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INFORMATION THEORY AND PUBLIC KEY CRYPTOSYSTEMS

INTRODUCTION

In 1949, C.E. Shannon [1] laid the foundations for a general, theoretical analysis of secrecy sys-
tems. This paper establishes (as far as the author knows) the first published formalization of the
intuitive notion of a secrecy system, hereinafter called a cryptosystem. At the same time, Shannon
introduces the concept of an information theoretic analysis of cryptosystems to evaluate the theoretical
security of such systems.

Shannon showed that the plaintext can be completely and unambiguously recovered if and only if
the redundancy of the plaintext is at least as large as the sum of the noise and the information content
of the key. In the present report, the redundancy and information content of the key have to be taken
in the quantitative sense defined in Ref. 2. Reference 2 emphasizes that this is a theoretical lower
limit. Where a cryptosystem is breakable in principle according to this condition, it could still be
practically secure. This is possible because the number of operations required to determine the key
might be excessively large, i.e., a cryptosystem might have good practical security but not necessarily
good theoretical security.

Public key cryptosystems represent an extreme case in the relationship between key size and
computational complexity for the cryptoanalyst. There is no secret key information to detect whatso-
ever, but instead there is a formidable computational problem. This paper applies these information
theoretical results to public key cryptosystems, in particular to the RSA (Rivest-Shamir-Adelman) sys-
tem. Information theory measures the amount of information concerning plaintext or key that is con-
tained in a cryptogram. This report does not consider the computational complexity. A cryptosystem
that is safe from the information theoretic analysis is safe if the amount of computational resources
available to the cryptoanalyst is assumed to be bounded.

A general treatment of the complexity theory approach to cryptology seems to be very difficult
to handle. Some relevant references and an attempt to address these problems are contained in Refs.
3 and 4. One of the main objectives of this research is to try to address this problem. More specifi-
cally, it is hoped that with further research the present treatments of information theory can be suit-
ably modified so as to form a basis for the complexity problem for public key cryptosystems. This
report shows that although the current approach of information theory does give some security bounds
for classical cryptosystems, it is not suitable for public key systems.

It is interesting to note that almost 40 years have elapsed since the publication of Ref. 1 and
there has been little additional research on the information theory approach to cryptosystems [2].
Moreover, we note that treatments from both Refs. 1 and 2 lack the precision necessary to be con-
sidered rigorous mathematical analyses. For example, let ud be the unicity distance of a given cryp-
tosystem. Then it is suggested that ud is a sort of threshold separating cryptograms that can be cryp-
toanalyzed from those that cannot. Meyer [2] points out that this is not exactly correct.

Here, we follow the notation and terminology of Ref. 2. We assume that the reader is familiar
with the results from Ref. 2.

Manuscript approved November 19, 1986.
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ANTHONY M. GAGLIONE

PUBLIC KEY CRYPTOGRAPHY

Public key cryptosystems do not require a priori distribution of keying material to the two par-
ties who wish to communicate; this is their main advantage. As an example of a public key scheme,
we consider the RSA system. Briefly, the method works as follows: Two large primes p and g are
chosen, and n = p - g is computed. Letting m = ¢(n) = (p — 1)(g — 1), a large random number
y is chosen such that gcd (y,m) = 1. This step guarantees the existence of a unique integer x, 0 <
x < m,suchthatx - y = 1 (mod m). If we let X and Y represent the plaintext and the correspond-
ing ciphertext respectively, then the enciphering process consists of computing Epg (X) = X”(mod n)
where Epg(X) = Y is such that 0 < ¥ < n—1. The encryption scheme is made public by announc-
ing n and y. Using Meyer’s terminology, let the public key PK = y and the secret key SK = x.
To decode the ciphertext ¥ = Epg(X), one computes

Dk (Y) = Y€ (mod n)

where

OSDSK(Y)Sn -1.
Thus,

Dgx(Y) = X (mod n)

= X(mod n)

by Euler’s Theorem.
INFORMATION THEORY AND PUBLIC KEY

Information theory applies a numerical measure of information to a message. This measure is
usually given in terms of bits. Following Meyer, we let X = {x, x,, *** , x,} denote the message

,

space and associate with each message a probability P(x;) = p; where Y} p; = 1. The information
i=1

associated with x;eX is —log, (p;) bits. If each message is equally likely, every x; has information

value log,r. For the set X, the average information per message is defined to be the entropy of X,

denoted by H(X) and defined by

HX) = ¥ - (@)logs ®)).
i=1

Here, H(X) can be interpreted as a measure of the uncertainty over which message the sender will
select and transmit to the receiver. If each message is equally likely, there is a maximum uncertainty
concerning which message will be transmitted, and H(X) assumes its maximum H(X) = log,r. On
the other extreme, if there is no uncertainty over which message will be transmitted, H(X) = 0.
Thus H (X) assumes values in the interval O to log,r.

If we let K denote a set of keys each having an associated probability of occurrence, we can
then define H(K) in the same manner as H(K) above. Thus in cryptoanalysis, H(X) and H(K) can
be interpreted as the analyst’s prior information regarding which message and key are selected for
encipherment.
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Next, we list some information measures used in this study. Here U, V, and W are finite sets
whose elements have been assigned probabilities such that

YP@u) = YP() = LPw) = 1.

(Here ) means the summation is over all uelU.)
u

1. Conditional entropy of U given veV:

HU|v)= - Pu|v)log, P(u|v)

2. Equivocation of U given V:

HU|V) = -Y P() HU |v)

3. Entropy of U and V:

HU,V) =—-Y P(u,v)log, P(u,v)

u,v
4. (a) Equivocation of U given V and W:
HU|V,W)y=—- Y P@u,v,w)log, P(ul|v,w)
u,v,w
(b) Equivocation of U and V given W:
HUV|W)= - ¥ P@u,v,w)log Pu,v|w)
u,v,.w
5. Entropy of U, V, W:
HUV W)= —-Y P@u,v,w)log, P(u,v,w).
/‘ u,v,w
We also need the identity
(*) HU|V,W)+HWV|W)=HYV|UW)+HU|W).

To prove (*), let us first show

*n HWU,Vy = HU |V)+ H(Y).
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By definition (3 above),

HU,V) = =Y P(u,v)log, P(u,v)

u,v

= =Y Pu|v)P(v) [log; P(u|v) + log, P(v)]

u,v

-y PMHU |v)—Y P(v)log, P(v)
= HU|V)+HWY)

by 2 above. This proves (* ').

Next we claim
*') HU,V,W)y=HU|V,W)+HWV,W).
Proceeding in a manner similar to the proof of (* '), by definition (5 above)

HU,V,W)=—-Y, Pu,v,w)log, P(u,v,w)

u,v,w

=— Y P(@,v,w)log, Pu|v,w) P(v,w))

u,v,w

==Y Pu,v,w)log, Pwyv,w)— 3, P(v,w)log, P(v,w)

u,v,w v,w

HWU|V,W)+HWV,W)
by 4(a) and 3 above. This proves (* '’).
Finally, we may now verify (*).
HU|V,.Wy+HWV |W)=HU,V,W)—HWV,W)+HWV |W)
by (* '"). But H(U,V,W) clearly equals H(V, W, U), so we get
HU|V,WYy+HWV |W)=HWV ,W,U)—HV,W)+HV |W).
By (* '') applied to H(V, W, U) we get,

HWV,w,U)=HWV|W,U)+HW,U).
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Thus

HU|V,Wy+HWV|W)=HWV |W,U)+HW,U)—HWV ,W)+HV |W).

But (* ') gives H(V, W) = HWV |W) + H(W), so

HU|V,W)y+HWV|W) = HV|W,U)+ HW,U) - HW)
= HW|W,U)+HU | W)

by (* ') again. This verifies (¥).

To apply these information measures of theoretical secrecy to the case of public key cryptosys-
tems, we need a definition of wunicity distance for the case when both plaintext and corresponding
ciphertext are available for analysis since this is the case in such systems. But Meyer [2, pp. 631-
632] has given such a definition.

Following Meyer, we rewrite equation (*) as

HK|Y,X)+H|X) =HY|K,X)+HK|X)
where Y is the cyptogram space. But since a knowledge of keK and xeX determines y = Eg(x)eY,

H(Y|K,X) =0.

Also keys and messages are selected independently, so H(K | X) = H(K). Thus (*) becomes

HK|Y,X) = HK)-H(Y |X).

So there is no uncertainty regarding the key that is used, we must have H(K | Y,X) = 0. Of course
in doing this, the usual interpretation is that we are dealing with a classical cryptosystem. But here
we will also allow public key systems; even though the public key, PK, is known, there is still uncer-
tainity about the secret key, SK. Thus the unicity distance ud of a cryptosystem in which both plain-
text and ciphertext are available is defined as the value of N (= cryptogram length) for which

HK)—-H(Y|X) =0,

provided such an N exists.
We turn now to the special case of public key cryptosystems like the RSA system. In such sys-

tems given the plaintext x € X, the cryptogram Y = Eg(x) € Y is determined thus: H(Y |X) = 0.
So the defining equation for the ud becomes (in the case of public key systems)

H(K) =0.

This is not completely incorrect because the public key, PK, is known. However, it does not
consider that the secret key, SK, is not determined, so H(K) should not be 0.
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CONCLUSIONS

The preceding discussion shows that the present state of information theory is not adequate to
handle public key cryptosystems; further research should be conducted in this area. It would be valu-
able to have a more mathematically precise treatment of this information theoretic approach to cryp-
tosystems. Neither Shannon’s nor Meyer’s formulations are sufficiently precise. A more precise
treatment itself may help to handle the case of public key cryptosystems.

More specifically, if we are going to adapt these methods to public key cryptosystems, we
should determine what assumptions about the set of keys K are appropriate and realistic. Although
theoretically the set of all possible keys for a public key system like RSA is infinite, given one’s com-
puting capability only a finite number can actually be used. Moreover, further assumptions about the
probabilities associated with these keys can be made. Clearly, if the key is too small, the system will
not have sufficient cryptographic strength. Thus such keys could be assigned low probabilities (or
probability 0). Also, the fact that the key for enciphering (PK) is known but the key for deciphering
(SK) is unknown should be taken into account. This information theoretically says that if K is in the
set of PK's and K, is in the set of SKs, then H(K;) = 0 but H(K,) # 0. (It may be that X; and K,
are the same set, but they need to be distinguished for application to public key systems.) As men-
tioned earlier, it is hoped that a definition of unicity distance can be formulated that could be suitable
for handling public key cryptosystems. Moreover, such a concept could serve as a theoretical lower
bound for describing the complexity of such systems.
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