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SOME COMPLEXITY THEORY FOR CRYPTOGRAPHY

INTRODUCTION

The cryptographic strength of public key cryptosystems usually depends on the underlying
assumption that certain known mathematical problems are difficult to solve. For example, we shall
see that the RSA system (named after its inventors: Rivest, Shamir, and Adleman [1]) is a cryptosys-
tem whose *‘breaking’’ can depend on the solution of a ‘‘hard’’ mathematical problem, i.e., the fac-
toring problem. Thus, it becomes significant for cryptography to classify in some way those
mathematical problems that are ‘‘hard.”” Complexity theory attempts to do this. This report presents
a short introduction to complexity theory. The motivation for this study is its usefulness in cryptogra-

phy.

This report also presents an adequate model, or simulator, of an algorithm or effective
procedure—the Turing machine. We also discuss a universal simulator for all such machines (the
theoretical inspiration for the stored-program computer). We find there are problems for which no
algorithmic solution can ever be found. Finally, for problems which have solution algorithms we dis-
cuss a way to measure the relative efficiency of these algorithms.

THE RSA SYSTEM

Conventional cryptologic systems have the disadvantage that, for efficient decoding, a key to the
decoding process must be separately and securely passed to the receiver. A public key cryptosystem,
on the other hand allows any participant P in a communications network to publicize his encoding
scheme to the network. Doing so, however, does not disclose the key to the decoding process. Any
member, S, of the network who wishes to send a secret communication to P may do so by encoding it
with P’s known coding scheme, and only P will be able to decode it. Secure communication of a
decoding key is not necessary. It is also desirable that the method have an authentication feature;
i.e., S can encode the message to P in such a way as to include S’s ‘‘signature.”” A signature is
some proof that this particular message came from S.

One elegant candidate for such a scheme is the RSA system. To describe the RSA algorithm,
we need some notation and some elementary number theory [2].

LetN = {1,2,3,...m, ...} be the set of natural numbers. For m € N let ¢(m) be Euler’s
¢-function of m where ¢(m) = the number of natural numbers, k, such that k < m and the greatest
common divisor of k and m is 1 (denoted here by greatest common denominator (gcd) (k,m) = 1).
For a, b, any integers with m, a positive integer greater than 1, we write the expression

a = b(mod m),

(read “‘a is congruent to b modulo m’’) to denote the fact that the integer m exactly divides a — b.
The RSA technique makes use of the following simple number theoretical result:

Euler’s Theorem: If a, m € N with gcd (a,m) = 1, then a®™ =1 mod m.

The method works as follows. Two large prime numbers p and g (about 100 digits each) are
chosen at random, and p - ¢ = n is computed. Letting m = ¢(n) = (p — 1)(g — 1), a large random

Manuscript approved September 26, 1986.



ANTHONY M. GAGLIONE

number y is chosen such that ged (y,m) = 1. This step guarantees the existence of an integer
x,0 < x < m, such that

x'y = 1(mod m).

Efficient computer algorithms exist for producing p, ¢, y, and x. The message to be encoded is
translated into a string of integers in the set {0, 1, 2, . . . , 26}; e.g., blank = 0, 4 = 1,
B =2, ...Z = 26. The resulting string is then treated as a single number 7,0 < T = n — 1, or
as a sequence of such numbers. The enciphering process, finding Ex (T), consists of computing

EK[(T) = 7Y (mod n)

where 0 < Ex (T) <= n — 1. The encryption scheme is made public by announcing » and y. Using
common terminology, the public key is

Kl = {”,y}

To decode the ciphertext C = Eg (T), one computes

Dg(T) = C* = T? (mod n),

where 0 < C* < n — 1. We note that
™ = T'*¢®) = T(mod n)

by Euler’s theorem. Since T < n, C* = T is now uniquely determined. The key to the decoding, x,
is not made public. Thus, the secret decryption key is

K2=x.

Both the enciphering and deciphering processes can be done efficiently by computer. Breaking
the algorithm, however, requires finding the prime factors p and g of n which, at present, cannot be
done efficiently. If n is a 200-digit number for example, it is estimated that finding its prime factors,
by using a high-speed computer and the best factoring algorithms currently known, could require
about 3 billion years.

Before getting involved in our discussion of complexity theory, we make the following caveat.
Although some mathematical problem may prove to be ‘‘hard,”” it is not true that the cryptosystem
which is based on this ‘‘hard’’ problem will be as hard to break. We discuss this later in this report.

FINITE-STATE MACHINES

In this section, we consider an attempt to simulate general computation. In fact, a finite-state
machine simulates computational devices such as modern digital computers. We see how adequate
this structure is as a model of computation in the most general sense by characterizing its capabilities
as a ‘‘recognizer.”” To attempt to build a mathematical model describing finite-state machines, we
first try to abstract some of the important features.

e Operations of the machine are synchronized. We only look at the machine at fixed times, or
clock pulses, 74,f,,7,, etc. We assume the machine is discrete so that the responses to an
input at 7; appear at ¢ ...

® The machine is deterministic; i.e., its actions in response to a given sequence of inputs are
completely predictable.
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® The machine responds to inputs.

® There is a finite number of states the machine can attain. At any time 7 the machine is in
exactly one of these states. Which state it will be in at #;,, is a function of both its present
state and present input. The present state, however, depends upon the previous state and
input and so forth back to the initial operation. Thus, the state of the machine at any moment
serves as a form of memory of past inputs.

® The machine is capable of ourput. The nature of the output is a function of the present state
of the machine. Thus it also depends upon past inputs.

A modern digital computer has these five features. Its operations are synchronized by clock
pulses (although very rapid); it operates in a deterministic fashion and is capable of responding to
inputs. A computer is composed of a large number of bistable ‘‘on-off”’ elements. If there are n
such elements, there are altogether 2" on-off configurations which the computer can be in. These
configurations are the states of the computer, and this number is finite (although very large). The
present state of the computer (the present memory configuration) reflects its history of past states and
inputs. Finally, the output at any moment depends upon the present state of the machine.

We are now ready for the formal definition:

Definition 1 — M =[S, 1, O, f,, fol is a finite-state machine if S is a finite set of states, I is a
finite set of input symbols (the input alphabet), O is a finite set of output symbols (the output alpha-
bet), and f, and f, are functions where, f,: S x I — § and f, : § — O. The machine is always ini-
tialized to begin in a fixed starting state, called so here.

The function f; is the next-state function. It maps a (state, input) pair to a state. Thus, the
state at clock pulse ¢, ; state (z;,,), is obtained as follows:

state (ti+1) = fs( state (ti), inPUt (ti))~
The function f, is the output function. When f, is applied to a state at time 7;, we get
output (t;) = fo( state (1;)).

Notice that the effect of applying function f,, is available instantly, but the effect of applying f; is not
available until the next clock pulse. To describe a finite-state machine, we can use either of two
alternatives: (a) The state table actually lists sets S, 7, and O and tabulates the functions f, and f,.
(b) The state graph, a directed graph, has each state of M with its corresponding output as vertices,
and the next-state function is given by directed edges of the graph with each edge showing the input
symbol(s) that produces that particular state change.

To illustrate state tables and graphs, we give some simple examples.

Example 1 — Let M be a machine with § = {sg,s,,5,},1 = O = (0,1}, and f, and f, defined
by the following state table:

Next State
Present State Present Tnput Output
0 1
So 5 S0 0
8§ D) Sy 1
§9 D) So 1
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ANTHONY M. GAGLIONE

The machine M begins in state s, which has an output of 0. If the first input symbol is a 0, the next
state of the machine, f,(s¢.0) = s;. S, has an output, f,(s,) = 1. If the next input symbol is 1, the
machine stays in state s, f;(s;,1) = s;, with output 1. Continuing this procedure, an input sequence
01101 (read left to right) would produce the following:

Time tg | £y oty | 3 |ty | 25
Input 0 1 1 10 |1 —
State So S S S Sy So

Output | 0 1 1 1 1 0

The initial 0 of the output string is spurious—it merely reflects the starting state, not the result of any
input. The state graph of M is given as follows:

Example 2 — The machine M described here is a parity-check machine. When the input
received through time £ contains an even number of 1s, then the output at time 7., is 1; otherwise,
the output is 0. The state graph of M is given as follows:

For simplicity, we assume that our machines have the same input and output alphabet, usually 7
= 0 = {0,1}. Also, we denote by 7* and O* the sets of all strings of elements of I and O, respec-
tively (here we include the empty set, ¢). Example 2 already exhibits a finite-state machine acting as
a ‘‘recognizer.”’ This recognizer signals with an output of 1 whenever an input string belonging to a
particular set of possible input strings has been received. The machine of Example 2 recognizes the
set of all strings consisting of an even number of Is.

Now, we want to see precisely which sets the finite-state machines are capable of recognizing.
Recognition is possible because machine states can have a limited memory of past inputs. Even
though the machine is finite, it is possible for a particular input signal to affect the behavior of a
machine ‘‘forever.”” However, not every input signal can do this and there are some classes of inputs
that require remembering so much information that no machine can detect them.

To avoid writing down outputs, we designate those states of a finite-state machine with output 1
as final states and use a double circle to denote then in the state graph. Thus we give the following
definition of recognition:
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Definition 2 — A finite-state machine M with input alphabet I recognizes a subset S of I* if M,
beginning in state s, and processing an input string «, ends in a final state if and only if « € §.

We next introduce compact symbolism to describe the sets of interest to us. We describe these
sets by using ‘‘regular expressions’’; each regular expression describes a particular set. First, we

define what regular expressions are; then we see how a regular expression describes a set. We

assume here that I is some finite set of symbols; later, I will be the input alphabet for a finite-state
machine.

Definition 3 — (Regular expression over 1)

(@) The symbol ¢ is a regular expression; the symbol \ (used for the empty string) is a regular
expression.

(b) The symbol i for any i € I is a regular expression.
(¢) If A and B are regular expressions, then (4B), (AVB), and (4)* are regular expressions.

Definition 4 — (Regular sets) Any set represented by a regular expression according to the con-
ventions described below is a regular set:

¢ represents the empty set,
N represents the set {\} containing the empty string,
i represents the set {i}.

For regular expressions 4 and B,

(AB) represent the set of all elements of the form o8 where « belongs to the set represented
by 4 and B belongs to the set represented by B.

(AVB) represents the union of 4’s set and B’s set.
(A)* represents the concatenation of members of 4’s set.

We note that \, the empty string, is a member of the set represented by 4*. In writing regular
expressions, we eliminate parentheses when no ambiguity results. We will also be a little sloppy and

say things like ‘“The regular set 0* V 10’" instead of ‘‘The set represented by the regular expression
0* V 10.”

Example 3 — Here we give some regular expressions and describe the set each one represents.

(a)1*0(01)* (a’) Any number (including none)
of 1s, followed by a single 0, fol-
lowed by any number (including
none) of 01 pairs.

(b) OV1* (b’) A single 0 or any number
(including none) of 1s.
(c) (OV1)* (¢') Any string of Os and ls,

including \.
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ANTHONY M. GAGLIONE

(d) 11((10)*11)* (00*)  (d') A nonempty string of pairs
of 1s interspersed with any
number (including none) of 10
pairs, this string followed by at
least one 0.

We have introduced regular sets because, as we will see, these are exactly the sets finite-state
machines are capable of recognizing. Thus, any set recognized by a finite-state machine is regular;
and conversely, any regular set can be recognized by a finite-state machine. This result was first
proved in 1956 by Stephen Kleene. First, we show that any set recognized by a finite-state machine
is regular.

We represent finite-state machines by directed graphs. Temporarily, we enlarge the set of
machines to include structures whose graphs may not have a full complement of arrows, so that some
states under a given input symbol may have no next state defined. If we call such structures
Machines (with a capital M), then a (finite-state) machine is a special case of a Machine. Although
we are ultimately interested in the set of strings taking a given machine from its starting state to any
final state, we first consider the set of strings taking a Machine from any one state to another, not
necessarily different, state. By using induction on the size of the Machine, we prove that such a set
is regular.

For the base step, assume we have a Machine with only one state, s;. Let K = {i,i,,...,i;} be
the set of input symbols for which the next-state function on s, is defined. We want to find a regular
expression for the set of all strings taking M from s, to so. Since there is nowhere else to go, any
input from K* does this. Thus, the regular expression is (i;vi,v...vi,)*. Note that the set includes
A\, which certainly takes M from s to s,.

Now, we assume that in any k-state Machine, the set of strings taking the Machine from any
state s,, to any state s, is regular. Finally, we let M be a Machine with (K + 1) states, and we let s,
and s, be states in M. We consider the two cases s,, = s, and s,, # s,.

For the case s,, = s,, we first consider nonempty strings taking M from s,, back to s, for the
first time. Such strings will be of two types:

® a single input symbol i €7; and
® a string of the form i, ai, where i,, i, €L i, moves M from s,, to a different state s,,;. «isa

string moving M from s,,, to some, not necessarily different, state s,, but keeping it away
from s,,; and then i, takes M from s,,, back to s,,.

Let 4 be the set of all input strings taking M from s,,, to s,, without going through s,,. If we
delete s,,, the rest of the Machine is a K-state Machine, and 4 is regular by the induction hypothesis.
For a fixed i, and i,, i, 4i, is a regular set. The set B of all strings of the form (2), above, is the
union of a finite number of such sets (taking the union over the various i,s and i,s); hence, B is reg-
ular. And the set C of all strings previously described is the union of B with a finite number of sin-
gle input symbols; thus C is also regular. Now C* denotes the set of concatenations of members of

C and describes the set of all input strings taking M from s,, to s,,; C* is regular.

Now we need to handle the second case where s,, #5,. Again, we first consider the set E of all
strings moving M from s, to s, for the first time. Any such string is of the form o/ where « takes M
from s,, to some s,,, # s, but keeps it away from s,, and i takes M from s,,, to s,. Let D be the set
of all input strings taking M from s,, to s,,, without going through s,. If we disconnect s, , the rest of
the Machine is a K-state Machine, and so D is regular by induction hypothesis. For a fixed i, Di is
therefore a regular set. The set E then consists of the union of a finite number of such sets (iaking
the union over various is); E is also regular. Now let F denote the set of all strings taking M from
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s, t0 s,: we know F is regular by the previous case. The regular set EF is then the set of all input
strings taking M from s,, to s,.

We have shown that the set of input strings taking a Machine M from any one state to any one
state is regular. The set of strings taking a (finite-state) machine M from s, to any final state is the
union of a finite number of such sets, and so it is regular. On the other hand, if M has no final
states, the empty set ¢ is the only set ‘‘recognized,’” and ¢ is also regular.

We have proved the first half of:

Kleene’s Theorem (Part 1)

Any set recognized by a finite-state machine is regular.

This theorem states that given a finite-state machine M, there exists a regular expression

describing the set of strings M recognizes. The proof, however, does not tell us how to find such an
expression.

The other half of the Kleene theorem states that for any regular set, there is a finite-state
machine recognizing it. To prove this result, we will introduce a new kind of machine called a non-
deterministic finite-state machine. This machine is defined as an ordinary finite-state machine except
that for each state-input pair, the next state need not be uniquely determined and there is, in fact, a

set of possible next states; this set could even be ¢. In other words, the state function f; maps § x I
to the set of subsets of §.

Example 4 — Here is the state table and state graph of a nondeterministic machine M.

Next State
Present State Present  Input Output
0 1
Sg 50,91 Si,82 0
51 Sy 5 0
Sy 51,89 50 1

As a nondeterministic machine acts upon an input string «, the first input symbol processed
leads M from the starting state to a set of possible next states. Each of these states, upon processing
the second symbol, has a set of possible next states; the union of these sets is the set of possible states
for M after processing two symbols of «. If we continue this procedure, we find the set of possible
states for M after processing «. If any of the states in this set is a final state of M, we say that M
recognizes . The set of strings so recognized is the set recognized by M.

Example 4 (continued) — The nondeterministic machine of Example 4 recognizes the set

0*1(OV10*1)*. For any string « in this set, M has a possible sequence of moves that would result in
M being in a final state at the end of processing «.
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ANTHONY M. GAGLIONE

A nondeterministic machine M does not operate by choosing at each clock pulse some next state
out of a set of possible next states. Rather, it operates like a parallel processor, keeping track at all
times of all its possible configurations. , we simulate M’s behavior by running in parallel a bunch of
deterministic machines, each of which traces out a different possible sequence of moves for M. We
can also simulate M’s behavior by constructing a single big deterministic machine with enough states
to represent all of M’s possible configurations.

Lemma — For any nondeterministic machine M recognizing a set §, there is a deterministic
machine M’ also recognizing S.

Proof — The states of M’ are sets of states of M. If s, is the starting state of M, then {s¢} is the
starting state for M'. For each state fis v usi) of M’ and each input symbol i, we find the next

state of M’ by taking the union of the set of next states for s;, under i in M, si, under i in M, etc. A
state of M’ is labeled a final state if and only if it contains a final state of M.

Example 4 (continued) — Here we give the deterministic counterpart of the nondeterministic
machine of Example 4. The state table and graph follow:

Next State

Present State Present  Input Output
0 1

A = {SO} {SO’SI} {Sth} 0

B ={s} {s1) s 0

C = sy} {51,585 {so} 1

D = {sg,s,} {50,51] {s1,52 | O

E = {s5,5,} {51,587 {sg,51) | 1

For example, the next state of {s,s,} under 1 is {s, s} because the set of next states in M for s,
under 1 is {s,} and the set of next states in M for s, under 1 is {so}. From the state graph for M’, we
see that M’ recognizes 0*1(0V10*1)*; we also see that states B and C are ‘‘unreachable’’ from the
starting state 4 and so could be eliminated.

In our example, the number of states in the deterministic machine M’ is close to the number of
states in the original non-deterministic machine M. This situation may not be; if M has n states, M’
could have as many as 2" — 1 states.

Our Lemma says that we gain no recognition capabilities by considering nondeterministic
machines. Therefore, the proof of Kleene’s theorem will be complete if we show that for any regular
set, there is a nondeterministic finite-state machine recognizing it. We prove that such a machine
exists by showing how to construct it. Because the definition of a regular expression is inductive, we
must construct our machine inductively. We let I be the set of symbols, and consider various types
of regular expressions. :
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(1) ¢ and N. A trivial machine with a single, nonfinal state, as below recognizes ¢.

0,1
()=

A deterministic machine that recognizes \ is

Ox (=

(2) For i €I a deterministic machine that recognizes i is I — {i}

0 O

(Note in (1) and (2), a deterministic machine is a special case of a nondeterministic machine.)

We now assume that for regular expressions A and B, there are nondeterministic recognizers M,
and Mp. To avoid mixups, we’ll also assume the states in M, and the states in My have different
names.

(3) AB: The basic idea here is to connect the two machines M, and M in series to create a
machine M,z recognizing AB. The set of states for M, is the union of the sets of states of M, and
My. The starting state for M, is the starting state of M, and the final states of M,z are the final
states of Mp. Whenever a state-input in M, could take M, to a final state, we want to allow the pos-
sibility of jumping instead to the starting state of My, so that we begin to process strings 8 € B in Mjp.
Hence, we modify the state table for M, so that whenever the set of next states contains a final state
of M,, we add the starting state of My to the set. Then for any o8 € AB, there is a sequence of
moves taking M, from its starting state through the actions of M, on « and to the point of recogni-
tion, then transferring to perform the actions of Mz on 8 until 8 is recognized by Mjy; hence, «f is
recognized by M.

(4) AVB: The basic idea here is to connect the two machines M, and Mp in parallel to create a
machine M yp recognizing AVB. The states of M,yp are the states of M, plus the states of Mp
plus one additional state, s, designated as the starting state for M,y 5. The final states of M,y are
the final states of M, plus the final states of Mp. When we process the first symbol i of a string v,
we want to allow the possibility of simulating either M,’s actions in processing { beginning in its
starting state s, or Mp’s actions in processing i beginning in its starting state sp. We define the set
of next states for s under i to be the union of the set of next states s, under i and the set of next
states of sg under i. Thus, M,yp processes vy by simulating either M, or Mp, recognizing v if it is
recognized by either M, or Mp.

(5) A*: M * uses the set of states of M, plus an additional starting state s, which also must be
a final state in order to recognize A. The final states of M, are also final states of M *. If i is the
first symbol of a string v, then M, * should simulate M,’s actions in processing { beginning in its
starting state s,. Thus we let the set of next states of 5 under i be the set of next states of s, under

9
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i. If an initial segment of v is recognized by A, we need to be able to reinitialize at once. Hence we
modify M, so that the set of next states for any final state and input j contains the set of next states
for s under j. This modification allows the first character after the initial segment to be processed
just as M, would do it starting in S,. Thus M, * recognizes A *.

We note that slight modifications of the above procedure will be required to take care of trouble-
some cases involving \. To construct a machine for 1*0%*, for example, we want to leave the starting
state for the machine of 1* as a final state, even though according to (3) only the final states of 0*
should remain final. Similarly, a machine for 1*0 would call for a transfer on O from the starting
state of the machine for 1* to the final state of the machine for 0.

The previous procedure should be viewed as a canonical procedure; i.e., it is completely general
and always works. But for any particular case, we may be able to come up with a much simpler
machine. In summary, we have proven:

Kleene’s Theorem — A set is regular if and only if it is recognized by some finite-state machine.

This theorem outlines the limitations as well as the capabilities of finite-state machines, as there
are certainly many sets that are not regular; e.g., § = {0" 1" |n = 0} is not regular where 4" stands
for a string of n copies of a. (Notice that 0*1* does not do the job.) By Kleene’s theorem, there is
no finite-state machine capable of recognizing §. Yet S seems like such a “‘nice’’ set, and surely you
or I could count a string of Os followed by 1s and see whether we had the same number of Os as 1s.
This lapse seems to suggest some deficiency in our use of a finite-state machine as a model of a com-
putational device. We will try to remedy this in the next section.

TURING MACHINES

*r K *

We use the terms ‘‘algorithm, effective procedure,”” and ‘‘computational procedure’ inter-
changeably, and we do not give a formal definition for any of them. Instead, we appeal to a com-
mon, intuitive understanding of an algorithm or effective procedure. We assume that any input to
which an algorithm is to be applied has been encoded into numeric form, usually nonnegative
integers, just as input for an actual digital computer program is encoded and then stored in binary
form.

Recalling the set § = {0"1” | n = 0}, let us try to see why no finite-state machine can recognize
it. We probably consider ourselves to be finite-state machines and imagine that our brains, being
composed of a large number of cells, can only take on a finite, although immensely large, number of
configurations, or states. We feel, however, that if someone presented us with an arbitrarily long
string of Os followed by an arbitrarily long string of 1s, we could detect whether the number of Os
and 1s was the same.

For small strings of Os and 1s, we could perhaps just look at the strings and decide. Thus we
can tell without great effort that 000111 € § and that 00011 ¢ S. However, for the string
00000000000000011111111111111111, we must devise another procedure; e.g., we could count the
number of Os and when we get to the first 1, we write that number down (or remember it) and then
we begin counting the 1s. (This is what we did mentally for smaller strings.) But we have now
made use of some extra memory because when we finish counting 1s, we have to retrieve the number
representing the number of Os to make a comparison. But such ‘‘information retrieval’’ is what a
finite-state machine cannot do; its only capacity for remembering input is to have a given input sym-
bol and send it to a particular state. Suppose we attempt to build a finite-state machine to recognize
§S. We could count the number of Os seen by having each new 0 move us to a new state of the
machine. However, since the number of states of any given machine is a finite number, this plan
fails if the number of Os read in is larger than this finite number, so our machine clearly could not
process 0"1" for all n. In fact, if we think of solving this problem on an actual digital computer, we
encounter the same difficulty. If we set a counter as we read in the Os, we might get an overflow
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because our counter can only go so high. To process 0"1" for arbitrarily large » requires that we
have unlimited auxiliary memory available to store the value of our counter, which in practice cannot
happen.

Another way we humans might consider attacking the problem of recognizing S is to wait until
the entire string has been presented to us. We would then go to one end of the string and cross out a
0, go to the other end and cross out a 1, go back and forth to cross out another 0-1 pair, and continue
this operation until we run out of Os or 1s. The string belongs to S if and only if we run out of both
at the same time. Although this approach sounds rather different from the first one, it still requires
remembering each of the inputs in that we must go back and read them once the string is complete.
A finite-state machine cannot reread input.

We have come up with two computational procedures to decide, given a string of Os and ls,
whether that string belongs to S§. Both procedures required some form of additional memory unavail-
able in a finite-state machine. Evidently, the finite-state machine is not a model of the most general
form of computational procedure.

To simulate more general computational procedures than a finite-state machine can handle, we
use a Turing machine (invented by A. M. Turing in 1936). A Turing machine is essentially a finite-
state machine with the added ability to reread its input and also to erase and write over its input, and
with unlimited auxiliary memory—thus overcoming deficiencies already noted about finite-state
machines.

A Turing machine consists of a finite-state machine and a tape divided into cells, each cell con-
taining, at most, one symbol from an allowable finite alphabet. At any one instant, only a finite
number of cells on the tape are nonblank. We use the special symbol & to denote a blank cell. The
finite-state unit, through its read-write head, reads one cell of the tape at any given moment (see fig-
ure below). By the next clock pulse, depending upon the present state of the unit and the symbol
read, the unit either does nothing (halts) or completes three actions.

1. Print a symbol from the alphabet on the cell read (it could be the same symbol that’s already
there).

2. Go to the next state (it could be the same state as before).

3. Move the read-write head one cell left or right.

Finite-state Unit

We describe the action of any particular Turing machine by a set of quintuples of the form
(s,i,i’,s’,d) where s and i indicate the present state and the tape symbol being read and i’ denotes
the symbol printed, s’ denotes the new state, and 4 denotes the direction of the move of the read-
write head (R = right, L = left). Thus a machine in the configuration

11
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if acting according to the quintuple (2,1,0,1,R) would move to the configuration

Definition 5 — Let S be a finite set of states and 7 a finite set of tape symbols (the tape alpha-
bet) including a special symbol b. A Turing machine is a set of quintuples of the form (s,i,i’,s’,d’)
where s,s'€8,i,i',€l, and d €{R,L} and where no two quintuples begin with the same s and i sym-
bols.

The restriction that no two quintuples begin with the same s and / symbols ensures that the
action of the Turing machine is deterministic and completely specified by its present state and symbol
read. If a Turing machine gets into a configuration for which its present state and symbol read are
not the first two symbols of any quintuple, the machine halts.

Just as in the case of ordinary finite-state machines, we specify a fixed starting state, denoted by
0, in which the machine begins any computation. We also assume an initial configuration for the
read-write head, namely, that it is positioned over the farthest left nonblank symbol on the tape. (If
the tape is initially all blank, the read-write head can be positioned anywhere to start.)

The tape serves as a memory for a Turing machine, and, in general, the machine can reread
cells of the tape. It can also write on the tape; therefore, the nonblank portion of the tape can be as
long as desired, although there are still only a finite number of nonblank cells at any time. Hence the
machine has available an unbounded, although finite, amount of storage. The limitations of finite-
state machines observed earlier do not exist for Turing machines, so Turing machines should have
considerably higher capabilities than finite-state machines. In fact, a finite-state machine is a very
special case of a Turing machine, one that always prints the old symbol on the cell read, always
moves to the right and halts on the symbol #. (A Turing machine may fail to halt, e.g., by endlessly
cycling or by moving forever along the tape.)

Turing machines are usually used to do two kinds of jobs. First, they can be used as recogniz-
ers and second to compute functions. Here we only discuss their role as recognizers, much as we
considered finite-state machines as recognizers. We give a similar definition, provided we first define
a final state for a Turing machine. A final state in a Turing machine is one that is not the first sym-
bol in any quintuple. Thus upon entering a final state, whatever the symbol read, the Turing machine
halts.

Definition 6 — A Turing machine 7 with tape alphabet I recognizes (accepts) a subset § of I* if
T, beginning in standard initial configuration on a tape containing a string « of tape symbols, halts in
a final state if and only if a€S.

12
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Note that Definition 6 leaves open two alternative behaviors for T when applied to a string « of
tape symbols not in §. 7 may halt in a non-final state or 7 may fail to halt at all.

We now build a Turing machine to recognize § = {0"1” | n = 0}. The machine is based on our
second approach of sweeping back and forth crossing out 0, 1 - pairs.

Example 5 — Here we build a Turing machine that will recognize § = (0" 1" | n = 0}. We will
use one additional special symbol, call it X; so the tape alphabet I = {0,1,b,X}. State 6 is the only
final state. The quintuples making up T follow with a description of their function.

(0,b,b,6,R) Recognizes the empty tape (which is in ).

©0,0,X,1,R) Erases the left most O and begins to move
right.

(1,0,0,1, R)

(1,1, 1,1, R) Moves right in state 1 until it reaches the
(1,X,X,2,L) end of the string; then moves left in state 2.
(1,b,b,2,L)

2,1,Xx,3,L) Erases the rightmost 1 and begins to move
left.

(3,1,1,3,L) Moves left over 1s.

(3,0,0,4,L) Goes to state 4 if more Os are left.

(3, X, X,5,R) Goes to state 5 if no more Os in string.
4,0,0,4,L) Moves left over Os.

(4,X,X,0,R) Finds left end of string and begins sweep
again.

(5,X,X,6,R) Nomore ls in string, machine accepts.

Is the Turing machine a better model of an effective procedure than the finite-state machine?
Although our concept of effective procedure is an intuitive one, we are quite likely to agree that any
procedure computable by a Turing machine is an effective procedure or algorithm. In fact, the set of
quintuples of T is itself the algorithm; as a finite list of finite instructions that can be carried out
mechanically, it satisfies the various conditions which could be common to anyone’s notion of an
algorithm. Given the simplicity of the Turing machine definition, it is startling, however, to assert
that anything computable by an effective procedure can also be processed by means of a Turing
machine. This is the statement of the:

Church-Turing Thesis — Any process which could naturally be called an effective procedure can
be realized by a Turing machine.

Because the Church-Turing thesis equates an intuitive idea (effective procedure or algorithm)
with a mathematically precise, well-defined idea (the Turing machine), it can never be formally
proved and must remain a ‘‘thesis,”” not a ‘‘theorem.”” What, then is its justification?
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One piece of evidence is that whenever a procedure everyone could agree was an effective pro-
cedure (according to his or her own insights into this idea) has been proposed to compute something,
someone has designed a Turing machine to also do the computation. (Of course there is always the
nagging thought that someday this might not happen.)

Another piece of evidence is that other mathematicians, several of them at about the same time
that Turing developed the Turing machine—late 1930s or early 1940s—also proposed models of effec-
tive procedures. On the surface, each proposed model seems unrelated to any of the others. Because
all of these models are formally defined, just as a Turing machine, it is possible to consider on a for-
mal, mathematical basis whether any of them are equivalent. These models, as well as the Turing
machine, have been proven equivalent; i.e., they define the same class of functions which suggests
that Turing computability embodies everyone’s concept of effective procedure.

The Church-Turing thesis is now widely accepted as a working tool in research in the area of
complexity. By accepting this thesis, we have accepted the Turing machine as the ultimate model of
an effective computational device. Its capabilities exceed those of any actual computer that, after all,
does not have the unlimited tape storage of a Turing machine. It is remarkable that Turing proposed
this concept in 1936, well before the advent of the modern computer.

COMPUTATIONAL COMPLEXITY

Suppose we have an algorithm A solving problem P. Here we may be thinking of an algorithm
as a Turing machine or as an actual computer program. In either case, we are interested in how fast
our algorithm works. Is it possible to devise an algorithm A’ to solve P that is “‘faster’’ (more effi-
cient) than algorithm A, if the number of A’ basic operations is smaller than the number of A basic
operations? Of course, A’ and A must have comparable basic operations, and we must be comparing
A’ and A in the same environment; e.g., we cannot compare the number of steps in a Turing machine
computation with the number of steps in a computation done in some higher level programming
language. We use Turing machine computations as our environment; by the Church-Turing thesis,
we express any algorithm as a Turing machine computation. There are other models of computation
that could be used, such as a radom access machine (RAM). A RAM works somewhat like a Turing
machine, but its allowable operations resemble more closely those in actual programming
languages—there are arithmetic operations, branching instructions, etc.

The efficiency of an algorithm is also known as its complexity — this is merely some sort of
measure as to the amount of work the algorithm must do. A straightforward algorithm in its logic
may still require a large number of steps to carry out on a Turing machine, for example.

Suppose that the set § is recognized by a Turing machine 7. We will only consider cases where
T halts on all inputs since we want to count the number of steps in T’s computation of §, and we
don’t want T to go on indefinitely. As 7 does a computation, we encode the input in some way on
T’s tape, start T in standard initial configuration, and count the number of steps (clock pulses) in the
computation until 7 halts. We would expect that the number of steps required for T to process any
a €5 (or a € §) would be a function of the length of the input.

Definition 7 — Let T be a Turing machine that halts on all inputs. If the maximum number of
steps for a computation by T on any input of length n is #(n), then T is of time complexity t(n).

Example 6 — Consider the Turing machine of Example 5 that recognizes the set
S ={0"1" | n = 0}. The maximum number of steps in a computation occurs when the input a€S.
Suppose an input of length » is a member of S. The computation first moves the read-write head
beyond the right end of the input, which requires n steps. The read-write head then sweeps back and
forth across that part of the input not replaced by Xs. This process requires successively
n,n—1,n—2,...,1steps. Recognition requires one final step. Thus the total number of steps is
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n*+3n+2

n+n+n—-1+...+1)+1= )

This Turing machine is of time complexity 7(n) = (1/2) (n2+3n +2).

Another measure of efficiency, which we will not consider here, is the space complexiry of a
Turing machine, a measure of the amount of tape the machine uses as a function of input length.

Definition 8 — Let f and g be two functions from N —N. Then f and g are of the same
order of magnitude if there exist positive constants ¢; and n; such that f(n) < c¢;g(n) foralln = n,
and there exist positive constants c, and n, such that g(n) < c,f(n) for all n = n,.

We note that the algorithm of Examples 5 and 6 is of order n?. Suppose we have two algo-
rithms to do the same job and their time complexities are of different orders of magnitude, say 4 is of
order n and A’ of order n. Even if each step in a computation takes only 0.0001 s, this difference
will affect total computation time as n grows large. Also suppose we have a third algorithm 4’
whose time complexity is an exponential function, say 2". The table below compares total computa-
tion time for A, A’, and A"’ under various input lengths:

Size of Input
Algorithm | Order
10 50 100
A n 0.001 s 0.005s | 0.01s
A’ n? 0.01s 0.25 s Is
A" 2" 0.1024 s | 3570 yr | 4 x 10' centuries

Because of the immense growth rate of algorithms not of polynomial order, these are not useful
for large values of n. In fact, problems for which no polynomial time algorithms exist are called
intractable. There may, however, be extenuating circumstances. When an algorithm has time com-
plexity ¢(n) = 2", say, at least one input of length n requires 2" steps, but the average case may run
much faster. In general, however, a choice between possible algorithms for a given problem, or
attempts to improve a given algorithm, should concentrate on the order of magnitude of the time com-
plexity functions involved.

Definition 9 — P is the collection of all sets recognizable by Turing machine of polynomial time
complexity (P stands for polynomial time).

Consideration of set recognition in Definition 9 is not as restrictive as it may seem. Since a
Turing machine for which a time complexity can be determined must halt on all inputs, it decides
membership in a set. Furthermore, many problems can be posed as set decision problems through a
suitable encoding of the objects involved in the problem. The particular encoding scheme we use
determines the length of the input string for a given instance of a problem, and thus may affect the
time complexity of an algorithm to solve the problem. However, if there are two encodings for a
given problem, such that inputs under each encoding can be transformed in polynomial time to
corresponding inputs under the other encoding, then if one encoding results in a set belonging to P, so
does the other.

The situation is equally pleasant with respect to alternative models of algorithms (Turing
machine, RAM’s etc.). A problem solvable by an algorithm with polynomial time complexity on one
model is solvable by an algorithm with polynomial time on another model. Thus we speak of a prob-
lem belonging to P, meaning that a polynomial time-bounded algorithm exists for its solution, without
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having to specify the computational device that carries out the algorithm or the details of the encoding
problem for that device (e.g., we could ask does the Hamiltonian circuit problem belong to P, but no
one yet knows the answer — this asks if an arbitrary graph has a cycle using every vertix of the

graph.)

The decision problem for Hamiltonian circuits, unlike problems such as the Halting problem in
Complexity theory (Does an algorithm exist to decide, given a Turing machine T and a string o,
whether T begun on a tape containing « will eventually halt?) and the word problem in Group theory
(Does an algorithm exist to decide, given the generators and defining relators—a presentation—for a
group and a word from the group, whether the word can be transformed to the identity?), is not
unsolvable. An algorithm exists to test whether an arbitrary graph has a Hamiltonian circuit, viz, the
trial-and-error approach of testing all possible paths. The same thing is true of the factoring problem.
We can simulate this type of behavior by using a nondeterministic Turing machine (NDTM). An
NDTM is defined just like an ordinary Turing machine except that for each state-input pair, there is a
set of applicable quintuples and so, possibly, a choice for the Turing machine’s behavior at that point.
(This corresponds to the situation, e.g., with the Hamiltonian circuit problem that as we trace out
paths, we may have a choice of possible next moves every time we come to a vertix of the graph.)
Each choice (each quintuple) specifies the symbol to be printed, the next state, and the direction of
motion of the read-head. We think of the NDTM as pursuing all of its possible sequences of action
in parallel. An NDTM T recognizes, or accepts, a string o of tape symbols if T, begun in standard
configuration on «, has some sequence of moves leading to a halt in a final state. T recognizes the
set of all recognized strings.

Definition 10 — Let T be an NDTM. For every recognized input string o of length n, there is
at least one sequence of moves leading to a final state; for each accepted string, consider only the
shortest sequence of moves leading to acceptance. If the maximum number of steps used in any such
sequence accepting a string of length n is ¢t(n), then T is of time complexity t(n).

Definition 11 — NP is the collection of all sets recognizable by NDTMs of polynomial time
complexity. (NP stands for nondeterministic polynomial time.)

Any ordinary (deterministic) Turing machine is a trivial NDTM, so it is clear that P < NP.
Whether P is a proper subset of NP is the question which occupies us for the rest of this section.

As in the corresponding case of finite-state machines (see our Lemma in the proof of Kleene’s
theorem), any set recognizable by an NDTM T can also be recognized by a deterministic Turing
machine T'. We can think of T’ acting on a given input « as simulating one after another the possi-
ble sequences of moves T could make on o until « is accepted or all possible sequences have been
tried and « is rejected. Therefore, although nondeterminism gains us no new capabilities, we would
expect it to gain us some lower time complexity.

Thus if the time complexity for T is #(n), we would expect the time complexity ¢(n) for T’ to be
higher for two reasons. T’ cannot execute sequences of moves in parallel as T can; it must do them
in a serial fashion. Also, 7’ gives us more information about an input « of length »; although T may
give an answer within 7(»n) units of time only if « is accepted, T' always gives us an answer (yes or
no) about any input « within 7’(n) units of time. There is one detail we glossed over in discussing
T"’s simulation of 7 on «. T may have sequences of moves that do not halt; if 7' begins simulating
one of these sequences, how does it know when to give up and try another sequence? If 7 has time
complexity t(xn), then T' need not pursue any sequence of moves for longer than ¢(n) units of time. If
« is accepted by T, there is some sequence that will do the job within this time. We may imagine
T"’s possible actions on a given « as something like the tree shown in the figure below; as 7' simu-
lates T, it need not look below r(n) levels, and it can trace out each branch of the tree that far.
Because there is a bound » on the maximum number of possible moves T can make at any point,
there are at most b branches of the tree at any vertix. Thus the tree can have at most b'™ separate
paths, each of length at most 7(n), so we would expect some exponential expression such as
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t(n)b'™

to be the time complexity for 7. We should never need more time than this, but probably some
input of length n for some n might require this much time.

Standard initial configuration on «

accept

t(n)

The previous argument seems to prove that, in most cases, if a set is accepted by an NDTM of
time complexity ¢(n), it will probably require a deterministic machine of time complexity that looks
like 7(n)b'™), a function of a higher order of magnitude. Such a result has not been proven, however.
No one has found any set S recognizable by an NDTM with time complexity z(n) for which no deter-
ministic machine of complexity z(n) exists to recognize §. Although there are certainly sets for which
such a deterministic machine has not been found, it has not been established that one cannot exist. In
particular, whether P is a proper subset of NP is an open question.

There are many famous problems such as the Hamiltonian circuit problem, the factoring prob-
lem, and the knapsack problem that have been shown to be in NP, i.e., they are representable as NP
sets, but for which no polynomial-bounded, deterministic solution algorithm has been found. This
fact lends weight to the speculation that P is indeed a proper subset of NP. This view is the prevail-
ing one in complexity theory circles today. It is strengthened by work begun in 1971 on a class of
problems known as NP-complete (NPC) problems. Roughly, if a problem is NPC, it is NP and at
least as hard to solve as any other NP problem in that if it could be shown to belong to P, then every
NP problem would belong to P and P would equal NP.

Many problems from different fields (graph theory, number theory, etc.) have been shown to be
NPC. For example, both the Hamiltonian circuit problem and the knapsack problem are NPC. The
NPC problems are diverse, and the search for efficient (polynomially bounded) solution procedures
has been extensive. In view of the so far unsuccessful search for an efficient solution procedure for
even one such problem, it seems likely that P # NP. On the practical side, however, one should not
look too long for a quick and easy algorithm to solve any NP problem one may encounter.

CONCLUSION

The subject of complexity theory deals with the following two aspects of any problem: the most
efficient method of obtaining a solution and the number of operations needed to perform this task.
The idea of using intractable problems in the design of cryptosystems seems to be attractive; however,
there are a number of difficulties with this. Shamir [3] has pointed out:

(1) Complexity theory deals with only the worst possible case of any problem. It could be that
only very few instances of a problem are truly intractable. A cryptosystem based on such a problem
would only occasionally be secure.

(2) Complexity theorists assume that only a certain amount of information is available for the

solution of an instance of a problem. Cryptoanalysts frequently have much more information at their
disposal, such as corresponding plaintext and ciphertext.
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(3) Given any particular difficult problem, it is not always possible to convert it into a cryp-
tosystem. As a matter of fact, most known public key techniques are based on only two NP-
problems: the factoring problem and the knapsack problem.

Moreover it has been conjectured that the breaking of any public key cryptosystem is not as
hard as an NPC problem. A piece of evidence which supports this is the breaking of the Merkle-
Hellman trapdoor Knapsack cryptosystem [3], despite the fact that the knapsack problem is itself
NPC. Furthermore, it would be very desirable to have a proof of the equivalence of the problem of
breaking the RSA system and the factoring problem. At this time, no such proof exists. Thus the
present state of complexity theory is inadequate to demonstrate the computational infeasibility of any
cryptosystem. What is needed are new measures of complexity especially tailored to the problem of
cryptoanalysis. Admittedly, while this appears to be a very difficult mathematical problem, it would
be worthwhile pursuing it because when we can certify the security of cryptosystems according to
such measures of cryptocomplexity, the problem of secure communications will be solved.
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