
Naval Research Laboratory
Washington, DC 20375-5000

NRL Report 9084

Allocation of Database Files Across Parallel Stores for
Efficient Processing of Partial-Match Queries

THOR A. BESTUL AND SUSHIL JAJODIA

Computer Science and Systems Branch
Information Technology Division

October 27, 1987

Approved for public release; distribution unlimited.

UNCLASSIFIED
SFCU IRITV ri ASSIFICATION OF THIS PAG

REPORT DOCUMENTATION PAGE OMFB No 0704-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE . Approved for public release; distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

NRL Report 9084

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
. (If applicable)

Naval Research Laboratory Code 5590

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Washington, DC 20375-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
Office of Naval Research

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22217 ELEMENT NO. NO. NO. ACCESSION NO.

63223G DN155-097
11. TITLE (Include Security Classification)

Allocation of Database Files Across Parallel Stores
for Efficient Processing of Partial-Match Queries

12. PERSONAL AUTHOR(S)
Bestul, Thor and Jajodia, Sushil

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year,Month, Day) 15. PAGE COUNT
Formal FROM 1/87 TO 5/87 1987 October 27 13

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report presents the results of research on the allocation of binary cartesian product database files
across several stores (such as disks) which are accessible in parallel so that the average time required to per-
form the retrieval (by using several parallel accesses) of all buckets specified by a partial-match query is
made small. The research reveals connections of theoretical interest between this allocation objective and the
objective of constructing efficient packings of Hamming spheres in hypercubes. The viewpoint of binary
Cartesian product file allocation thus produced allowed in our research the creation of allocations for two par-
ticular sizes of the set of stores such that the average processing time for partial-match queries was smaller
than that of the best allocation technique found in the literature for these same two cases. It also provides a
framework in which good allocations for other particular sizes of the set of stores, and possibly for general
sets of stores, might be found.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION
gtUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS I UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Thor Bestul (202) 767-3770 Code 5594

DD Form 1473, JUN 86 Previous editions are obsolete.

i

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

CONTENTS

INTRODUCTION .. 1

BINARY CARTESIAN PRODUCT FILES 1

PARTIAL-MATCH QUERIES ... 1

PACKINGS OF HAMMING SPHERES .. 2

PROBLEM STATEMENT AND SCOPE OF REPORT 2

RESULT 1: SPHERE-PACKING PARTITIONS 4

RESULT 2: SPHERE-PACKINGS AND SUBGROUPS 5

RESULT 3: SPECIAL CASES ... 5

RESULT 4: PARITY AND BCPF ALLOCATION 6

COMMENTS 6

APPLICATIONS: TWO EFFICIENT BCPF ALLOCATIONS 7

SUMMARY AND CONCLUSIONS .. 9

REFERENCES .. 9

iii

ALLOCATION OF DATABASE FILES ACROSS PARALLEL STORES FOR
EFFICIENT PROCESSING OF PARTIAL-MATCH QUERIES

INTRODUCTION

Database systems implemented on computers with multiple stores accessible in parallel can bene-
fit from techniques for efficient allocation of binary cartesian product files. In particular, the time
necessary to retrieve the set of all buckets satisfying a partial-match query, when averaged over all
such queries, can be minimized by the judicious distribution of the buckets across the stores. When
retrieval occurs by reading in parallel a bucket from each of the stores and repeating this parallel read
until all of the buckets have been read, the limiting factor on retrieval time is the maximum over all
the stores of the number of buckets per store. If the buckets are distributed so that buckets likely to
be requested by the same partial-match query are evenly distributed among the parallel stores, then
this maximum number of retrieved buckets per store is minimized.

This report presents the results of research into the allocation of binary cartesian product files
across several parallel stores. The research produced four results that reveal an interesting connection
between the efficient allocation of binary cartesian product files using k-bit keys and the efficient
packing of Hamming spheres in k-dimensional hypercubes. The work also resulted in the creation of
binary cartesian product file (BCPF) allocations for the cases of four and eight stores that empirically
outperform the best such allocations found in the literature.

BINARY CARTESIAN PRODUCT FILES

A binary cartesian product file is a collection of "buckets" of data elements; each bucket is
referenced by some k-bit binary key. Since the keys are k bits long, the set of keys can be regarded
as a subset of the cartesian product of k binary attributes, hence the name binary Cartesian product
file. This is standard terminology from the literature [1-3]. More general problems of this same type
involve the allocation of buckets referenced by keys that are regarded as elements of the Cartesian
product of several attribute domains, each of which may contain several elements.

PARTIAL-MATCH QUERIES

A k-bit partial-match query is a specification of a subset of the collection of all possible k-bit
keys. Specifically, it is a specification that indicates the required values of certain bits, while leaving
others undetermined [4-6]. A key is considered to satisfy a partial-match query if the bit values of
the key match the bit values of the query in those positions where they are specified; the values of the
other bits in the key are not important. We write a partial-match query as a k-bit string of zeros,
ones, and asterisks, with the asterisks indicating those bits whose values are undetermined. For
example, a partial-match query might be given by 10*11**; this query would be satisfied by the key
values 1011100 and 1001101 but not by 1101101.

Manuscript approved June 6, 1987.

1

BESTUL AND JAJODIA

PACKINGS OF HAMMING SPHERES

Each of the 2k possible k-bit keys can be thought of as corresponding to one of the vertices of a
k-dimensional unit hypercube. Each bit in the key gives the coordinate along one of the k axes of the
vertex corresponding to the key. Thus the key consisting of k Os gives the coordinate vector of a ver-
tex at the origin, and the key consisting of k is corresponds to the vertex furthest from the origin.

We define the Hamming distance [7] between any two vertices of the k-dimensional unit hyper-
cube as the minimum number of hypercube edges in a path connecting the two vertices. This distance
turns out to be equal to the number of is in the bit-wise exclusive-or of the coordinate vectors of the
two vertices. Thus in a 6-dimensional unit hypercube, the Hamming distance between the vertices
with coordinates 100101 and 110010 is 4. We can define about any vertex in the k-dimensional
hypercube a Hamming sphere [8] of radius r by using the Hamming distance as metric. That is, a
Hamming sphere of radius r about a vertex p in the hypercube is the set of all vertices that are within
a Hamming distance r of the vertex p.

A packing of a set of Hamming spheres in the unit hypercube with packing radius r is a collec-
tion of pairwise disjoint Hamming spheres of radius r in the hypercube. We commonly refer to the
set of centers of the pairwise disjoint sphere of radius r as the packing, as long as no confusion
arises.

PROBLEM STATEMENT AND SCOPE OF REPORT

This work assumes that the buckets of the binary Cartesian product file being allocated do not
vary significantly in size from one another and that each bucket is larger than the minimum size block
of data that is retrievable in one access from a store. This work furthermore deals only with BCPF
allocations in which the number of stores is a power of two. The reason for this stems from theoreti-
cal considerations. Specifically, that our constructions of BCPF allocations are based on cosets of
subgroups of the natural group representing all k-bit binary keys. Since the order of any such sub-
group must divide that of the natural group and since the latter is a power of two, we see that the
number of cosets of any such subgroup will also be a power of two. In other words, our particular
theoretical approach restricts the numbers of stores about which we can assert results.

Given some k, n, and the set of all k-bit binary keys distributed among 2' stores, we define the
access time for a given partial-match query relative to this distribution as the maximum over all the
stores of the number of keys in a store that match the query.

For this report, we define an order I BCPF allocation as one in which the set of 2m keys that
match an arbitrary partial-match query with m undefined bits will contain at most 2 m -n +1 elements in
each store. For example, Table 1 shows an order 0 BCPF allocation of all 2-bit keys among 21 = 2
stores:

Table 1 - An Order 0
BCPF Allocation

AO Al

00 01
11 10

Note that any partial-match query leaving one bit undefined, such as 0*, matches only 21-1+0 = 1
key in each store. The access time for any partial-match query leaving one bit undefined using this

2

NRL REPORT 9084 C:

allocation would be 1. Observe that the same is not true of the allocation in Table 2 for the same set r

of keys over the same number of stores:

Table 2- An Order 1
BCPF Allocation

AO AI

00 11

01 10

In particular, we see that the partial-match query 1* matches two keys in store Al and none in store
A 0. While reading in parallel one bucket from each store, we see that two reads are required to
retrieve both of the buckets whose keys match 1*. The first read retrieves those buckets with keys 00
and 11, and discards the bucket with key 00. The second read retrieves those buckets with keys 01
and 10, retaining only that bucket with key 10. Naturally, both buckets 11 and 10 cannot be
retrieved simultaneously because access from any single store is taken to be serial, given that we
assume the buckets to be larger than the store's block size. The second allocation given above is con-
sidered an order 1 allocation because any partial-match query leaving m bits undefined will match at
most 2 m -n +1 = 2 m -1+1 = 2 m keys in any given store.

Table 3 shows an order 1 binary cartesian product file allocation of the 4-bit numbers among 22
- 4 stores:

Table 3 - A Larger Order 1
BCPF Allocation

Note here, for example, that any partial-match query leaving two bits undefined, such as 0**1, will
match at most 22-2+1 = 2 keys in any store. It is not hard to show that no order 0 BCPF allocation
can exist for the set of 4-bit binary keys over 4 stores, although this proof is not given here. How-
ever, among the order 1 allocations that do exist, some have lower average access times than others.
This average is computed over all possible partial-match queries, under the assumption that all such
queries are equally likely to occur.

An order 0 binary cartesian product file allocation is defined to be strictly optimal [1], in the
sense that in any distribution of 2m keys over 2' stores, some store will contain at least 2m -n keys
and we see that an order 0 binary Cartesian product file allocation allows retrieving the corresponding
2m buckets in 2m -n sets of parallel accesses, the minimum possible.

In this report, we first present a proof that the problem of finding an order I BCPF allocation as
defined above is equivalent to that of finding a collection of 2' packings of Hamming spheres in the
k-dimensional unit hypercube where the spheres involved are of radius (n - I + 1)/2, and given
that a sphere-packing is defined by the set of centers of spheres, the 2" sphere-packings form a parti-
tion of the vertices of the hypercube.

3

AO A 1 A2 A3 I

0000 0001 0010 0011
1100 1101 1110 1111
1010 1011 1000 1001
0110 0111 0100 0101

BESTUL AND JAJODIA

Second, we present a proof of how a BCPF allocation can actually be found from a single
sphere-packing which is also a subgroup of the natural additive group defined on the vertices of the
unit hypercube, by showing how a mutually exclusive, collectively exhaustive set of packings can be
created from a single packing which is such a subgroup.

For the special cases of two and four stores, we present a proof that the problem of finding an
order 0 BCPF allocation is in fact equivalent to that of finding any single sphere-packing of 2k -1 and
2k-2 spheres of radius 1 and 3/2, respectively, in the k-dimensional unit hypercube.

Having established the previous results, we present a short demonstration of the strict optimality
of a simple BCPF allocation technique for the case of two stores.

Finally, we present the two new BCPF allocations for the cases of four and eight stores and the
results of our experiments comparing the average access times of the new allocations to those found
in the literature for the same cases.

RESULT 1: SPHERE-PACKING PARTITIONS

Given an order 1 BCPF allocation of the set of all k-bit keys among 2" stores, we show that
each store represents a packing of spheres of radius (n - 1 + 1)/2 in the k-dimensional hypercube.
Because we have an order I BCPF allocation, any partial-match query with m = n - 1 bits unde-
fined can match no more than 2 m -n + 1 - 20 = 1 key in any single store.

Given some store A, let us define each key p in A to be the coordinate of the center of a sphere
of radius (n - I + 1)/2 in the hypercube (that is, the k bits of the key give the k binary coordinates
of the point in the unit hypercube). Now suppose some two of these spheres intersect, and let the
centers of these two spheres be the points p and q. Then it must be the case that
p - q I < n - 1 + 1, where Ip - q I gives the Hamming distance from p to q. So
p - q | c n - 1, which means that the keys p and q are within n - I bit changes of each other.

But then there is some partial-match query with n - I bits undefined such that both p and q match
the query. This contradicts our observation above that at most one key from any single store can
match such a query. Therefore no two spheres can intersect, and we must have a sphere-packing. So
each store gives a sphere-packing and since the stores form a partition of the 2k keys, the correspond-
ing sphere-packings form a partition of the vertices of the hypercube.

Given a set of 2n sphere-packings involving spheres of radius (n - I + 1)/2 that form a parti-
tion of the vertices of the k-dimensional hypercube, we show that each sphere-packing corresponds to
a store in such a fashion that the set of stores thus defined creates an order I BCPF allocation.

Let the coordinates of the vertices at the centers of the sphere in each packing give the keys in
some store. Let p and q be distinct keys in the same store. Since these two keys correspond to the
vertices at the centers of two distinct spheres in a packing of spheres of radius (n - I + 1)/2, we
know that the Hamming distance between these two vertices must be greater than or equal to
n - I + 1. Now suppose that p and q both match some partial-match query having n - I bits
undefined. Then the keys differ in at most n - 1 bits, which means that the Hamming distance
between the corresponding vertices is less than or equal to n - 1, which is a contradiction. So we
see that any partial-match query in which n - I bits are undefined can match at most 1 key from any
given store. We show by induction on i that a partial-match query in which n - I + i bits are
undefined can match at most 2' keys in any given store. Suppose this holds for io, and let
i = io + 1. The set of all keys that match a given partial-match query with n - I + i bits unde-
fined can be divided into two disjoint subsets: those matching the query with its first undefined bit

4

NRL REPORT 9084

set to 0, and those matching the query with its first undefined bit set to 1. Each of these modified
queries is one which has n - I + i - 1 = n - I + io bits undefined, however, and so each of the
corresponding subsets contains at most 2 ° keys. Thus the set itself contains at most 2 * 2 0 = 2
keys.

Thus each sphere-packing, when regarded as a store, has the property that any partial-match
query with m = n - 1 + i bits undefined matches at most 2' = 2 m -n +1 keys in each store. This,
together with the fact that the sphere-packings form a partition of the hypercube vertices, shows us
that the corresponding stores together yield an order I BCPF allocation.

RESULT 2: SPHERE-PACKINGS AND SUBGROUPS

The second result involves the natural group of the k-bit binary coordinates of the vertices of the
unit hypercube under the operation of bit-wise modulo 2 addition. Let us denote this group by
< H, * >, where H is the set of vertices of the cube, and 0 denotes the bit-wise modular addition.
Suppose that <A,0> is a subgroup of <HO > with I A | = 2 k -, such that elements of A
define a single packing of spheres (of some radius) within the hypercube. Now, let a be any sym-
metry operation on the hypercube. It is clear that if A defines a sphere-packing in H, then a(A) does
also, because symmetries are distance-preserving permutations.

Now, let h be any element in H, and consider the mapping ah (p) = p o*h. We show that ah

is a symmetry of the hypercube. Let p and q be any two elements of A, and let I p - q I = d,
where I p - q I again gives the Hamming distance between p and q. Then the number of Is in
p * q is d. Now let us compute I h(p) - ah(q)I = I p h -q *h . This will be the
number of Is in (p O h) 0 (q O h). But this latter expression can be rewritten as (p * q) 0 (h * h),
which simplifies to p * q. The number of is in p * q is d, so I ah(p)-ah(q) I is also d. So ah

is a symmetry, and thus we see that uh (A) defines a sphere-packing for any h in H.

Notice also, that since <A, @> is a subgroup of the abelian group <H,.>, it is a normal
subgroup thereof. Thus ah (A) for any h in H, being A Oh, is a coset of A. But the cosets of A
form a partition of the hypercube. So we see that the cosets of the normal subgroup A define a col-
lection of sphere-packings that form a partition of the hypercube. Also, since each coset contains
2k-n elements, we see that there are 2" of them.

Thus we can conclude that any single packing of 2k-n spheres in the k-dimensional unit hyper-
cube which is also a subgroup of the natural group on the hypercube gives rise to a partition consist-
ing of 2" packings, and hence to a BCPF allocation, as from Result 1 above.

RESULT 3: SPECIAL dASES

For the special case of 2 stores, we show that the problem of finding an order 0 BCPF alloca-
tion is equivalent to that of finding any single sphere-packing of 2k-1 unit Hamming spheres in a k-
dimensional hypercube. To do this, it is sufficient to show that given an arbitrary packing of 2 k-1

unit spheres in a k-dimensional hypercube, we can find a pair of packings of unit spheres that form a
partition of the hypercube, as well as the converse.

We prove the converse first. Let A and B be an appropriate pair of packings. Assume without
loss of generality that I A I >I B I . Then I A I > 2 k-1. Thus we can delete spheres from A so
that only 2k-1 are left, and the resulting set will be a packing containing the required number of unit
spheres.

5

BESTUL AND JAJODIA

Now suppose that we have a single packing A, consisting of 2 k-1 unit spheres. Consider the
k-dimensional hypercube H as being a pair of (k - 1)-dimensional hypercubes H1 and H2 , with
corresponding vertices joined by unit edges to form H. Consider the symmetry operation a given by
"flipping" H through a plane separating H1 and H2 . We apply a to A to produce the sphere-packing
A'. We now show that A and A' form a partition of H. Let p be a point in A, and suppose that p
is also in A'. Since p is in A, a(p) is in A'. Thus we have the distinct points p and a(p) both in
the sphere-packing A'. This means that these two points, which are distance 1 apart, are the centers
of nonintersecting spheres of unit radius, which is a contradiction. Thus no point in A is also in A'.
Thus A and A' are disjoint, and since each contains 2 k-1 points, they must together form a partition
of the 2k points of the k-dimensional hypercube.

The argument for the case of four stores is similar, involving splitting the hypercube into four
pieces arranged in a square, and taking advantage of the square's rotational symmetry of order 4.

RESULT 4: PARITY AND BCPF ALLOCATION

In this section we show how we can use the parities of keys as the basis of an order 0 BCPF
allocation in the case of two stores.

By using result 3, we need only find a single packing of 2 k- 1 Hamming spheres of radius 1 in
the hypercube to find an order 0 BCPF allocation. It turns out that such a packing can always be
found in a k-dimensional unit hypercube. One need only take as centers all those vertices whose
binary coordinates have even parity, that is, that contain an even number of bits. There are 2 k-1 of
these, and clearly no two are within distance 1 of each other, because two distinct vertices within dis-
tance 1 would have coordinates with different parities, one even and one odd.

Thus we see here that one store should contain all the numbers with even parity, and the other
all numbers with odd parity. This result is seen to be a special case of two different BCPF allocation
methods which have appeared in the literature [1,2].

COMMENTS

We note that results from research in Communications Theory concerning the construction of
error-correcting codes (and hence concerning the packing of Hamming spheres in hypercubes) [7-9]
can in principle be used to produce BCPF allocations. For example, consider the (7,4) Hamming
code [8]. This represents a packing of 16 Hamming spheres of radius 3/2 in the 7-dimensional hyper-
cube and is also a subgroup of the natural group of the hypercube. This means that the (7,4) Ham-
ming code could be used to define an allocation of the set of 7-bit numbers among 27-4 = 8 stores
such that any partial-match query with m bits undefined will match at most 2m -2 numbers in any
store, and thus the retrieval for such a query could be using no more than 2m`2 sets of parallel
accesses.

However, in practice, allocation methods found by other methods seem to result in better aver-
age access times than those found by transferring Communications Theory results. This is because in
the context of Communications Theory, sphere-packings are sought in which the minimum intercenter
distance is as large as possible, while a sphere-packing for use in the construction of a binary carte-
sian product file allocation needs to go further, and in fact minimize the number of intercenter dis-

tances that are at the minimum value.

Nevertheless, the hypercube view of BCPF allocation seems to be useful. Heuristics for creat-
ing subgroups of the hypercube vertices whose elements. are widely scattered have, by using result 2

6

NRL REPORT 9084

above, produced BCPF allocation formulas for special cases that have empirically lower average
access times than the best we have found in the literature. These formulas are discussed below.

APPLICATIONS: TWO EFFICIENT BCPF ALLOCATIONS

This section gives two new BCPF allocations formulas, one for four stores, and one for eight
stores. For their particular cases, both appear to have average access times that are lower than the
best technique we have found in the literature [2]. Both of these formulas involve performing a
heuristic "scrambling" of the vertices of the k-dimensional hypercube by using transformations such
as flips and Gray codes and dividing the resulting cube into a set of equally sized subcubes, one for
each store. For 2" stores, this division is accomplished by projecting the vertices of the k-dimensional
cube into those of an n-dimensional cube; all vertices with the same image under the projection are
defined to be in the same store. The scrambling operations are such that all key values that ultimately
project onto the zero vertex, i.e., those keys which form the kernel of the combined scrambling and
projecting operations, form a subgroup of the hypercube vertices; thus the kernel and all of its cosets
define a BCPF allocation according to result 2 above.

To visualize the allocation mapping for the case of four stores, imagine that every vertex of the
hypercube is labeled with a value and that this value is initially equal to the hypercube address of the
vertex. Choose two axes in the hypercube (since 22 = 4 stores); these will be the axes of the "col-
lapsed" hypercube after the projection operation is performed. Also select a third axis orthogonal to
both of these for use in a flipping operation. Consider a plane parallel to this third axis and bisecting
the cube. The labels of half of the vertices in the hypercube-those vertices with coordinate 1 along
the third axis are "flipped," i.e., exchanged with those of the vertices at the plane-symmetric posi-
tions across the bisecting plane. Now the (binary reflected) Gray code values of the all the labels in
the hypercube are computed, and each label is replaced with its corresponding Gray code value. At
this point the scrambling is complete; the labels of all the vertices projecting to the same location after
the hypercube is collapsed are defined to be key values in the same store.

To use this scrambling as part of a mapping from key values to store numbers, start with a key
value and compute the inverse of the scrambling operation defined above. This gives the hypercube
address of the vertex at which the label equaling the key value would be found, if the forward scram-
bling operation were performed. This hypercube address determines which subcube, i.e., which
store, the key should be assigned to. So after computing the inverse of the scrambling operation for a
key, one need only project the resulting value by selecting from it bits in the appropriate positions,
i.e., those corresponding to the first two axes selected. The concatenation of these bits gives the
store number (in binary) for the key.

The scrambling operation for eight stores is similar to the one described above and consists of a
single flip and an application of the Gray code.

The formulas for the inverse scrambling and projection operations for four and eight stores are
given below. To enable the description of the formulas, we introduce some notations. The function
igr (x) gives the inverse binary reflected Gray code value for the number x. The function
proj (x, i1, i2 ,... ,ip) (project) returns a binary number obtained by selecting and concatenating
together (in the order specified) the bits from the positions i 1l i2 , v e , ip in the number x, where posi-
tion 0 is the least significant bit. (For example, proj (101110,4,1,0) = 010.) We define
tog (x, i1, i2 ,... , iq) (toggle) which returns the binary number x but with the bits in positions i1,
i2, ... ,iP toggled. (For example, tog(101110,4,1,0) = 111101.) Finally, we define X,,,b as the most
significant bit of x.

7

BESTUL AND JAJODIA

Then, for four stores, we define all4,k(X), the number from 0 to 3 of the store in which to place
the bucket with k-bit key x, as

proj (igr(x), k /2,0)
all4,k(x) = l tog (proj (igr(x), k /2,0),0)

In these definitions, integer division is assumed.

if X. sb = 0

otherwise.

For eight stores, we define all8,k(X), the number' from 0 to 7 of the store in which to place the
bucket with k-bit key x, as

.proj(igr(x),k12,(k/2 + 1)/2,0)
all8,k(x) = tog(proj(igr(x),kI2,(kI2 + 1)/2,0),1)

if X,,mb = 0

otherwise.

Tables 4 and 5 show the average access times (assuming equal likelihood among all queries) for
various values of k for four and eight stores, both for the method of Du [2] and for the formulas
given above.

Table 4 - Comparison of Allocation
Techniques for Four Stores

Table 5 - Comparison of Allocation
Techniques for Eight Stores

8

Four Stores - Average Access Time
k Du's Method all4,k

3 1.111111 1.037037
4 1.234568 1.185185
5 1.481481 1.382716
6 1.766804 1.711934
7 2.231367 2.136260
8 2.794696 2.750800
9 3.631967 3.550678

10 4.685465 4.656201

Eight Stores - Average Access Time
k Du's Method all8,k

4 1.111111 1.012346
5 1.234568 1.135802
6 1.371742 1.283951
7 1.627801 1.558299
8 1.963115 1.799726
9 2.338668 2.292333

10 2.922861 2.828837

NRL REPORT 9084

SUMMARY AND CONCLUSIONS C

An interesting theoretical relationship exists between the allocation of binary Cartesian product
files, using k-bit keys, across multiple stores accessible in parallel for the efficient processing of
partial-match queries, and the efficient packing of Hamming spheres in k-dimensional hypercubes. r?
This hypercube view of BCPF allocation provides a tool for the creation of good BCPF allocations, as
has been demonstrated by the construction of two such allocations during this research.

Note that the new formulas given in this report cover four and eight stores, while results from
the literature supply more general formulas. These new formulas were created through fairly infor-
mal methods involving visualizations of the hypercube, coupled with application of the results
presented in this report. Efficient allocations for other numbers of stores, or useful general allocation
techniques, might follow from this work.

REFERENCES

1. H.C. Du and J.S. Sobolewski, "Disk Allocation for Cartesian Product Files on Multiple Disk
Sytems," ACM Trans. Database Systems 7(1), 82-101 (1982).

2. H.C. Du, "Disk Allocation Methods for Binary Cartesian Product Files," BIT 26, 138-147
(1986).

3. C.C. Chang, R.C.T. Lee, and H.C. Du, "Some Properties of Cartesian Product Files," in
Proc. ACM-SIGMOD 1980, pp. 157-168.

4. A.V. Aho and J.D. Ullman, "Optimal Partial-Match Retrieval When Fields Are Independently
Specified," ACM Trans. Database Systems 4(2), 168-179 (1979).

5. W.A. Burkhard, "Hashing and Trie Algorithms for Partial-Match Retrieval," ACM Trans.
Database Systems, 1(2), 175-187 (1976).

6. R.L. Rivest, "Partial-Match Retrieval Algorithms," SIAM J. Comput. 15(1), 19-50 (1976).

7. Vera Pless, Introduction to the Theory of Error-Correcting Codes (John Wiley and Sons, Inc.,
New York, 1982).

8. T.M. Thompson, From Error-Correcting Codes Through Sphere Packings to Simple Groups
(Mathematical Association of America, Washington, DC, 1983).

9. W.W. Peterson and E.J. Weldon, Jr., Error-Correcting Codes (MIT Press, Cambridge, Mass.,
1972).

9

