooses the one with the smaller amplitude. This case can be compared
to the standard detection curves such as in Blake [4]. Again a noise-only case was run to calculate threshold
settings for various values of Pg,. Figure 9 shows these results.

Figure 10 shows the detection performance of these two—pulse processors for Py, of 1072 and 10-5. The
smallest of processor always requires more SNR for equal values of P,. Fora P; 0f 0.9, ~0.8 dB more is
needed. The largest disadvantage shown in Fig. 10 for the smallest of processor is only 1.1 dB at a P4 of
0.99.



PROBABILITY OF DETECTION

GEORGE J. LINDE

-1
10 frrTT g
o 1
19—2: 3
Pfa - Smallest of 2 Sum of 2 ;
1872 -
: E
C 3
18—4:"‘ =3
C ]
18'55— B
s 3
IB-E Ill‘ilj_l_[ElLLIELL_Llitlllillllillll.l_IJ_I_]il_LLli.lLLlELlllEllllil[llillll
.38 .48 .58 .69 .78 .88 .9@
THRESHOLD
Fig. 9 — Two-pulse probability of false alarm as a function of threshold level
L] L L] L) L] 1 T
-9r Sum of 2
. Smallest of 2 — — —
8}
T
.6f
-1
LA
3F
2F
Af
1 1 1 ) 1

6 7 8 9 10 11
SIGNAL TO NOISE RATIO (dB)

Fig. 10 — Two-pulse detection probability as a function of the input signal-to-noise ratio
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CONCLUSIONS

The smallest of circuit that is effective in eliminating asynchronous pulsed interference, suffered very

little reduction in signal detection performance (~0.7 dB) when compared to a normal moving window
integrator. Even in the two—pulse simulation, which is less realistic and should clearly favor the addition of
two pulses, the smallest of processor was ~0.8 dB worse.
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