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RESULTS ON THE DETECTION OF SIGNALS IN
SPHERICALLY INVARIANT RANDOM NOISE

INTRODUCTION

Vershik [11 introduced the class of spherically invariant random processes (SIRP) as part of a study of
properties exhibited by Gaussian random processes. Since that introduction, papers exploring various
aspects of this class of processes have appeared. These studies have examined questions regarding
representations of such processes [2-51 as well as estimation and detection in such processes 16-81.
Recently, this work has been applied to the problem of modeling certain types radar clutter processes [9,10 1.

In this study, we reexamine the structure of the optimal processor, i.e., the likelihood ratio, for
detecting a known signal in additive noise modeled as a SIRP. The structure of this optimal detector is that of
the estimator-correlator, a result that follows by direct application of a result attributable to Schwartz [ 11 1.
However, for the sake of clarity, a simple derivation of this result is presented. In addition, we discuss how
the estimator-correlator structure leads to suboptimal structures that have been obtained by previous
investigators. We also briefly point out that the locally optimum detector for this problem consists of the
same optimal estimator used in a different manner than in the optimal detector. Finally, we derive an
alternate formulation of the likelihood ratio and the optimal estimator that appears in the
estimator-correlator structure. This alternate formulation is important because it allows the optimal estimate
to be computed without knowledge of a prior density for the random parameter. Instead, knowledge of a
--rertnin rmnrginal nrnhahilitu dencit fiunrtinn (uf- ic reqnired-r Tn nrsacticP this n-f is more like-ly tn W

available to the investigator than is the prior density.

STRUCTURE OF THE OPTIMAL DETECTOR

In this section, the optimal detection structure for detecting an additive signal in a spherically invariant
random process is derived and shown to be a general structure applicable to the whole class of processes.
The resulting structure is a function of an optimal estimator of a random quantity. This structure reveals an
iintimate relationship between optimal detection and optimal estimation for this class of processes.

Consider the following hypothesis test:

H: X = y

HI: x =y + s

where

v is an m-limFenq-innl n1rnnmley nnice vertnr

s is an m-dimensional complex noise complex vector

= as, ( = yej' = complex number.

Manuscript approved January 13, 1989.
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SANGSTON AND GERLACH

From this point only complex processes are examined. However the corresponding results for real
processes are easily obtainable from our approach.

If x is a sample from a SIRP, then x has the following pdf under hypothesis i (i = 0, 1):

f(r) = 1 OD _ ep-rn t l f (T~dT
JV/ (2ir)m'1'I Jo r 9" r U 2,rJ

where

j = (x-s)f 4 1 (x-s), i = 1

= XWX, i = 0

.W is uLe n.unanieu currcsauon matrx

r is the variance of underlying Gaussian process

fr(T) = pdf of r

is the matrix determinant

t is the complex conjugate transpose.

Clearly Eq. (1) represents the pdf of a conditional Gaussian process with random variance r, averaged over
the variation in r. Close examination of the conditional Gaussian pdf shows that it is a multivariate member
of the exponential family, i.e., the pdf is of the form

fi(x1T) = c(,r)h(x)exp .qf 7)T1tx (2)

where in our case

C(T) = 
(2 7r)- | 4, [ -

h(x)= 1

1 = I

__I

iq j(r) = -
7

T,(x) is a sufficient statistic for - -r2
Our first result follows by direct application of a general result given by Schwartz [11]. However, we now
give a brief derivation.

2
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If we reparameterize our conditional Gaussian pdf by setting ca = I / r, we obtain

fx() (2 j i lexp[-aZfga)da, (3)

where we have substituted zi = q,/ 2 . If we now differentiate Eq. (3) by zi, we obtain

dfj = 2rfI Jr No +Iexp-cazlf,(a)doa. (4)

Since the minimum mean-square estimate of a is given by the conditional mean estimate (CME) 112],

.EjacjxI = (2r)-' lLfi(x) lj + I1exp [- aaz Jf(c)da, (5)

and we immediately obtain

EK'''x I diitl (6a)
fi(x) dz J Zz= 2

dlnfj
dzi - q~ . (6b)

At this point we note that we may use a dummy variable z in place of z; in our formulation, i.e., we now use

z = qjI2 instead of zi = qjI2. From Eq. 6(b) we then obtain

qi ' it

2 Ei[alz]dz = - lnfj]t=o (7a)

where

Eila1z] _ _ dlnfi (7a,
Ejaizi dzi 7a

Since under either hypothesis we have fi(x) = g(qj), i.e., the subscript i indicates that we have a function of

qj, and since we are using z = q,/2, it is easy to show that the form of Ei[a1z] is the same under both

hypotheses. We denote this form E[crlz] and differentiate between the two hypotheses by evaluating this

form at the different points, z = qj/2, i = 0, 1. Therefore, since - lnfjl,=0 is the same under both

hypotheses, we obtain finally

ln f =(X) =| Etalz]dz - 9 2 E[Crlzjdz (8)

The structure of the likelihood ratio is therefore given by

tx) = Ak (X) = expjj2 Elalzldz _2 E[ciz]z- (9)

Equation (9) shows explicitly the relationship between optimal estimation and optimal detection for this class

of processes.

3



SANGSTON AND GERLACH

A GEOMETRIC/FUNCTIONAL INTERPRETATION OF THE
OPTIMAL DETECTION STRUCTURE

In this section, we interpret the optimal detection structure as the area under a curve in a certain
coordinate system. This interpretation then leads to the conclusion that the optimal detection structure is
equivalent to a comparison of the matched filter with a variable threshold, which is a function of qo, the
quadratic form in x, and the detection threshold T that yields the desired probability of false alarm.

From Eq. (8), we may write the optimal detection structure as

(10)

I0 /2 >Sq/2 Etazldz < T.
Ho

INiv te hat ain&I r isa in r,1 5$aLIai paloitive uL4.iuUL iiutIA , UIh LULim Vt 1fiILrLIat1in1 arle aiways psitLIVC.

Let us assume temporarily that q0 > q1 and T > 0. Also, since a is a nonnegative random vari-
able, the integrand E[a I z], which is a function of z, is also nonnegative for positive z. Thus, the
structure in Eq. (10) compares the area under a curve in the Ela I z] - z coordinate system to a
threshold T. Figure 1 shows this comparison.

Il

AREA COMPARED TO T

N

LEE

q /2 q /2
1 0

Fig. I - Geometric interpretation of optimal detector

Now, since Efoeaz] is nonnegative for positive z and the limits qp/2 and qoI2 are always positive, this
area is c T if and only if q1/2 > qo!2 - K, i.e., q112 is closer than K units to qo/2 . Note, however, that
unless E[a | z] is a constant for positive z the number of units K is actually a function of the location of q0/2 on
the z axis. Thus, the comparison indicated in Eq. (10) is equivalent to the comparison

Hi
qo q I > f(q T, n
2- _2 '<

Ho

(I 1)

where fjqo, 1) is a variable threshoid that is a function of both q0 and 1. Arter substitution for the
quadratic forms, Eq. (11) becomes

4
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H1

Re(s'4rx) > Mlo, T) + I S(12)

Ho

which is a matched filter compared to a variable threshold. Theoretically this function ftqo, T) may be
obtalinI UY byIU~lr Bnin . le urmcLIonptkLI that sat'isfies

q, /2
3o/2,o Eflzjdz = T. (13)

At this point, however, we abandon the geometric interpretation of this detection structure and simply
examine the structure given by Eq. (10) from a functional point of view. Define a function F(q) as

F(q) = 2 Elczlzldz. (14)

Since, as we have previously observed, E[krx] is nonnegative for positive z and q is positive, the function

F(q) that we have defined is a monotonically increasing function of q. In this new notation, we rewrite the
log-likelihood test given in Eq. (10) as

Hi

F(qo) - F(4 ) T, (15a)

Ho
or equivalently,

H1

F(qo)- T > F(ql). (15b)

Ho

Nov, since F(q) is monotonically increasing, we obtain

H1

F-'(F8qo - 7) > qj. (16)

Ho

Finally, since

q- = x' 1 lx- 2 Re(d4clx) + s1 tr4 s (17)

= q0 - 2 Re(ts'x) + s'$'s,
we obtain after substitution in Eq. (16)

H1

Re(s'@l'x) > q2 F-± (F(qo - 7) + 2 Ab's. (18)

Ho

5



SANGSTON AND GERLACH

Comparison of this result with the result in Eq. (12) reveals that

ft°' 7) = q2 _ -2 (1;'B)- )t9)

This equation may or may not be solvable for a specific problem. However, the main advantage to this
interpretation is the insight it gives into the operation of the optimal detector. Note that in this functional
interpretation, we made no assumptions about either the ordering of qo and qi or the sign of T.

Observe that if, in Eq. (10), T = 0, which corresponds to a unity threshold for the likelihood ratio, then

the log-flikelihood ratio reduces to

Hi

qo< 41> q(20)
Ho

which in turn is equivalent to the matched filter and is independent of the prior pdffj(a) . This result, which

follows trivially from Eq. (10), was first given by Yao [31.

To further examine the consequences of the estimator-correlator structure, we now assume that
T > 0, which is not overly restrictive in many situations. Immediately we may observe that Ho is
always chosen when qo < q1. Let the functions g(q) and hffy) be defined as

g(q) = 1 c exp fa)dcx (21)

h(y) = -Iny. (22)

With these definitions, we may write

F(q) = h(g(q)) + C, (23)

where F(q) is the function defined in Eq. (14) and C is the constant h(g(0))

Straightforward aDDlication of the chain rule from calculus shows

F2 2_g(q) d2g
d 2 F(q) _dq (24)

dq2 g2(q)

Furthermore, since g(q) is positive, we may show that this second derivative is 50 by showing that
the numerator is o0. The numerator may be shown to be •0 by using the definition of the function

tnh) civen he Fn (71) nerfhrrning the indicated differentiations, and annIving the Schwartz ineoual-
ity. Thus we have the condition

d F(q) • 0. (25)
dq2

6
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At this point we assume qo c p, and we let flq) = dF(q)/dq. From the result indicated in Eq. (25), it
follows thatflq) is a monotonically decreasing function of q and that

Ad
(qo - qI)flq) s ftq)dq. (26)

Hence, if (qo - qilgqo) > T, the optimal test always chooses HI . On the other hand, from Eq. (25) it also
follows that

(qo - qdftqi) Ž ]q)dq. (Z7)

Hence, if (qo - q,)fq 1) < T, the optimal test always chooses H0 . From these considerations we are led to
the following observation. Whenever the detection threshold is such that T > 0, then the optimal detection
procedure may be implemented in a sequential manner as follows:

1. If qo < q1, choose Ho.

2. If Eo[a xl(qo - q1) Ž T,choose HI.

3. If EI [axI(qo - q1 ) C T, choose H0 .

4. Otherwise, evaluate the log-likelihood ratio and decide accordingly.

From an implementation viewpoint, these considerations may reduct the computational load in making
a decision, since the full log-likelihood ratio is not necessarily evaluated each time a decision is reached.

SUBOPTLMAL DETECTION STRUCTURES

A well-known consequence of the estimator-correlator structure is its implication for suboptimal
detection. If the optimal estimator Ejt Iz] is unavailable or difficult to work with, a suboptimal detector can
be formulated through the substitution of a suboptimal estimator in Eq. (9). For example, one could use a
parametric representation of a prior density with a sufficient number of parameters to allow a large number
of densities to be fit by this representation. The problem is then reduced to a problem in estimating the
parameters of this prior density function, a task that could be implemented adaptively.

An alternate approach to suboptimal detection would be to use a maximum likelihood estimator (MLE)
in place of the CME in the estimator-correlator structure. From the standard approach to finding MLEs
[37), the MLE for cm may be shown to be

m]t MLE = jqi i -0.1. (28)

Use of this estimator, instead of the CME, in Eq. (9) leads to

AMLE(X) = L(x 'sx - j (29)

7



SANGSTON AND GERLACH

If we expand the quadratic form in the denominator and divide both the numerator and the denominator by
the numerator, we obtain

m

AME2 Re(=x) - st s (30)

For purposes of detection, use of this structure is equivalent to use of the following structure:

2 Re(sv4?lx) - (31)
X14- lx

Except that our result is for complex processes, our result is the same result obtained in Ref. 7 by an
asymptotic argument. Therefore, the detector that is shown in Ref. 7 to be asymptotically optimal is shown
here to be given by a suboptimal implementation of the estimator-correlator with an MLE substituted for
the CME. This result is intuitively satisfying since in our problem we expect the MLE to be an estimator that
is asymptotically equivalent to the CME.

A problem that is closely related to ours is the detection of signals of unknown amplitude and phase in
Gaussian noise of unknown (hut nonrandom) variance. Korado [141 examined this problem and presented
the following structure as optimal for this problem:fi- H JS - (V XI ~~~~~~~~~(32)

If we take Eq. (29) as a starting point, it is easy to show that the MLE off3 (the unknown signal amplitude and

phase) is given by

0 MLE x(33)

Substitution of this result into Eq. (29) leads to

| | + XX (34)

_ s s5 xrsX 
For purposes of detection, this structure is equivalent to Korado's result,

Finally a rather simplistic estimator is to estimate at by a constant so. Use of this estimator in the
estimator-correlator leads to the following test:

A0(x) expit -[x'x-(X s)'4'(x S)] , (35)

which easily is seen to lead to the classical matched filter. Clearly if the pdf of a is b(a - ao) (i.e., the
variance is a known constant), then the estimator is correct and we obtain the expected result.

8
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At this point we briefly examine the structure of another suboptimal detector, namely the locally
optimal detector [15]. This detector is given in general by

A&~x) = ± tAcx)l (36)
dy J 7=01

where -y is the signal amplitude. By straightforward calculation, one may show that for our problem

this structure is given by

Ak(x) = Eo[calx] Re (eins ¼V'X), (37)

i.e., the locally optimum test is equal to the normalized matched filter multiplied by the CME of a.

Examination of the suboptimal tests given above shows them all to be essentially matched filters that are
IIIUIIILL U ~U11CWd~LU dLUUIL UI ui UIZIUIUWVLI Ut ~LaLJaI-LG.I IlaviJ ui aI .11113 UU3%ML VC&L1t)Al ~JUjF1%AS U

our result that the optimal detector is the normalized matched filter compared to an adaptive threshold (i.e.,
Eq. (18)) leads us to conjecture that good suboptimal tests may be obtained by implementing the form

HI

Re~st+Vlx) < ,J°(4), (38)

Ho

wheref5 0 (qo) is a good suboptimal function of qo. However, we do not explore this issue any further here.

The results obtained in this study also emphasize a point about the detection structures for these types of
processes (SIRPs). Even though sample vectors from these processes may be thought of as samples from a
Gaussian process with an unknown and varying variance [9], the detection processing should involve
estimation of the quantity a, not of the quantity r (i.e., the estimate should not be of the variance directly).
Since the Gaussian distribution is generally parameterized by its variance, the intuitive notion is to estimate

the v lknown variance; the results here show that this intuitive notion does not lead to an optimal detection

structure. In effect, the parameter a is a more natural parameter than the variance (a conclusion that follows

immediately if we consider the Gaussian distribution in the context of the exponential family with the
so-called natural parameterization)..

ALTERNATE FORMULATION OF LIKELIHOOD RATIO AND OPTIMAL ESTIMATOR

At this point we also present an alternate formulation of the likelihood ratio. From this formulation, we
may see immediately a formulation of E[alz] that does not require explicit knowledge of the prior pdf fra).

Often, a prior pdf, being a pdf of a parameter rather than a pdf of directly observable data, is difficult to
obtain. Fortunately, in the class of SIRPs, an alternate pdf, namely the marginal amplitude pdf of the
complex process. may be used to solve the problem without knowledge of the prior pdf. In effect, the

marginal amplitude pdf provides information that is equivalent to that of the prior pdf for this class of
processes. This equivalence is fortunate, since in practice the marginal amplitude pdf, being a pdf of directly
observable data, is usually easier to obtain than the prior pdf.

9



SANGSTON AND GERLACH

Since we are examining a complex SIRP, we have also under hypothesis Ho the following relationship:

h(lxjI) = a1jx exp f-tŽ21 f,(a)da, j = 1 ... m (39)

where
| xi | is the amplitude of the jth component of x

h(I 1xj) =pdfof Ixjl,j = ... m.

The interpretation of Eq. (39) is that since x (under HO) represents a vector from a complex zero-
mean Gaussian random process with random variance, the marginal pdf of the amplitude of each of
the components of this vector is identical and Rayleigh with the same randomization of the Rayleigh
parameter T (= 1/a).

From Eq. (39) we may let p - and rearrange terms to obtain
2

g(p) = h (N2 -= exp I-Paaf4a)da. (40)

Differentiating with respect to p, we obtain in a straightforward fashion

(- lel 4 12-. g(p) - ; tmfa() exp [-Paida. (41)

Comparing this result with Eq. (3), we obtain finally

ffx W r-' j~m-ldt [h (iT) 1 qi
(2 ir)f' dpt-- L 2pT P=Y2 (42)

Thus we see that knowledge of h(Ixjj) is sufficient to represent the likelihood ratio. Often, knowledge of
h(Ixjj) and $ is what an investigator may reasonably assume; for instance see Ref. 9.

To show how this result relates to the estimator-correlator structure, we examine the CME for a:

Ej[ctzx1 = (2rI¶l¢x) o (f+I exp {J j p(a)dc. (43)

Note that Eq. (43) is essentially Eq. 3 in which we have substituted m + I for m. Therefore, following the

same derivation that leads to Eq. (42) yields

Eijalx] = (-- 1 / ,, dm I FŽc11 (44)
f'Ql]T d(x)(2xY¶$I~b ~4 V P=i2

10
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Substitution of the result in Eq. (42) into Eq. (44) yields

Eixt Ix] - I 7 F r 1 (45a)

Lm- K41Jp~q

for the optimal estimate of a or

_d h[ i) 1 (45b)

Ea |jp]= X-1 )

dpm 1 /

for the form of the optimal estimator that we use in the estimator-correlator. Note that the estimate EjIa Ix) is
obtained from the estimator E[aIp] by evaluating the estimator at the data point p = q /2.

A simple check shows that the substitution of this representation of Ela p] (i.e., Eta Iz]) into Eq. (9)
leads to a consistent result. As we stated above, this result is important because in practice knowledge of
h(|xjj) is generally available whereas knowledge offg(a) is generally not available. However, one question
that remains open is what are necessary and sufficient conditions on h( xjj) such that it has the representation
given in Eq. (39). Such knowledge is required because not all pdfs h(4xj1) have such a representation. Thus

to use these results presently, the investigator must verify in some way that the h(Ixjl) of interest is
compatible with such a representation.

CONCLUSIONS

In this report we reexamine the problem of signal detection in the class of spherically invariant random
processes and show that this problem falls within the framework of the estimator-correlator structure. This
structure reveals the optimal detector to be a function of the optimal estimator of a random quantity
associated with the spherically invariant random process. We show how this structure leads to the
interpretation that the optimal detector is an adaptive matched filter. We then demonstrate how some
nrPvuuiluv nhtnin-A riCli1tc nrir Pvseilv clprivep iic c ihnntimld imnl&'ment!hsnn nf th, Pctimntr-r-onrrplatnr

Finally, we also show how the required optimal estimator may be obtained without explicit knowledge of a
prior pdf provided a different pdf, namely the marginal amplitude pdf of the complex process, which is
generally easier to obtain than the prior pdf, is known.

The suboptimal detectors examined here may be classified in two ways. In one approach, the optimal
detector structure is retained from the estimator-correlator, but a suboptimal estimator is used in place of
the optimal estimator. In the other approach, the optimal estimator is retained from the estimator-
correlator- but the function of this estimator that forms the detector is different from that of the ontimal
structure. Interestingly, each of these suboptimal approaches results in a detector structure that is in essence

11



SANGSTON AND GERLACH

a variation on the classical matched filter. Since this class of random processes is a generalization of the

Gaussian random process, this result is intuitively reasonable.

Finally, since this class of processes is of interest as a model for some types of practical noise processes,

the results presented here should lead to optimal and suboptimal detection schemes for practical problems.

ALfTJ t VTx1 L41hflxiVIf10
fill, V%14% " ULJr\J-j1V1j14 I a
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