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SYMBOLS AND DEFINITIONS

VPS — vertical plane of symmetry

HPS — horizontal plane of symmetry

TE — transverse electric

™ — transverse magnetic

LSE — longitudinal section electric

LSM — longitudinal section magnetic
QLSE — quasi-LSE

QLSM — quasi-LSM

FHOM — first higher order mode

DRWG  — double ridged waveguide (empty)

DSLRWG — dielectric slab loaded rectangular waveguide
DLDRWG — dielectric loaded double ridged waveguide

Pgp — peak power breakdown

Puve — maximum voltage equivalent power
(M,E) — magnetic wall at VPS, electric wall at HPS
(E,E) — electric wall at VPS, electric wall at HPS
(M,M) — magnetic wall at VPS, magnetic wall at HPS
(E,M) — electric wall at VPS, magnetic wall at HPS
BW — bandwidth

i VA

w — radian frequency

f — cyclic frequency

€ — permittivity

€, — relative permittivity

o — permeability of free space

P — x-directed component of wave vector
k — y-directed component of wave vector

B — z-directed component of wave vector

o — loss term of complex propagation constant
y — complex propagation constant, = a + j8
8 — Kronecker delta function



AN INVESTIGATION OF
DIELECTRIC LOADED RIDGED WAVEGUIDE

1.0 INTRODUCTION
1.1 Background

Many types of transmission media are used in the microwave portion of the frequency spectrum
for guidance of electromagnetic energy. Waveguide, coaxial cable, twin lead, stripline, and micro-
strip constitute some of the more common types, and a variety of different configurations exists for
each. In this report such waveguide types as dielectric waveguide and coplanar waveguide are not con-
sidered, and the term waveguide is restricted to mean conducting cylindrical tubes with a uniform, but
not necessarily homogeneous, cross-sectional geometry.

Two important characteristics of waveguide are: (1) low insertion loss and (2) high-power capabil-
ity. In both of these categories, waveguide is distinctly superior to other transmission media, and for
many high-power applications, waveguide is the only choice. Waveguide is not without its disadvan-
tages, however. Factors such as size, weight, and cost are outside the scope of this investigation, but
the dispersive nature of waveguide [1,2] and the problems that can arise from multimoding, or the
simultaneous propagation of different waveguide modes [2,3], are important considerations and are dis-
cussed in detail in Section 1.2.

Most early waveguide development {4-7] concentrated on rectangular and circular cross sections
with homogeneous loading. The solutions to the boundary value problems posed by these regular cross
sections are straightforward [1,8], and the real effort was in work on special features (bends, tuning
posts, junctions, coupling slits, etc.). One of the first nonregular waveguide cross sections to receive
much attention was ridged waveguide (Fig. 1). Early analyses of such waveguide geometry have been
done with a number of different approaches [2,7,9-13]. One of the first investigations using numerical
solutions was conducted by Montgomery [14] in 1971 using the Ritz-Galerkin method.

(a) double ridged (b) single ridged

Fig. 1 — Cross section of ridged waveguide

Every mode of propagation in any waveguide may be characterized by its field distribution. For
homogeneous waveguides, modes are usually classified as TE (transverse electric) or TM (transverse
magnetic) [1,2,8]. The principal, or dominant, waveguide mode is the mode with the lowest cutoff fre-
quency. A fractional bandwidth may be defined as the ratio of the cutoff frequency of some higher
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order mode and the cutoff frequency of the dominant mode. For a true single mode bandwidth, the
maximum operating frequency is limited to the cutoff frequency f,. of the first higher order mode that
can propagate; thus, the single mode bandwidth is

f. (first higher order mode)
f.(dominant mode)

BW,, =
Ridged waveguide achieves a large single-mode bandwidth as a result of the excess capacitance in the
center of the waveguide (a consequence of the reduced height in the gap region) which has the effect
of lowering the cutoff frequency of the dominant TE; y mode. The next propagating mode is the TE,
mode which has an electric field null in the center; thus, the added capacitance has only a second order
effect on the TE, , cutoff frequency. A characteristic of ridged waveguide is the high wall current den-
sity in the ridge region, which results in a greater transmission loss than conventional waveguide. For
many applications, a more serious disadvantage is the greatly reduced peak power breakdown level due
to the increased electric field intensity in the ridge gap.

An alternative method for increasing the TE, -TE; o bandwidth of rectangular waveguide is place-
mént of a dielectric slab vertically in the center (Fig. 2). This dielectric slab loaded rectangular
waveguide has received considerable attention [15-24]. The two most notable features [18] are: (1)
TE, ¢-TE; bandwidths comparable to those of ridged waveguide could be achieved, and (2) the
power-handling capacity was increased over that of air-filled rectangular waveguide as a consequence of
the higher breakdown strength of the dielectric material. The increase in power-handling capacity was
emphasized in 1976 by Findakly and Haskel [23]. Dielectric slab loaded rectangular waveguide also
achieves a large TE;o-TE,, bandwidth as a result of the added capacitance in the center of the
waveguide, but with the added capacitance due to the higher dielectric constant of the slab rather than
to a reduced height. However, the first higher order mode to propagate in this waveguide structure
usually is not the TE,  mode. Because of the dielectric loading, LSE (longitudinal section electric) and
LSM (longitudinal section magnetic) modes [1-3,18] may propagate prior to the TE;, mode. Except
for waveguides with small aspect ratios (height-to-width ratios), the first higher order mode to
propagate will be the LSE; ; mode as shown by Gardiol [19]. The extensive bandwidth-power capacity
design information of [23] uses a TE, o-TE, ¢ definition for bandwidth, assuming that intervening LSE
and LSM modes could be suppressed or eliminated. The importance of limiting the waveguide propaga-
tion to a single mode is shown in [3] and [24].

4
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Fig. 2 — Cross section of dielectric slab loaded
rectangular waveguide

One shortcoming of dielectric slab loaded rectangular waveguide is the limited increase in
bandwidth provided by dielectric materials with low to moderate values of relative dielectric constant €,.
The TE; y-TE,, bandwidth is dependent on the thickness of the dielectric slab as well as €,; however,
the minimum required value of e, increases very rapidly with bandwidth. From [23], a fractional
bandwidth of 5.25 requires a value of €, of at least 50. High dielectric materials are available but gen-
erally have much greater loss than low e, materials [25,26]. Also, large €, materials are usually more
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difficult to machine, can be very sensitive to temperature and atmospheric humidity, and in many cases
are anisotropic.

1.2 Objectives

The purpose of this investigation is a theoretical analysis of a waveguide structure which is a com-
posite of the two types discussed in Section 1.1, air-filled ridged waveguide and dielectric slab loaded
rectangular waveguide. The generalized cross section of this partially dielectric loaded double ridged
waveguide is shown in Fig. 3. The principal objective will be a complete modal analysis of this
waveguide structure. The only previous theoretical investigation of this waveguide found in the techni-
cal literature was conducted by Magerl [27], with analysis restricted to a geometry where the dielectric
width was exactly that of the ridge and with only a limited discussion of modes other than presumed
TE,, o modes. Although Mager!l’s analysis is valid for cutoff frequencies of the TE, o modes, true TE
modes do not exist above cutoff [28]. With the complete modal analysis of this investigation, the cut-
off frequency of any waveguide mode may be calculated, thus allowing the true single mode bandwidth
to be determined. Also, this analysis will take into account the deviation of the dominant mode from a
true TE mode for frequencies above cutoff, and will allow numerical evaluation of propagation terms
(phase and loss) and peak power breakdown levels as a function of frequency for the waveguide of Fig.
3. A secondary objective of this investigation will be to show that the dielectric loaded ridged
waveguide may be designed to have a much greater theoretical peak power breakdown level than either
air-filled ridged waveguide or dielectric slab loaded rectangular waveguide having an equal single mode
bandwidth.

/
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Fig. 3 — Cross section of dielectric loaded
double ridged waveguide

The single mode bandwidth condition, where the maximum operating frequency is limited to the
cutoff frequency of the first higher order mode that can propagate, is an important consideration.
Although waveguides may be used in an overmoded condition where more than one mode may
propagate, it is standard practice to limit if possible the operating frequency to the frequency range
where only the dominant mode propagates. This is done to prevent coupling between modes. If more
than one mode may propagate, some degree of coupling is inevitable in any real device because of
slight geometrical imperfections. Energy coupled from the dominant mode into any propagating higher
order mode may then be trapped between discontinuities, such as bends, and give rise to cavity effects.
For high Q cavities, even a small coupling may thus produce sharp absorption peaks at the resonant fre-
quencies of the cavities [2,8,19]. Mode suppression techniques such as properly oriented resistive film
act to increase the attenuation for the higher order modes [3,24], thereby lowering the Q factor of the
corresponding cavities and greatly reducing the absorption peaks. For high-power operation, where
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such techniques for higher order mode suppression may be impractical due to arcing or melting of the
resistive film, single mode bandwidth operation is therefore highly desirable.

A simplified explanation of how the composite waveguide structure of Fig. 3 could achieve a
larger single mode bandwidth-power breakdown product than either of its constituent waveguide types
may be made from an intuitive viewpoint. The added capacitance in the center of this waveguide is a
combined effect of the reduced height in the gap and the dielectric loading. The added capacitance
lowers the cutoff frequency of the dominant (TElvo-like) mode which has a maximum electric field in
the center of the waveguide, but has little effect on the cutoff frequency of the TE, (-like mode which
has an electric field null at the center. The modes are referred to as TE,, ,-like because true TE modes
do not exist in this structure ( nor do true TM, true LSE, or true LSM modes) as wiil be shown. The
effect on the power breakdown level of the increased electric field intensity for the dominant mode in
the region of the gap is offset by the increased breakdown strength of the dielectric. Since the vertical
walls of the ridge are conducting surfaces, tangential electric fields may not exist there. The higher
order LSE-like and LSM-like modes, which have electric fields tangential to the ridge wall, will there-
fore have an effective height less than the waveguide height, with a corresponding increase in cutoff
frequency.

The dielectric slab must extend past either wall of the ridge, with the A shape shown in Fig. 3, if
the addition of the dielectric is to maximize the power breakdown level. This is necessary because the
strong fringing fields from the gap could cause arcing in air.

In Section 2, the mathematical development of the theoretical analysis is made to confirm this
intuitive explanation. Numerical results obtained from this theoretical analysis are compared with the
results of other theory. In Section 3, this analysis is further substantiated by comparison of theoretical
results with experimental data from measurements on waveguide samples with varing geometries. Sec-
tion 4 presents some of the characteristics of dielectric loaded ridged waveguide and compares the
waveguide performance parameters with those of air-filled ridged waveguide and dielectric slab {oaded
rectangular waveguide.

2.0 WAVEGUIDE THEORETICAL ANALYSIS

2.1 Discussion of Analysis Approach

As noted by Lewin [29], the number of waveguide problems capable of exact solution is limited
to a few very simple shapes, even when the common approximations of ideal geometry and infinite wall
conductivity are made. Approximate solutions for more complicated waveguide shapes may be found
via a number of methods and techniques. Some classes of waveguides are more suited to certain
analysis methods than to other methods. Of the variety of methods available for finding numerical
solutions to the hollow waveguide problem [30,31], many are not applicable for analysis of inho-
mogeneous waveguides. A review of different analysis methods which are suitable for obtaining a solu-
tion to the general inhomogeneous dielectric loaded waveguide problem may be found in Ref. 32.
These methods include the transverse equivalent transmission line concept [1,7,9,11,33-39], perturba-
tion methods [1,40-45], variational methods [1,38,41,46-50], Rayleigh-Ritz methods [1,38,41,
46,47,51-53], reaction concepts [41,47,54], and finite difference or finite element methods [55-60].

The transverse resonance method is probably the least complex of the possible approaches that
may be used to find solutions for waveguide configurations of the type shown in Fig. 3. In this
method, an equivalent transmission line circuit is formed to represent propagation characteristics in one
of the transverse dimensions of the waveguide rather than along the waveguide axis [1,2]. Discontinui-
ties along the transverse axis are reflected as lumped elements in the equivalent circuit. In general,
each propagating mode will require a different equivalent circuit for analysis.

The computational requirements of the transverse resonance method are much less than those of
other numerical methods, but there are two drawbacks to the use of this method to analyze the

4
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waveguide of Fig. 3. First, the transverse resonance method gives only the propagation characteristics
with no insight into the behavior of the fields; the electric field distribution is required to determine the
power breakdown of the waveguide. Second is the question of a suitable equivalent circuit to represent
the discontinuity formed by the ridge walls. This discontinuity is reflected as a change of the
waveguide height in the transverse direction. By use of quasistatic methods and conformal mapping,
such a discontinuity may be shown to have an equivalent transmission line circuit consisting of a shunt
capacitance at the junction of two transmission lines of unequal characteristic impedance [7,33,38,39].
However, this derivation of the shunt capacitance assumes a propagating TE mode with only a vertical
component of electric field incident upon the discontinuity formed by the height change, and further
assumes the discontinuity to be isolated, i.e., far removed from other discontinuities in the waveguide.
In the case of air-filled (or any homogeneous dielectric loaded) ridged waveguide, the TE; y and TE,,
propagating modes each satisfy the first assumption: the propagating component of the transverse wave
is TE to the ridge wall with no axial component of electric field [7,9,11]. Corrections to the value of
the shunt capacitance in the equivalent transmission line circuit may be made to correct for proximity
effects due to narrow ridges and/or close in sidewalls [10].

When attempting to find an equivalent circuit to represent the ridge wall in the partially dielectric
loaded ridged waveguide of Fig. 3, several problems arise as a consequence of the inhomogeneous
dielectric loading. In the absence of the ridge, modes other than TE, ; are characterized as LSE or
LSM. Introduction of the ridge will cause distortion of the fields from true LSE or LSM nature, but as
in the undistorted case the propagating components of the transverse wave will have axial components
of electric field. Equivalent circuits to represent the change in waveguide height for incident modes
other than the dominant mode (no axial electric field component) were not found in the technical
literature. Without a suitable equivalent circuit to represent the effects of the ridge walls, the
transverse resonance method is not applicable for analysis of the distorted LSE,,,.,,(n # 0) and LSM
modes. Even for the distorted TE,, o (LSE,, o) modes, the accuracy of an equivalent circuit such as that
from [7] may be questionable. An axial component of electric field must exist to satisfy the required
boundary conditions at frequencies above cutoff [28]. Although this axial electric field may be evanes-
cent, leaving the propagating portion of the transverse wave incident on the effective waveguide height
change the dominant mode, the equivalent circuit derivation does not consider any axial electric field
since none exists for the homogeneous case. An additional limitation on the accuracy of the derived
shunt capacitance is due to the possible proximity of the discontinuity at the air-dielectric interface to
the discontinuity at the ridge walls. Corrections to the shunt capacitive term for proximity effects such
as in Ref. 10 do not consider a change of the dielectric media.

Despite the drawbacks of the transverse resonance method for analysis of the waveguide of Fig. 3,
approximate solutions for the propagation characteristics of the dominant mode that may be obtained
using this method are useful for several reasons. As the ridge depth becomes small (d — b in Fig. 3),
the solution must approach that of the dielectric slab loaded rectangular waveguide for which the dom-
inant mode is the TE; ; mode. At the dominant mode cutoff frequency of the actual ridged waveguide,
the axial component of electric fields vanishes, thus the equivalent circuit derivation from Ref. 7 to
represent the effect of the ridge walls need only consider proximity effects. At frequencies above cut-
off, the dominant mode may be considered as a TE, ; mode distorted by the presence of the ridge. To
a first order approximation, the evanescent axial component of electric field may be ignored and the
dominant mode treated as true TE,; . The departure of the dominant mode from a true TE; 3 mode
will increase as the ridge gap becomes smaller. The solution obtained by the transverse resonance
method thus will not be exact, but may provide sufficient accuracy for many purposes. Since the com-
putational requirements are minor, the method is useful to provide approximate propagation charac-
teristics of the dominant mode as a starting point in the search for a numerical solution of the more
rigorous (and considerably more complex) analysis developed in Section 2.2.

Appendix A outlines a detailed development of the transverse resonance method to solve for the
propagation characteristics of the waveguide of Fig. 3. The development includes the TE,, mode as
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well as the TE; 3 mode since all of the arguments made concerning the approximations of the method
for the distorted TE; o mode apply to the distorted TE, y mode as well.

As pointed out in Section 1.1, the first higher order mode to propagate in dielectric slab loaded
rectangular waveguide may not be the TE, y mode. Both the LSE,; ; and LSM;; mode are likely to have
lower cutoff frequencies than the TE,, mode. For the partially dielectric loaded double ridged
waveguide, the distorted versions of these longitudinal section modes must have their cutoff frequen-
cies determined if the single mode bandwidth criteria is to be used. For lack of a suitable equivalent
circuit to represent the effects of the discontinuity at the ridge walls, the transverse resonance method
is unsuitable for analysis of these higher order modes, thus another analysis approach must be found.
A second reason for finding another means of waveguide analysis is the questionable approximations
that were made for the distorted TE,,  modes. A more rigorous solution is desirable, preferably one
that uses the same analysis method for all waveguide modes.

A perturbation method was rejected as a viable analysis approach for the partially dielectric loaded
ridged waveguide because of the possible large deviation from the unperturbed problem, the dielectric
slab loaded rectangular waveguide, for which the solution is readily available (Appendix B). Some con-
sideration was given to the possibility of deriving an equivalent circuit to represent the effects of the
ridge walls for higher order LSE- and LSM-type modes, as well as to account for the axial electric fields
for the distorted TE,, ; modes, thus allowing a more accurate analysis with the transverse resonance
method. It was determined that an accurate equivalent circuit could not be derived for which the ele-
ment values would be a function of the ridge wall discontinuity alone; all of the geometry parameters
(Fig. 3) would be required to numerically define the element values. Such a process essentially would
constitute the rationaie "solve the problem to find the quantity needed to solve the problem," an obvi-
ously circuitous approach.

Many of the analysis approaches described in Ref. 32 are appropriate for obtaining numerical solu-
tions for waveguides with arbitrary or very complex cross sections. While such methods could be used
to obtain numerical solutions for the partially dielectric loaded double ridged waveguide, the computa-
tional requirements would be considerably in excess of a method which utilized the rectangular features
of this waveguide with analysis restricted to the generalized cross section shown in Fig. 3. The
approach of the latter method was selected for the waveguide analysis. Section 2.2 presents the
mathematical development of the analysis. This analysis uses the Galerkin form [46,47] of the
Rayleigh-Ritz method. This procedure is commonly referred to as the Ritz-Galerkin method [14] and
constitutes a mode-matching technique [48,58].

2.2 Analysis of Lossless Waveguide

The appropriate physical parameters of the partially dielectric loaded double ridged waveguide
under investigation are defined in Fig. 3. Only those configurations possessing physical symmetry in
both the vertical and horizontal planes are considered. For the initial analysis, the following assump-
tions will be made: ‘

® The waveguide is lossless, with the metal walls being perfect conductors and the loss tangent of
the dielectric material equal to zero. Loss calculations will be made at a later stage by using
perturbational techniques.

® The dielectric material is homogeneous and isotropic with a relative permittivity €, and a per-
meability equal to that of free space, wg.

® The interior volume of the waveguide is charge-free.

¢ Axial propagation is unidirectional in the -+z direction.

e Time dependence of all fields has the form exp (+jw?), where j = ~/—1 and o is the radian
frequency.
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Advantage may be taken of the horizontal symmetry to reduce the model for analysis to a half
cross section as shown in Fig. 4, with either a magnetic wall or an electric wall placed at the vertical
plane of symmetry (VPS) at x = x3. The model could be further reduced to one quadrant of the cross
section by virtue of the vertical symmetry, but such a further reduction would offer no real advantages
for this analysis. Because of the vertical symmetry, however, either an electric wall or a magnetic wall
must effectively exist at the horizontal plane of symmetry (HPS) at y = 0. The type of wall, electric
(E) or magnetic (M), at the VPS is independent of the wall type at the HPS. The resulting solutions
will be different for the four possible combinations of symmetry conditions. Until further clarification
can be made, the wall conditions at the planes of symmetry will be indicated by a two-letter combina-
tion, with the first letter denoting the wall type at the VPS and the second denoting the wall type at the
HPS. The four solutions will then be defined as (M, E), (M, M), (E, M), and (E, E).

Vertical Plane of Symmetry

(VPS)-Electric Or Magnetic Wall

Region Region Regionl
-y —>

<2
y=b/2 // | y
|

X==Xg = X= Xq
Horizontal Plane of Symmetry
(HPS)-Electric Or Magnetic Wall

Fig. 4 — Model for analysis

The relationship between the x-direction parameters of the model for analysis (Fig. 4} and those
of the waveguide (Fig. 3) are given by:

x1= (a—s)/2 (2.1a)
xy= (t—5)/2 (2.1v)
x3=s/2. (2.1¢)

The model will be separated into three homogeneous rectangular regions:
Region 1 —x; € x < — X5, —b/2 <y< b/2
Region 2 —x; L x < 0,—-0/2 <y<b/2
Region 3 0< x < x;3,—d/2 <y< d/2.

7
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The rectangular coordinate system is the natural choice for an analysis of this configuration. The axes
are defined in Fig. 4. The respective unit vectors are a,, a,, and a,.

For the assumptions noted, Maxwell’s equations reduce to:

V X E=—jouH (2.2a)
V X H= jweE (2.2b)
V-E=0 (2.2¢)
vV -H=0. (2.2d)
Amplitudes are peak rather than RMS. Appropriate boundary conditions are:
nxE=0 :
at all electric walls
n-H=0 ] (2.32)
n-E=0 | o ;) magnetic walls
nX H=0 } (2.3b)
n X H | continuous across the
n X E | air-dielectric interface (2.3¢)

where n is the unit vector normal to the applicable surface. Taking the curl of both sides of Eq. (2.2a)
and substituting Eq. (2.2b) gives

V x V x E = o?uy¢€E.
Using the vector identity
VXVXxE=-VZE+V (V- -E)
and (2.2¢) gives the Helmholtz equation [40]

VZE+wlpueE=0 (2.4a)
where V 2 is the vector Laplacian operator [44]. A similar derivation for H gives
VZIH+wluge H=0. (2.4b)

In rectangular coordinates,
Vi=2a,Vi+a, Vi+a, V2
where
2 2 2
V2= 6—2 + 8—2 + 8—2.
0x dy 9z
Thus

62 82 62
-a—xz-‘i'-a;{'l"sz—z— \[’=—w2y.06‘1’ (25)

forw=E E, E, H. H, or H,

Because of the homogeneous nature and rectangular shape of each region in Fig. 4, a separable
solution may be presumed to exist [61] for all the fields in the region. The full solution will be a
superposition, or linear combination, of particular solutions each of which satisfies Maxwell’s equations
at all points within the region. The required boundary conditions for the region will be satisfied by the
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full solution, but in general may not be satisfied completely by any particular solution. For ¥
representing any of the six field quantities,

¥ (x,p,2z) = Y a, ¥, (x.,2)
n

where the constants a4, must be determined and each particular solution has the form
v, (xp,2)=X,x) Y,(») Z,(2).
The vector representation of the particular solution may be expressed as
E,=a,E ,+a E , +a,E,
H,=a,H ,+a, H A +a H ,.

Since each particular solution must satisfy Maxwell’s equations,

V X E, =—jo uy H, (2.62)
VxH,=jwek, : (2.6b)
V- -E,=0 (2.6¢)
vV -H,=0. (2.6d)

Also, Eq. (2.5) must hold for all field components of each particular solution, thus
X Y, Z,+X,Y,Z, + X,Y,Z, = —w’uge X,Y,Z, where the double prime superscript denotes the
second derivative with respect to the corresponding variable. The time dependence has been stipulated
to be harmonic with the form exp(jw?) and is implicit for all fields. Since the product X, Y, Z, cannot
be zero if a solution is to exist, X,/X, + Y,/Y, + Z,/Z, = —w’uee. Since x, y, and z are indepen-
dent variables, each function must separately equal a constant. With

X,/ X, = p? (2.7a)
Y Y, =—k? (2.7b)
ZZ,=—B2 (2.7c)
the separation equation is given by
B2+ k}— p}=owuge. (2.7d)

The general solution for Eq. (2.7¢) is
Z,(z) = ¢y exp (jB,z) + cyexp (—jB,z).

Any propagating mode must have a unique axial dependence. Since propagation has been assumed to
be unidirectional in the + z direction, B2 is single valued, 82 = 82, and because the time dependence is
taken as exp (wt), the axial dependence for all fields is Z(z) = exp (—jBz). Like the time depen-
dence, the axial dependence wili be implicit henceforth for all field quantities. The amplitude will be
absorbed into the individual field amplitude term.

The general solution for the differential equation of Eq. (2.7b) is
Y, () = ¢ sin (k,y) + c; cos(k,y).

In a region with height 4, the fields E, E,, and H, must be zero at y = h/2 and at y = —h/2 by virtue
of Eq. (2.3a). Then for ¥ = E,, E,, or H,,

II’|y=ih/2 = 2 Xn(X) Yn (V) (y=i-h/2 =0
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which can be true for all x in the region only if ¥, (y = = #/2) = 0 for all n. Thus,
¢y sin (k,h/2) + ¢, cos (k,h/2) =0
and
—cy sin (k,h/2) + ¢, cos (k,h/2) = 0.

Addition and subtraction of these last two equations will show that ¥, (neglecting the amplitude term
which will be absorbed into the overall amplitude for ¥, ) must have one of two forms:

Y, (y) = cos (k,y), with k, = 2n + Dw/h (2.8a)

or
Y, (y) = sin (k,y), with k, = 2nw/h : (2.8b)
for n=0, 1, 2, 3, .... If Maxwell’s equations are to hold at all points within the region, then £, ,, E, ,,
and H, , must have the same y-dependence. Furthermore, £, ,, Hy ,, and H, , must have the com-

plementary y dependence. If the y-dependence of the nth term of E., E;, and H, is
cos [(2n + 1) = y/h], then the y dependence of the nth term of E,, H,, and H, must be
sin [(2n + 1) & y/h]; if the y-dependence of the nth term of £, E,, and H, is sin 2n & y/h), the
y-dependence of the nth term of E,, H, , and H, is cos (2n « y/h).

The boundary condition (electric or magnetic wall) at the HPS will determine the type of y-
dependence for the fields. For (M,E) and (E,E) solutions, £, E,, and H, must vanish at y = 0. The
y-dependence for E, ,, E, ,, and H, , is therefore sin (2n m y/h) and that for E, ,, H, , , and H, , is
cos 2n m y/h). The (M,M) and (E,M) solutions require E,, H,, and H, to vanish at y = 0, thus
Ey s E,,. and H, , must have the y-dependence cos [(2n + 1) & y/h] while E, ,, H,,, and H,,
have sin [(2n + 1) & y/h] as their y-dependence.

The general solution to the differential equation of Eq. (2.7a) may be expressed in several forms.
For positive values of p2, the solution is normally expressed as

X, (x) = ay, cosh p,x + a,, sinh p,x
where p, = \/.p_,,i For negative values of p?2, the solution is normally expressed as
X,(x) = a,, cos ~=p2 x) + as., sin ~/-p2 x).
The solution when p? equals zero is
X, (x)=a,, +a, x

The hyperbolic form may be used for p? negative or zero if for the former case p, is taken as imag-

inary,
Py = Vpn2=j V—prf fOrpnz < 0.

This would result in a complex representation for X, (x) when p? is negative since

cosh /8| = cos {6l (real)
sinh j18| = j sin |9| (imaginary).

Such a complex representation may be avoided by expressing the general solution to (2.7a) as
X,(x) = a,, cosh (p,x) + a,, sinh (p,x) /p,. (2.9)

10
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This expression is equivalent to the conventional hyperbolic solution, differing only in the form of the
constant of the sinh term. To conform with the known solution when p,,2 is zero, the limiting definition
will be used:

sinh p,x . sinh p,x
_— = lim ———
pn n = 0 p”-"O pn
=x for p2 =0
Py .

By using Eq. (2.9) to represent the x-dependence of the fields regardless of the value of p,,z,
unnecessary complications in the mathematical notation will be avoided as will the need for imaginary
amplitude coefficients. Examination of Eq. (2.9) will show that X, (x) and all of its derivatives remain
real when the amplitude terms are real, regardless of the value of p,,2 (positive, negative, or zero).

The development of the field expression thus far may be summarized as follows: in each region,
the x- and y-dependence of each of the field quantities may be expressed as a series,

¥ (x,5) = ¥ X,(x) ¥,0).
n
The x-dependence will have the general form
X, (x) = a, cosh (p,x) + b, sinh (p,x) /p,

where the amplitude terms a, and b, will differ for the different fields. The value of p, in each region
is determined by the separation equation, with

pi=B+ ki = wlnoe

and

=~/p2forp?=> 0
2, = j~/|p} for p? < 0.

The y-dependence will use a double notation for compactness. The fields E,, E,, and H, will have

kny

o[
while the fields E,, H,, and H, will have

0S
kn s

- [2

where the upper trigonometric function is to be used for (M,E) and (E,E) solutions (an electric wall
at y = 0) with k, = 2nm/h and # is the waveguide height in the particular region. For (M,M) and
(E,M) solutions (a magnetic wall at y = 0), the lower trigonometric function is to be used, with

= (2n + 1) w/h. The question of limits on the summation in the series representation for the fields
will be deferred until a later stage in the analysis development.

The boundary conditions at the horizontal conducting surfaces of the waveguide have been used
to formulate the field expressions to this point. The remaining boundary conditions to be satisfied are
at the vertical side wall, at the air-dielectric interface, at the plane of the ridge wall, and at the vertical
plane of symmetry. Before proceeding to these boundary conditions, it is necessary to consider in more
detail the analysis approach and how it will be expected to yield a numerical solution. In Appendix B,

11
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the general solution for the dielectric slab loaded rectangular waveguide is shown to reduce to an eigen-
value problem of the form

E,
M-~ =0

X

where the eigenvectors are the modal coefficients of the x-directed electric and magnetic fields. The
field distribution for any mode of the partially dielectric loaded double ridged waveguide may be viewed
as a distorted field distribution of the corresponding mode in dielectric slab loaded rectangular
waveguide, with the distortion resulting from the presence of the conducting surfaces of the ridges.
Therefore for this analysis the approach follows that for the dielectric slab loaded rectangular
waveguide,

If the eigenvectors of the eigenvalue problem are to represent the x-directed electric and magnetic
fields, it will be necessary to find the relationship between these fields and the orthogonal fields.
Maxwell’s curl Egs. (2.2a, 2.2b) may be expanded as

—jo o H, = -é@; E, —% E, (2.102)
. ) d
—jo po H, = 3z B E, “ox B E, (2.10b)
. 0 9
—jo pg H, = PR E, ay E, (2.10¢)
. ) 9
Jjo e E, = By H, — Y H, (2.10d)
: _ 90 ]
Jw € Ey = -é—z' Hx - a Hz (2.106)
. ) 9
Jowe E, = iy H, — FT3 H, (2.10f)

Since the z-dependence for all fields is implicit as exp (—jBz), the differential operator 3/9z may be
replaced by —jB. Substitution of Eq. (2 lOc) into Eq. (2.10e) will yield the relation

9 9

(g € + ) = o -a—— E, —wugB H,. (2.11a)
In a similar fashion, substitution of Eq. (2.10b) into Eq. (2.10f) will give
2 9? .. 0 . dJ
(wu e + 5;7) E,=—jB E;Ex +joug W H,, (2.11b)
while substitution of Eq. (2.10f) into Eq. (2.10b) gives
02 9 9
(wuge + E)—cj) H,=wepE, + Or -(9_ H,, (2.11¢)
and substitution of Eq. (2.10e) into Eq (2.10c) gives
d
(wPuge + o 2)H ——jwea—E—JBa—H 2.11d)

Since Eq. (2.11) were derived directly from Maxwell’s equations, they may used to determine the rela-
tionship between fields on a term-by-term basis in the series expansion for the fields.

In Region 1, the conducting sidewall at x = —x; (Fig. 4) requires E,, E,, and H, to vanish at this
plane. This boundary condition may be used to eliminate one of the unknown amplitude coefficients in

12
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the generalized form of the x-dependence for each term in the field expansion. With
¥(x,y) =Z, X,(x) ¥,(x) representing any field, E,, E,, or H,, it is easily shown that each term X,
must be zero at x = —x; if ¥ is to vanish at all points on the sidewall. Using the generalized form for
X, (x) from (2.9),

ay , cosh (=p,x;) + ay , sinh (—p,x;) /p, = 0,

thus

sinh (p,x;)

A, =Qy, ——————.
bn == %20 5 cosh (p,x;)

The x-dependence for these fields now becomes

a n . .
X, (x) = m)- sinh (p,x;) cosh (p,x) + cosh (p,x;) sinh (p,x){.

A new constant may be defined as
b, = a,, /cosh (p,x)
and the mathematical identity
cosh 9 sinh ¢ + sinh 8 cosh ¢ = sinh (§ + ¢)
used to further reduce the x dependence to

X, (x) = b, sinh [p,(x + x1/p,

for the fields E,, E,, and H,. Since Maxwell’s equations must be satisfied on a term-by-term basis,
and at every point within the region, the x-dependence for the nth modal component of the field
E., H,, and H, must have the form

X, (x) = ¢, cosh [p, (x + x)].

The 1/p, term is absorbed into the constant to maintain consistency with the form of Eq. (2.9).
The fields of Region 1 are now expressed as

sin
cos

EVN =¥ 4, cosh [py, (x + x)] - kiny (2.12a)
n

sinh [p;, (x + x)] |[cos
: kl,n Yy

0
£V = T B, - “in (2.12b)
sinh [p; , (x + x))] |[sin
EW® = 3 JCin Pl,p1 L cos| KL ¥ (2.12¢)
n W1
sinh [p; , (x + x;)]  |cos
HY = Y Dy, 1’1,;l V2, lsinl kiny (2.12d)
H® = 3 Fy, cosh [py, G+ x)] - || & (2.12¢)
y 1,n Pln WX T X1 cos| #Xtn Y 126
HO = 3 jG [prn O+ )] - [ 2,120
A Y jG1,, cosh [py , (x + x; sin| k1.n ¥ (2.1
n

13
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where the extra subscript 1 on the amplitude constants and the constants p, and k,, and the extra
superscript (1) on the fields are to distinguish these quantities from the corresponding quantities in the
other regions. The constant j is included in the expressions for the axial (z-directed) fields to allow
the amplitude coefficients to be real, thus avoiding the need for complex arithmetic in the numerical
computations. The dual y-dependence notation will avoid much of the notational repetition that other-
wise would be necessary for separate derivations to correspond to the two different types of wall condi-
tions (electric or magnetic) at y = 0 imposed by symmetry consideration. For (M,E) and (£,E) solu-
tions, the upper trigonometric function is applicable, with

ki, = 2nm/b. (2.13a)

For (E,M) and (M,M) solutions, the lower trigonometric function is applicable, with

ki,=Q@n+1) w/b (2.13b)
The separation equation for Region 1 becomes
p12‘" = Bz + klz,n - wzl"'OeO (2.13¢)

and p; , will be real or imaginary, depending on the sign of pf‘,, .

Equations (2.11) may be used on a modal component, or term-by-term, basis with the fields
given in Egs. (2.12) to obtain a relationship between the various amplitude coefficients. Applying Eq.
(2.11a) to (2.12) yields

Ccos

(@?noeo + pPa) By, sinh (o1, O+ xD1 /1y | K

Ccos

=(x kl,n) Pin Al.n sinh [pl,n (x + X])] ) Sil‘l] kl.n y

Cos

sin | K10 - (2.14)

- (o,u,()B Dl‘,, sinh [[11‘,, (x + X])] /pl.n '

The + notation on k; , is the result of the dual notation for the y-dependence; whenever the % (or F)
notation is encountered, the upper symbol is to be used for (M,E) or (E,E) solutions while the lower
symbol is to be used for (M,M) or (E,M) solutions. The expression p,; , sinh [p;, (x + x;)] may be
replaced by the expression pf, sinh [p;, (x + x)1/p,, for all p{, (p,, real or imaginary) if the lim-
iting definition is used,

sinh [py , (x + x))] L i sinh [py , (x + xp)]
Din 1,n=0

P1n—0 Pin

x + xi.

With this replacement in Eq. (2.14), the relationship between the amplitude coefficients must be
(wuoeo + pf,) Biy =% kiy Py A1y — @ po B Dy
for Eq. (2.14) to hold at all points in the region. From Eq. (2.13c)
wig eg+ pl, =B+ ki,
thus
(B* + ki,) Biy= % ki Pl A1y —opo B Dy

14
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In a similar fashion, Eqgs. (2.11b), (2.11c) and (2.11d) may be used with Egs. (2.12) to obtain the
relationship of the amplitude coefficients of EV, ", and H,V, respectively, with the amplitude
coefficients of £ and H". The complete results are given by

B>+ kf)Bry = % ki, plo ALy — @ po B Dy, (2.152)
B+ ki) Cru=—Bpi, A1, F ki, o po Dy, (2.15b)
B2+ ki) Fi,=wegB Ay, F ki, Dy, (2.15¢)
B2+ ki) G, =F ko eg A, — B Dy, (2.15d)

The relationships expressed in Eq. (2.15) may be reduced to matrix form as

!
v o0 l[le] | - |2k P2 | o |[a,
SEREEEY RIS ) PR EErER N EEPEEE R 2.16)
0 | B, K| @ 0 |—wuUl|Di
| I
g1 | 0 F, -d | K |[|leeU| 0 Ay
SRR N L el B R i R == - (2.17)
0 A G, 1‘K1| o 0 [ U D,

where the vectors Cy, By, F;, G|, A}, and D, are column vectors having the ordered components C ,,
By F1.4y Gig» A1, and Dy, respectively.

The matrices ¢, ®, K|, and P} are diagonal matrices with elements

{Widmn = B+ ki) 8, (2.18a)
{ @) =B 8 (2.18b)
{Kibwon = ki 8mm (2.18¢)
(P} = PLu Bnn (2.18d)

where 8, is the Kronecker delta function

Sm=1 form=n

=0 form = n

and U is the unit matrix. Since the question of limits on the summation in the series expansion for the
fields has yet to be addressed, no attempt will be made in the analysis to make the index notation of
the various vectors and matrices conform with the conventional notation in which the integer indices
start at one. Such a departure from convention should not cause confusion in the mathematical treat-
ment of the analysis. When programming a computer to solve for a numerical solution, however, cau-
tion must be exercised since most computer routines require the conventional indexing method.

From Eqgs. (2.12), it is apparent that for terms where ki, is zero (encountered only in
(M ,E) and (E,E) solutions with n equal to zero) the corresponding modal components of
EMN,EW, and H" vanish everywhere, and the amplitude coefficients 4, q, Cy g, and F;, are there-
fore meaningless. To maintain a consistent notation, these elements will be carried in the development

15
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when k, is zero, but strictly as dummy elements not to be included in the final solution. There is
further discussion of this issue later in the development of the analysis.

The situation at the waveguide cutoff frequency (where by definition 8 = 0 ) for any mode con-
taining terms with k; , = 0, where i = 1, 2, or 3, in the series expansion for the fields will be referred
to as a singular condition. For a singular condition (2.15) losses meaning for k; , = 0 since both sides
of each equation are zero. However, Eq. (2.10c) may be applied directly to Eq. (2.12) to give

BI,O =w U GI,O for B = 0, kl,n = 0. (219)

The result of Eq. (2.19) alternatively could be obtained by a limiting definition with Egs. (2.15a) and
(2,15d) Wlth kl,O =0

B2 Big=—wpuoB Dy

B*> Gio=— B Dy
Obviously, lljina D, o= 0; however,

For the matrix equations of (2.16) and (2.17) to remain valid for the singular condition, the matrices
¢; and ® must be modified as

(W = B2+ ki, +8% 5, (2.20)
{@},.,=B+3895,, (2.21)
where

1for,B =0,k,=0

80 = .
Ootherwise.

(2.22)
Also, for the singular condition the leading element of the vector D; must be — G o rather than D .
The modifications to the matrices i and ® will cause (2.16) and (2.17) to give

Ciro=-— 1712,0 Ao

Flo=wegdp
for the singular condition, but the relationship of these three coefficients is meaningless since they are

dummy elements.

In Region 3, the development of the x-dependence for the fields is similar to that for Region 1.
For (M,E) and (M,M) solutions, the vertical plane of symmetry represents a magnetic wall, thus
E,, H,, and H, must vanish at x = x3, and the x-dependence for the modal components of these fields
is found to be of the form

X, (x) = ¢z, sinh [p3 , (x — x3)1 /p3 . (2.23)

For Maxwell’s equations to hold for all points in the region, the x-dependence for the modal com-
ponents of the fields £,, E,, and H, then must have the form

X, (x) = c3, cosh [p;3 , (x — x3)]. (2.24)

For (£,M) and (E,E) solutions, the VPS represents an electric wall, thus E,, E,, and H, must vanish
at x = x3. The x-dependence of the fields then reverses from the case for (M,E) and (M,M) solu-
tions, with the x-dependence of the modal components being given by (2.23) for the fields
E,, E,, and H, and by (2.24) for the fields E,, H,, and H,.

16
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For (M,E) and (M,M) solutions, the series expansions for the fields of Region 3 then become

sinh [p; ,(x — x3)] [sin
EX(J) — ZA.?,n P3;3 33, cos k3,n y (2.25a)
n N
E® =% B h [p3, (Oc = x3)1 - Nk (2.25b)
A z 3.0 COSh 1p3 , (x — X3 sin| %31 Y .
n
E® =Y (s — 591 - [ & (2.25¢)
P4 2/ C3,n COSh p3,ll X x3 COS 3," y . c
n
cos
HE =% Dy, cosh Ips O = x)1 - {0 | ks v (2.25d)
n

: — sin
sinh [p3 , (x — x3)] [ Ky y (2.25¢)

Di.n COSs

fly(s) — z F3’"
n

sinh [p;, (x — x3)] lCOS

G _ v
H7 = ;J G, o sin| %3 ¥ (2.25f)
while for (£,E) and(£,M) solutions the fields are
® sin
EXY = ;Al,, cosh [p3 , G — x)1 - | (| k30 ¥ (2.26a)
@ sinh [p; , (x — x3)]  |cos
Ey - nz BJJT p3 " Sin k3,ﬂ y (2-26b)
G _ - sinh [p; , (x — x3)] [sin
B = nE/ Ca,n Pin cos| X3.n Y (2.26¢)
3 sinh [p3, (x — xp)] Jcos
HY = 2 Ds.n e sin| k3. ¥ (2.26d)
3) sin
HY = ; F3, cosh [p3,, (x — x3)1 - | ool ks v (2.26¢)
3) ; cos
H” = nZJ G, cosh [p3 , (x — x1 - | | ks > (2.26f)

Analogous to the case for Region 1, the upper trigonometric function for the y-dependence is to be
used for (M, E) and (E,E) solutions with

ks, =2nm/d (2.27a)
while the lower trigonometric function is to be used for (M,M) and (E,M) solutions with

ki, =Q@n+1) n/d (2.27b)

The separation equation for all solutions is given by
Pin=PR + ki, —oupeqe, (2.27¢)

where €, is the relative dielectric constant of the dielectric material.
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The relationship between the amplitude coefficients of the modal components in the series expan-
sion for the fields in Region 3 may be found in a manner similar to that of Region 1. For
(M ,E) and (M, M) solutions, (2.11) is applied to (2.25) on a term-by-term basis, with the results

B2+ ki) Cs,=—B A3, F k3, © po D3, (2.28a)
B2+ k3,) B3, =% ks, A3, — o poB D3, (2.28b)
B2+ ki) F3 o =we3 B A3, F k3, pf, Diy (2.28¢)
B2+ k) G3p=F ks, w €3 Ay, — B p}, Dy (2.28d)

where €3 = €,¢q. For (£,E) and (£,M) solutions , the results of applying Eq. (2.11) to Eq. (2.26) are

(B2 + k32,n) C3.n =B p32,n A3,n + k3.n w o D3.n (2293)
(482 + k32,n) B3.n ==+ k3,n p??,n A3,n —w o B D3.n (2.29b)
(Bz + k32,n) F3,n = €; B A3,n + kJ,n D3,rz (229C)
B+ k3,) Gsy=F k3,0 €343, — B Ds . (2.290)
Expressed in matrix form, Eqs. (2.28) and (2.29) are given by
! | |
W3 C; —-d | £K; Wy ;0 Az
LRl | N I e i T --- (2.30)
O l ll}3 B3 iK3 I (I) 0 ] —wl.LoU D3
| I
¥3 | 0 F; - | K5 ||wesU | 0 Aj
S ki | A Bl RN RS | R R I | I (2.31)
0 s || G +K; | @ 0 | W, || D

where the vectors C;, B3, F3, G3, A3, and D; are column vectors, with the elements of C; being the
ordered amplitude coefficients C; ,, etc. The matrices 3, K3, and P} are diagonal matrices with ele-
ments

{lp3}m,n = (Bz + k32,n + 80)8,,," (2.32a)
{KS}m.n = k3,n8mn (2.32b)
{P3} o = P30S n- (2.32¢)

The matrix @ is the same as for Region 1 and is given by (2.21). The matrices W, and W), are also
diagonal, and for (M,E) and (M ,M) solutions

W,=U (2.33a)

Wy = P2 (2.33b)
while for (E,E) and (E,M) solutions

W, = P} (2.34a)

Wy=U. (2.34b)
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The singular condition (5° = 1) in Region 3 is treated in a manner similar to that for Region 2. For
k3., equal to zero, then in the limit as 8 becomes small, from Eqs. (2.28)

limD;,=0
s P30

By wug
p—~0Giy  pio
for (M,E) solutions, while for (E,E) solutions, from Egs. (2.29)
Jim D30 = 0

lim —BE& =@

B—0G3 0 Ko
Thus, for the matrix equations of Egs. (2.30) and (2.31) to remain valid, the leading element of the
vector D3 must be replaced as —Gs o/ P32.0 for the singular condition in (A,E) solutions. For the singu-
lar condition in (£,E) solutions, the leading element of D3 must be —G3,. For the singular condition,
the coefficients 434, C34, and F3 are dummy coefficients; thus, the relationship between them is
immaterial. In (E,M) and (M,M) solutions, the singular condition is not encountered since &; , is
nonzero for all » in each region, /i =1, 2, 3.

In Region 2, the x-dependence of each modal component in the series expansion for the fields
will retain the general form given in Eq. (2.9) with two unknown amplitude coefficients. The fields of
Region 2 are then given by

E® (+) ) si sint,
D = YLALY) cosh {py ux) + A7) sinh (93, X)/ p2a] * Y oos[*2nY (2.35a)
n
E® () () g cos
w2 = YIB1Y cosh (py ,x) + By sinh (py,%)/p2nl - Vi [F2.0Y (2.35b)
n
@ (+) ) o sin
E® = 3ICSY cosh (py %) + CFF) sinh (93, X)/ p20) Y oos[k2ny (2.35¢)
n
H® (+) ) o cos
P = DY) cosh (py,,x) + DS sinh (py %)/ p2.ul * \gip [K2nY (2.35d)
n
+) o) sin
H? = $IF{}) cosh (py,x) + F3) sinh (py 5 x)/pan] - {os[k2nY (2.35¢)
n
@ ) ) & cos
H? = 3jlG{}) cosh (py,x) + G5} sinh (93, X/ p20) Vg5 [F2.0Y (2.35f)
n

where the upper trigonometric function in the y-dependence is applicable for (M ,E) and (E,E) solu-
tions, with

kz,” = 2n7r/b (236&)
and the lower trigonometric function is applicable for (E,M) and (M,M) solutions, with
kpn = n + Du/b (2.36b)
and for all solutions the separation equation for Region 2 becomes
p22,,, =p2+ k;z‘,, — w?ug € (2.36¢)
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where €; = €,€g9. The superscript notation on the amplitude coefficients in this region is used to distin-
guish between these (unknown) constants. The choice of the (+) and (=) superscript notation was
made to reflect the fact that the cosh (sinh) function may be expressed as the sum (difference) of two
exponential functions.

Obtaining a relationship between amplitude coefficients in Region 2 is slightly more complicated
than in Regions 1 or 3 because of the presence of both sinh and cosh terms in the x-dependence of
each modal component in the series expansion of the fields. Upon application of Egs. (2.11a) to (2.35)
on a modal component, or term-by-term, basis

COos

sin | k20

U2, 1B5%) cosh (py ,x) + B, sinh (p,,x)/ps,] - [

cos
= (xky,p2,,) (45} sinh (py ,x) + 457 cosh (py,,x)/py,] - lsin ki .y
— wpo BLDSE) cosh (py,x) + D§7) sinh (py,x)/ p2,] Lm]kz .Y (2.37)

where
Yy, = 0o €2— p3,
=2+ k?,.

The function p,, sinh (p,,x) may be expressed as p#, sinh (p,,x)/py,, and the function
P2 cosh (p, x)/p2, expressed as cosh (p; ,x), if the limiting definitions are used for p, , equal to
zero. Since Eq. (2.37) must hold for all points within the region, the coefficients of the cosh and sinh
terms may be collected separately, with the results

(B2 + ki, )BY = tky ,AS7) — wuBDSY) (2.38a)
(B + k3 ,)Bi,) = £ky 03,455 — opBDI). (2.38b)

In a similar fashion, the remaining equations of Egs. (2.11) may be used with Egs. (2.35) to give

B2+ k3 )CE) = — BAST)Fhy qope DI (2.38¢)
(82 + kf,,)cH = — Bpi ATk, ,,w,m pt; (2.38d)
B2+ ki VFSY) = wey B ASHFky, DI (2.38e)
8* + k},)F$ < Y = wey B A Fky 03, D‘” (2.38f)
(B2 + k},,)Gf’ = Fk, ,we A5 — BD57) (2.38g)
(B2 + k},)G5;) = FkywerdSs) — Bp?, DSV (2.38h)

As for the case in Regions 1 and 3, the dual sign notation associated with the k,, term arises as a
consequence of the dual notation in the trigonometric representation for the y-dependence of the vari-
ous modal components. For (M,E) and (E,E) solutions the upper sign is applicable, while the lower
sign is applicable for (£,M) and (M, M) solutions.

The equations of (2.38) may be expressed in matrix form as

| | | _

w2 | 0 |f C¥ -o | =K, U | 0 A
R R el R R | R EEEEE: (239

0 2 {| BfY tKy | @ 0 | —wu,U (| DY
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W 4 0 || CF o | =K Pi | 0 A
-....l--- - - - - = ----I----’ ------ , ------ - - - - (2.40)
0 | 7 BZ(_) i.‘Kz I o] 0 | WMo U Dz_)
Y2 | 0 F{ & | =K, || we; U : 0 AP
R EEnd B R I I R (R [ == (2.41)
0 | ¥ G +K, | @ o |, U Do
i J
l ) | | )
Y2 | 0 F - | xK el | 0 Ay
S e | R Bl B e | I | =---- (2.42)
0 | ¥2 || G5~ *K, | @ 0 P} DS*

where the vectors are column vectors with each having elements corresponding to the ordered terms of
the respective amplitude coefficients. The matrices i, K,, and P? are diagonal matrices whose ele-
ments are

ahmn = (87 + k2, + 85,0, (2.430)
(Ko mon = k2,48 mn (2.43b)
(P} n = P3O mn- (2.43¢)

The matrix ® is given by Eq. (2.21). The treatment of the singular condition in Region 2 is similar to
that for Regions 1 and 3. From Egs. (2.38)

lim D{Y =
g0 2,0

lim D& =0
g0 2,0

lim BE0 _ @ko

B—0 Gz(,o) P30
B{y

lim —75 = wug

p~0 G£f

for kyp= 0. Thus the leadlng elements of the vectors D+ and D§~) must be changed from DS and
Dy to —Gg(o) / p;_o and — Gw , respectively, for the singular condition if the matrix equatlons of
(2 39) (2 42) are to remam valid. Analogous to the case in Regions 1 and 3, the amplitude coefficients
ALH, , C5F, €57, Fib, and Ffg are dummy coefficients for the smgular condition and the
resultmg relatlonshxps of these terms are immaterial.

In each region i, with i = 1, 2, 3, the matrix notation may be condensed somewhat with the fol-
lowing representation:

Ui | 0
V,=|---]--- (2.44)
0 v
| |
__(I) Iii
Ai=]----1---- (2.45)
iKi ‘




CHARLES W. YOUNG, JR.

Simple matrix multiplication will show

A,‘Ai = ‘p,'. fOI‘ i= I, 2, 3. (2.46)
[t is apparent that A; and ¥, each possess an inverse, with
A7l =w71A, (2.47)

The need for the special treatment of the singular condition is obvious if inverse operations are to be
made with these matrices.

While matrices in general do not commute, diagonal matrices do commute [62,63]. Thus, the

[
‘ b1 | P2
matrix ¥; and its inverse ¥;! will commute with any matrix of the form | - - - | - - - | where each of

b3 | P4
the ¢ submatrices is a diagonal matrix (hence all are square matrices of the same size), and the matrix
|
r | o
A; will commute with any matrix of the form | - - - | - - - | where each submatrix I' is diagonal, as
y T

may be shown by simple matrix manipulation. These commutation properties will be used in later
stages of the analysis without further comment as to the validity of the commutation operation.

Inh each of the three regions for the waveguide analysis, the y-dependence functions sin &; ,y and
cos k; ,y may be considered the basis functions for the series expansion of the fields [46,47,51]. These
basis functions are orthogonal on the interval —#/2 < y < h/2, where 4 is the height of the particular
region. For (E,M) and (M,M) solutions, with k; , = 2n + D)a/h

2 0forn # m

f W2 sin (k; ,») sin (k; ,y)dy = B2 for n = m (2.48a)
2 0for n & m

f_m cos (k; ,y) cos (k; ,y)dy = /2 for n = m (2.48b)
2

f W2 sin (k; ,») cos (k; ,,y)dy = O for all n, m. (2.48¢)

For (M,E) and (E£,E) solutions, k; , has the form k; , = 2nw/h, and the orthogonality of the basis
functions is the same as for (E,M) and (M,M) solutions with the exception of n and m both equal to
zero:

h/2

I ,8in (ki) sin (ki py)dy = 0 for n=m =0 (2.484)
h/2

f_m cos (k; ,») cos (k; ,»)dy = h for n =m = 0. (2.48¢)

The interface between Regions 1 and 2 is the air-dielectric boundary at x = —x,. The tangential
components of the electric and magnetic fields must be continuous at this interface, thus

Eyme =-x" Ey(l)L =-x (2.49a)
EZ‘Z’L - n= Ez‘"L= -y (2.49b)
Hy(z)L= - H(I)L= . (2.49¢)
H;Z)L= s H,“’L . (2.494)
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For any given waveguide mode, symmetry considerations require the same effective wall type (electric
or magnetic) for all regions at the HPS, y = 0. Since Region 1 and Region 2 each have a height b,
ki, =k, for all n and all modes. The result of applying an integral operator J £ (&) d¢ to a function
g(é‘) will be defined as f F(&)g(¢)dé, where any integration limits on the integral operator will reflect
as limits in the resultant integral. The series expansions for the various fields may be substituted into
Eq. (2.49). Subsequent application of the appropriate integral operator, either [ 2/ b/2 492 sin (ky ,y)dy or
J 242, cos (ky ,p)dy, dependent on the form of the basis functions for the partncular field, to both sides
of the equations will show that the equalities of (2.49) are valid on a modal component, or term-by-
term basis. Thus,

B, sinh [py, Gy — x))/py, = BSY) cosh (py,x;) — BS) sinh (py,x2)/py. (2.50a)
Cy, sinh [py, Gy = x)1/py, = C£F) cosh (py,x;) — C37) sinh (py %2/ P2y (2.50b)
Fy, cosh [py, (x; — )1 = F§*) cosh (p, ,x;) — F5;) sinh (pé 2 X2/ Do (2.50¢)
Gy, cosh [p;, (x; — xy)1 = G(+) cosh (py ,x;) — G33) sinh (py , %)/ ps (2.50d)

where the y-dependence has been eliminated by virtue of the orthogonality of the basis functions. The
relationships of Egs. (2.50) may be expressed in matrix form as

| 1 r |
08 | ¢ C 0 | o i o7 | o ci
i -0- e -(l;‘)- -B- 1T -0- Tl -(4:)- ] -(-T-)- - i -()- e --:)- 1 -(:)- @51
| 01 1 | 87 B, { | 62 B,
| I I
9 (H) | 0 Fl 9 (+) | 0 F2(+) 0 (=) | 0 FZ_)
Sl I el | IRl Bl Bl Il | Bl Mt Eididl IRl § Bt (2.52)
| 0 | 91(H) G, { 0 | 92(+) G2(+) { 0 | 02(—) J Gz_)
where each of the & matrices is diagonal with
{GI(E)},,,’,, = sinh Ipl_,, (xl - x2)]/p1,n8mn (2'533')
{0 . = cosh {py, Gep = X218, (2.53b)
{051}, = cosh (py ,x3)8 (2.54a)
{92~ }m,n = sinh (PZ,nXZ)/PZ,nSmn' (2.54b)

Further compactness for the matrix notation may be obtained by defining new matrices for the doubled
@ matrices:

]

6 (B : 0
08 = ""I"" (2.552)
|
|
Y I (2.55b)
0 ‘O(H)
|
6(+) 0
]
o = ____I____ (2.55¢)
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87 | o0
Y I B | (2.55d)
0 67
Premultiplication of Eq. (2.51) by the matrix
J
weg U ] 0
Y] IO B ¥
o , U
gives
I
weg U | 0 C weg U ,l 0 c c
@M. ... (=== Al@l(E)___ —GI(H) _____ | ===~ A Q4D R - ... (2.56)
0 | 1 [ U B; B,~

Pt 0
_@l(E) ______ |=--n-- A
0 | —wWiLg U
to give
P} || 0 F
—@ E) ___.__. |==-nn- AIOItH) .
0 | —ouo G
PR 0 P Py~
==0(F ------ IEEREEE Mol —---f - oo 2.57)
0 | —ope U Gy Gy

Al cew| =] ccaaana | ===--- - - - (2.58)

while from Eqgs. (2.17) and (2.47)

F, weg U I 0 A,

_Al___ E N I ------ - -, (259)
G, o |, U D,

The commutation properties of the matrices may then be used to show that the left-hand sides of
(2.56) and (2.57) are both equal to
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thus the right-hand sides of these two equations may be set equal. Substituting from Egs. (2.39) to
(2.42), the results are

weo U 0 u | 0 Aj”
O J k] |----- AL AOSIWTIA| - - - - - - [ === c---
o , U | —wpe U (| DY
P22 : 0 A(+)
O - - - EEREEE .
0 | ~ou U]l DS
;| ' +)
Pty 0 we U 0 ||A
=__(~)l(5) ______ | =-=--- A 1__@2(4-)\[,2—!/\2 _____ [--=-- .
0 | TWMo U [ U D(—)
’ (~)
we; U 0 A
+O7WTIA - - - | === -- -t (2.60)
0 [ P} D;¥

The matrix A; commutes with the matrices ®; and @57, and since A| = A,
AYTIA, = U

With both sides of Eq. (2.60) premultiplied by

weg U 0
______ l - - = e = -
0 i —WMp U
collection of like terms will then give
|
erl)l2 | 0 AZ(—,
e + R . el -
0 | P22 D2(+)
2 | ) | (+)
&Pi | 0 Piy 0 A
={{----1---- {0 + | - .- OPOTH - - -] (2.61a)
0 | U 0 | U DS~
The results of Eq. (2.61a) may be expressed as
OMA{T = QA (2.61b)
Ql()+)D2(+) - QD(—)DZ(—) (2.61c)
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where the diagonal  matrices are given by

QA(+) —_ erPl291(E)02(+) + P2291(H)02(—) (2623.)
0 = ¢, P9 Egf) + g{HgH (2.62b)
0 = oMM + p2o(Elgs) (2.62¢)
QD(-) _ 0](5)92(+) + 91(H)92(—). (2.62d)
With this Q matrix notation
I | _
M0 || AP 07 o || A&
--..-I..-(-)_ _-(-)- = ----l---- --(-- . (2-63)
0 ;o7 {| DS 0 0P (| D

The remaining boundary conditions to be satisfied are at the interface between Regions 2 and 3.
This interface is the plane of the ridge wall, x = 0. Continuity of tangential magnetic field requires

H® L _o=HP L o (2.64a)

() = H®
HO| = a0 (2.64b)

for all y€{Y,}, where
(1)) ={-d/2< y< d/2).

The tangential electric field must also be continuous at this interface. In addition, the tangential elec-
tric field of Region 2 must vanish on the conducting surface of the ridge walls, thus

o) E| o fory € {Y})
Ey =010 for x = 0,y € {Yz} (2.65a)

@ 3 Ez(3)|x=[) for y € {Yl}
E2lcm0=10forx = 0, y € (¥y) (2.65b)

where
(Y =1{-b/2<y <—d/2,d/2< y < b/2}.

The requirements of Eqs. (2.65) ensure the condition that HX(” will also vanish on the surface
x =0,y € (Y, since H¥ may be expressed in terms of E/? and H,? by means of Maxwell’s curl
equation (2.2a).

It is apparent that an infinite number of terms must be used in the series expansion for the fields
if the requirements of Egs. (2.64) and (2.65) are to be completely fulfilled. If a numerical solution is
to be obtained, the series must be truncated to some finite number of terms. The resulting error in the
solution will depend on the number of terms used in the numerical calculations and on the convergence
properties of the solution, i.e., how rapidly the solution converges with an increasing number of terms.
The convergence properties will be discussed at a later stage of the analysis, and it will be shown that
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accuracies of better than 1% may be obtained with as few as five or six terms in the series expansion
for the fields.

At x = 0, the tangential field components in Region 2 reduce to
N, o
EP| o= ;0 BiY [;:] Ky 0y
N, )
E®lo=J 3 CF) (51 k.0

e sin
2) — +
Hy( IX-——-O - 2 FZ(.n) [Cosl k2,ny
0

Hn=

Ny
, COoSs
Hz(2)lx=0 =J 2 GZ’(-;) [sin] k2.ny
n=0

where the number of terms in the series expansion for the fields has been truncated to Ny terms, with
NT = N2 + 1.

In Region 3, the tangential fields at x = 0 are given by

Ny
3 — (E) CoS
Ey( )|x=0 - 2(’) 93,11 B3,n lsin] kJ,n.y
n=

Ny .
. sSin
Ez(a)lx=0 =J Z 93(51)6‘3\" [COS] k3 ny
n=0

N, .
3 _ H sSin
Hy( )lx=0 - Z 93(’”)1:‘3‘” [COS] k3.ny
n=0
hE: cos
1-12(3)|x=0 = ./ ng() 93(,“:) G3,n [sin] kJ,ny

where for (M,E) and (M ,M) solutions

95E) = cosh (p3 ,x3) (2.66a)

05 = — sinh (p3,,X3)/P3.0 (2.66b)
while for (£,£) and (E,M) solutions

03E) = —sinh (p3 ,x3)/p3., (2.67a)

03%) = cosh (p3 ,x3). (2.67b)

Note that it is not necessary to truncate the number of terms for the series expansion of the fields in
Region 3 to the same number of terms used in Regions 1 and 2. For this analysis, however, the fields
in all regions will use the same number of terms in the series expansion to obtain numerical solutions.

To proceed further with the boundary conditions of Egs. (2.64) and (2.65), it is necessary to dis-
tinguish between the two types of wall conditions, electric or magnetic, at the HPS. For an an electric
wall at y = 0, the solutions are (M,E) and (£,E), and the upper trigonometric function in the y-
dependence is used, with k,, = 2nw/b and k3, = 2nw/d. Substitution of the truncated series for the
fields into Eq. (2.64b) gives

Ny Ny
Y. 037Gy, cos Qnmy/d) = ¥ GS¥) cos Qnay/b).
n=0

n=0
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Applying to both sides of this equation the integral operator [42, cos 2mmy/d)dy, where m
takes the values 0, 1, 2, ..., N, then gives

() @ 4 b e (1
d93‘[) G3‘0 = dGZ,O + Z Gz‘n f—d/fl (e ] (2”17y/b)dy
n=1

df2 Ny /2
g— 051 G,y = Gz“a)f_d/z cos Qmmy/d)dy + z{ G4¥) f—-d/Z cos 2nmy/b) cos Qmmy/d)dy
e

for m 2 1. But

d/2
f_m cos Qnmwy/b)dy = d sinc (nwd/b)

d/2
f_m cos Qmmy/d)dy =0form > 1

and using the mathematical identity
cos a cos B = %[cos (e — B) + cos (o + B}
the second summation integral may be evaluated as

f_:/; cos 2nwy/b) cos Qmmy/d)dy = {sinc [w(m — nd/b)] + sinc = (m + nd/b)1}d/2

where the sinc function is given by

sinc(r) = Elﬂ(—rl
T
With the height ratio defined as
r=d/b

then

Ny

950G 9= G + 3 sinc (nwr)GSY)

n=1

and

Ny
034)G; ,, = Y lsinc lw (m — nr)] + sinc (7 (m + nr)} G5

n=1
for m =2 1. In matrix form, the results are
9{G; = MG (2.68)

where the matrix g4

is diagonal with
{057}, 0 = 055 5mn (2.69)

and the matrix M, is given by

lform=0,n=0

sinc (nwrr) form=0,n # 0
Mdn =10 for m = 0, n =0 (2.70)

sinc [ (m — nr)] + sinc [w(m + nr)l for m = 0, n = 0.
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Substitution of the truncated series representation for the fields #,? and H,® into Eq. (2.64a)
gives

Ny Ny
Y 057 F; , sin Qnawy/d) = ¥ F§¥) sin @nmwy/b).
n=0 n=0

Here the coefficients F3 and Fy} (“ are strictly dummy elements since the modal components in both
regions correspondmg ton =20 are nonexistent. Applying to both sides of this equation, the integral
operator [ 42, sin 2mmy/d)dy with m =1, 2, ... N,, and using the mathematical identity

sin a sin B = -2—[cos (@ — B) — cos (a + B)]

will yield
N,
0380 F;3 ,, = Y Asinc [ (m — nr)] — sinc [m (m + nr)1}F5F)

=1
for m > 1. The dummy elements F3 g and F5*) may be expressed as
0 F30=0" F{p.
Thus, in matrix form
o{HF, = MFSD (2.71)

where the diagonal matrix 93(”’ is given by Eq. (2.69) and the matrix M3 is given by

Oform=0o0rn=20

(Mshn =1 sinc [w(m — nr)] = sinc @ (m + nr)] for m # 0, n #= 0’ 2.72)

The boundary conditions for £ and £ at x = 0 are given by Eq. (2.65a). Applying to both
sides of this equation the integral operator [ 47 /2 cos Cmay/b)dy where m =0, 1,2, ..., N, gives

a/2
f~a’/2 E?| g cos Qmmy/b)dy = f 2 E®| o cos @mmy/b)dy.

Here the integration limits on the left may be extended to =+ 5/2 since E, @ must vanish on the con-
ducting side walls of the ridges at x = 0, y € {Y,}. Thus,

b/2  df2
S B limo cos @may/b)dy = [ EP g cos Qmmy/b)dy. (2.73)

Since a finite series representation for E’z) cannot be identically zero for all y € {Y;} at x = 0, the
approximation is apparent for the truncated series. With this approximation, substitution of the series
representation for £ and £, into (2.73) will show that

B5H = roi8 B3,

’

B{t) = 2r sinc (mmr)oi5 By + rz sinc [w (n — mr)] + sinc [7 (n + mr)1}6; ,B;, for m > 1.

n=1

In matrix form these results may be expressed as

B{Y = M,9{E'B, (2.74)

29



CHARLES W. YOUNG, JR.

0{E) is given by

{059)),,., = 055 5, (2.75)

where the diagonal matrix

and the matrix M, is given by

rform=0,n=0

0 form=0n=0

2r sinc (mawrr) form # 0, n =0

risinc [w(n — mr)] + sinc [w(n + mr)1} for m = 0, n = 0.

(M3}, = (2.76)

The boundary conditions for Ef? and Ef at x = 0 are given by Eq. (2.65b). Application to
both sides of this equation of the integral operator [ %3, sin Qmwmy/b)dy, with m = 1,2, ..., N, and
extension of the integration limits in region 2 to +5/2 (since £?|,q=0fory € {Yz}) glves

d/2

b/2
f EP| o sin Qmmyl/b)dy = fd/l.’

o2 EX | o sin @Qmwy/b)dy.

Substitution of the truncated series representation for E? and E,* and appropriate evaluation of the
integrals will then yield
Ny
Csh = r Y isinc [w(n — mr)] = sinc [w(n + mr)1}0;,Cs .
n=1
The coefficients C(+) and C;g are dummy elements and may be included in the matrix representation
with

CM = M,04E)C, (.77
where the matrix M| is given by

Oform=0o0rn=20

(M risinc [w(n — mr)]} — sinc [m(n + mr)l} for m = 0, n # 0.

(2.78)

The relationships developed thus far between amplitude coefficients of similar tangential fields in
Regions 2 and 3 have been for (M,E) and (E,E) solutions. The dummy coefficients as described are
included only as a convenience to simplify the notation. These dummy elements will later be discarded
as they have no bearing on the numerical solution.

For (M,M) and (E,M) solutions, corresponding to a magnetic wall at y = 0, the lower trig-
onometric function of the y-dependence is used in the series expansion of the fields, with
ky,= @n+ Dw/b and k;, = (2n + Dw/d. For these solutions, the singular condition does not
exist; i.e., neither k,, or ks, is zero for any value of #; thus, there are no dummy coefficients. The
procedure for obtaining relationships between amplitude coefficients of similar tangential fields is simi-
lar to that used for (M,E) and (E,E) solutions. Application to Egs. (2.64a) and (2.64b) of the integral
operators [ 43, cos [(2m + Dary/d)dy and [ 93, sin [2m + 1)wy/dldy, respectively, will yield upon
substitution of the truncated series representation for the fields

Ny

030 F; = 3 {sinc —[(2m +1) — 2n + Dr] + sinc —[(2m + 1+ Qn+ Drl}FY
n=0
Ny
034G, = ¥ {sinc -’2’—[(2m +1) = 2n + 1r] — sinc %—[(2m + 1+ Qa+ Drl}G5Y
n=0
for m=0,1,2,..., N, Apphcatlon to Eqs. (2.65a) and (2.65b) of the integral operators

f47, sin [(2m + l)wy/b]dy and [ %, cos [(2m + Dary/bldy, respectively, with the integration limits
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extended to =*+5/2 for the tangential electric fields in Region 2, and subsequent substitution of the
truncated series representation for these fields will yield

Ny
Bty =rY (sinc %[(2:1 +1) — @m + 1)r] — sinc %[(211 + 1)+ Qm+ Drllei8)B,,

n=0
Ny
cit = rEO {sinc 12’—[(2;1 +1) = @m + Dr] + sinc %[(2,1 +1) + Cm+ Drl}eEB,,

for m=20,1,2,..., N, In matrix form the results appear identical to those for (M,E) and (E,E)
solutions, with

C = M95EC, (2.79a)
BfY = M,0{F'B, (2.79b)
0{HF; = M,FP (2.79¢)
0{G; = MGSP (2.79d)

where, however, the matrices M;, M,, M, and M, are different. For (M,M) and (E,M) solutions
(M), = rlsine Z0@n + 1) = @m + Drl +sinc Z[@n + 1) + @m + Drl} - 2.800)

(M)}, , = risinc %[(2,1 +1)— Qm+ 1)l - sinc7—27-[(2n + 1)+ Qm+1rl}  (2.80b)
(M3}, , = sinc %[(m +1) — @n + 1)r] + sinc 127—[(2m + 1)+ Q2n+Drl (2.80c)

(M), , = sinc %[(2m +1) = 2n + 1rl - sinc 12’—[(2m +1D+ Qn+0Drl. (2.80d)

The elements of the diagonal matrices 8{£ and 9{#) are given by Egs. (2.66) or (2.67), dependent on
the type of wall condition at the VPS, x = x;.

With the matrix form of Eq. (2.79) valid for all solutions, the four separate matrix equations may
be combined into a pair of matrix equations as

C2(+) C,
s = MO8 - (2.81)
B2(+) B3
F3 F2(+)
O] . [ =My ---- (2.82)
G; G2(+)
where
[ | 1
My o
M= |------ (2.83a)
0| a,
|
I
My, 0
Myy=|------ (2.83b)
0 (M,
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0| o
@3(5)_ .-
0 jos®
[ |
83" 0
oM = L LEEE
0 o5
From Eq. (2.30)
|
G Wy | 0 Ay
e =TT Al - - - - s | DR
B3 0 I—w;.LOU D3
while Egs. (2.31) and (2.46) may be used to give
|
Aj wez U | 0 F3
- - e I B l ------ A3 - - N
D3 0 | WD G3
thus
1
— W,
C; we 10 F;
- == Wyl Al - - | =====- Ag|- - -
B; 0 Wiy Wp G;
This last result will be expressed as
Cs F;
- - - = Z - - -
B; G;

where the matrix Z may be partitioned into submatrices as

(2.84a)

(2.84b)

(2.85)

(2.86)

Substitution of Eqs. (2.44) and (2.45) into Eq. (2.85) will show the submatrices of Z are diagonal with

Z“=¢;l[—i¢)WA¢)+w#’0K3W5]K3}
3

1 -
Zn= iKB‘I’[_‘ Wy = opW5' o3

[O1%1
Zy=12p
ZZ2= ll'f‘[—i K3WAK3 +wp,0(b WE‘(I) .

3
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The + notation for the submatrices Z;, and Z,; is analogous to that for the individual regions, with
the upper sign used for (M,E) and (E,E) solutions and the lower sign for (M,M) and (E,M)
solutions.
Substitution of Eq. (2.86) into Eq. (2.81) will give
C 2(-4-) F,
G3

which may be used with Eq. (2.82) to yield

C2(+) . F2(+)
e =M0OEZ [@}H) Miyl- - - - (2.88)
B2(+) G2(+)
or
c) Fi
e = S (2.89)
B (+) G2(+)
where the matrix R is given by
R = M ,0{B)Z[0{D]~1M;,. (2.90)
If R is partitioned as
[
Ry | Ry
R=|-------
Ry | Rn

substitution of the appropriate lower order submatrices into Eq. (2.88) will show that each of the sub-
matrices of R is a square matrix, with

Ry = M©OE Z,, [0~ a4 (2.91a)
Riy= M@ Z,[0M1 1 M, (2.91b)
Ry = M0 7,01 M, (2.91¢)
Ry = MO Z,[080]71 M, (2.91d)

Using Eqs. (2.44) and (2.45), Eq. (2.41) will show that

FiP a)er: 0 A
____=__\I,2—1A2 _____ ‘ _____ - - - - (2.92)
G 0 | U Dz(_)
while Eq. (2.39) will show that
|
ci U | 0 A (=)
A2 - -(;)- == | ------- (:-)' . (2.93)
B, 0 |—oueU||ID;
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Premultiplication of Eq. (2.89) by A, with subsequent substitution of Egs. (2.92) and (2.93) will give

Uu | o0 A weU| 0 || A8
------ TR | B Y 2 1. V] (R | I ) (2.94)
0 || B N T
From Eq. (2.63)

ny 51 _
o || A i7" o || A
~—-—|-—-— - - - - R R - - - -
0 |Q15~) Dz(_) 0 IQ(+) DY

o7 0
0 -:-QD(+)
will give
| | I
v | 0 0" o AfY Q(—)| 0 1 we; Uy 0 AP
------ TR | Bk A | ] s EEEE R F¥:3 S VI EEEE TR | R
0 I-—w,u,oU 0 IQD(_) Dz() 0 |Q(+) 1 U Dz(-)
or
AP
T -.---]=0 (2.95)
Dy~
with the matrix T defined as
| | | |
v | 0 0" | o e o weU
T=|------ | --=--- ----|--:)- S B A B | ===--- (2.96)
0 | —w,uoU 0 | Q[() 0 | Q(+) 0 | U
where the matrix S is given by
= ARA¥TL
Partitioning the matrix S as
TP
S=f---Jdo--.
Sn ! 8y

substitution of the appropriate lower order submatrices into Eq. (2.97) will show that the submatrices of
S are square, with

S11=¢R11(1) :Fq)RlzKZ:FKZRZICD +K2R22K2 (2983)
SlZ = q:(IJR“K;_ - ‘I)Rlzq) + KQ.R;“KZ = Kngzq) (298]3)

34



NRL REPORT 8517

S?.l = :FKan(I) + K2R12K2 - @RQ]@ fund ®R22K2 (2.98(3)
S22 = K2R11K2 + K*_;R]p_(p +* ¢‘R21K2 + (I)R22(I). (298d)

Again, the () and (¥) symbolism is the result of the dual sign notation used to distinguish the type
of wall condition at y = 0, with the upper sign to be used for (M,E) and (E,E) solutions and the
lower sign for (M,M) and (E,M) solutions.

The expression of Eq. (2.95) represents an eigenvalue problem for which the eigenvalue is zero
[51,63]. For a nontrivial solution to exist, the determinant of the matrix T must vanish:

det [T]1=0.
All elements of T are determined uniquely for given values of radian frequency  and propagation con-

stant B when the type of solution; i.e., (M,E), (M, M), (E,M), or (E,E), is specified. Thus, the fre-
quency may be fixed and B8 taken as the unknown, with

det [T(B)] =0

the requirement for a numerical solution for 8, or the propagation constant may be fixed and w taken
as the unknown. In the latter case, only the cutoff frequency will be sought, with 8 = 0; thus

det [T(w )] =10
is the requirement for a numerical solution for cutoff for any mode.

The matrix T may be partitioned into square submatrices as

Ty T,
T = - - - -'- - - -
Ty | Ty
where from Eq. (2.96)
Ty = 04" + 0we,0478),
Tn= 0’8,

Ty = w€2Q0(+)521
Ty = 058y — wueQ5”.
For the waveguide modes where the singular condition is not encountered, i.e., k; o # 0, examination

of the matrix equations used to develop Eq. (2.95) will show that all elements of the matrices T, and

T,; vanish at the mode cutoff frequency where 8 = 0. Thus, when solving for the cutoff frequency of
these modes,

Ty o0
| T

= det [T”] - det [Tzz]
-0
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and the requirement for the cutoff frequency is either

det [T} (0 )] =0 (2.992)
or

det [Ty(w, )] = 0. (2.99b)

In the general case, both determinants will not be zero simultaneously, i.e., for the same frequency.
For Eq. (2.95) to remain valid when det [T};(w.)] = 0 but det [Ty (w,)] = 0, the vector D) must
vanish. If D™ = 0, then from (2.61-¢c) DY = 0. Thus, the waveguide mode with cutoff frequency
determined by Eq. (2.99a) has no x-directed component of magnetic field at cutoff, analogous to the
condition for LSM modes in dielectric slab loaded rectangular waveguide (Appendix B), and will be
referred to as a quasi-LSM, or QLSM mode.

If det [T5y(w,)] = 0, but det [7};(w,)] # 0, then the vector A{* must vanish for Eq. (2.95) to
remain valid. From Eq. (2.61b) A{™ = 0 if A{Y = 0, and the waveguide mode corresponding to the
cutoff condition imposed by Eq. (2.99b) thus has no x-directed component of electric field at cutoff,
analogous to the condition for LSE modes in dielectric slab loaded rectangular waveguide (Appendix
B), and will be referred to therefore as a quasi-LSE, or QLSE mode.

Note that the QLSE and QLSM modes of the dielectric loaded ridged waveguide do possess x-
directed components of electric field and magnetic field, respectively, at frequencies above cutoff. This
is in contrast to the LSE and LSM modes of dielectric slab loaded rectangular waveguide, for which the
x-directed components of electric field and magnetic field, respectively, maintain zero magnitude at fre-
quencies above cutoff. Additional discussions of the QLSE and QLSM modes at frequencies above cut-
off will be postponed until a more specific classification is formulated for the different waveguide
modes.

For the waveguide modes where the singular condition exists at cutoff, i.e., k;o = 0 for i = 1, 2,
3, the vector element Az(fﬁ’ is a dummy element. To eliminate this dummy element, the eigenvalue
problem of Eq. (2.95) must be modified to

Tl----1=0 (2.100)

where T is the matrix formed by deleting the first row and first column of the matrix 7. The vector
A, is the vector A{* less the first, or dummy, element 45§ . When solving for 8 at frequencies
above cutoff, the vector D, is the same as the vector D§~). When solving for the mode cutoff fre-
quency, with 8 = 0, the vector D, is the vector D™, but with the leading element D replaced as
—G{} . The matrix 7' may be partitioned as

where 77, is the matrix 7'; less the first row and first column, 77, is the matrix T, less the first row,
T3, is the matrix T less the first column. The matrices 77, and T3, are nonsquare. It is straightfor-
ward to show that the eigenvalue problem of (2.100) is exactly the same as would have been obtained
had the development not included the dummy elements to maintain a consistent notation for the
mathematical analysis. The required condition for a numerical solution is thus

det [T"(w,8)] =0
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where either w or 8 may be treated as the unknown quantity. The only types of waveguide modes for
which the singular condition exists, thus requiring modification of the matrix T to T’ in the eigenvalue
solution, are QLSE modes. This point will be clarified after the discussion of additional parameters
which may be used to further specify the different waveguide modes.

Thus far in the analysis of the dielectric loaded double ridged waveguide, the specifications for the
waveguide mode(s) have been the effective wall conditions, electric or magnetic, at the two planes of
symmetry, with an additional classification of each mode as either QLSE or QLSM, dependent on the
eigenvalue solution at the cutoff frequency. For each of the wall condition solution types,
(M,E),(M,M),(E,E), and (E,M), there will exist an infinite number of both QLSE and QLSM
waveguide modes. This situation is comparable to the infinite number of LSE and LSM modes that
exist in dielectric slab loaded rectangular waveguide (Appendix B). In the case for the latter
waveguide, an index integer pair is used to uniquely specify each of the LSE and LSM modes with any
given mode characterized as the LSE,, , mode or the LSM,, , mode. The first index m refers to the
number of half cyclic variations of each of the existing (nonzero ) fields E,, E,, E,, H,, H,, and H,, as
a function of x within the waveguide, i.e., from sidewall to sidewall. The second index n refers to the
number of half cyclic variations of each field as a function of y, i.e., from topwall to bottomwall.

In the dielectric loaded ridged waveguide, the fields of every propagating mode consist of an infi-
nite number of modal components. A single index integer pair may be used, however, to uniquely
specify each mode, in a manner analogous to that for the LSE and LSM modes of dielectric slab loaded
rectangular waveguide, if the integers refer to the number of half cyclic variations of the fields of the
lowest order modal component present, i.e., the modal component with the smallest value of n. The
y-dependence of the n'" modal component in region i is

¢y _ [sin
fn (y) - [COS] ki,ny

with the choice of the sin or cos function determined by the specific field. For (M,E) and (E,E)
modes, with an effective electric wall at y = 0, in each region with height 4,

ki,n = 2”77/}1,;

thus the number of half cyclic variations (topwall to bottomwall) of fields of the nth modal component
is 2n. For (M,M) and (E,M) modes, with an effective magnetic wall at y = 0, k; , = 2n + Da/h;
thus the fields of the nth modal component have 2n + 1 half cyclic variations from topwall to bot-
tomwall. With each waveguide mode classified as QLSE,, ,- or QLSM,, ,+, the lowest order modal com-
ponent of the propagating mode is given by n’ = 2n for (M,E) and (£,E) modes, and by n' = 2n + 1
for (M,M) and (E,M) modes. In the series expansion of the fields, this represents a lower limit ny on
the summation index n. For n’ an even integer (corresponding to an electric wall at y = 0) the
QLSE,, , and QLSM,, , modes have the lowest order field components with ng= n’/2, or
King = n'm/h;. For n’ an odd integer (corresponding to a magnetic wall at y = 0), the QLSE,, ,- and
QLSM,, - modes have the lowest order field components with ng = (n" — 1)/2, or k; , = n'm/h;. With

the lower limit set on the summation for all fields in each region, each of the matrices developed earlier
in this section is thus dependent on this value for ny. Some caution must be exercised when assigning
the index notation for matrix and vector quantities in any computer program since most computer sub-
routines for matrix operations require a lowest order index of one.

For each propagating waveguide mode, the type of effective wall condition at the vertical plane of
symmetry, x = x3, will determine the symmetry aspects of each of the field components. With an
effective magnetic wall at x = x3, the tangential magnetic fields £, and A, and the normal electric field
E, must be antisymmetric about the VPS, while the tangential electric fields £, and E, and the normal
magnetic field H, must be symmetric about the VPS. For an effective electric wall at x = x3, the sym-
metry conditions are reversed, with the fields E,, E,, and H, antisymmetric and the fields H,, H;, and
E, symmetric about the VPS. The dependence of the field symmetry (antisymmetry) on the effective
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wall type at the VPS is identical to that for the LSE and LSM modes of dielectric slab loaded rectangu-
lar waveguide (Appendix B). To maintain the analogy with the propagating modes of the latter
waveguide, the first index of both the QLSE,, ,- and QLSM,, ,- modes of the dielectric loaded ridged
waveguide will be an odd (even) integer for an effective magnetic (electric) wall at the VPS, x = x3.
The four combinations of effective wall conditions at the two planes (vertical, horizontal)} of physical
symmetry thus are reflected as restrictions on the index pair m,n’ for either the QLSE,, ,» mode or the
QLSM,, ,» mode with

Wall conditions m n'
(M,E) —  odd even
(E,E) — even even
(M, M) —  odd odd
(E,M) — even  odd (2.101)

In any propagating mode, the higher order modal components (terms of the series expansion for
the fields with » larger than the lower limit ny) will in general be evanescent with respect to x; i.e., the
fields of these modal components will decay exponentially with distance from the ridge walls. For this
reason, and to maintain an analogy with the index notation for modes of dielectric slab loaded rectangu-
lar waveguide, the first index m of both QLSE,, ,» and QLSM,, ,» modes will be used to describe the
number of half cyclic variations (sidewall to sidewall) in the fields of the lowest order modal com-
ponent, i.e., the field terms (with other than zero amplitude) corresponding to »n = ng in the series
expansions.

An equivalent but considerably more simplified description for the correlation between the field
structure and the propagating mode designation may be obtained by viewing the modes of dielectric
loaded ridged waveguide as the corresponding modes of dielectric slab loaded rectangular waveguide
with fields that have been distorted due to the presence of the ridges. Thus, the QLSX,, , mode,
where m and n’ are fixed integers and X denotes either E or M, would become the LSX,, ,» mode if
the ridges were to vanish, i.e., if the ridged waveguide was reduced to rectangular waveguide. Of
course, the mode cutoff frequency and the propagation characteristics, as well as the exact field struc-
ture, would vary as the ridges were withdrawn.

The assumption of a lower limit ny other than zero for the summation index » in the series
expansion for the fields of dielectric loaded ridged waveguide has an equivalent assumption if the
corresponding waveguide mode is viewed as a distorted mode of dielectric slab loaded rectangular
waveguide. The equivalent assumption is that the single modal component of the undistorted mode (in
rectangular waveguide) remains as the lowest order modal component upon introduction of the ridges.
As an example, the LSE; ; mode of dielectric slab loaded rectangular waveguide has fields that have a

y-dependence f(y) = [gg;] 2mwy/h. Upon introduction of the ridges, the fields of this mode are dis-

torted, with the mode becoming the QLSE,; mode. Using the y-dependence to form the basis func-

tions for a series expansion of the fields in each region i, with f; , = gg; 2nwy/ h; the assumption is

sm] 27y/ h;, or that the lower limit on the summa-

that the lowest order modal component has f; ,, = lcos

tion index n is ng = 1.

The assumption of a lowest order modal component for the higher order waveguide modes is sup-
ported to some extent by numerical calculations made for several modes and several waveguide
geometries. The cutoff frequency was calculated using the appropriate value for ng in the series expan-
sions (thus setting the elements of the matrix for the eigenvalue solution) and compared with the cut-
off frequency obtained when the lower limit was forced as »y = 0. For most waveguide modes and
geometries tested, the agreement was excellent—less than 1% difference. Some comparisons were
poor, possibly because of the difficulty in finding numerical solutions to the eigenvalue problem due to
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the close proximity of poles and zeros of the determinant for the higher order modes. Such compari-
sons were made only for QLSE,, ,, and QLSM,, ,- modes with n" > 2 since the lowest order modal
component of modes with »” = 0 and »n" = 1 correspond to the lower limit ng = 0. As discussed in
the following paragraph, both the dominant mode and the first higher order mode will always have a
lowest order modal component ny = 0. Since the primary objective of this investigation concerns the
single mode bandwidth and field characteristics of the dominant mode, no further effort was made to
rigorously justify the assumption of a lowest order modal component with ng = 0 for these higher
order waveguide modes.

For the QLSX,, ,» mode (X = E or X = H) of dielectric loaded ridged waveguide, increasing
either integer index will raise the cutoff frequency, analogous to the case for the modes of dielectric
slab loaded rectangular waveguide. Also, by analogy with the latter waveguide, the first index of the
QLSE,, ,» mode is restricted to nonzero positive integers, while the second index of the QLSM,, ,
mode is restricted to nonzero positive integers. The possible propagating modes for dielectric loaded
ridged waveguide are thus the QLSE,, ,, modes, with m =1,2,3, ... and n'=0,1,2, ..., and the
QLSM,, ,» modes, with m=0,1,2,...and n'=1, 2,3, .... As discussed earlier, the matrix of the
eigenvalue problem is a function of each of these indices. A simple comparison of index pairs for the
different modes will show that the two waveguide modes with the lowest cutoff frequencies, i.e., the
dominant mode (lowest f,) and the first higher order mode (second lowest f,), must be a pair of
modes from a group of four modes: the QLSE,; o mode, the QLSE,y mode, the QLSE; ; mode, and the
QLSM, ; mode. These four modes represent respectively the four mode types, (M,E),(E,E),(M,M),
and (£,M), describing the effective wall conditions at the (vertical, horizontal) symmetry planes. For
practical applications, the waveguide geometry usually will be chosen so that the QLSE, ; mode is the
dominant mode.

Discussion on two issues raised earlier concerning certain properties of different waveguide modes
may now be continued with greater clarity since the mode designation has been completed. Since the
singular condition arises only at waveguide cutoff for modes with the lowest order modal component
having k; o = 0 and thus occurs only for modes with the index »" = 0, and since n’ > 0 for QLSM,,, -
modes, the singular condition exists only for QLSE modes, or more specifically the QLSE,, o modes,
and then only at cutoff. The second issue is that of the x-directed electric and magnetic fields of the
QLSE,, ,, and QLSM,, ,» modes where n’ = 0. As pointed out earlier, £, = 0 at cutoff for the
QLSE,, ,» mode but at frequencies above cutoff E, # 0, while for the QLSM,, ,» mode H, = 0 only at
cutoff. If solving for the propagation constant 8 at some fixed frequency, the full determinant 7 must
be used with

det [T1=0 (2.102)

the requirement for a numerical solution. If the frequency is above the cutoff frequency of the
QLSE,, ,» mode and that of the QLSM,, ,» mode, where m and n’ are fixed with n" > 0, separate roots
to (2.102) will be found corresponding to the different values of 8 for the two waveguide modes. The
lower root for 8 will normally (but not always) correspond to the mode with the larger cutoff fre-
quency. The specific waveguide geometry will determine which mode has the larger cutoff frequency.
By tracking the root(s) for 8 as a function of frequency from cutoff for each mode, and solving the
eigenvector problem to determine amplitude coefficients of the various modal components, it is possi-
ble to compare the field magnitudes of the different modes. Such a procedure was used to compare the
fields of the QLSE, ; mode with the fields of the QLSM, ; mode for several waveguide geometries. In
each case, the most pronounced variation of any field component between the two modes at a fre-
quency well above cutoff of either mode was in the relative magnitudes of the lowest order
(k; o = m/h;) modal component of E, and H,. With all fields normalized to unit power flow in the
waveguide, the QLSE; ; mode had a consistently smaller magnitude for the lowest order term of E, and
a consistently higher magnitude for the lowest order term of H, than the corresponding modal com-
ponent amplitudes of the QLSM, ; mode. The amplitude difference between like fields varied from a
factor of 3 to more than 2 orders of magnitude, dependent on the specific waveguide geometry and the
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point where the comparison was made. For the QLSE,; and QLSM, ; modes at least, this comparison
lends additional credence to the nomenclature of quasi-LSE and quasi-LSM modes.

As discussed earlier, the QLSE,, o modes use the matrix 7" in the eigenvalue solution, where the
matrix 7" is formed by deleting the first row and column of the matrix 7 of (2.96). This reduction of
the matrix is necessary to eliminate the effects of the dummy vector coefficients—corresponding to the
zero amplitudes of the » = 0 order modal components of E,, E,, and H,—on the eigenvalue develop-
ment. For any given frequency above cutoff, the requirement for a numerical solution is

det [T'(B)] = 0.

When solving for the cutoff frequency of a QLSE, , mode, the computational requirements may be
reduced by partitioning the matrix 7" as

If Ny terms were used in the series expansion for the fields, then the matrix T will be square, with size
2Ny x 2Ny, The matrix T is square also, 2Ny — 1) X 2Ny — 1). The submatrices 7 and 75, are
both square, where 7,; is Ny X Ny while 745 is (N; — 1) X (Ny — 1). While the submatrices 7, and
T, are both nonsquare, it is a straightforward procedure to show that each is a null matrix, i.e., all ele-
ments are zero, when 8 = 0. The requirement for a numerical solution for cutoff

det [T(w,)] = 0 (2.103)
may thus be reduced to
det [r},(w.)] - det [r3(w. )] = 0.

With the matrix 7" partitioned as described, the full eigenvalue problem for cutoff of a QLSE,, ; mode
is given by

Azl‘j)

I
| Az(j")r
Tin | 0 —M)

B S | e (2.104)

0 | T22 DZ(_I)
n

[
DiN.

where the coefficient Dig’ has been replaced as —Gy§ as discussed for the singular condition. If at
some trial value of w, the determinant of the matrix 7,, were to vanish, but det [r;] # 0, then all of
the lowest order (n = 0) model field components must vanish if (2.104) is to be satisfied, since D7’
= 0 at cutoff. Thus, det [r5,] # 0 for a QLSE,, o mode at cutoff, a fact confirmed by numerical
evaluation of this determinant for a variety of waveguide geometries.

The requirement for waveguide cutoff of a QLSE,, o mode is thus
det [‘T“(w(.)] = 0. (2.109)

Since det [ry(w.)] # 0, then H, = 0 to satisfy (2.104). This is in contrast to the cutoff of
QLSE,, ,~o modes, for which £, = 0. However, the lowest order modal component of E, E, ,, is
zero for the QLSE,, , mode.
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In addition to the null field features that have already been pointed out for cutoff conditions of
the different waveguide modes, other features are readily seen upon examination of the relationships
developed earlier between the x-directed electric and magnetic fields and the remained field com-
ponents. For waveguide cutoff, the fields can be summarized for different modes:

E,H,H =0
QLSM,, , modes E,, E,, H, # 0

ELE .H =0
Qn[éSoE””” modes E, H., H 0

E,H,H =0

E, H,#0
QLSE,, o modes E =0

Ex n>0 & 0

Once the solution is obtained for a given waveguide mode, i.e., either the cutoff frequency w,
(with 8 = 0) or the propagation term 8 (for a fixed frequency) is found to satisfy the null requirement
of the appropriate determinant, conventional linear algebra techniques [51,62-65] may be used to calcu-
late the eigenvector associated with the full matrix, from Egs. (2.95) or (2.100). With the amplitude
coefficients represented by the elements of the vectors A{™ and D" then known, calculation of the
remaining field amplitudes in all regions may be accomplished in a straightforward manner.

For the purposes of this investigation, the only mode that requires numerical evaluation of the
fields is the dominant mode. Because of practical considerations, only those waveguide geometries for
which the dominant mode is the QLSE; ; mode will be considered. As with any waveguide, the opera-
tional frequency cannot be too close to cutoff because of greatly increased attenuation and dispersion.
These considerations will normally limit the lowest frequency of operation to 15 to 20% above cutoff.
Therefore, the details of the numerical determination of the fields will be given only for the QLSE,
mode at frequencies above cutoff.

Once B is found for any given frequency o > ., i.e., det [T"(w,8)] = 0, the matrix 7" is fixed
and the vectors A,") and D5 may be calculated from Eq. (2.100). Because Ay 2 0 is effectively zero
(since kyo = 0), the full vector A is thus known. The vectors A{) and ch may be calculated
from Egs. (2.6lb) and (2.61¢):

A(——) —_ [Q(-)]—1 Q(+)A(+)
D(+) = [Q(+)] 1 Q )D(—
The remaining amplitude terms of Region 2 may then be found by using Egs. (2.39) to (2.42), with

B = [y " [K,Af7 — 0uBDSP]

B = [y, [K,P ALY — wpBD57]

CP = —[y,l 1 IBAS + wuoK,DSP]

€ = ~lyal ' [BPFAL + wuoKiD{)
F{P = [yl we,BALY — K,DS]

F§7 = [y we,BA5 — K,PFDM]

G = — Iyl [we,KA5Y + DS

G = — [g,] ' lwe,K A" + BPFDSP]
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where the matrix ® is replaced as 8U for @ > w, and the upper (+) symbolism used for =+ K, since
the QLSE; o mode is a (M,E) mode. All of the vector elements may be calculated on a term-by-term
basis in Region 2 since all of the matrices involved are diagonal.

A number of different methods could be used to find the coefficients of the field components in
Region 3 once those of Region 2 are calculated. The method chosen was to first calculate F3 and G;.
From Eq. (2.79¢)

F3 = [9{%]"' M3F{P
while from Eq. (2.79d)
G; = [9§H)]—1M4G2(+).

Determination of F3 and G; requires matrix operations since neither M3 or M, are diagonal matrices.
Since W, = U and Wp = P} for a (M,E) mode, Egs. (2.44) to (2.46) together with Eq. (2.31) will
give

Az= "1—[/3F3 ~ K;Gsl
WEs
D3 = "'[P32]_1[K3F3 + BG:;].

Then Eq. (2.30) may be used to obtain

C; = — [yl [BA; + wpoK;D;]

B; =[y3]7 [K3A3 — wuoBD;).
The elements of the vectors A;, D;, C;, and B; may be calculated on a term-by-term basis since all of
the matrices involved in calculating these vectors are diagonal..

The modal component coefficients of the fields in Region 1 may be found by matching tangential
fields on a term-by-term basis at the air-dielectric interface, x = —x,. With this procedure, terms of
the form

a, cosh (py ,x;) — b, sinh (p; ,x7)

will be encountered where the coefficients g, and b, approach the same value as » becomes large. For
large n, the term p, , is almost proportional to n, thus the cosh and sinh functions increase exponen-
tially with n. With as few as five terms in the series expansion for the fields, significant errors can be
caused by the numerical inaccuracy inherent in the calculation of the difference between two very large
numbers [64]. Such computational errors may be avoided by matching the normal field components at
x = —x,. Using the matrix notation of Eq. (2.53),

0MA, = €, [0PASD — 0§ALT] (2.106)
9{ED, = 057D — 9D (2.107)

where the vector elements 4, Az(ja) and Az(j)) are zero magnitude. Substitution of Eq. (2.61b) into
Eq. (2.106) gives

GI(H)AI — er[QA_)]_l[Q,«i(—)92(+) — Q,<1(+)92(_)]A2(+)-

Subsequent substitution for the matrices Q) and Q" from (2.62) and appropriate commutation of
the diagonal matrices yields

9\A, = €,[01 e, P0{P [65P057 — 6570571 + 6P [P9{Y — PFoT9 V1AL,
But
6:761" — P1o567" = U,
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thus premultiplication by [9{17! yields
A =€ [0 1AM, (2.108)

In a similar fashion, Egs. (2.61c) and (2.62) may be used with Eq. (2.107) to show that
D, = [g§PI"'D{. (2.109)

The results of Eqs. (2.108) and (2.109) could also have been obtained by matching the tangential fields
at x = —x, and using the relationships between the fields from Egs. (2.16) and (2.17) to obtain cancel-
lation of many terms. Such a procedure is straightforward but considerably more detailed than the
method shown.

Once numerical quantities for the elements of A; and D; are found from Egs. (2.108) and
(2.109), calculation of the remaining field coefficients in Region 1 may be accomplished by using Egs.
(2.16) and (2.17) directly:

C, = —[y " BPEA,| + wuK D]
B; = [y |7 K PEA) — wpeBD]
F, = [y, weBA| — KDl

G, = — [y weoK, 1A — BDy].

Since all matrices involved in the calculation of the amplitude vectors in Region 1 are diagonal, the
coefficients may be determined on a term-by-term basis. The magnitude of any field may then be cal-
culated at any point within the waveguide.

The number of terms Ny used in the series expansions of the fields affects the accuracy of the
numerical solution. Numerical calculations for a variety of waveguide geometries indicated rapid con-
vergence of solutions, for both w,. and 8. For all geometries tested, as few as five terms gave solutions
within 0.5% of the numerical value obtained by using many more terms. Convergence characteristics of
the cutoff frequencies for the four lowest order waveguide modes are shown in Table 1 for a typical
waveguide geometry. The convergence characteristics for 8 of the QLSE; o mode are shown in Table 2.

2.3 Peak Power Capacity

The peak power capacity of a waveguide is the maximum microwave power the waveguide will
carry without arcing due to the large electric fields within the waveguide. The power level at which arc-
ing occurs is referred to as the peak power breakdown level. The specified peak power capacity for
some waveguides may include a safety factor; however, for purposes of this investigation the peak
power capacity and the peak power breakdown level will be considered as equal unless otherwise noted.

The time-averaged power transmitted across any closed surface S is [40,41]

=2 Re [[ ExH"-as.

The coordinate system used in Section 2.2 will be used here also, with the waveguide axis in the a,
direction. Propagation again will be assumed to be in the positive &, direction. The surface of integra-
tion is thus the interior cross section of the waveguide of Fig. 3, and with dS = a,dxdy, then

(E x H*) - dS = (E H} — E, H¥)dxdy.
Advantage may be taken of the waveguide symmetry to limit the integration to the left half if a factor

of 2 is included in the power calculations. The surface integration will be separated into three regions
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Table 1 — Convergence Characteristics of Cutoff Frequencies
for Different Modes

Waveguide geometry parameters:

a=10Q254  s=02(0.51)
b=04(1.02) =04 (1.02)
d=015(038) ¢ =40

Dimensions are in inches (cm)

Mode Cutoff Frequency in GHz

N7 | QLSE; | QLSE;o | QLSE,; | QLSM,;
1 2.4528 9.6587 | 14.3651 | 12.3792
2 2.2497 8.8459 | 14.8782 | 12.3141
3 2.2478 8.8425 15.0177 | 12.3065
4 | 22392 8.8062 | 15.0146 | 12.3058
5 | 2.2353 8.7911 15.0555 | 12.2996
6 | 2.2352 8.7903 15.0611 | 12.2996
7 | 2.2329 8.7808 | 15.0667 | 12.2983
8 | 2.2327 8.7800 | 15.0782 | 12.2967
9 | 22321 8.7776 | 15.0776 | 12.2979

10 | 2.2313 8.7747 | 15.0831 | 12.2959

11 2.2315 8.7748 | 15.0862 | 12.2955

12 2.2310 8.7729 | 15.0862 | 12.2955

13 2.2308 8.7722 | 15.0899 | 12.2949

14 | 2.2308 8.7720 | 15.0903 | 12.2948

15 2.2304 8.7706 | 15.0915 | 12.2946

16 | 2.2304 8.7706 | 15.0935 | 12.2943
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Table 2 — Convergence Characteristics of Waveguide Parameters
for QLSE; o Mode

Waveguide geometry parameters:

a =10 (2.54)

b =04 (1.02) t=0

d=0.15 (0.38)

Dimensions are in inches (cm)

Frequency = 3.5 GHz

s = 0.2 (0.51)
4 (1.02)
€, =40 tand=10"*

Copper Walls

QLSE, ¢ f. = 2.23 GHz

Nr | B (/em) Pil;j:f C}Ew;l sz:ze:ll'( %E&n)z (dB/C:nceter) (dB/?rfeter)
1 365.89 6009.4 7195.8 0.1791 0.0818
2 395.17 2863.4 8984.8 0.1806 0.0768
3 395.48 2841.2 8957.5 0.1858 0.0768
4 396.65 2833.8 9120.1 0.1885 0.0766
5 397.18 2837.0 9187.4 0.1902 0.0765
6 397.21 2835.1 9188.9 0.1916 0.0765
7 397.54 2830.4 9221.6 0.1929 0.0765
8 397.56 2831.2 9225.3 0.1935 0.0765
9 397.61 2828.7 9232.6 0.1946 0.0765

10 397.54 2828.0 9242.6 0.1951 0.0765

11 397.54 2838.3 9242.0 0.1957 0.0765

12 397.76 2826.4 9248.7 0.1964 0.0765

13 397.81 2826.6 9250.9 0.1966 0.0764

14 397.81 2826.1 9251.5 0.1970 0.0764

15 397.84 2825.4 9255.6 0.1973 0.0764

16 397.84 2845.4 9321.3 0.1963 0.0768

Notes:

(1) Power for breakdown at air-dielectric interface
(2) Power for breakdown in dielectric
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to conform with the region definition shown in Fig. 4. Since the expressions developed for the
transverse fields E,, E,, H,, and H, are real, the power carried by the waveguide is

3
P=2 ZP' (2.110a)
i=1
with
_1 0 @ W g
P = ?fo;[ExIHy' — E HO) axdy (2.110b)

where the i subscripts and superscripts denote the particular region and with the appropriate integration
limits for each region.

The only propagating mode for which power breakdown is of interest for this investigation is the
dominant, or QLSE, o mode. For this mode, in each region the nth modal component of E, and H,
has a y-dependence given by sin (2nwy/h), while the nth modal component of E, and H, has a y-
dependence given by cos (2nay/h), where h is the height of the region. Because of the orthogonality
of these functions, the cross products generated by substitution of the series representation for the
fields will vanish when the y integration is performed. Thus the expression for the power in each
region may be reduced to

=1 W _ g0
Py = 2 ;fwfy (EcnHyn — By dxdy (2.111)

where the »n subscript on each field quantity denotes the nth modal component for that field. For the
dominant mode, the lower limit on » in the summation is zero. The upper limit is theoretically infi-
nite, as in the analysis to determine the propagation characteristics; but as in the latter analysis, the
number of terms must be truncated at some finite value for a numerical solution. The number of
terms that can be used to find P; is obviously limited by the number of terms Ny used in the propaga-
tion analysis, and for power breakdown calculations will be set equal to Ny. The effect of the series
truncation on power breakdown determination will be discussed after the mathematical development
has been completed.

In Region 1, substitution of the series representation for the fields from Eq. (2.12) into Eq.
(2.111) gives

N, /2 /2
P, = % > (APl f_m sin?nary/b)dy — By, Dy n 1% f_m cos?Qnmy/b)dy
where
Jee = f_xz cosh?[py , (x + x)]dx
1,n —x1 1,n
and
$S 2 2 2
£, = f-xl sinh?[p; , (x + x))/pi, ax.
The mathematical identities
cosh?d = (cosh 20 + 1)/2 (2.112a)
sinh?9 = (cosh 26 — 1)/2 (2.112b)

may be used to evaluate /{, and I, as
= {cosh [p; , (x; — x1 sinh [p; , (x; = x)V/ by, + O = x)}/2
= {cosh [p; , (x; — x3)] sinh [p; , ¢y — xDV/py, — () — x)}/2 P2,
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After the y integration is performed, the expression for P; becomes

bB,0D1,0

P1=_—-‘2—‘— fo 4 Z(AlnFlnlln—BlnDlnlln) (2.113)

In Region 3, substitution of the series representation for the fields from Eq. (2.25) into Eq.
(2.111) gives

Ny

d/2 df2?
)y AsuFsulSy [, sin?@nmy/d)dy = Bs D315,

P3 cos’!Qnmy/d)dy

1
2
where

X3 . 2 2
18, = [, sinklps, (x = x)V/p3, dx
and

X
15, = 7 cosh?lpy , (x — x)lax.

The mathematical identities given in Eq. (2.112) may be used to evaluate 1%, and I, as

$, = [cosh (p3 ,x3) sinh (p3 ,x3)/p3, — x31/2p3,
= [cosh (p3 ,x3) sinh (p3 ,x3)/p3., + x31/2.
The y integration will then yield
dB;30Ds d ¥

P3=—'—'—;2——’—1a +"" E(A3nF3nI3n_B3nD3n13n) (2114)

In Region 2, the series representation of the fields from Eq. (2.35) is more complicated than in
Regions 1 and 3, and substitution into Eq. (2.111) will give rise to additional terms:

Pr= 5 NSRS, + AP, + AR + Al FED s, f sin(2nmy/b) dy

nMN

19
2
~ [Bf) DI, + B DI IS, + (BS) DS + B DEN 1%, f o2 cos’ 2nmy/b)dy

where

0
%, = f_x2 cosh?(p, ,x) dx
0 fate2 2
5y = f—xz sinh*(p, ,x)/p3 , dx

0
If, = f—x2 cosh (py ,x) sinh (py ,x)/ s, dx.

Again, using the identities given in Eq. (2.112), the hyperbolic integrals may be evaluated as
= [cosh (p; , X)) sinh (py ,x2)/p,,, + x51/2
= [cosh (p, ,x,) sinh (py ,x2)/ Py, — x21/2p%,
¢, = — [sinh (py,x3)/ Py ,1%2.
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After performing the y integration

Py=- —[B{*@)Dz‘ IS5y + BSP DS I$y + (BS' DY + BiY DIP)I,)
b @i @ pm _ pop CF =) p )
+ 7y Y (45 Fay) — By DI, + (A7 - By D311,
n=1
+ (455 (—) (+) + A (+) B(—)D(+) Bz(j;)Dz(,_n)]Iifn

(2.115)

Calculations using Eq. (2.115) directly will cause numerical errors when the number of terms Ny in the
series expansion for the fields is large. These errors arise because Eq. (2.115) requires taking the
difference between two very large numbers, analogous to the situation when calculating numerical
values for the modal amplitudes in Region 1 as discussed in Section 2.2. Such numerical accuracy
problems may be avoided in this case by using the elements of the Q matrices from Eq. (2.62) to

reduce the expression given in Eq. (2.115). Using the notation of Eq. (2.54), with

5% = cosh (p; ,x,)
857 = sinh (py ,x2)/ p2,,
then
155, = (853657 + x,)/2
155, = (653053 — x,1/2p3,,
If, = — 05172
In Eq. (2.115) the notation

dfF = AEMD IS + AGIFS)IS, + [A5) 3 + AN FE,
and
$2 = B DI, + BG)DS) IS, + [BS;) DY) + B DS,
will be used for all values of n. Substitution of Egs. (2.116) into (2.117) will yield

¢ = x2[A ) (+) (--)1.",2(”)/‘&,2 n]/2

+ 657 Fz‘;’ (953455 — 05451/2 + 057 F) 650 A 03, — 053

From Eq. (2.61b)
0iRASY = 0487
thus,
05545 — 0530457 = (065 — 0 e Naf/0f)

05 A5 p3, — 0530453 = 100653 3, — 040N AL Q47
From Egs. (2.62a) and (2.62b)
041 = e.nt0(5657 + p3,6(657)

) = e,p 005057 + 0(of3)
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where 0£) and 6% are given by Eq. (2.53). Substitution of Eq. (2.121) into Egs. (2.119) and (2.120),
with proper rearrangement of terms and use of the mathematical identity

cosh?— sinh% = 1,
will yield
02(:0;’)[42(:;) — 02(—)A —) = 9(11') 2(:|;1)/QA(._n)

05545/ p3, — 050457 = €,02,0(0 453/ [p3,047).]
Thus, ¢#'4 may be expressed as
o= —[xzu DFLD — A FE 93] + 015 AL 010 FLY) +e,pﬁnel‘ﬁ’Fz‘;,’/p%.nI/QA‘TJ]- (2122
In a similar fashion, substituting Eq. (2.116) into Eq. (2.118) and using Eqgs. (2.61c), (2.62¢c), and
(2.62d) will yield
¢ZBD > {Xz[B (+) (+) — Bz(,_n)Dz(,—n)/Pzz,n] + 92(;,)D2(;,) [91(5')32(:'-) + 91(11)32( n)/pZ ”]/Q(+)] (2.123)

The expression for the power in Region 2 then becomes

Py=— _-¢, D 2 4 Z(¢ FD). (2.124)

If in both Egs. (2.122) and (2.123), the quantities 91“,{) and 62 are calculated as
0L = exp [p; , Gy — x)I{1 + exp [=2p; , (e} — x,)1}/2 (2.125a)
0{8 = exp py,, Gy — x) U1 — exp [=2p;, (x) — x)1}/2p1, (2.125b)

and the common exponential term taken outside the brackets, the numerical computation does not
require taking the difference between two very large numbers.

Calculations in all regions must consider the sign of p,-?,,. For those modal components where p,-?,,
is negative, the hyperbolic functions may be replaced by their trigonometric counterparts with

=~/—p?, for p?, < 0.

The power being carried by the waveguide, as calculated from Eq. (2.110) together with Egs.
(2.113), (2.114), and (2.124), is dependent on the magnitude of the (arbitrary) normalization constant
used in solving for the eigenvector of amplitude coefficients in Eq. (2.100). Since the waveguide is a
linear device, the power is proportional to the square of the electric field magnitude. Using a zero sub-
script to denote numerical quantities corresponding to the eigenvector normalization,

P/|E|2 = Py/|E,|? (2.126)

for a given waveguide geometry and fixed frequency. The equality is valid for the electric field at any
point and in any direction as long as E and E; are similarly defined.

Peak power breakdown in the dielectric loaded ridged waveguide of Fig. 3 will occur when either
(1) the maximum electric field in the air region exceeds the electric breakdown strength of air, ££2, or
(2) the maximum electric field in the dielectric exceeds the electric breakdown strength of the dielec-
tric, E88uic- In any complete rigorous analysis, such as this approach with an infinite number of
terms in the series expansion for the fields, a singularity in E will be found at the corners of the ridge
[11,14,66]. Any ridged waveguide with perfectly square ridge corners would, in theory, break down at
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vanishing small power levels. However, if the corners of the ridge are slightly rounded, as is done in
practice [11], the E fields remain finite. The ratio of the maximum electric field intensity at the ridge
corners, E, to that at the center of the ridge, E,, is then a function of the corner radius [11]. Peak
power breakdown will occur in the dielectric when E, > EZB..... Different dielectric materials have
different breakdown strengths which in general will be dependent on several variables such as dielectric
thickness and moisture content [25,26]. Rather than introduce additional parameters, the power break-
down aspect of this investigation will make the following assumptions unless otherwise noted: (1) the
breakdown strength of the dielectric is 10 times that of dry air, and (2) the E,/E, ratio is 2.5. The
basis for the first assumption is the dielectric strength of polystyrene, with £82 = 700 volts/mil [25].
Other dielectrics such as polyethylene have substantially greater breakdown strengths [26]. The basis
for the second assumption is the article by Hopfer on ridged waveguide [11] which shows a ratio of 2.5
for E/E, to be a conservative value. For most configurations of the dielectric loaded ridged
waveguide, air breakdown will occur at a much lower power [evel than that for breakdown in the dielec-
tric, and the exact values of E,/E, and EZB. ... will not be relevant. If the waveguide is such that the
actual value of either of these two parameters is sufficiently different from the assumed values--larger
E,/E,. or smaller E5...ic —so as to result in dielectric breakdown at a lower power level than that for
air breakdown, appropriate corrections must be made for power breakdown.

At all points in the waveguide, the axially directed electric field E, is small in comparison with the
transverse electric field Ex, where Er = a, E, + a, E,, for the dominant, or QLSE; o mode at frequen-
cies above cutoff. Since E, is in phase quadrature with £, and E,, the maximum electric field will lie
in the x-y plane. At the center of the waveguide £, is zero for the QLSE; g mode because of the effec-
tive magnetic wall at that plane; thus, the maximum electric field will be lEylmax. From Egq. (2.25b),
E, at the waveguide center is

Ny
Eylyex,= 3 B3, cos Qnmy/d).
n=0
Since the coefficients Bj, are a function of frequency and waveguide geometry, no rigorous procedure
is available to find the maximum in terms of a general function of the coefficients. Investigation of
numerous configurations, however, has shown the coefficients to alternate in sign. At the ridge sur-
faces, y = +d/2,
Ny
Ey|x=xJ = 2 VL B3,n;
n=0

thus, the maximum value of E, occurs at the ridge. Calculation of £ as

N,
E = 2 !B3‘,,| 2.127)
n=0
must then be a worst case condition since
|E, (x = x3)| < E, (2.128)

where the equality in Eq. (2.128) is valid at y = +d/2 for all of the many waveguide geometries that
were checked. The maximum electric field within the dielectric will then be taken as 2.5 E, with E,
calculated from Eq. (2.127). The peak power level for dielectric breakdown is thus

(10 EEP)?p,

P(Iliié)leclric = Thevln 12
[2.5%]8;,1]
or
N, 2
Pgi?lectric =16 (E'fif'))zpo/ 2 |B3,nf (2.129)
n=0
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where the coefficients Bs , are the same used to calculate the normalized power Py. Unless otherwise
noted, the value for air breakdown will be taken [11,25] as

EBD = 30,000 volts/cm. (2.130)

In the air region, the maximum electric field will occur at the air-dielectric interface, x = —x, in
Fig. 4. At this plane, the fields are found from Egs. (2.12)
Ny
Ex|x=_,‘2 = Y 4,,cosh [py,(x; — x)] sin Qnwy/b)

n=1

Ny
EJ,I,‘=_X2 = 21 By, sinh Ipy , (x; — x)1/py, cos Qnmy/b).
s

The magnitude of the transverse field is
[Er| = (B} + EDHV2.

Investigation of several waveguide geometries showed the point of maximum IETl to occur at varying
distances from the horizontal plane of symmetry at y = 0, depending upon the thickness of the dielec-
tric piece and the ridge gap. For large (+ — s)/d ratios, the maximum occurs at y = 0; as this ratio
decreases the point of maximum lETl approaches y = d/2. Such behavior is to be expected when the
fringing nature of the fields due to the ridge is considered. To determine the maximum electric field in
the air region, |E;| was calculated at x = —x, for 33 equally spaced points for y, from y = 0 to
v = d/2, with [Ez| . taken as the maximum of these values. The peak power level for air breakdown
is thus calculated as

PED = Po(EEDYY|E |2 (2.131)

where the coefficients used to find |E |,y are the same used to calculate the normalized power Py.

Of course, the peak power capacity of the waveguide is the lesser of the two breakdown power
levels, P22 or P3D...ic. As mentioned earlier, the power capacity will be limited by air breakdown for
most of the configurations investigated. The distinction will be made apparent for those conditions
where breakdown is in the dielectric rather than in the air.

Convergence characteristics of the numerical values calculated for power breakdown, both in air
and in the dielectric, are shown in Table 2 for a typical waveguide geometry. While the calculated
values for power do not converge as rapidly with increasing Ny as do the values for f, or 8, as few as
four terms in the series expansion for the fields will generally yield a value within *+2% of that
obtained using many more terms.

2.4 Attenuation Calculations from. Perturbation of the Lossless Condition

Up until this point, the waveguide of Fig. 3 has been assumed to be lossless, with the complex
propagation constant v = a + jB having the loss term « equal to zero. This is a conventional assump-
tion made when deriving the propagation characteristics of low loss transmission lines such as
waveguide [1,2,16,41]. Of course, any physical transmission media has some finite loss. If the
transmission loss is small, the conventional approach to theoretically determine the loss term is to
assume that the perturbation of the actual (lossy) fields from the fields of the lossless condition is
negligible. The lossless field distribution, together with parameters such as the conductivity of metallic
conductors and the loss factor of dielectric materials, is then used to calculate the loss term {1,2]. Such

an approach will be used to calculate the loss of the dielectric slab loaded ridged waveguide of this
investigation.
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For this attenuation analysis, the axis definition of Fig. 4 will be used and propagation in the posi-
tive a, direction will be assumed. Each of the fields of the waveguide will vary as exp (—az), thus the
power will vary as exp (—2az). If the power flow at a point zy is Py, the power flow at a point incre-
mentally removed from zg, zg + Az, is Py exp (—2aAz). Thus,

P(Z = Z()) - P(Z = zy+ Az) = Po[l — eXp ('— 2aAZ)]
If the increment Az is small,
P(z=1zp) — P(z=1zy+ Az) = W Az

where W, is the power lost per unit length of the waveguide. Thus,

Pyll — exp (— 2aAz)] = W, Az
and if the series expansion
exp (—x) =1 —x + x¥/2! — 331+ ...

is used for the exponential term, then in the limit as Az approaches zero

a= W, /2P, (2.132)

For the purposes of this investigation, the power loss will be attributed to two factors only: (1) the
imperfectly conducting metal walls of the waveguide, and (2) the finite resistivity of the dielectric
material used in the center region of the waveguide. Such additional factors as radiation loss are not
applicable. Loss in the air dielectric region will be neglected.

The power per unit length dissipated in the waveguide walls is given by [1,2]

R
W, = 7‘56c|Jsl2d1 (2.133)

where J, is the surface current density and R, is the surface resistivity of the metal. The contour
integration is clockwise around the waveguide boundary. The surface current density is assumed to be
that of the lossless waveguide, with [40,44]

Js=n xH

where n is the unit vector normal to the conducting surface. Thus,

I 2= H,?

where H, is the tangential component of magnetic field at the surface. The surface resistance R; is
(2,451

R, =rfulo

where f is the frequency in Hertz, u is the permeability of the metal (usually u = u¢), and o is the
conductivity of the metal. The attenuation due to conductor losses then becomes

~ R, 1, Pa
o, = 4P, .

The power flow Py in the waveguide has already been derived in Section 2.3 and will not be repeated
here.

(2.134)
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Advantage will be taken of the field symmetry to calculate the conductor losses. Defining the fol-
lowing surfaces of Fig. 4 as

S, x=-=x,=b/2< y < b/2
Sy —x; L x £ —x3,y=b/2
31 —x < x<0,y=105/2
Sy x=0,d/2<y < b/2

S51 0

N

X<X3,y=d/2

and letting Wc(i) be the corresponding power per unit length dissipated at each surface, then

W, =20 +4w® + wS + wH + wH), (2.135)
On the surface S,
R. b2
ARE [|Hy<1)|2 + 1HOW, .
—b/2

Substituting the series expansion from Eqgs. (2.12) for the fields " and H " gives
N N, b/2
wo = = [Fl 2 Fi mf o2 sin Qnmwy/b) sin Qmmy/b)dy

nOm

b/2
+ G1,Gi;m f_m cos 2nmy/b) cos (2m7ry/b)dy].

Because of the orthogonality of the y-dependent functions on the interval —b4/2 < y < b/2, the last
equation reduces to

*12G3, + 2 (F2, + G? ,,)] (2.136)

n=1
On the surface S,

R —X
W = _2_3 f_x12[|Hx(1)|2 + |Hz(1)|2]y= b/2dX.

Substitution of the series expansion from Egs. (2.12) for H, M and Hz(” then yields
N, N,

W = ‘5— 2 3 DD Dy b nm + G CGrom im]
n=0 m=0

where the x integration is that for Region 1, with

-x, sinh [p; ,(x + x)] sinh [p; ,, (x + x))]
l"l nm = f ? pl ! L pl =z L dx
Pin Pl

and

U = f_;lz cosh [py , (x + x)] cosh [py , (x + x1)]dx.
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These two integrals may be evaluated as

USm = {cosh [py, (x; — x)] sinh [py ,, (x; — XV 1w

— cosh [py,, (x; — x9)1 sinh Ipy , Oc; — x)V/p M Wi, — DEw) for n = m
U m = lcosh [py , (xy = xx)] sinh [py,,, Gy — %)V py , — Gey ~ )V 2pE, for n=m
U {m = {pL, cosh [py,, Oy — x9)1 sinh [py, (x; — x)V/ p1,
— pi, cosh [py , (x; — xp)] sinh [py,, Oy — XV 1l E, — PEw) for n = m

Uiy = {cosh [py , (x; — x)1 sinh [py , ¢y — x)V/py, + (x) = x)}/2 for n = m.

On the surface S

R 0
Q) _ s, 12 )12
wo == [ 1221 + 14, i]y=b/2dx.

Substitution of the series representation for the fields H,? and H? from Egs. (2.35) gives

R N NZ , _
w9 = B 3 % comenlugs, DD + 657683) + v (D21 + G013
n=0 m=0
+ (DI DI + GG + win [ DIDDE) + G Gz‘;,z]} (2.138)
where the x integration is that for Region 2, with
0
Y5 = f_x cosh (p; ,x) cosh (py ,x)dx
Uionm = f , cosh (p2,nx) sinh (py ,x)/ py, pmdx
ll’Z m = f COSh (pZ mx) sinh (p2 nx)/pZ n
_ J-D smh(pz .X) sinh (py, ,,,x)
P2.nP2m
After integrating with respect to x, these integrals are found to be
'J’2 mm — {pZZ,nCOSh (pZ.me) sinh (p2.nx2)/p2.n
— p?.m cosh (py ,x3) sinh (py, x2)/ Py W (P2, — PE) for n = m (2.139a)
U, = {cosh (py,,x7) sinh (py,x2)/ Py, + X3}/2 for n = m (2.139b)
l[lz = {COSh (Pz,,,X2) cosh (pz‘,,,xz) -1
sinh (p, ,x,) sinh (p; ,x7)
— pin Zulak 2072 ) (pd,— i) for n # m (2.139¢)
p2,np2.m
Y$%m = {1 — cosh?(p, ,x)}/2p3, forn=m (2.139d)
Y355, = {1 = cosh (p;,x;) cosh (pj,,x,)
sinh (p, ,x,) sinh (py X))
+ Pl Bac? 22N | (03— PRa) for n % m (2.13%)
p2,nﬂ2,m
$5m = (1 — cosh?(p, ,x,)}/2p3, forn=m (2.139f)
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(’fZ nm = {COSh (pZ.nXZ) sinh (p2,mx2)/p2,m

— cosh (py ,xy) sinh (py ,x)/ 3., )/ (0}, — PEm) for n = m (2.139g)
U 35m = {cosh (py,x7) sinh (py ,x5)/ Py, — x5}/ 203, for n = m. (2.139h)
The loss per unit length on the side of the ridge wall, or surface Sy, is
R /2
@ s )2 @12
W= fb/z [IHy 12+ |H@| ]x=0 di.
The series representation for the fields may be substituted from Egs. (2.35), and since dl = — dy
because of the clockwise contour integration
R S Ny Ny
W(4) —_ 5 z 2 F(+)F(+)¢ Z z (+) G(+) "m (2.140)
n=1 m=1 2 n=0 n=0
where
Ss b/2 1 M
5 = fd/2 sin Qnwy/b) sin Qmwy/b)dy
b/2
su=J, cos @Qnmy/b) cos Qmmy/b)dy.
These trigonometric integrals are evaluated as
5 = Zd{sinc[ﬂ-(n + m)r] — sinclw (n — m)rl} forn = m
3 ={b—d+dsincQnmr)}/4 forn=m
fo o= — Zd{sinc[vr(n + m)r] + sinclr (n — m)rl} for n # m
¢ ={b~d— dsincQnnr))/4 forn=m=0
< =(b—d)f2 forn=m=0
where r is the height ratio, r = d/b.
Finally, on the surface S;
R X3
65 _ s 2 2
W, > J, [IHXI + 1, ,
Substitution of the series representation for the fields from Eqs. (2.25) will yield
R Ny N,
W(S) = 5 Z 2 (=pntm {D3 nD3 m¢3 am + G3 nG3 m 'J}3 nm} (2.141)
n=0 m=0

where the x integration is that for Region 5, with

Ui, = f cosh [p3,, (x — x3)1 cosh [p; , (x — x3)]dx

_ fx3 sinh [p3, (x — x3)] sinh [p3,, (x — x3)] i

VER
i P3.nP3.m
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These hyperbolic integrals are easily evaluated as

U55m = {(p3, cosh (p3 ,x3) sinh (p3 ,x3)/p3 ,

— (p},, cosh (p3 ,x3) sinh (3, x3)/ 3.l B30 — DF ) for n # m (2.142a)
Y5m = {cosh (p3 ,x3) sinh (p3 ,x3)/p3, + x3}/2  forn = m (2.142b)
W3%m = {cosh(ps ,x3) sinh (p3 ,,x3)/ P31

— cosh (p3 ,x3) sinh (p3 ,x3)/p3 .}/ (0}, — P} ) for n &= m (2.142¢)
$35m = {cosh (p3 ,x3) sinh (p3 ,x3)/p3,, — x3}/2p}, for n = m. (2.142d)

On the four surfaces where the double summation is required to obtain the loss, the contributing
factors are symmetric; i.e., on each surface the loss term for n = i, m = k is the same as the loss term
for n = k, m = i. This fact is easily shown by examination of the various integration terms and may
be used to reduce the number of computations required for numerical solutions. Having obtained the
loss per unit length W, on each of the five surfaces S; the total conductor loss per unit length W, is
found from Eq. (2.135), and the attenuation due to the finite conductivity of the metal walls is

a. = W, /2P,.
Of course, the set of modal component coefficients used to calculate W, must be the same as that used
to calculate Py as outlined in Section 2.3.

Any physical dielectric will absorb some energy when placed in a time varying electric field. In
addition to conduction loss due to finite resistivity, there are a number of mechanisms which will gen-
erate loss in an imperfect dielectric [2,26,40]. The physics of dielectric loss is outside the scope of this
investigation. The effects of such phenomena on the microwave properties of the subject waveguide
may be included by expressing the dielectric constant as

e=c¢ — je" (2.143)
where €’ is the a—c capacitivity and all loss mechanisms are included in the dielectric loss factor €”
[41]. A commonly used alternative expression to Eq. (2.143) is

€= el exp (—j8p)
where 8 is the dielectric loss angle. Thus,
€/e’'=tan 8p (2.144)
where tan 8§p is the dielectric loss tangent of the material. Good dielectrics have values of tan 8§p in

the 10~ — 10~ range [25,26].

For macroscopic properties, an equivalent conductance representing all losses in the dielectric [2]

T, =wE .

The power loss in the dielectric is given by

Po=[[[ e IE lav.

volume

The power loss per unit length along the z-axis due to imperfect dielectric is thus

We=2= [ f (E I+ |E 12 + |E P ax ay (2.145)
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where the surface integration is over the dielectric portion of the waveguide. Advantage may be taken
of the waveguide symmetry to give

W, =22 + wP) (2.146)

where W(z’ and Wd‘” are the power loss per unit length in Regions 2 and 3, respectively, of Fig. 4.
de and W(” are calculated from Eq. (2.145) using the fields and integration surface of the
corresponding region. In each of the two regions, the integration in (2.145) may be done term-by-
term, with

Wa_(i) - Wd(r; + Wd(,l,g + Wd(‘z) (2.147a)

for i = 2, 3, where

0 = we” W |2
Wi = 2 fsf |EP [2dx dy (2.147b)
for p = x, y, z. Substitution of the series representation for E? from Eq. (2.35a) gives

(2) b2 (+)
Wil = —5— f xz f 5/ Z[A cosh (py ,x) + A53) sinh (py ,x)/p2.,] sin Qnmy/b)

N,
{ 2 cosh (py ,x) + A55) sinh (py,,x)/ Py, sin (2m7ry/b)]dx dy. (2.148)

Since the functions sin (2nwy/b) and sin 2may/b) are orthogonal on the interval —b/2 < y< b/2,
the y integration will eliminate cross products of the different modal components and Eq. (2.148)
reduces to

N,
Wd( = .g. 2{{ (+)]21 + 2A (—) 5, + (A4 (+)]215§n]

where the x integration terms 15, I, and I¥, are the same as those used in the power analysis of
Section 2.3, and the same as W55, ¥3%, and ¢3%,,, respectively, of this section with » = m and are
evaluated in Eqs. (2.139b), (2.139f), and (2.139h).

The development of W2 and W,2 is similar to that for W 2. With substitution of the series
representation for the fields from Eqgs. (2 35b) and (2.35¢) into Eq. (2.147b)

Wi =5 2(1+6,,o>[[3 1205, + 2B BSS) 5f,.+[Bz(.7312155n]

n=0

w2 = 2 3 2 (eI, + 205 s, + [02;2]215{"].

In Region 3, the calculation of W/ is similar to that for W/® in Region 2. Using the series
representation for the fields in Region 3 from Eq. (2.25) gives

n N2
we d
Wi = 5 St

W) = 2 5 2(1 + 8,0 BE, I§
n=0
N
" d 2
Wd(.?z) = 9—;—_—2— 2C32n gc‘n
n=1
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where the x integration terms I$, and I5, are the same as those of Section 2.3 and the same, respec-
tively, as ¢35, and 5%, of this section with n = m, and are evaluated in Eqgs. (2.142b) and (2.142d).

Once the full loss per unit length W, due to the imperfect dielectric is found from Egs. (2.147)
and (2.146) the dielectric attenuation constant is then calculated as

ay = W,/2P, (2.149)

where the amplitude coefficients of the fields are the same for numerical evaluation of both W, and Py.
The total loss per unit length of the waveguide is W, + W, thus the total attenuation factor due to
conductor losses and imperfect dielectric is

a=a, +a, (2.150)

Each of these attenuation terms is in nepers/unit length. To convert to the more conventional
engineering terminology of dB/unit length, the relation is

exp(_2a”epz) J— 10—(ad32)/10

where «,,, = nepers/unit length and « 45 = dB/unit length, thus
o g = 20a,,,/In10

or
Qg = 8.686a,,e,,.

In calculating numerical values for both «, and a4, large errors may result when the number of
terms Nr in the series expansion for the fields is large. This is due to the computational difficulty
encountered for numerical evaluation of factors such as

a, cosh (p,x) sinh (p,x) — b, cosh (p,x) sinh (p,x) (2.151)

when the hyperbolic terms are very large. Accuracy problems were found to be particularly trouble-
some when evaluating the quantity Wc(” for determination of «, and the quantity Wd(” for determina-
tion of ;. To avoid errors caused by such computational limitations, (2.61) and (2.62) may be used to
reduce the various terms in the double summation equations to expressions where factors like those of
Eq. (2.151) are not present. Such a technique is similar to that used in Section 2.2 for calculation of
the coefficients 4, , and Dy ,.

Convergence characteristics for the attenuation terms o, and «, of the QLSE; y mode as a func-
tion of Ny are shown in Table 2 for a typical waveguide geometry.

2.5 Computer Program Implementation

The mathematics of the theoretical analysis developed in the preceding sections of this chapter
was incorporated in to the computer program DLDRWG to calculate numerical solutions for the dielec-
tric loaded double ridged waveguide. Appendix E2 lists this program. The program is written in
FORTRAN-10 and is designed for use on the DEC-10 timesharing computer.

Input parameters required for the program are the five physical dimensions (in inches) and the
relative dielectric constant of the dielectric material (Fig. 3). The waveguide mode for which a solution
is sought must be specified, as well as the number of terms Ny to be used in the series expansion for
the fields. The cutoff frequency of the particular mode must be found first, then if desired the propa-
gation term 8 may be found for any frequency @ > .. When solving for a root, either w. or 8, two
modes of operations are available. The first is a search mode, for which the user must provide start,
stop, and incremental values of the unknown quantity. This mode enables examination of the deter-
minant value as a function of the unknown parameter and is useful to distinguish sign changes of the
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determinant due to poles from those at the zeros (roots). The second operational mode is an automatic
seek mode to find any root between specified limits. The seek mode uses a combination of the binary
search method and Newton’s method to obtain the root [64,65]. Because of the wide variation in the
magnitude of the matrix determinant, the criterion used for root determination was that the unknown
variable, w, or 8, be within 0.001% of the actual determinant zero.

The program will calculate attenuation and power breakdown levels for the QLSE,, mode only.
If numerical values for these characteristics are requested, the user must supply additional parameter
information: (1) the conductivity of the waveguide walls, normalized to that of copper; (2) the loss
tangent of the dielectric materials; and (3) the electric breakdown strength, relative to that of dry air, of
the dielectric material.

The program will also supply, if desired, the modal amplitude coefficients for the fields in each
region of the waveguide.

In addition to the waveguide configuration of Fig. 3, program DLDRWG will provide numerical
results for waveguides in which the dielectric width ¢ is less than the ridge width s as shown in Fig. 5.
The mathematical development of an analysis for such a waveguide geometry closely parallels the
development presented for /2 s, but the details wili be omitted since the primary objective of this
investigation concerns large power breakdown levels. The waveguide of Fig. 5 obviously is not
appropriate for high peak power operation because of the large electric field intensity that would be
present at the sides of the dielectric material.

T Z
by 7

l < t >

<— 8 —>

< a .

Fig. 5 — Dielectric loaded double ridged
waveguide with t < s -

Numerical solutions for dielectric loaded single ridged waveguide, Fig. 6, may be obtained with
this theory by considering the waveguide as the top half of a dielectric loaded double ridged waveguide
operating in a (M,E) or (E,E) mode, i.e., with an effective electric wall at the horizontal plane of sym-
metry. The modes of the waveguide of Fig. 6 thus would be the QLSE,, , and QLSM,, , modes, with
n restricted to even integers, of the waveguide of Fig. 3 where all vertical dimensions of the latter
waveguide are double those of the single ridged waveguide. The attenuation calculations for the double
ridged waveguide, however, would not be valid for the single ridged waveguide.

Theoretical results obtained using program DLDRWG are presented in Fig. 7 for a typical dielec-
tric loaded double ridged waveguide. Cutoff frequencies for the four lowest order waveguide modes are
shown, while the power breakdown and propagation characteristics of the dominant QLSE; o mode are
plotted as functions of frequency. As with any waveguide, the phase term B8 and the power breakdown
rapidly drop to zero as the frequency approaches cutoff, while the attenuation terms a. (conductor
loss) and «, (dielectric loss) each display a minimum value as a function of frequency.
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// /

Fig. 6 — Cross section of dielectric loaded single
ridged waveguide

Waveguide Parameters Mode f.(GHz)
Dimensions !n Inches {(cm)
500 a=0.6 (1.524) QLSE 1,0 3.7 BW=4.68
B 1200 b=0.36 (0914) QLSE, o 16.03 10
B d:0.09 (0.229) QLSE ', 2376 1"
1 s=0.1 (0.254) QLSM,, 14.83
: t= 0.2 (0.508) '
400 — 1000} | €=40 Jos
€ - 2
L z 3
e *800- 3
» 300 [~ . 4062
g a g
— o c
a €600 [ g
200 |- I 3
! Notes: (1) Copper Waveguide -~ 047
400t | (2) Tand=16"* ]
100
- 0.2
200 °
ol ol 1 Ldo
3 4 6 8 10 12 14 16 b

Frequency (GHz)

Fig. 7 — Typical waveguide characteristics for QLSE,; o mode

2.6 Comparison with Other Theory

Numerical results obtained from the theory presented in this chapter were compared with results
obtained from other sources. For the reduction of the waveguide of Fig. 3 to empty rectangular
waveguide, i.e., d = b and €, = 1, the results obtained from program DLDRWG —cutoff frequencies
and propagation characteristics for all modes, as well as attenuation and power breakdown values for the
dominant TE;, mode—were identical to results obtained from conventional theory [1,2,41,42,67].
With the waveguide of Fig. 3 reduced to dielectric slab loaded rectangular waveguide, d = b, the results
of this theory again were identical with other published results [3,18,20,23,68,69]. Such favorable com-
parison is expected, of course, since for both types of waveguide the mathematics of this theory reduce
exactly to the corresponding mathematics of the conventional theory. This exact reduction is a conse-
quence of the matrices M|, M,, M;, and M, of Section 2.2 being diagonal when d = b, thus leading to
a diagonal matrix for the eigenvalue probiem.
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Comparisons for empty double ridged waveguide (e, = 1 but 4 < & in Fig. 3) were made from
several sources. Table 3 shows the agreement of this theory with results of Hopfer [11] for the normal-
ized cutoff wavelength of the TE; o(QLSE, ) and TE,((QLSE,,) modes. The attenuation results of
this theory were between 2% (for BW = 3) and 18% (for BW = 5) less than the graphical results
presented by Hopfer.

Table 3 — Comparison of Cutoff Frequencies
with Results from Hopfer

Air-filled double ridged waveguide

A./a TE;, mode X./a TE,, mode
s/a | d/b
This Theory | Hopfer || This Theory | Hopfer

0.1 | 0.1 4.104 4.11 0.911 0.91
0.1 | 03 2.863 2.89 0.935 0.93
0.1 | 05 2414 2.43 0.956 0.96
0.3 0.’1 5.160 5.15 0.823 0.82
03 | 03 3.257 3.26 0.927 0.93
03 | 05 2.623 2.62 0.960 0.97
05 | 0.1 5.395 5.40 1.113 1.12
05 1 03 3.324 3.33 1.132 1.12
05 ] 05 2.657 2.67 1.090 1.09
Notes:

(1) b/a=0.5

(2) Np=6

(3) Results from Hopfer [11] are graphical

Power and attenuation comparisons were made using published technical data for standard double
ridged waveguide [67]. For all waveguide geometries tested, the results of this theory agreed within 8%
of the listed values for both attenuation and power. For this comparison, the corner correction data
from Hopfer [11] was used to correct for the increased electric field at the rounded ridge corners and
the power safety factor of 4 included for this theory.

The only published data found in the open literature concerning higher order modes other than
TE,, o modes for empty double ridged waveguide were calculated by Montgomery [14]. For the
waveguide case with e, = 1, the QLSE,, o mode designation of this theory may be replaced as a TE,, o
mode since E, = 0; i.e., all modal components of E, vanish for all frequencies. Also, all QLSM modes
reduce to TE modes while all QLSE,, , modes (with n > 0) reduce to TM modes whene, = 1. A
comparison of cutoff frequencies for different TE modes obtained from this theory and those from [14]
is shown in Table 4. The trough modes of Montgomery are cross-polarized to the hybrid modes; also,
the trough modes occur in pairs which are almost degenerate, hence the one to two correspondence
with the modal designation of this theory. No numerical results were given in [14] for TM modes
corresponding to the QLSE,, ,(n > 0) modes of this theory.
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Table 4 — Comparison of Numerical Results with
Those of Montgomery

Empty Double Ridged Waveguide

a=0.5(1.27) d =0.11 (0.28)
b =04 (1.02) s = 0.1 (0.25)

Dimensions in inches (cm)

This theory™® Montgomery
Mode f. (GHz) Mode Sf. (GHz)
QLSE, , 6.8907 | TE , Hybrid 6.8570
QLSE,, | 24.9308 | TE, Hybrid 24.8582
QLSE; 4 32.0311 TE; o Hybrid 32.0246

QLSM,; | 15.076 TE, , Trough® | 151046
QLSM,;, | 15.127

QLSMoz | 295737 | g, Trough® | 295363
QLSM,, | 29.5742
QLSM,; | 33.228 33.2723

TE, ; Trough®

QLSM; 33.295

Notes:
(1) With NT =6
(2) Trough modes are almost degenerate pairs

Magerl [27] had the only information found in the technical literature on dielectric loaded ridged
waveguide, but the investigation was restricted to the case where the dielectric width was exactly equal
to the ridge width (¢ = s in Fig. 3). Although the analysis incorrectly assumed a true TE modal struc-
ture, the derivation of cutoff frequencies for modes corresponding to the QLSE, ;3 and QLSE, ¢y modes
of this theory was valid [28] since E, does vanish at cutoff for these modes. Within the limitations
inherent in obtaining numerical values from the graphical data of [27], the results were found to be
identical with those of this theory for cutoff of the QLSE; 3 and QLSE, ; modes. Although a brief dis-
cussion of other waveguide modes was made in [27], no analysis was given.

3.0 COMPARISON OF EXPERIMENTAL DATA WITH THEORY
3.1 Propagation Characteristics

Measurements were made on experimental sections of partially dielectric loaded double ridged
waveguide for comparison with the predicted performance of the theory based on the mathematical
analysis derived in Section 2. Since the waveguide is a linear device, propagation characteristics are
independent of power level. The propagation characteristics thus were measured at low-power levels
due to the greater flexibility, increased accuracy and simplified hardware of a low-power measurement
facility as opposed to that for a high-power facility.
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All low-power measurements were made on a computer-aided automatic network analyzer
(ANA), a Hewlett-Packard Model 8409B. This unit can measure complex transmission and reflection
coefficients between 0.1 and 18 GHz of one and two port devices. The theory of operation and charac-
teristics of this type of microwave measurement system are well documented [70-73] and need not be
discussed further. Measurements were made in two bands, the first (low band) covering the 8 to 12
GHz range, and the second (high band) covering the 12 to 18 GHz range. This was necessary to allow
transitions from the coax system of the ANA to the rectangular waveguide sections used to interface
with the waveguide under test (WUT). The interfacing waveguide was standard X-band waveguide for
the low band and standard K,— band waveguide for the high band. These frequency bands were
selected since precision waveguide calibration kits were available for both X and K, waveguide; with
the increased accuracy of the ANA calibration greater accuracy could be achieved in the measurements.
Measurements were made in frequency increments of 0.5 GHz or less.

To obtain the propagation characteristics for a particular dielectric loaded double ridged
waveguide, measurements were made on three different lengths of the waveguide, where each
waveguide sample had the same cross-sectional geometry. Then at each measurement frequency, the
three measured complex transmission coefficients were used, along with the measured physical lengths
of the three samples, to correct for the inherent mismatch between WUT and the interfacing rectangu-
lar waveguides. The effect of the mismatch on the measured propagation characteristics is analyzed in
detail in Appendix D, where the technique used for mismatch correction is derived as Method 3. The
values of the propagation constant 8 that will be shown as experimental data thus are not direct meas-
urement results, but are derived directly from the measured data. Discussion of the waveguide loss, or
attenuation, term o will be made at a later stage in this section.

To allow measurements of waveguides with a variety of cross-sectional geometries, brass test fix-
tures were fabricated as shown in Fig. 8. For each length of waveguide the top and bottom wall sec-
tions were common for all cross-sectional geometries. The sidewall sections as well as the ridge sec-
tions were fabricated in pairs. Screws were used to assemble the complete structure, along with steel
locating pins to minimize side play and allow accurate positioning when changing the geometry. While
not a recommended construction method for an operational waveguide, this method of fabrication
afforded a large degree of freedom in the choice of geometries for the waveguide. The three lengths of
the waveguide used for the low-power tests were 1.25 in. (3.18 cm), 1.474 in. (3.74 cm), and 1.998 in.
(5.07 cm). Corresponding lengths of H-shaped dielectric inserts were machined from polystyrene (e,
=2.54) and from Emerson and Cummings Stycast K-12 (¢, = 12) to mate with several housing
geometries. Because of the slight imperfections in both the machining and assembly processes of the
brass housing, it was necessary to make the dielectric inserts slightly undersize to allow assembly and
disassembly of the complete waveguide test pieces.

{ S y
] |/
I, et Tttt
e — 7 |
| ]| e (|

Fig. 8 — Low-power test housing
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The first measurements were made on samples of dielectric slab loaded rectangular waveguide
(DSLRWG) and air-filled double ridged waveguide (DRWG) as a check on the validity of the program
used to correct for mismatch effects. For both waveguide types, the theory of this analysis has already
been shown to agree quite closely with the results of other researches (exact agreement in the case of
DSLRWG). Figure 9 shows the very close agreement between theoretical and measured values of g8
for DSLRWG operating in the dominant TE; ; mode. The agreement is good even for frequencies
where higher order modes may propagate. The absence of an effect on propagation characteristics of
the TE, ; mode by higher order modes may be due to the fact that the higher order modes are not
present; i.e., although higher order modes may propagate, they are never launched by coupled energy
from the dominant mode. Alternatively, the higher order modes could be present but with no frequen-
cies for resonant conditions near the frequencies at which the measurements were taken, thus produc-
ing negligible effects. If higher order modes of significant magnitudes were present, they would cause
abrupt spikes at resonant frequencies in the otherwise smooth trace of transmission (both magnitude
and phase) through the sample waveguide when the measurement was made in the manual mode of
operation for the ANA on a continuous swept frequency basis. Such a swept frequency measurement
showed no discernible evidence of higher order modes up to 18 GHz for the waveguide of Fig. 9.

Woveguide Parameters Mode f. (GHz)
Dimensions In Inches {(cm)
300 — a=0.6 (1.524) LSE,, 7.00
b=0.3 (0762) LSE,, 15.33
t=0.202(0.513) LSM,, 16.38
o €=2.54 LSE 1679
2s 2 20.13
§ 2001
~
(23
L4
®
> 150 Theoretical
e Experimental
@Q
100 [~
50 Higher Order Modes
May Propagote
0 __S; ( 1 | 1 | 1 I ] f 1 I

10 12
Frequency (GHz)

Fig. 9 — Comparison of theory with experimental data for
dielectric slab loaded rectangular waveguide

The agreement between theoretical and measured 8 is shown as a function of frequency for the
TE, o mode of DRWG in Fig. 10. For this waveguide, the cutoff frequency of the first higher order
mode is greater than 17 GHz. Any higher order modes would thus be very close to cutoff at the largest
measurement frequency, 18 GHz, and the resultant attenuation so great as to preclude any effect on
the TE; o mode measurements.

The initial measurements on the first sample of dielectric loaded double ridged waveguide did not

indicate good agreement with theory, as indicated by the triangular data values of 8 in Fig. 11. For
these measurements, the actual volume of dielectric material was less than the theoretical volume
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250 Waveguide Parameters
Dimensions In Inches (cm)
a=0.6 (1.524)
200 - b=0.35 (0.889)
'E d=0.1 (0.254)
N s =0.098 (0.249)
] €710
W
'5‘ 150 |-
@
a
«Q
100 Theory
o o Measured
50
O [4 l 1 I 1 I 1 l 1 l 1 l
xk 8 10 12 14 16 8
Frequency (GHz)
Fig. 10 — Comparison of theory with experimental data for
empty double ridged waveguide
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because of the required loose fit of the dielectric piece for assembly. An effective dielectric constant
may be calculated on a volume basis as
e, V+(V-V)
€eff = 1Y

where V is the theoretical volume of the dielectric piece and V' the actual volume of dielectric material.
With €, = 2.54 and V' estimated to be 98% of V, €., was calculated to have a value of 2.51. How-
ever, the initial measurements on this waveguide indicated a good fit for €,,, = 2.2. The possibility
that the dielectric piece (polystyrene) might have some value other than the presumed €, = 2.54 was
considered as a cause for the discrepancy between theory and experiment. Sample pieces of poly-
styrene, machined from the same stock as the waveguide insert, were checked and found to have the
expected €, = 2.54, however. The conclusion was reached that correction for the air gaps at the inter-
face between the dielectric material and the metal waveguide surfaces by a simple volume approxima-
tion to determine €, was insufficient.

Rather than trying to derive a more sophisticated method to correct for air gaps, it was decided to
simply eliminate the air gaps. Use of coil dope (polystyrene dissolved in toluene) was considered as a
solution but rejected because of the need to disassemble the waveguide structure to change geometries.
The method finally adapted was to fill the slots of the polystyrene piece with silicone grease prior to
assembly. The relative dielectric constant of this material is slightly greater than that of polystyrene,
with e, = 2.7. Upon assembly of the waveguide structure the excess grease was forced out of the
metal/dielectric interface volume, leaving no air gaps. Such assembly had to be performed slowly and
with caution in order to give the excess grease time to flow and prevent cracking of the polystyrene due
to a build up of hydraulic pressure. The slight difference between €, of the silicone grease and €, of
the polystyrene was then ignored because of the relatively small volume of grease. Of course, the sil-
icone grease did not harden as would have coil dope, and thus caused no problems with disassembly.

Using this silicone grease method for assembly, the measurements on the dielectric loaded double
ridged waveguide were repeated. The agreement between the theoretical and measured values of 8
were excellent as indicated in Fig. 11. For frequencies above 14.3 GHz, swept frequency measure-
ments gave no indication of the presence of propagating higher order modes.

All waveguides using polystyrene as the dielectric material were then assembled with silicone
grease. The agreement between theoretical and measured values of B8(QLSE;, mode) as a function of
frequency is shown in Fig. 12 for a waveguide similar to that of Fig. 11, but with an increased
waveguide width. Swept frequency measurements on the waveguide of Fig. 12 gave definite indications
of the presence of some higher order mode(s) for frequencies above 16 GHz. The large deviation of
the measured 8 (corrected from the raw data) from theory is due to these higher order mode(s) since
the mismatch correction assumes a single mode to be propagating in the sample waveguide (Appendix
D). A similar situation existed for another waveguide with a different geometry as shown in Fig. 13.
For this waveguide, agreement between theory and experiment was good also until higher order modes
began to propagate.

By using the same brass housings, similar experiments using ¢, = 12 dielectric material were
attempted, although it was recognized that because of the heavy dielectric loading most of the single
mode bandwidth would lie below 8 GHz. An assembly method similar to the silicone grease method
was used, but using a material with €, = 12 rather than silicone grease. For such a material it was
decided to use the filler portion of a two-part castable dielectric epoxy with €, = 12.5, without adding
the hardening agent. Two such experiments were made, but both gave poor agreement with theory. In
both cases, one or more of the dielectric pieces was found to be badly cracked when the waveguide
housing was disassembled. This failure of the dielectric material was attributed to two causes. First,
the material from which the dielectric insert was machined was old; experience has shown that dielectric
materials of this type tend to become brittle with age. Secondly, the dielectric epoxy used to fill the air
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gap was considerably more viscous than silicone grease; the hydraulic pressure encountered during
assembly split the dielectric. With the poor agreement between experiment and theory attributed to the
cracked dielectric insert, no further experimental attempts were made using a high e, material; the
excellent agreement for the €, = 2.54 waveguide configurations was felt to constitute sufficient experi-
mental verification of the propagation aspects of the theory for the phase term 8.

By using the waveguides with polystyrene dielectrics, the actual cutoff frequencies for the QLSE, o
mode were confirmed directly. This was done by operating the ANA in a swept frequency mode to
find the frequency at which the transmission through the waveguide rapidly approached zero. For this
measurement, the interfacing waveguide had to be large enough to propagate at the cutoff frequency of
the sample waveguide, and conventional S-band rectangular waveguide was used. For some measure-
ments, the S-band waveguide was operated at frequencies where the TE,, mode could propagate; in
this case, however, overmoding of the interfacing waveguide was immaterial since the sample
waveguide would still have infinite attenuation at its cutoff frequency. Since the interior size of the S-
band waveguide was larger than the brass housing of the sample waveguide, aluminum foil and conduc-
tive copper tape was used to seal the gap between the waveguides and prevent coupling of the two
interfacing waveguide sections via radiation. Dielectric slugs were glued to either end of the sample
waveguide to increase the coupling between it and the adjacent sections of S-band waveguide, i.e., to
form crude matching transformers. Such matching transformers, of course, had no effect on the cutoff
frequency of the sample waveguide and were employed to partially overcome the huge discontinuity
resulting from the drastic change in cross section.

Although the accuracy of such an elementary method to measure f, of the sample waveguide is
considerably less than the accuracy of the method used to measure 8 for f> f,., the measurements
resulted in values of cutoff for the dominant mode that were within 6% of the theoretical value for all
waveguide geometries tested. Comparable deviations of measured values of f. from theory were found
when rectangular waveguide was used as a sample, and when the cutoff frequency was known exactly.

Attempts were made to compare the propagation characteristics of some of the higher order
modes as determined from experimental data with the theoretical values, using resonance conditions for
the propagating higher order modes in a manner similar to that used by Tsandoulas et al. [24]. At fre-
quencies where any higher order mode could propagate in the WUT, a sharp spike in the transmission
loss indicated that a significant degree of coupling existed between the dominant mode and the higher
order mode, with a high Q resonant cavity being formed by the WUT for this higher order mode since
such a mode could not propagate in the adjoining rectangular waveguide. Thus, at the frequency of the
transmission loss spike, the WUT represents to the higher order mode a transmission line with an
effective electrical length equal to an integral number of half wavelengths. The effective length
includes the phase term of the reflection coefficient seen by the higher order mode at either end of the
WUT as well the product ByouL. With an analysis similar to that developed for the dominant mode in
Appendix D, resonant conditions for any higher order mode occur at frequencies where

BL — ¢ypy=mnm,forn=1,2,3,... 3.1

with ¢,, the phase of the reflection coefficient at either end of the WUT. Of course, the frequency
dependence of both 8 and ¢,, is determined by the particular higher order mode.

The waveguide geometry described in Fig. 12 was chosen for the higher order mode measure-
ments. Determination of the higher order mode causing the resonant cavity effect was essential for
comparison of experimental results with theory, and two techniques were tried to deliberately launch
the QLSE; o mode since the QLSE, y mode was the higher order mode with the lowest cutoff frequency.
The first technique used a small rectangular dielectric piece, €, = 13, in the input section of K,
waveguide adjacent to the front face of the WUT and lined up with one arm of the H-shaped poly-
styrene insert. The generation of an asymmetrical component of electric field, due to the off-center
dielectric in the input K, waveguide, was quite effective in launching the QLSE, g mode in the WUT as
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evidenced by the appearance of spikes in the measured dominant mode transmission loss. However,
this technique did not lead to good agreement between experiment and theory for 8 of the QLSE,,
mode. It was determined that the addition of the dielectric piece in the K, waveguide effectively
increased the length of the WUT for this mode since the LSE;, mode could propagate in the short
length of dielectric slab loaded (off center) rectangular waveguide thus formed.

The second technique tried to deliberately launch the QLSE,;, mode in the WUT consisted of a
simple shift, or offset, of the input K, waveguide (no dielectric loading) relative to the front face of
the WUT. With this offset, the incident field pattern seen by the WUT was nonsymmetrical about its
vertical plane of symmetry, thus increasing the coupling to the QLSE,, mode for which the E, fields
are asymmetrical about the vertical plane of symmetry. This technique also proved effective in launch-
ing the QLSE,  mode, as evidenced by the spikes in the measured transmission loss at frequencies
close to the theoretical cutoff frequency of this mode. The magnitude of these loss spikes was reduced
as the waveguide offset was decreased, and vanished when no offset was used. Other transmission
spikes remained at higher frequencies, but were determined probably to be due to modes other than the
QLSE, mode. Only the transmission spikes produced by the waveguide offset were used to obtain
experimental verification of the propagation characteristics for a higher order mode since these spikes
could be attributed to a given mode—the QLSE; ; mode—with a high degree of confidence.

The change of the phase term ¢5, with the offset of the input K, waveguide was immaterial since
this phase quantity could not be measured directly under any circumstances. The condition for higher
order mode resonance given by Eq. (3.1) remains valid if ¢,, is taken as the average of the phase
angles of the reflection coefficients at either end of the WUT for the higher order mode. Since the
quantity ¢,, is some unknown function of frequency, the following approach was used to determine 8
for the QLSE,, mode. With equal amounts of waveguide offset on the input end of the WUT, each of
the three lengths of the waveguide described in Fig. 12 was measured for transmission loss on the ANA
using the manual swept frequency mode. For each length, the frequencies at which transmission loss
spikes occurred—due to the waveguide offset—were recorded, and the value of ¢,, was then calculated
and plotted using Eq. (3.1) and the theoretical value of 8 for the QLSE,, mode. For the short lengths
used for the WUT, determination of the integer value for n was straightforward. Since ¢,; was
independent of the length of the WUT, the plotted values of ¢;, were used to construct a best fit linear
dependence of ¢,, as a function of frequency between 14.05 and 16.15 GHz. The theoretical cutoff
frequency of the QLSE;, mode was 13.74 GHz for this waveguide geometry. The lowest frequency
transmission loss spike, at f = 14.05 GHz, occurred in the shortest length sample, corresponding to n
= 1 in Eq. (3.1). The lowest frequency spike for each of the two longer samples occurred at frequen-
cies corresponding to n = 2. The absence of spikes at frequencies corresponding to n = 1 for these
longer samples was disconcerting initially. However, when an extension of the assumed linear fre-
quency dependence of ¢, was used to calculate the frequencies at which transmission loss spikes would
be predicted for n = 1, such frequencies were found to be very close to the theoretical cutoff fre-
quency. For frequencies very close to cutoff, the attenuation of the QLSE, ; mode would be very large,
and the cavity formed by the WUT for this mode would have such a low Q as to preclude a spike in the
transmission loss of the dominant mode.

Loss spikes due to the waveguide offset were indicated at frequencies above 16.15 GHz, but were
ignored because of the erratic measured transmission loss at these frequencies—due to unknown higher
order modes—that existed with no offset. The linear approximation of ¢,, varied from —38° at
f = 14.05 GHz to —78° at f = 16.15 GHz, with the calculated values of ¢,; having a maximum devia-
tion of +5° from the linear approximation. With the values of ¢,,(f) taken from the linear best fit
curve, calculations for 8 using Eq. (3.1) gave values within 3% of the theoretical value for all frequen-
cies where spikes were noted in the measured transmission loss. It is recognized that this comparison is
of limited value because of (1) the assumption of a linear dependence of ¢, on frequency, and (2) the
use of theoretical 8 to calculate the points of ¢,, (f) from which the linear best fit curve was derived.
A more accurate determination of 8 as a function of frequency for this or any higher order mode would
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require either a continuously variable length WUT —ideal, but obviously impossible from a fabrication
standpoint—or a very large number of different lengths of the same waveguide geometry, in order to
have multiple measurements (different lengths) at each spike frequency and thus be able to eliminate
¢, as an unknown in Eq. (3.1). With the three lengths of WUT used, two did have transmission
spikes at one frequency, f = 15.2 GHz. Using Eq. (3.1), ¢, was eliminated and 8 calculated directly
as B = 94.7°/cm. This value compares favorably with the value 8 = 94.5°/cm as determined using the
linear approximation of ¢,,(f) and the theoretical value § = 95.8°/cm for the QLSE,;, mode at this
frequency, thus tending to justify the bootstrap calculations used to compare the theoretical and experi-
mentally derived propagation characteristics at other frequencies for this higher order waveguide mode.

The approach of Method 3 of Appendix D used to correct for mismatch effects yields an attenua-
tion factor, or loss term «, as well as the phase term B8 for the dominant waveguide mode. However,
this method was found to be unsuitable for calculating « from the measured data. Using the measured
complex transmission coefficient of three different length samples resulted in wild fluctuations of calcu-
lated o as a function of frequency, even calculating o as a negative quantity (waveguide gain rather
than loss) in some instances. This was determined to be a result of the sensitivity of the mismatch
correction program to variations of « in the three different length samples. With the construction tech-
nique used for the waveguide housing—with six separate metal pieces held together with screws—the
conductor losses were greatly affected by the effective extra resistance formed at the metal-to-metal
interfaces, although such imperfections had only a negligible effect on the phase term 8. Sizable varia-
tions in attenuation (loss/unit length) thus were not unexpected since the nature of the metal-to-metal
contacts could not be controlled. The effect of variations in actual « between sample lengths on the
calculated values of « and B was checked for a variety of conditions. In each case, the complex
transmission coefficient ty; of three lengths of an imaginary waveguide was computed, assuming a fixed
B and fixed values for the S-parameters representing the discontinuity at either end of the WUT. Only
o was changed for the three different lengths. Then using the approach of Method 3 incorporated into
program CROOTS3, these computed values of #,;, along with the three assumed lengths, were used to
calculate the "measured" values for & and B. In all cases, 8 was calculated to be within 1% of the
presumed value, but in general the calculated value of o was far removed from the average of the three
presumed values.

The method that was used to experimentally determine the attenuation of the dominant mode for
comparison with the theoretical value was the approach of Method 4 described in Appendix D. With
this method, only one length of WUT was required, and the loss term a was calculated at frequencies
where the measured transmission loss was minimum, or equivalently where | tn | was maximum. At
these frequencies, with | f5)]pax = T,

- Is1119) exp (= aL)

= 3.2
1—|syl?exp (-2 aL) (3.2a)
from which
a{nepers/length) = —(InX)/L (3.20)
where
X =110 = s 12?2 + 4725y A% + |52 = 1/ QTs,, /2. (3.20)

The 5.07 cm length sample of the waveguide described in Fig. 12 had minimum transmission loss
at frequencies f) = 8.34 GHz, f, = 10.52 GHz, and f; = 11.85 GHz, with measured losses of 0.35 dB
(lty] = 0.961), 0.5 dB (|t;] = 0.944), and 0.55 dB (Ity] = 0.939), respectively. Using resistive film
loading of the WUT as described in Appendix C, the value of |s;;| at these three frequencies was then
measured as 0.776, 0.750, and 0.724, respectively. With a(dB/m) = a« (Np/m) - 20/1n10, the attenua-
tion was calculated from (3.2) as a(f}) = 1.74 dB/m, «(f,) = 2.83 dB/m, and «(fy) = 3.47 dB/m.
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From the theory, taking the conductivity of brass as ¢ = 1.41 X 10’ mhos/m [74] and the dielectric
loss tangent of polystyrene as tan 8 = 4.3 x 10~* [26], the total loss term, & = a, + « 4> was predicted
to have values of a(f}) = 1.15 dB/m, a(f,) = 1.37 dB/m, and «(f3) = 1.50 dB/m. At each fre-
quency, the conductor loss term was slightly more than the dielectric loss term. In a ratio comparison,
the ratio (in dB/m) of measured loss to theoretical loss was 1.51 at f;, 2.07 at f,, and 2.31 at f3. Mea-
surements of other waveguide geometries resulted in similar ratios of measured/theoretical attenuation;
in all cases the discrepancy was attributed to the multisection design of the waveguide housing for
which the added resistance at the joints was not taken into account by the theory. Previous experience
with sectioned experimental waveguide housings has indicated discrepancies of similar magnitudes
between theoretical and measured attenuation values.

3.2 Peak Power Breakdown

The peak power breakdown level was measured for one sample of dielectric loaded double ridged
waveguide to give a comparison with the theoretically determined value. The fabrication of this
waveguide was different than that used for low-power tests. A two-piece housing was machined from
aluminum, with the ridges being direct extensions of the top and bottom waveguide walk to prevent
possible arcing at the joints between the walls and separate ridge sections. Repeated assembly and
disassembly was not a consideration, and a fabrication method was sought that would ensure the com-
plete absence of air gaps at the metal/dielectric interface. With polystyrene chosen as the dielectric
material, an H-shaped insert was machined to form a loose fit in the assembled aluminum housing.
The polystyrene surfaces that would mate with the metal surfaces of the housing were then deposited
with a thin (=3000 A) evaporated gold film. The complete waveguide section was then assembled
using silver epoxy to fill any voids between the metal walls and the plated surfaces of the polystyrene.
When the high-power tests were made, breakdown occurred in the dielectric rather than in air at the
dielectric side walls although the theory predicted a power breakdown level for the dielectric more than
five times that for air breakdown. It was determined that the dielectric breakdown was due to the
rough surface left by the milling operation at the bottom of the slot in the polystyrene, where the
evaporated gold film effectively formed a conducting surface with very sharp protrusions and irregular
features. The conflict with the theory was attributed to the extreme buildup of electric field intensity at
these sharp points, since the theoretical analysis assumed smooth wall surfaces (Section 2.3). To avoid
arcing within the dielectric due to rough surface conditions, the metal evaporation technique was aban-
doned in favor of the construction method which was finally used for the high power test. This method
used coil dope to fill the space between the smooth metal surfaces and the solid polystyrene H-shaped
insert as shown in Fig. 14, analogous to the use of silicone grease for the low-power tests. The
waveguide was assembled using screws and steel locating pins, and then baked at 90°C in an oven to
drive out the toluene from the coil dope. A rectangular steel insert was then used to remove any last
traces of coil dope from the top and bottom walls at the junction with the polystyrene insert. One end
of this waveguide was shorted by an aluminum plate screwed to the end of the housing. The other end
had a flange to mate with X-band waveguide (not shown in Fig. 14).

The physical length of the waveguide sample (WUT) was chosen to that at a frequency f = 9.368
GHz (the frequency of the high-power measurement facility) the electrical length would be such that
the front face of the sample waveguide would be close to a voltage null position of the standing wave
pattern caused by the short circuit. This aspect of the high-power measurement was necessary to
ensure that power breakdown (arcing) would first occur within the WUT rather than in air at the inter-
face of the WUT and the X-band waveguide of the high-power system. The WUT was fabricated with
an initial length longer than necessary. A brass plunger, U-shaped with rectangular arms machined to
fill the air region of WUT, was then inserted into the WUT to form an adjustable quasi-short circuit.
Using the ANA in the swept frequency mode, the position of the quasi-short was adjusted to a position
where the front face of the WUT represented a near short circuit to the adjoining section of X-band
waveguide. The insertion depth of the plunger was measured, and a corresponding length then
removed from the backside of the WUT by machining. Addition of the aluminum plate to form the
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Fig. 14 — High-power test housing

backside short circuit then completed the fabrication. The dimensions of the waveguide used for the
high-power measurement were: a = 0.600 in. (1.524 cm), » = 0.250 in. (0.635 cm), 4 = 0.150 in.
(0.381 cm), s = 0.100 in. (0.254 cm), ¢ = 0.200 in. (0.508 cm), and a length L = 1.587 in. (4.031
cm). With the polystyrene used as the dielectric material, e, = 2.54.

Because of the standing wave within the WUT set up by the short circuit, points of maximum vol-
tage occur at distances equal to an odd number of quarter wavelengths from the short. At these points,
the voltage is twice that due to the wave traveling in either direction. (The small amount of loss in the
short length of the WUT was neglected.) Such voltage peaks thus are equal to the voltage that would
be produced by a single unidirectional wave carrying four times the amount of power carried by either
wave forming the standing wave pattern (Appendix D). Peak power breakdown of the waveguide
occurs when, at any point, the electric field intensity (proportional to the voltage in the equivalent
transmission line circuit) exceeds the breakdown strength of the medium (either air or dielectric) at
that point. Since the power-handling capability of the waveguide has been assumed to be the peak
power breakdown level of the waveguide when propagating energy in a single direction, the power
quantity of interest in the high-power measurement will be the maximum voltage effective power, or
Puve, equal to four times the power carried by each of the waves forming the standing wave pattern in
the WUT.

Because the actual power levels within the WUT could not be measured directly, it was necessary
to calculate Pysyp in terms of power incident on the front face of the WUT since the latter power could
be measured. From Appendix D, Eq. (D14)

4(1 - 1322!2)
Puve = 1 + |595]% + 2|s95] cos ¢ 33
{=d¢n—26L 3.4)

where P; is the peak power incident on the front face of the WUT and s,, is the complex reflection
coefficient of the discontinuity formed at the junction of the WUT and the X-band waveguide, as seen
from the side of the WUT, with

533 = syl exp o).
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Prior to the high-power testing, measurements of the WUT were made at low power using the ANA to
determine the necessary parameters required to calculate Pysyz using Eq. (3.3). Using resistive film to
load the WUT (Appendix C), the complex reflection coefficient of the junction discontinuity, as seen
from the side of the X-band waveguide, was measured as a return loss of 4.4 dB with a phase angle of
176 deg, or equivalently

sip=0.6 2 176°
From Appendix C, |sy| = |s;], thus
|522| = 0.6. (35)

After removing the resistive film, the complex reflection coefficient of the shorted WUT was measured
as t;. At the frequency f, = 9.368 GHz,

t11l gy, = 0.999 £ —165°,

thus verifying that the front face of the WUT would present an approximate short circuit to the X-band
waveguide. Return loss maximums (minimum |f,|) were found at frequencies of f; = 8.775 GHz
and f, = 10.76 GHz. The procedure outlined as Method 5 in Appendix D was then used to calculate
¢5,. From (D16)

¢22|f=f’_= (2"1 + 1)77 + BiL, i= 1, 2 (36)

where B; is the propagation constant of the WUT at the frequency f;. Using Eq. (3.4), ¢, for the fre-
quencies f and f, were computed as 33.2° and 31.8°, respectively. From (D17), linear interpolation
was used to determine

¢22|f'=f0 = 32.50.

Then from Eq. (3.4)
{ = 67.6° (modulo 360° 3.7

at the frequency f,. With the values given by Eqgs. (3.5) and (3.7), the relationship expressed in Eq.
(3.1) was calculated to be

PMVE = 1409 P,‘ (38)

at the high power frequency f,. Of course, the numerical constant in Eq. (3.8) would change if either
the length or geometry of the WUT were different.

Peak power breakdown was measured using a pulsed high-power source. The experimental facility
used is depicted schematically in Fig. 15. The high-power modulator, an FXR 1 Megawatt Test Modu-
lator, was triggered from a 1 kHz pulse generator and powered a Raytheon QK-172 X-band magnetron.
The pulsed output from the magnetron was at an RF frequency of 9.368 GHz, with a repetition rate of
1 kHz and a pulse width adjustable from 0.1 to 1.0 us. The pulse width was set to 0.8 us for the
high-power measurement. Maximum peak power available from the magnetron was 100 kW. The
motor driven power divider was not used and locked into the low loss state. The high voltage from the
modulator was set to achieve maximum power from the magnetron. Peak power incident on the WUT
was controlled by manually adjusting the ganged waveguide sliding shorts, which together with the short
slot 3 dB hybrid coupler and the folded magic tees formed a high-power attenuator, with the excess
power from the magnetron being absorbed by a high-power waveguide load. The coupling between the
main RF line and the thermistor head was measured independently at low-power levels on the ANA for
accuracy in determining the power level incident on the WUT. The total coupling was measured as
—49.8 dB at f = f, equivalent to a power ratio of 1.05 x 1073, The power in the RF pulse was flat
within the 0.8 w5 pulsewidth as measured by the crystal detector output on the oscilloscope. The peak
power incident on the WUT was thus calculated as

- Pulse width P
(Repetition rate) (power coupling) = '

i
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Fig. 15 — High-power test circuit

where P, was the average power measured at the thermistor head. With the appropriate numerical
values,

P,(kW) = 119 P (mW).

A peak power meter was used as a check for the power measurement, using a crystal detector in place
of the thermistor, and showed agreement within 2% of the peak power as calculated from the average
power reading. The crystal detector shown connected to channel B of the oscilloscope in Fig. 15 was
used to monitor the shape of the high-power pulse incident on the WUT, while the detector shown
connected to channel 4 was used to monitor the reflected power pulse.

In the test to measure the peak power breakdown, the power level was slowly increased from zero
while carefully monitoring the reflected pulse displayed on the oscilloscope and listening for any sounds
of arcing within the WUT with the aid of a stethoscope. The first evidence of breakdown was a sudden
onset of strong jitter in the reflected pulse, accompanied by the sudden and distinctly audible arcing
noise. This first breakdown occurred at an average power of 0.58 mW as measured by the average
power meter, corresponding to an incident peak power level of 69 kW incident on the WUT. Because
of the accumulation of carbon deposits in the WUT, subsequent measurements yielded decreasing
power breakdown levels. After the high-power measurements were concluded, the WUT was disassem-
bled. As expected, the arcing, as evidenced by the carbon buildup, was at regular intervals along the
sides of the polystyrene insert. These intervals corresponded to a half wavelength in the WUT, with
the arcing closest to the short occurring approximately one quarter wavelength from the short and hav-
ing the greatest degree of carbon buildup. There was a very slight trace of arcing within the poly-
styrene, but the majority of breakdown was at the air dielectric interface as predicted by the theory.
There was evidence of arcing at the front face of the WUT also, between corners of the ridge, as evi-
denced by carbon paths across the end of the polystyrene insert. This arcing at the interface of the
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WUT with the X-band waveguide was attributed to a shift in the position of the maximum in the stand-
ing wave pattern. Prior to the initial breakdown, an approximate voltage null was located at the inter-
face. When the power level was increased sufficiently to cause arcing at a point A g/4 from the short,
such arcing effectively produced a short circuit at that point during the short interval of the arc, thus
shifting a near maximum of the standing wave pattern to the front face of the WUT and producing the
arcing at that point.

From Eq. (3.8), the incident peak power of 69 kW for the initial power breakdown measurement
corresponds to an equivalent unidirectional power level of Pyyvg = 97.2 kW. With the voltage break-
down strength of air taken as 30 kV/cm, a peak power breakdown value of Pgp = 696 kW is predicted
by the theory. The discrepancy between the peak power breakdown level predicted by the theory and
that determined experimentally was attributed to three factors. First, a power safety factor of 4 is com-
monly utilized in practice for peak power ratings [67]. With this safety factor included, equivalent to
reducing the breakdown strength of air to 15 kV/cm, the theoretical power breakdown of the WUT
reduces to Pgp, = 174 kW. The second factor was the presence of small but sharp protrusions of hard-
ened coil dope left at the junction of the top and bottom waveguide walls with the sidewalls of the
polystyrene insert. Such protrusions were the result of using the metal mandrel to attempt to remove
all of the excess coil dope from the waveguide. Just as at sharp corners of conducting surfaces,
extreme buildup of electric field intensity can occur at sharp dielectric corners [66]. The theoretical
analysis did not take into account such possible electric field enhancement caused by a flawed assembly
technique. The third factor was the unknown effects of heating within the polystyrene insert. At peak
power breakdown, the average power carried by each wave forming the standing wave within the WUT
was 20 W. Using the theoretical value of dielectric loss, power dissipation within the dielectric was cal-
culated as 0.5 W. Since the thermal conductivity of polystyrene is very low and the power level was
raised gradually, it is quite possible that the heating caused portions of the dielectric to weaken or even
melt, forming irregularities on the otherwise smooth sidewalls, thus sharply increasing the electric field
intensity at some points. Thermal effects caused by average power heating were not considered in the
waveguide analysis of this investigation.

4.0 WAVEGUIDE PERFORMANCE CHARACTERISTICS
4.1 Discussion of General Waveguide Characteristics and Parameters

For the purposes of this investigation, the primary waveguide characteristics of concern are the
single mode bandwidth and the peak power handling capability. Attenuation is also an important factor
but will be considered secondary to the primary characteristics. All results presented in this chapter are
based on the theoretical analysis derived in Section 2.

Material properties such as metal wall conductivity, dielectric breakdown strength, and dielectric
loss tangent will affect the waveguide performance. However, these material properties will not be con-
sidered as design parameters, but will be assumed constant as discussed in Section 2. The wall conduc-
tivity and dielectric loss tangent affect only the waveguide attenuation; corrections to the calculated
attenuation must be made as outlined in Section 2.4 to account for deviation from these assumed
parameter values. The exact value for the dielectric breakdown strength will not affect the peak power
breakdown calculation for most waveguide configurations since breakdown will occur in the air region
rather than in the dielectric. For those cases where the power level for dielectric breakdown is less than
that for air breakdown, or where the actual dielectric strength is significantly less than the assumed
value, corrections to the waveguide power handling capability must be made as discussed in Section 2.3.

The design parameters will consist of the five waveguide dimensions shown in Fig. 3 and the rela-
tive dielectric constant of the dielectric loading material. The six waveguide design parameters are thus
(1) the width a, (2) the height », (3) the gap height d, (4) the ridge width s, (5) the dielectric width
t, and (6) €,. For many design purposes, the number of variable parameters may be reduced to five by
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normalizing all dimensional quantities to the waveguide width. Conventional frequency scaling tech-
niques [8] are applicable for such a normalization process. The power-handling capability and attenua-
tion also may be normalized. Since these waveguide characteristics are of interest for the QLSE; o, or
dominant, mode only, they will be normalized to the corresponding characteristics of an empty
rectangular waveguide operating in its dominant (TEI‘O) mode and at the same frequency. The normal-
ized power will thus be calculated as

Ppp
Py (reference WG)

Pgp (normalized) =

while the normalized attenuation due to conductor loss will be calculated as
aL‘

. (reference WG)

o, (normalized) =

For each configuration of the dielectric loaded double ridged waveguide (DLDRWG), the correspond-
ing reference waveguide is conventional rectangular waveguide with the necessary width to give a TE, g
mode cutoff frequency equal to f, for the QLSE; g mode of the DLDRWG. The reference waveguide
will use an aspect ratio (height/width) of 0.5 regardless of the aspect ratio of the DLDRWG, and will
assume copper walls and an air voltage breakdown of 30 kV/cm. Since the reference waveguide has no
dielectric loss, the dielectric loss of the DLDRWG will be normalized to the conductor loss as

a4 (frequency (GHz))Y?
o, (reference WG)

The added factor of f 12 is necessary because of the difference in frequency dependence of «, and a
(Section 2.4).

a4 (normalized) =

Even with the number of design parameters reduced to five, it is obviously impossible to present
complete design information, either in graphical form or otherwise. However, sufficient theoretical
results will be displayed to show typical characteristics for the DLDRWG, and more detailed results will
be presented for a specific dielectric material.

Figures 16 and 17 emphasize the fact that the first higher order mode that may propagate in
DLDRWG is dependent on the exact waveguide geometry. For the fixed parameter ratios given in Fig.
16(a), the first higher order mode (FHOM) is the QLSE; ; mode for values of ¢/b > 0.73, but is the
QLSE; o mode for smaller values of d/b. With the fixed parameter ratios changed slightly, Fig. 16(b)
shows the FHOM to be the QLSE, ; mode for d/5 > 0.82 but the QLSM,; mode for smaller values of
d/b. In Fig. 17, the parameter ratio s/a is treated as the variable, with the ratio ¢/a maintained as t/a
= s/a +0.1 and with the other parameters fixed. The FHOM is the QLSM, ; mode for s/a < 0.2 and
the QLSE; o mode for s/a > 0.2,

For dielectric slab loaded rectangular waveguide with an aspect ratio of 0.5, the LSE,; mode is
normally the FHOM. The corresponding QLSE; ; mode in DLDRWG was found never to be the
FHOM for a variety of geometries where b/a = 0.5 and d/b < 0.5. The elimination of the quasi-
LSE; ; mode as the FHOM is the principal reason that the DLDRWG can achieve large single mode
bandwidths without having to reduce the waveguide aspect ratio.

4.2 Variation of Performance About a Fixed Geometry

To demonstrate some of the characteristics of DLDRWG, a fixed (normalized) geometry was
chosen, with b/a = 0.5, d/b = 0.3, s/a = 0.3, t/a = 0.4, and €, = 6. Each of these quantities was
then treated separately as a variable, with the remaining quantities held constant, and the resulting
change in normalized waveguide performance plotted. The attenuation and power breakdown levels
were calculated at a frequency f = /3 f,, where f, is the QLSE, ; mode cutoff frequency for the
corresponding waveguide geometry.
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In Fig. 18, the waveguide performance is plotted as a function of the ratio d/b. The dashed por-
tion of the bandwidth curve represents a condition where the QLSE;; mode is the FHOM, and the
solid portion, the condition where the QLSE,;, mode limits the single mode bandwidth. A decreasing
value of d/b provides an increasing bandwidth, but also results in a decreasing power breakdown level
and an increasing attenuation due to conductor loss. Note that most of the increase in bandwidth arises
as a consequence of the lowered cutoff frequency of the dominant QLSE;, mode rather than an
increase in the cutoff frequency of the FHOM. For this particular geometry, as d/b is varied from
unity to a value of 0.1, the cutoff frequency of the QLSE, o mode is reduced by a factor of 2.65, while
the cutoff frequency of the FHOM increases by a factor of 1.41. The size of the reference waveguide
used to normalize the power and attenuation characteristics of the DLDRWG is determined by the cut-
off frequency of the QLSE; y mode, and thus increases with bandwidth. With increased size, the refer-
ence waveguide will have greatly increased Pgp and decreased «., thus the variations of normalized
Pgp and a, of the DLDRWG with d/b are accentuated relative to the variations of the corresponding
nonnormalized values.

Other Geometry Parameters

9.0~ bsa =0.5 -1 40
s/a =0.3
t/a =0.4

8.0 €6 - 35

Bandwidth
uoI§DNUAL LY PAZI[DWION

13M0d Pazi|DWioN
|
o

o

Fig. 18 — Waveguide performance as a function of
d/ b variation about a fixed geometry

The normalized dielectric loss as a function of d/b was essentially constant, with a4, = 10.2 for
d/b = 1 and a;, = 11 for d/b = 0.1. The solid portion of the power breakdown curve represents
voltage breakdown in air, while the dashed portion denotes breakdown of the dielectric material. A
similar convention for plotting power breakdown will be used henceforth.

The parameter ratio of s/a is treated as the variable in Fig. 19. The FHOM was the QLSE,
mode for all values of s/a. The bandwidth peaks for s/a = 0.17, whereas the power peaks at s/a =
0.07. Any design must therefore consider some trade-off between bandwidth and power. Such trade-
off considerations will be required to determine most parameters. Here the variation of attenuation is
small, but in other cases the change of attenuation may be large and thus be a factor in determining a
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final waveguide geometry. The rapid drop in Pgp as s/a becomes small is due to dielectric breakdown
because of the increased electric fields in the gap region. As the ridge width approaches the dielectric
width, s/a — t/a, more of the fringing fields from the ridge gap extend into the air region, thus lower-
ing Pgp.

In Fig. 20, the variable is the ratio #/a. Again the QLSE;, mode is the FHOM. The trade-off
between bandwidth and power is even more pronounced than in Fig. 19. As the width of the dielectric
increases, more and more of the propagating energy is contained in the dielectric, thus dielectric break-
down becomes the limiting factor for power handling capability.

In Fig. 21, the ratio of b/a is taken as the variable quantity. Both power and bandwidth are weak
functions of b4/a, and attenuation from dielectric loss is almost constant. Conductor loss is strongly
dependent on the height, however, increasing rapidly as b/a becomes small. A good design philosophy
would incorporate as large an aspect ratio as practical, making up lost power and bandwidth by varying
other parameters which would not lead to such drastic increases in attenuation.

Since the ratio d/ b is fixed, small values of b/a result in small gap spacing, and the consequential
dielectric breakdown is apparent. The solid portion of the bandwidth curve denotes the QLSE,, mode
as the FHOM, while the dashed portion denotes the QLSM,; mode as the FHOM. For this geometry,
the QLSM; ; mode will remain the FHOM for 5/a > 0.76, and the bandwidth will start to drop sharply
for larger values of b/a. As for any geometry, sufficiently large values of &/a will cause the QLSMj;
mode to become the dominant mode. The practical upper limit on 5/a for a good design would be the
value at which the bandwidth starts to degrade rapidly.

In Fig. 22, the waveguide performance is plotted with the relative dielectric constant €, as the
variable. Low values of dielectric result in the QLSM,; mode as the FHOM (dashed portion of the
bandwidth curve), while larger values of e, have the QLSE, ; mode as the FHOM. For values of €, >
4, the increase in bandwidth is negligible with further increase of €,, while the power is dropping and
the attenuation is increasing rapidly. The curves of Fig. 22, as well as investigation of other waveguide
geometries, dictate that a good design should use the minimum value of €, required to achieve the
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required power and bandwidth. Of course, there will still be performance trade-offs to be made in any
design, and dielectrics with very low values of €, will generally have lower breakdown values than that
assumed.

Any number of geometries could be chosen as the fixed geometry and plots made analogous to
those depicted in Figs. 18 to 22. The resulting variation of waveguide performance with each parameter
will depend on the initial geometry. It is obviously impossible to describe all of the combinations of
performance variations, but certain consistent design aspects stand out: (1) decreasing the value of d/b
will result in larger bandwidths, but will also result in reduced power and increased attenuation; (2)
both bandwidth and power will have peaks as a function of the parameter ratio s/a, usually at different
values of the variable; (3) as the parameter ratio ¢/a is increased, the power increases until dielectric
breakdown occurs, and the bandwidth will normally decrease but may peak for certain geometries; (4)
bandwidth and power are relatively weak functions of the ratio 4/a if the QLSE,;, mode is the FHOM,
but attenuation becomes large as b/a is decreased; and (5) best overall waveguide performance will
normally be achieved with the lowest practical value of e,.

4.3 Design Information for ¢, = 2.54

Since low values of €, will normally give the best waveguide performance characteristics, more
detailed design information will be presented for a dielectric with €, = 2.54. This value of ¢, is typical
for a dielectric material such as polystyrene [25,26]. A loss tangent of tan § = 107* and a dielectric
breakdown strength of 300 kV/cm again will be assumed.

In Fig. 23, bandwidth is plotted as a function of s/a for different values of d/b. The ratio ¢/a is
not fixed but varies as s/a, with ¢/a = s/a + 0.1. The rationale for maintaining such a relationship
between t/a and s/a is to have the high strength dielectric extend out far enough to prevent air break-
down due to fringing fields from the gap, yet not so far as to greatly reduce the bandwidth. The ratio
differential constant of 0.1 thus represents a design trade-off between power and bandwidth.
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The FHOM is seen to be the QLSM;; mode for low values of s/a, thus the dashed portion of the
bandwidth curves must be used to define the single mode bandwidth. The bandwidth as defined by the
ratio of cutoff frequencies of the QLSE,, and QLSE,;, modes is included for low values of s/a to
emphasize the fact that the FHOM is dependent on the specific geometry. If the ratio of b/a were
reduced (at the expense of increased attenuation), f, for the QLSM; mode could be raised above f,
for the QLSE; o mode for all s/a, and while both solid and dashed curves would be modified they
would not intersect.

In Fig. 24, the normalized waveguide performance at a frequency f = /3f, is plotted as a func-
tion of s/a for d/b = 0.5, 0.3, and 0.1. Again ¢/a is maintained as t/a = s/a + 0.1. For all d/b
values, Py, increases with s/a, whereas bandwidth peaks for s/a = 0.2 (from Fig. 23), and the
power/bandwidth trade-off is encountered once again.

In Fig. 25, the ratio s/a is held fixed and normalized waveguide performance plotted as a func-
tion of ¢/a for d/b = 0.5, 0.3, and 0.1. Bandwidth is also plotted to show the effects of variations of
t/a on this characteristic. In all cases, the power breakdown level is minimum for-t/a=s/a. Such a
condition is to be expected since the fringing fields from the gap extend into the air region. The
increase of Pgp with t/a is dependent on the value of d/b, with lower values of d/b giving a sharper
rise of power. This is a predictable characteristic, since the smaller gaps will have fringing fields which
do not extend out from the ridge walls as far as those of larger gaps.

Breakdown is seen to occur in the dielectric rather than in air for progressively lower values of

t/a as d/b becomes smaller. This is to be expected since lower values of 4/b result in increased con-
centration of the propagating energy in the gap region.
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The bandwidth is essentially flat for low values of #/a, and decreasing moderately as ¢/a increases
to larger values. A maximum power-bandwidth product would set t/a as t/a = s/a + A, where A
would have to be determined for the remaining values of parameters. In general, A would decrease as
d/ b decreases, and typically would have a range from 0.1 to 0.35.

The performance characteristics shown in Figs. 23 to 25 are not intended to provide a complete
design procedure, since even for a fixed value of €, there remain too many variables to plot all charac-
teristics. The depicted characteristics are intended to enable one to obtain an initial design geometry,
and to provide an insight on how to fine-tune the design parameters to achieve the optimum waveguide
performance.

4.4 Performance Comparison With Other Waveguide Types

The performance characteristics of a dielectric loaded ridged waveguide can be compared with
those of other types of waveguide. For a fair comparison, the other waveguides should have a single
mode bandwidth equal to that of the DLDRWG. The waveguides for which the comparison is made
are the dielectric slab loaded rectangular waveguide (DSLRWG) and empty double ridged waveguide
(DRWG). All waveguides are assumed to have copper walls, and all dielectric materials assume the
values tan & = 10~% and ED, ... = 300 kV/cm.

The design information presented by Findakly and Haskel [23] and Gardiol {68] for DSLRWG
was used to achieve the optimum design for that waveguide, but with the aspect ratio reduced to force
the TEyy (LSE;p) mode to be the FHOM. The design information of Hoppfer {11] was used to
achieve the optimum design for the DRWG. Performance characteristics of both waveguide types were
calculated with the same program used in the calculations for DLDRWG.

The first comparison is for waveguides with a single mode bandwidth equal to 4.0 and a dominant
mode cutoff frequency f, = 4.0 GHz. For the DSLRWG, the minimum value of ¢, needed for BW =
4 was found to be €, = 18. The remaining parameters used for the DSLRWG were: ¢ = 0.649
(1.648), b = 0.114 (0.290), and ¢ = 0.071 (0.180). Dimensional values are given in inches (centime-
ters). For the DRWG, the parameters were: a = 0.833 (2.116), & = 0.416 (1.057), 4 = 0.098
(0.249), s = 0.221 (0.561), and €, = 1. Parameters for the DLDRWG were selected as: a = 0.645
(1.638), b = 0.322 (0.818), d = 0.106 (0.268), s = 0.129 (0.328), r = 0.258 (0.655), and e, = 2.54.
With these parameters, all three waveguide types have f. = 4.0 GHz for the dominant mode and f. =
16.0 GHz for the FHOM. The FHOM is the TE;, mode for DSLRWG, the TE,, mode for DRWG,
and the QLSE;  mode for DLDRWG.

Figure 26 shows the difference in the propagation constant 8 for the three different types of
waveguides. As should be expected, the DSLRWG has the largest 8 for frequencies above cutoff
because of the large dielectric loading with €, = 18, while the DRWG has the lowest 8 since e, = 1.

Figure 27 compares the attenuation characteristics of the three waveguide types. The large
attenuation of the DSLRWG is due primarily to the reduced aspect ratio required to maintain the cutoff
frequency of the LSE; ; mode above that of the TE;, mode and achieve the single mode bandwidth.
As with any waveguide, the attenuation increase for all three types as f — f, is due to the rapid
increase of dispersion.

Figure 28 compares power breakdown. The difference in power of the DLDRWG and that of the
DRWG is actually greater than depicted since no corrections were made for corner effects in the latter
waveguide. Such corrections were not required for the DLDRWG since breakdown in air occurred at a
considerably lower power level than that for dielectric breakdown.
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Similar comparisons are made of the three waveguide types for each having a single mode
bandwidth equal to 5.0 in Figs. 29 to 31. The parameters used for the DSLRWG were: a = 1.056
(2.682), b = 0.119 (0.302), ¢ = 0.076 (0.193), and ¢, = 42 (the minimum value of €, needed for BW
= 5). An even smaller aspect ratio is required to prevent the LSE; ; mode from being the FHOM than
in the case where BW = 4. The parameters used for the DRWG were: @ = 1.396 (3.546), b = 0.698
(1.773), d = 0.108 (0.274), s = 0.378 (0.960), and ¢, = 1. For the DLDRWG, the parameters were
chosen as: a = 1.046 (2.657), b = 0.522 (1.326), d = 0.105 (0.267), s = 0.209 (0.531), f = 0.450
(1.143), and €, = 2.54. For each type of waveguide, the dominant mode cutoff frequency is 2.0 GHz
while the FHOM has f.= 10 GHz. The FHOM for DSLRWG and DRWG is the TE,, mode, but is
the QLSM; ; mode for DLDRWG.

The propagation constant 8 is shown as a function of frequency for each of the waveguide types
in Fig. 29. Because of the larger degree of dielectric loading in the DSLRWG, where ¢, = 42, the
difference between 8 of this waveguide and 8 of the other waveguides is more pronounced than for the
BW = 4 case where €, = 18.

Comparison of Fig. 30 with Fig. 27 will show that the attenuation difference between the
DSLRWG and the other waveguide types to be more pronounced for the BW = 5 case than for the
BW = 4 case. This is due to the smaller aspect ratio required for BW = 5.

In Fig. 31, the power breakdown levels are shown as a function of frequency for each waveguide.
The increase in power breakdown of the DLDRWG over that of the other waveguide types is consider-
ably more pronounced than for the BW = 4 comparison. The DLDRWG does have dielectric break-
down near the upper end of the design band.
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An interesting feature of the DLDRWG is the behavior of the power breakdown level as a func-
tion of frequency. Unlike the power breakdowns of DSLRWG and DRWG, which essentially flatten
out with frequency, the Pgpp, of DLDRWG increases monotonically with frequency until dielectric
breakdown occurs, and is constant for higher frequencies.

When waveguide performance comparisons are made with DSLRWG, it should be noted that the
aspect ratio of this waveguide need not be reduced to maintain the TE,; y mode as the FHOM. The cut-
off frequency and dispersion characteristics of the TE;, mode are independent of height, while the
power breakdown level is directly proportional to the height. Also, the attenuation decreases with
increased height. Although f, for the TE,, mode is independent of the waveguide height as well, the
cutoff frequency of the LSE; ; mode is not, but decreases rapidly with increasing height, thus restricting
the single mode bandwidth. As an example, for the DSLRWG with BW = § used for comparison in
Figs. 29 to 31, the aspect ratio was taken as /a = 0.113. With this aspect ratio, the cutoff frequency
of the LSE; | mode was the same as that of the TE, ; mode, 10 GHz. If the height is increased to give
b/a = 0.189, the cutoff frequency of the LSE, ; mode is reduced to 6.99 GHz (BW = 3.5), and if the
height is increased to give b/a = 0.5 f, for the LSE; ; mode is reduced to 3.82 GHz (BW = 1.9). Of
course, the optimum values of ¢/a and €, to achieve a given bandwidth would be different if considera-
tion were given to the fact that the QLSE,; mode was the FHOM. However, for large single mode
bandwidths, the superior design must maintain an aspect ratio to keep the TE,, mode as the FHOM
because the drop in bandwidth as the aspect ratio is increased is much greater than the corresponding
increase in power breakdown. Waveguide performance comparisons with DSLRWG were thus confined
to the condition that the aspect ratio of this waveguide have equal cutoff frequencies for the LSE, | and
TE, » modes.
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The conclusions that may be reached after comparing the theoretical performance characteristics
of the three waveguide types are apparent. For a given single mode bandwidth, the peak power han-
dling capability of the DLDRWG is superior to that of either DSLRWG or DRWG, with the power
advantage of DLDRWG increasing with bandwidth. The price paid for the greater power breakdown of
the DLDRWG is increased attenuation over that of the DRWG. Expressed in terms of percentages,
however, the increased attenuation is far less than the increased power breakdown level. Also, with
attenuation calculated in terms of loss/wavelength rather than loss/unit length, the percentage change
of attenuation between waveguide types is even less, as shown in Table 5. The same waveguides
described earlier in this section were used for this comparison. The DLDRWG is superior to
DSLRWG from the viewpoint of both power and attenuation, with the added advantage of not requir-
ing very large dielectric constant materials to achieve large single mode bandwidths. From a practical
viewpoint, some cost effective manufacturing method must be found for DLDRWG to achieve the
theoretical performance. The peak power breakdown would be particularly sensitive to any flaws in the
waveguide structure.

Table 5 — Comparison of Attenuation in dB/A, for
Different Waveguide Types

Waveguide
Type

WGT1 #1— Air-filled double ridged waveguide
WGT2 #2—Dielectric slab loaded rectangular waveguide
WGT3 #3 —Partially dielectric loaded double ridged waveguide

(a) Waveguides with single mode bandwidth = 4 and
dominant mode cutoff frequency = 4 GHz

Attenuation (dB/A,)
Attenuation | Waveguide
term type f=5GHz | f=8GHz | f=10GHz
. #1 0.0194 0.0090 0.0055
#2 0.0284 0.0113 0.0067
#3 0.0205 0.0088 0.0056
ay #2 0.0071 0.0041 0.0036
#3 0.0071 0.0035 0.0029

(b) Waveguides with single mode bandwidth = 5 and
dominant mode cutoff frequency = 2 GHz

Attenuation (dB/X,)
Attenuation | Waveguide
term type f=25GHz | f=4GHz | f=10GHz
o, #1 0.0205 0.0107 0.0061
#2 0.0373 0.0161 0.0081
#3 0.0227 0.0112 0.0065
ay #2 0.0074 0.0045 0.0037
#3 0.0074 0.0035 0.0028

90



NRL REPORT 8917

5.0 REFERENCES

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

R.E. Collin, Field Theory of Guided Waves (McGraw-Hill, New York, 1960).

S. Ramo, J.R. Whinnery, and T. Van Duzer, Fields and Waves in Communications Electronics (John
Wiley and Sons, New York, 1965).

G.N. Tsandoulas, D.H. Temme, and F.G. Willwerth, "Longitudinal Section Mode Analysis of
Dielectrically Loaded Rectangular Waveguides with Application to Phase Shifter Design," {EEE
Trans. Microwave Theory Tech. MTT-18, 88-95 (1970).

W.L. Barrow, Proc. IRE 24, 1298 (1936).

I.R. Carson, S.P. Mead, and S.A. Schelkunoff, Beil System Tech. J. 15, 310 (1936).

L.J. Chu and W.L. Barrow, Proc. IRE, 26, 1520 (1938).

N. Marcuvitz, Waveguide Handbook (McGraw-Hill, New York, 1951).

J.L. Altman, Microwave Circuits (Van Nostrand, Princeton, NJ, 1964).

S.B. Cohn, "Properties of Ridge Wave Guides," Proc. IRE 35, 783-788 (1947).

J.R. Pyle, "The Cutoff Wavelength of the TE;y, Mode in Ridged Rectangular Waveguide of any
Aspect Ratio," IEEE Trans. Microwave Theory Tech. MTT-14, 175-183 (1966).

S. Hopfer, "The Design of Ridged Waveguide," IRE Trans. Microwave Theory Tech. MTT-3, 20-
29 (1955).

T.S. Chen, "Calculation of the Parameters of Ridge Waveguides," IRE Trans. Microwave Theory
Tech. MTT-5 (1957).

W.J. Getsinger, "Ridge Waveguide Field Description and Application to Directional Couplers,"
IRE Trans. Microwave Theory Tech. MTT-10, 41-50 (1962).

J.P. Montgomery, "On the Complete Eigenvalue Solution of Ridged Waveguide," IEEE Trans.
Microwave Theory Tech. MTT-19, 547-555 (1971).

L. Pincherle, "Electromagnetic Waves in Metal Tubes Filied Longitudinally with Two Dielectrics,"
Phys. Rev. 66, 118-130 (1944).

C.G. Montgomery, R.H. Dicke, and E.M. Purcell, Principles of Microwave Circuits, MIT Radiation
Lab Series No. 8 (McGraw-Hill, New York, 1948).

G.F. Bland and A.G. Franco, "Phase-shift Characteristics of Dielectric Loaded Waveguide," IRE
Trans. Microwave Theory Tech. MTT-10, 492-496 (1962).

P.H. Vartanian, W.P. Ayers, and A.L. Helgesson, "Propagation in Dielectric Slab Loaded
Rectangular Waveguide," IRE Trans. Microwave Theory Tech. MTT-6, 215-222 (1958).

F.E. Gardiol, "Comment on ‘On the Design of Dielectric Loaded deeguides,"' IEEE Trans.
Microwave Theory Tech. MTT-25, 624-625 (1977).

91



20.

21.

22.

23.

24

25.
26.

27.

28.

29.

30.

31

32.

33.

34,

35.

36.

37.

CHARLES W. YOUNG, JR.

R. Seckelmann, "Propagation of TE Modes in Dielectric Loaded Waveguides," [EEE Trans.
Microwave Theory Tech. MTT-14, 518-527 (1966).

F. Gauthier, M. Besse, and Y. Garault, "Analysis of an Inhomogeneously Loaded Rectangular
Waveguide with Dielectric and Metallic Losses," IEEE Trans. Microwave Theory Tech. MTT-25,
904-907 (1977).

S. Halevy, S. Raz, and H. Cory, "Bandwidth Optimization by Dielectric Loading," IEEE Trans.
Microwave Theory Tech. MTT-26, 406-412 (1978).

T.K. Findakly and H.M. Haskal, "On the Design of Dielectric Loaded Waveguides," IEEE Trans.
Microwave Theory Tech. MTT-24, 39-43 (1976).

F.N. Tsandoulas, F.G. Willwerth, and W. J. Ince, "LSE,y-mode Characteristics in Phase-shifter
Parametrization," IEEE Trans. Microwave Theory Tech. MITT-20, 253-258 (1972).

Reference Data for Radio Engineers (Howard W. Sams and Co., New York, 1975).
A.R. Von Hippel, Dielectric Materials and Applications (MIT Press, Cambridge, MA, 1954).

G. Magerl, "Ridged Waveguides with Inhomogeneous Dielectric-slab Loading," IEEE Trans.
Microwave Theory Tech. MTT-26, 413-416 (1978).

C.W. Young, Jr., "Comments on ‘Ridged Waveguides with Inhomogeneous Dielectric-slab Load-
ing,” IEEE Trans. Microwave Theory and Tech. MTT-26, 919 (1978).

L. Lewin, "On the Resolution of a Class of Waveguide Discontinuity Problems by the Use of
Singular Integral Equations," IRE Trans. Microwave Theory Tech. MTT-9, 321-332 (1961).

J.B. Davies, "Review of Methods for Numerical Solution of the Hollow Waveguide Problem,"
Proc. IEE 119, 33-37 (1972).

F.L. Ng, "Tabulation of Methods for the Numerical Solution of the Hollow-Waveguide Problem,"
IEEE Trans. Microwave Theory and Tech. MTT-22, 322-329 (1974).

S.K. Chatterjee and R. Chatterjee, "Dielectric Loaded Waveguides—A Review of Theoretical
Solutions: Part 1. Mathematical Methods," The Radio and Electronic Engineer, 145-160 (1965).

J.R. Whinnery and H.W. Jamieson, "Equivalent Circuits for Discontinuities in Transmission
Lines," Proc. IRE 32, 98-114 (1944).

L. Spruch and R. Bartram, "Bounds on the Elements of the Equivalent Network for Scattering in
Waveguides, 1. Theory," J. Applied Physics 31, 905-912 (1960).

R. Bartram and L. Spruch, "Bounds on the Elements of the Equivalent Network for Scattering in
Waveguides, II. Application to Dielectric Obstacles," J. Applied Physics 31, 913-917 (1960).

C.T.M Chang, "Equivalent Circuit for Partially Dielectric-filled Rectangular Waveguide Junctions,"
IEEE Trans. Microwave Theory Tech. MTT-21, 403-411 (1973).

W.K. McRitchie and M.M.Z. Kharadly, "Properties of Interface between Homogeneous and Inho-
mogeneous Waveguides," Proc. IEE 121, 1367-1374 (1974).

92



38.

39.

40.
41.
42.
43.
44.
45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

NRL REPORT 8917

L. Lewin, Theory of Waveguides (Wiley, New York, 1975).

J. Schwinger and D.S. Saxon, Discontinuities in Waveguides (Gordon and Breach, New York,
1968).

R.E. Collin, Foundations for Microwave Engineering (McGraw-Hill, New York, 1966).

R.F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1961).

H.A. Atwater, Introduction to Microwave T heory‘(McGraw-Hill, New York, 1962).

J.A. Stratton, Electromagnetic Theory McGraw-Hill, New York, 1941).

P. Moon and D.E. Spencer, Foundations of Electrodynamics (Van Nostrand, Princeton, NJ, 1960).
R.N. Ghose, Microwave Circuit Theory and Analysis (McGraw-Hill, New York, 1963).

F.B. Hildebrand, Methods of Applied Mathematics, 2nd ed. (Prentice-Hall, Englewood Cliffs, NJ,
1965).

R.F. Harrington, Field Computation by Moment Methods (MacMillan, New York, 1968).

R. Mittra and S.W. Lee, Analytical Techniques in the Theory of Guided Waves (MacMillan, New
York, 1971).

I. Aronson, K. Kalikstein, C.J. Kleinman, and L. Spruch, "Variational Bound Principle for Scatter-
ing of Electromagnetic Waves by Obstacles in a Waveguide," IEFEE Trans. Microwave Theory Tech.
MTT-18, 725-731 (1970).

B.E. Spielman, and R.F. Harrington, "Waveguides of Arbitrary Cross Section by Solution of a
Nonlinear Integral Eigenvalue Equation," IEEE Trans. Microwave Theory Tech. MTT-20, 578-585
(1972).

J. Mathews and R.L. Walker, Mathematical Methods of Physics (W.A. Benjamin, Inc., New York,
1964).

R.M. Bulley and J.B. Davies, "Computation of Approximate Polynomial Solutions to TE Modes in
an Arbitrarily Shaped Waveguide," IEEE Trans. Microwave Theory Tech. MTT-17, 440-446
(1969).

R.M. Bulley, "Analysis of the Arbitrarily Shaped Waveguide by Polynomial Approximation," IEEE
Trans. Microwave Theory Tech. MTT-18, 1022-1028 (1970).

V.H. Rumsey, "Reaction Concept in Electromagnetic Theory," Phys. Rev. 94(6), 1483-1491
(1954).

M.J. Beaubien and A. Wexler, "An Accurate Finite-difference Method for Higher Order
Waveguide Modes," IEEE Trans. Microwave Theory Tech. MTT-16, 1007-1017 (1968).

D.J. Richards and A. Wexler, "Finite-element Solutions within Curved Boundaries," IEEE Trans.
Microwave Theory Tech. MTT-20, 650-657 (1972).

93



57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.
71.
72.

73.

74.
75.

6.

CHARLES W. YOUNG, JR.

P. Silvester, "A General High-order Finite-element Waveguide Analysis Program," [EEE Trans.
Microwave Theory Tech. MTT-17, 204-210 (1969).

A. Wexler, "Solution of Waveguide Discontinuities by Modal Analysis," [EEE Trans. Microwave
Theory Tech. MTT-15, 508-517 (1967).

Z.J. Csendes and P. Silvester, "Numerical Solution of Dielectric Loaded Waveguides: II—Modal
Approximation Technique," IEEE Trans. Microwave Theory Tech. MTT-19, 504-509 (1971).

Z.J. Csendes and P. Silvester, "Numerical Solution of Dielectric Loaded Waveguides: I—Finite-
element Analysis," IEEE Trans. Microwave Theory Tech. MTT-18, 1124-1131 (1970).

R.V. Churchill, Fourier Series and Boundary Value Problems, 2nd ed. (McGraw-Hill, New York,
1963).

P. Hlawiczka, Matrix algebra for Electronic Engineers (Hayden, New York, 1965).

J.A. Eisele and R.M. Mason, Applied Matrix and Tensor Analysis (Wiley-Interscience, New York,
1970).

Forman S. Acton, Numerical Methods That Work (Harper & Row, New York, 1970).

A. Jennings, Matrix Computation for Engineers and Scientists (John Wiley and Sons, New York,
1977).

Josef Meixner, "The Behavior of Electromagnetic Fields at Edges,” Research Report No. EM-72,
Courant Institute of Mathematical Sciences, Division of Electromagnetic Research, New York
University, Dec. 1954,

A.F. Harvey, Microwave Engineering (Academic Press, New York, 1963).

F.E. Gardiol, "Higher-order Modes in Dielectrically Loaded Rectangular Waveguides," IEEE
Trans. Microwave Theory Tech. MTT-16, 919-924 (1968).

W.P. Clark, K.H. Hering, and D.A. Charlton, "TE-mode Solutions for Partially Ferrite-filled
Rectangular Waveguide Using ABCD Matrices," IEEE International Convention Record 14(5), 39-
48 (1966).

G.F. Engen, "Advances in Microwave Measurement Science,” Proc. IEEE 66, 374-384 (1978).

S.F. Adam, "Automatic Microwave Network Measurements," Proc. IEEE 66, 384-391 (1978).

R.A. Hackborn, "An Automatic Network Analyzer System," Microwave J. 11, 45-52 (1968).

S.F. Adam, "A New Precision Automatic Microwave Measurement System," IEEE Trans. Instrum.
Meas. IM-17, 308-313 (1968).

Handbook of Chemistry and Physics (CRC Press, Cleveland, OH, 1974).
W.C. Johnson, Transmission Lines and Networks (McGraw-Hill, New York, 1950).

N. Balabanian and T.A. Bickart, Electrical Network Theory (John Wiley and Sons, Inc., New York,
1969).

94



NRL REPORT 8917

77. S.F. Adam, Microwave Theory and Applications (Prentice-Hall, Englewood Cliffs, NJ, 1969).

78. R.V. Churchill, Complex Variables and Applications, 2nd ed. (McGraw-Hill, New York, 1960).

95



Appendix A
TRANSVERSE RESONANCE METHOD ANALYSIS

If the assumption is made that an electromagnetic wave propagating in a waveguide with cross-
section as shown in Fig. 3 is a TE, o mode, then a solution for the propagation constant 8 can be
obtained by a straightforward extension of the transverse resonance method used [9,11] to obtain solu-
tions for the homogeneous ridged waveguide. Because of the symmetrical configuration of the
waveguide, the resonance condition for the transverse component of the propagation wave will result in
an infinite impedance at the center for m odd and zero impedance for m even in the equivalent
transmission line circuit. Equivalently, this condition can be represented by a magnetic wall (m odd) or
an electric wall (m even) placed at the vertical plane of symmetry of the waveguide. The equivalent
circuit to be solved then reduces to that of Fig. Ala for m odd or Fig. Alb for m even. The capacitive
susceptance B, is the lumped element term to represent the waveguide height discontinuity. Within
each region, where the regions are defined from Fig. 4, Zj; is the characteristic impedance, Yy; =
1/Zy; is the characteristic admittance, and 6, is the product of the physical transverse dimension of the
region and y,;, the complex x-directed propagation constant. For the lossless model, vy,;, and therefore
0,;, will be either real or imaginary.

—o—— —o
i 204 Zo2 %—_ 1B, | Zo3

8, ——o—— 8, 8, |—o
*1 X2 X3 X4

(a) Equivalent Transmission Line Circuit For m Odd

I
i 201 Zo2 L I8 Zo3 :I
8y l—o—f @2 g e 83

Xa X4

X 4 Xy
(b) Equivalent Transmisslion Line Circuit For m Even

Fig. A1 — Equivalent circuit for transverse resonance method
analysis of TE,, o modes (a) m odd; (b) m even

The reflected impedance Z presented by a load impedance Z; terminating a transmission line of
characteristic impedance Z, with propagating constant v and length L is [75]

(Z, + Zy) exp L) + (Z, — Zy) exp (— yL)

Z=12Z . Al
0z, + Zy) exp (yL) ~ (Z, — Zy) exp (—yL) (AL)
For the circuit of Fig. Ala the open circuit at x4 will reflect back to x; as
VA 4-3= Zy; coth 63 (A2)
or
Y 4-3= Yo3 tanh 0, (A3)
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The short circuit at x; will reflect back to x, as

Zl—~2 = ZO] tanh 9 (A4)

Equation (A1) may be expressed as

Z; coshyL + Z;sinh yL

Z= .
0 °Z, sinhy L + Zycosh yL (45)
Since Z,_, terminates Region 2, the short at x; will reflect to x; as
21_2 cosh 0, + ZQ;_ sinh a8,
Zi3=2 . 6
1-3 02 Z,_, sinh 8, + Zj, cosh 4, (46)
Substitution of Eq.(A4) into Eq.(A6) yields
Zg; sinh 8, cosh 8, + Z,; cosh 8, sinh @
Zis=Zo 01 ! 1 CC 2 02 1 2 (A7)
Zy,; sinh 8, sinh ¢, + Z; cosh 8 cosh g,
or
Zy sinh 6, sinh 8, + Zy, cosh 8, cosh 6, (A8)

Yi_3=7Y - - .
1-3 02 ZOI sinh 8, COSh92 + ZOZ‘COSh 01 sinh 0,

Since the equivalent circuit is a composite, dissipationless, passive line matched at both ends, it must
be matched at all points [2]. Therefore, the sum of the admittances at the point x; must equal zero,

Yi_3+ jB, + Y4 3=0. (A9)

Substitution from Egs. (A3) and (A8) gives

. . Zy
sinh 6, sinh 4, + Z - cosh 8, cosh 9,
01

+ =0. (A10)

. Zy .
sinh 8, cosh 4, + Z cosh 6, sinh 8,
01

Y03 4

tanh 8; + j
Yoo } 02

Since Region 2 and Region 3 have the same dielectric loading, v,y = v.3, and the impedances are pro-
portional to the heights:

23 _ T 4 (A11)

1S

Lo _ ¥xl (A12)
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The left side of Eq. (A10) may be expressed as a single fraction. All terms in the denominator are fi-
nite, so the numerator may be equated to zero. With substitution of Egs. (A11) and (A12), the resul-
tant expression is

: : b . B,
(yx; sinh 8; cosh 8, + v, cosh @, sinh 8,) (; sinh 8; + Jv= cosh ) (A13)
02

+ cosh 03 (y, sinh 6, sinh 8, + y,, cosh 6; cosh §,) =0 -

Within each region

yi+yi+yi= —wluoe fori=1,2,3

with

€;=¢€p and e, =¢€3=¢€,€6p"

For TE, o modes y,;, = 0 and y,; = jB for all regions; B is the longitudinal propagation constant
(above cutoff) for the waveguide configuration. Substituting into Eq. (A13)

Yxi =B —oluoe; for wige; < p? A1)
= jNoluge; — B2 for wiuge; > B2

and 9, = y, L, with L, = (a — t)/2, L, = (¢t —s)/2, and L; = s/2, where a, t, and s are the
dimensions from Fig. 3, then defines the transcendental equation that must be solved to obtain solu-
tions for the TE,, o modes for m odd. When solving for the cutoff frequency, 8 = 0 and frequency is
the unknown quantity, with the smallest root of (Al3) the solution for o, of the TE;, mode, the
second root w. of the TE; y mode, etc. If the frequency is fixed and the propagation term 8 is taken as
the unknown, the solution (actually in terms of 8% rather than 8) to (A13) will yield multiple roots of
B2 if the frequency is greater than cutoff of the TE; o mode. The first root represents 8 for the TE;,
mode, the second root 8 for the TE; ; mode.

For TE,, o modes with m even, the effective short circuit at x4 in Fig. Alb will reflect back to x;
as

Z4_.3 = Zo3 tanh 93.

The resultant transcendental equation (with either  or 8 the unknown) that must be solved for
TE,,.n 0 mode solutions is given by (A13) with the terms cosh 83 and sinh 83 interchanged.

For all TE,, o modes, m even or odd, the impedance ratio B,/ Y, may be calculated as [7,39]

B, 2b 1—r2 1 1 1+r A+ A +2C
== — — +— ——— ——ee——s
Yop X, ln[ yp + 1 In - +2 A=
b 1=+ [s52=1 4 rc
s |T+7 -2 T3 4 (AL5)
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where
PR ) R N L L )=
l—r] 1-=1[1=GAYI?  1-2
P B R S S 2Ok N B
I=r)] 1-01-=@A\)T 1-/?
2
4r
C=|——
[l—r2

with r the height ratio, r = d/b. The wavelength X\ is the transverse wavelength, A, = 27/B,, where
the transverse propagation term 83, is that for Regions 2 and 3, with

Yx2 = Yx3 = JBx
since wlugege, = B2 for any propagating mode.

The computer program TRMWG incorporates the mathematics of this Appendix and may be used
to calculate solutions for the TE,, o modes of dielectric loaded ridged waveguide. Since true TE modes
do not exist in this waveguide, the accuracy of the solutions is limited by the deviation of the actual
modal structure (QLSE,, o or QTE,, o modes) from that of the presumed TE mode.

Program TRMWG also may be used for calculating TE,, o mode solutions (with accuracy limita-
tions already noted) for the waveguide where the dielectric width ¢ is less than the ridge width s (Fig.
5). The analysis for this waveguide structure is similar to that for the case where ¢ > s, with one
important difference. For large values of €,, the waveguide of Fig. 5 will have the propagating energy
concentrated in the dielectric at some frequencies above cutoff, with fields transversely evanescent in
the vicinity of the ridge wall. For o > wg, where wy > w,, o*ugeq < B2 thus y,;(=y,,) will be real.
The definition of wavelength at these frequencies then loses meaning, and (A15) may not be used to
calculate a numerical value of the shunt susceptance term in an equivalent circuit for the transverse
wave. For these conditions, program TRMWG assumes a value B, = 0. This assumption is equivalent
to ignoring the effects of the ridge, but since the transverse wave is evanescent at the ridge wall for
w > oy, the assumption is reasonable for a first order approximation.

The FORTRAN listing for program TRMWG is given in Appendix El.
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Appendix B
DIELECTRIC CENTER LOADED RECTANGULAR WAVEGUIDE

In the analysis of dielectric loaded rectangular waveguide (Fig. 2), most authors [1,3,18,68]
correctly point out that propagating modes may be divided into two classes: (1) the LSE (Longitudinal
Section Electric) modes, which have no electric field component normal to the air-dielectric interface,
and (2) the LSM (Longitudinal Section Magnetic) modes, which have no magnetic field component
normal to the air-dielectric interface. The propagation analysis is based on this a priori knowledge of
the wave structure. Identical results may be achieved by a more rigorous analysis, similar to that used
in the main body of this investigation, in which all field components are assumed to exist until proven
to be nonexistent.

Vertical Plane Of Symmetry

Region 1 Reglon 2 l

y=b/2 /
€
y=0 — /

X==X x=0 X=X

! 2

N\

| z
|

Fig. Bl — Model for analysis of dielectric slab
loaded rectangular waveguide

If only the symmetric waveguide configuration is considered, the mode! for analysis may be
reduced to a half-waveguide cross section with either a magnetic or electric wall located at the vertical
plane of symmetry (Fig. B1). For this waveguide configuration, locating the y=0 plane at the top or
bottom wall of the waveguide would simplify the analysis somewhat; however, in order to maintain
similarity with the analysis of the ridged waveguide, the y=0 plane will be located at the horizontal
plane of symmetry. The derivations (from Maxwell’s equations and the wall boundary conditions) for
the form of the field components in each region are exactly as for the ridged waveguide configuration;
the results are repeated here for clarity. In Region 1

EL = ¥ 4, cosh [p; ,(x + x)] - [32;] k1, (Bla)
EYV = ¥ By, sinh [p;,, (x + xD)/py, - [‘;ﬁf] kyny (B1b)
EW = 2 JCr sinh (o G + 501y [2;,‘;] ki uY (Blc)
HY = 3 Dy, sinh (py,, G+ x)Vpy - (23] ko (B1d)

P
HY = ¥ Fy, cosh [py , (x + x))] - [gg;] kiny (Ble)
n
HV = Y. jGi,, cosh [p; , (x + x)1 [g?rf] kyny (B1f)
n
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with the separation equation given by
B2+ klz‘,, - plz,,, = w?ug € (B2)

for all n. For (M,E) and (M,M) solutions, corresponding to a magnetic wall at the VPS, the fields of
Region 2 are given by

E® = 3y, sinh [py (c ~ x)V o, - (31 0 (B32)

"
E® = ): B, cosh [py, (x — x))] - [gﬁf] Kyny (B3b)
ER = nz JCa.n cosh [py , (x — x)] - [ggé] kany ' (B3c)
H® = ; D, , cosh [p; ,(x — x))] - {‘s:?r?] ka.ny (B3d)
H® = 3 Fyy sinh G~ x)Vps, (6] ko (B3e)
H? = § jGa sinh (pyCx = x9V s - (%) koo (B3f)

"

with the separation equation given by

B2+ kzz,,, - p22,,, = wug € €, (B4)

for all n. For (£,E) and (E,M) solutions, corresponding to an electric wall at the VPS, the fields of
Region 2 are given by Eq. (B3) with the functions cosh [p, ,(x — x)] and sinh [p, , (x — x)1/p2,
interchanged. In both regions, k, = k;, = nw/b and the upper trigonometric function for the y-
dependence, with n restricted to even integers, is used where an electric wall is located at the HPS, i.e.,
(M ,E) and (E,E) solutions. The lower trigonometric function for the y-dependence, with » restricted
to odd integers, is used for the (M,M) and (E,M) solutions which have a magnetic wall at the HPS.

The remaining boundary condition to be satisfied is at the air-dielectric interface, x = 0. Since
the heights of the two regions are the same, the basis functions which form the y-dependence of the
modal components are orthogonal on the interval - /2 < y < b/2. Equating the tangential fields of E
and H of the two regions at x = 0 will then show

By, sinh (py ,x1)/p1,, = By, cosh (py ,x7) (B5a)
Cy,y sinh €py ,x)/p1,, = C3,, cosh (py ,x7) (BSb)
Fy, cosh (p; ,x;) = —F,, sinh (py,x)/ps., (B5c¢)
Gy, cosh (py ,x1)) = =G, sinh (py ,x2)/ps, (B5d)

for (M,E) and (M,M) solutions. For (E,E) and (E,M) solutions Eq. (B5) will be valid if the func-
tions cosh (p, ,x,} and — sinh (p; ,x2)/p, , are interchanged. In matrix form, Eq. (B5) becomes

!
I

- - .- - _-..=----| ------- (B6)
f
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where the matrices are diagonal with
(0{EN 1y, = sinh (p; ,X1)/ D10 S
lgl(H)}m.n = cosh (pl,nxl) 8 un

and for (M,E) and (M, M) solutions
{OZ(E)}m,n = cosh (pz,an)amn

(647}, = —sinh (92, x2)/p25

while for (£,E) and (E,M) solutions
{ 2(E)}m, = —Sinh(anxl)/pZ,n 8mn
{gz(H)}m,n = cosh (pZ,an) 8 pan -

(B7)

(B8a)
(B8b)

(B8c)
(B8d)

(B8e)
(B8f)

The relationships between modal components coefficients within a given region have been derived

in the main body of this analysis. Expressed in matrix form, they are repeated here for clarity:

where the indicated matrices are diagonal with
[Kl}m‘n = (n'ﬂ'/b) Smn
(@)= B +8%)5,,
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¢y 0 |G —@:iKl Pf : 0 A
o v I8 |2k ® || 0 = wp, U|| Dy
|
L111|O F —- & K |joeg U 0 Ay
0 1w || G wk,y @ || 0o | v |lp
]
| | I
210 || Ca -& 1K Wy | 0 A,
—--l--- -- -] = ----l ---------- I ------ - - -
0 |l[lz B2 :thI o 0 l—co;,co U D2
|
G210 || F2 —® | £K||oe; U} 0 A,
{'6' s, || G, sk @ || 0| W ||,

(B9)

(B10)

(B11)

(B12)



NRL REPORT 8917

Witmn = [B*+ (nw/B)? + 8] 3,

Ua=1n
lfor=0,n=0
~ | 0 otherwise.

For (M,E) and (M ,M) solutions

W,=U

Wp = P3
while for (E,E) and (E,M) solutions

WA = P22

WD = U

The + notation on the K matrices corresponds to » being [%‘ﬁg integers.

Y110
Premultiplying (B6) and (B7) by the matrix |- - -|- - -| and then substituting from (B9 - B12) yields
| ¥
@& | [,
1771 0 |- Ky Pi | 0 A
aiuil atieid | il === """ [====="|"c"
0 | QI(E) ﬁ:Kll [6)] 0 |T@rO U Dl
[ 4B | | 1
2 0 [|—-@ =K W, 0 A
I A R | P Pl | I 4 : ________ 2. (B13)
0 :02(5) +K, & 0 |—wp Ul|D,
@ ! ( ! [
017 0 ||—® | £Ki||wea U} 0 A
- - - -l -------- l -----------------
0 | Gl(H) :tKI[ {0)] 0 : U DI
I h
05 0 ||-@ £K;||ee U 0 A;
= - - - -I -------- I --------- l -------- (Bl4)
0 |92(H) :thI (o] 0 | WD D2
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after noting that diagonal matrices commute and y; = ;. Since K, = K;, and since the matrix
l I

-@ | K, 010
- = = -- - - -| commutes with any diagonal matrix of the form |- - -- - -|, (B13) and (B14) may be
| -1
_(I) |iK1
premultiplied by (- - - -----[ to give
i‘K]l
@ | | @ | '
61" ) 0 P | 0 A 8" 1 0 Wel 0 Ay
AR R | Ry | Bl Bl B R | R j=-===]--- (B15)
0 | GI(E) 0 |~ @0 Ul| Dy 0 [ 92(5) 0 [~ @Wio D,
| ]
0 o0 |[weo U; 0 A 9 0 || wesU | 0 Ay (B16)
R L | EEERE === === ol CERE LR  EEERE === -
0 Igl(H) 0 [ U Dl 0 |02(H) 0 | WD D2
) ! '
6"’ 0 U |
If (B15) is now premultiplied by |- - - -|- - - /|- - - - - - |- - === and (B.16) premultiplied by
0 ol 0 1
| 01 l——yU
WMo
Y
91(5) : 0 WEg Plll 0
R G | L -U , the left-hand sides of the two resulting equations will both be equal to
0 9P| O
0@ o |[6#] o || P71 o |[As
i et i Rl I====---" == -=1-c-
0 o il 0 jo{{l 0 = U}D,

I | | | I I
o{ | o 952 | 0 Wi 0 || A2 o2 o [[6:7) o ||e,PE 0 || A
Rl it | 1= = === (il | i =g e § Rl (it § Infindie
0 16| 0 (0P| O |—U||D; 0 9P| 0 1952 0 = Wp|| D,
This last equation may be expressed as
|
11 0 || A
BTt | et (B17)
0, & {|D;
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where the matrices &, and &, are diagonal with
&1=0{0{P W, — ¢ PLo{P9{" (B18a)
& = 0B Wy, — g{H)g{E), (B18b)

The expression of Eq. (B17) represents an eigenvalue problem, [M]V = AV, for the special case where
A = 0. For Eq. (B17) to be valid, the determinant of the matrix must vanish:

€110
Det|[------=0
0,¢
Since the determinant in question is diagonal,
|
€110
Det|- - et = {gl}n,n {52}11,11»
0,& "

thus the determinant is zero whenever any diagonal term is zero. For the general case, the functions
forming the diagonal elements of the matrix in Eq. (B17) will have separate roots (zeros). For a given
diagonal matrix element equal to zero (whether as a function of w or B8), all vector components other
than the one which is multiplied by the given matrix element must have zero magnitude in order for
Eq. (B17) to remain valid. Thus, any solution for a single propagating mode will have either H, =0
(LSM modes) or E, =0 (LSE modes). Furthermore, the field structure will consist entirely of modal
components corresponding to a single value of ».

From Eq. (B18) the individual diagonal components of the matrices ¢,and £, are

{€1}n.n = cosh (py ,x}) cosh (py ,x3) + €,p1, sinh (py ,x)) sinh (py,x2)/ Py, (B19a)
{£2} 1.0 = —cosh (py ,x\) cosh (py %)) = pa, sinh (py,x5) sinh (py ,x)/p (B19b)

for (M,E) and (M, M) solutions, while for (E,E) and (E,M) solutions they are
{¢1} = — by, cosh (py ,x)) sinh (py ,Xx2) — €,p1,, sinh (py ,x1) cosh (py ,x;)  (B20a)
{€2) .0 = cosh (py ,x3) sinh (py ,x1)/py, + cosh (py ,x1) sinh (py X2/ Py p- (B20b)
For a solution with the expression of Eq. (B19a) equal to zero, the resulting mode is LSM, with the H
field antisymmetric about the VPS, and hence is called an antisymmetric LSM mode. A similar defini-

tion may be made for modes corresponding to Egs. (B19b), (B20a) and (B20b) being zero; in sum-
mary,

Eq. (B19a) = 0 ==> LSM modes, antisymmetric H
Eq. (B19b) = 0 ==> LSE modes, symmetric E
Eq. (B20a) = 0 ==> LSM modes, symmetric H
Eq. (B20b) = 0 ==> LSE modes, antisymmetric E .

The expression (solutions) of Egs. (B19) and (B20) are easily shown to be equivalent to the solutions
obtained by others [3,18,20,68].

A short discussion of homogeneous rectangular waveguide is appropriate before the question of
index assignments is addressed. The field structure of homogeneous rectangular waveguide is normally
characterized in terms of degenerate modes, TE,, , and TM,, , were E, = 0 for TE modes and H, = 0
for TM modes [1,2,8,42]. The index pair m,n represents the number of half sinusoidal cycles the
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fields of E and H make within the waveguide in the x and y directions, respectively. For TE, , modes,
both indices may not be zero, while for TM,, , modes neither index may equal zero. For TE, , modes,
all fields are independent of x, while for TE,, o modes all fields are independent of y. For any given
index pair, the propagation characteristics of the TE,, , mode are identical to those of the TM,, , mode,
and any linear combination of the two degenerate modes constitutes a propagating mode. Of course, if
m = 0 or n = 0, the corresponding TM,, , mode does not exist, and the field structure of the TE
mode is unique.

The homogeneous rectangular waveguide alternatively may be characterized by LSE,, , and
LSM,, , modes [41] with any single propagating mode consisting of the appropriate linear combination
of these two modes. The index pair has exactly the same interpretation as for the TE and TM modes.
For a given index pair with m = 0 and n # 0, the LSE,, , mode and the LSM,, , mode have identical
propagation characteristics (equal to those for the TE,, , and TM,, , modes). Since E, and E, must be
zero at the waveguide sidewalls, there must be a minimum of one half cycle for the fields in the x
direction if any fields are to exist for LSE modes where E, = 0; i.e., m > 1 for the LSE,, , mode.
The index n will equal zero for E,=0, thus the LSE,, o mode is identical to the TE,, o mode. For LSM
modes, H, is zero everywhere, and H, must vanish at the top and bottom walls. Therefore there must
be a minimum of one half cycle varlatlon in H, (and hence in the other nonzero fields) in the y direc-
tion since no propagating mode can exist w1th only an axial component of magnetic field. All fields
may be independent of x only if E, and E, vanish everywhere; thus, the LSM, ,, mode is identical to
the TE,, ,, mode.

Of course, in the homogeneous waveguide there is no air-dielectric interface to define the "nor-
mal" direction. The a, unit vector was chosen to replace the normal unit vector of the dielectric slab
loaded waveguide to maintain similarity with that analysis. Had a, been chosen instead, the roles of
LSE and LSM would simply be interchanged, corresponding to a 90° rotation of the axis system in the
x-y plane.

For the dielectric slab loaded rectangular waveguide, the TE,, o and the LSE,, o modes are identi-
cal. No other TE or TM modes exist, thus the reason for the LSE,, , and LSM,, , analysis. The index
n for these modes still represents the number of half sinusoidal cycles made by the nonzero field com-
ponents in the y direction within the waveguide. Although the fields within any homogeneous region
may have a sinusoidal x-dependence, the variation with x over the full waveguide may be greatly dis-
torted from a simple sinusoidal form [1-3,18,41]. However, the index m may still be used to represent
the number of distorted half cycles the fields make in the x-direction if the definition of a cyclic func-
tion is extended to include any function which is either (1) antisymmetric about the VPS with 9/9x =
0 at the waveguide side walls, or (2) symmetric about the VPS and zero at the waveguide sidewalls.
The only questionable aspect of this definition of the index m arises for LSM modes, which in this
analysis will have index assignments m = 0, 1, 2, 3, ... and n = 1, 2, 3, ... which is in contrast to
Ref. 3 where the lowest index value for m is one. The LSM,, , mode of Ref. 3 is the LSM,,_; , mode
of this report.

There are several reasons for having m =0 as the lowest order index for the LSM modes:

(1) The dielectric loading may be considered a perturbation of the homogeneous condition. As
the dielectric loading is reduced (e,—1), the field pattern of the waveguide must approach that of the
corresponding mode of the homogeneous waveguide. Since a LSM, ,(TE;,) mode exists for the
homogeneous case, it is logical to refer to the perturbed mode as LSMy , rather than LSM, ,.

(2) A large change in the width ("a" dimension) of the waveguide has only a second order effect
on the propagation characteristics of the LSMy , modes, analogous to the LSM, , (TE,, ,) modes of the
homogeneous waveguide for which the propagation characteristics are completely independent of the
width.
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(3) The fields H, and H, may not vanish at the waveguide sidewalls if any fields are to exist. For
a LSM mode with symmetric H fields ((£,M) and (E,E) solutions), these fields must possess an even
number of half cycles as a function of x, and with the definition used here m must be even (m is odd
in [3]). For a LSM mode with antisymmetric H fields ((M,E) and (M,M) solutions), these fields
must undergo an odd number of half cycles as a function of x, thus m is odd (m is even in Ref. 3).

(4) Any LSM mode of dielectric slab loaded waveguide will have fields which are dependent on
the x variable. The LSM modes which have fields with the least dependence on x (corresponding to
the lowest order of m) are for (E,M) and (E,E) solutions and will have tangential E fields
(Ey and E,) for which the x-dependence function has two half cycles. However, the x-dependence
function of the remaining fields, £y, H,, and H,, will not be cyclic; it will be nonzero for all x and may
be thought of as a perturbed constant. The next highest order LSM mode with (E,M) and (E,E) solu-
tions will have all fields with x-dependence functions which undergo two half cyclic variations (m =
2). Therefore, the index assignment m = 0 will describe those lowest order LSM modes.

In summary, the dielectric slab loaded rectangular waveguide has two types of modal structures,
LSE modes with E, = 0, and LSM modes with H, = 0. For (E,M) and (E,E) solutions, the modes
are LSE,, , withm =2,4,6,8,...,n=0,1,2,3,...and LSM,, , with m = 0,2,4,6,...,n =1,
2,3,4,.... For (M,M) and (M,E) solutions, the modes are LSE,, , withm =1,3,5,7,...,n =
0,1,2,3,...and LSM,, , withm = 1,3,5,7, ..., n = 1, 2, 3, 4, ... . The characteristic equations
for these modes are given by :

LSE 44, modes: cosh ¢y, cosh ¢y, + py, sinh ¢, , sinh ¢y ,/p;, =0
LSEeye, modes: cosh ¢, , sinh ¢, ,/p; , + cosh ¢, , sinh ¢, ,/py, =0
LSMq4,n modes: cosh ¢y , cosh b, + €,p1,, sinh ¢y, sinh @3 /P2, =0
LSM¢yen,n modes: p, , cosh ¢ , ﬁsinh ¢y, + €01, Sinh ¢ , cosh ¢y, =0

where
¢)i,n = pi,nxi
Pin = 1B*+ (nw/b)?* - ouee ]V, i=1,2.

For a given m,n index pair, the LSE,, , and LSM,, , modes will have different cutoff frequencies and
different propagation characteristics, in contrast to the homogeneous waveguide, and thus are not
degenerate modes. Also, in contrast to homogeneous waveguide, for which knowledge of the cutoff
frequency of any mode may be used to immediately obtain the propagation constant 8 for frequencies
above cutoff [1,2,42], there is no simple formula to describe the dispersion characteristics for the
dielectric slab loaded waveguide; the transcendental equation appropriate for the desired mode must be
solved at each different frequency.
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Appendix C

SCATTERING MATRIX PROPERTIES OF
LOSSLESS WAVEGUIDE JUNCTIONS

Two different waveguides, each with a uniform cross section, may be joined together along a com-
mon axis of propagation. The resultant cross-sectional discontinuity will excite higher order modes in
both waveguides. Assuming the frequency is such that only the dominant mode will propagate in each
waveguide, the fields of these higher order modes will decay exponential in both axial directions from
the discontinuity. At distances sufficiently far from the discontinuity, the fields of the higher order
modes will have decayed to negligible magnitudes, and only the single (dominant) mode need be con-
sidered for circuit analysis if a suitable equivalent circuit is included to account for the coupling
between the dominant mede and the higher order evanescent modes caused by the discontinuity. Such
an equivalent circuit may be represented as a T-network of lumped elements as shown in Fig. Cl
[1,2,8]. Alternatively, a IT network could be used. If the waveguide is lossless, as will be presumed,
each element in the equivalent circuit must be reactive, either inductive or capacitive, as shown. In
general, each reactive element will be a function of frequency and the cross-sectional geometry of both
waveguides. In the equivalent circuit, the reactive elements represent the energy stored in the higher
order evanescent modes. The dominant mode impedance of the waveguide on either side of the
discontinuity is reflected as the characteristic impedance of the corresponding transmission line in the
equivalent circuit.

_——_o_lx1 sz [ —

Z514 IXg Zo2

———— —— — P —

Fig. C1 — Lumped element representation of
waveguide discontinuity

The scattering matrix representation [8,42,45] for the two-port network of Fig. Cl is shown in
Fig. C2. Each term of the two by two scattering matrix [S] may be found in terms of the parameters of
Fig. Cl. The importance of the S-parameter representation is twofold: (1) circuit analysis may be
greatly simplified by the use of S-parameter notation, and (2) the results of microwave measurements
are usually expressed in terms of S-parameters.

Port 1 Port 2
—— ] —_—
Zo4 (s] Zo2
—_———— lo— —_—

Fig. C2 — S-parameter representation of
waveguide discontinuity
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If the composite waveguide is assumed to be lossless, the normalized scattering matrix of the
equivalent circuit must be unitary [40,42,45] with § $* = U. Thus,

* *

S11 S12 S11 $31 1 0
* *

S S» Sz S» 0 1

or
susn + 5512 = 1 (Cla)
s1821 + 51252 =0 (Clb)
$2151) + $ps12 = 0 (Clc)
s21821 + sps3 = 1. (Cld)

The unitary property of the scattering matrix alternatively may be expressed as S*S= U, yielding the
additional relationships:

snsi + 8218y =1 (C2a)

8;2512 + S£2S22 = 1. (C2b)

When Egs. (Cla), (C1d), (C2a), and (C2b) are combined, the following equalities are found:

|S11|2+ |321i2=1 .(C3a)
Ispl? + Isppl? =1 (C3b)
s3] = Isl (C3¢)
[sial = lsyl. (C3d)

Expressing the elements of the scattering matrix as

S = |511|€j¢”
Sp = |512|6j¢12
S21 = |521|‘—’M)21
Jbyr
Sy = |522|e

and substituting into Egs. (C1b) and (Clc) yields the following relationship between the phase terms:
exp (@1 — da)] +exp (@1, — ¢22)1=0

or equivalently

exp [i(dy + b))l = —exp Lilp), + ¢3)] (c4)

The properties of the scattering matrix found thus far have depended only on the loss free
requirement. Since the waveguide junction is reciprocal, the scattering matrix for the equivalent circuit
must be symmetric [76]: 5,5 = sy, OF 15 = ¢5,. With this additional requirement, the determinant of
the scattering matrix is Det [S] = 57,52, — 512521, where

(b)) + by) oy + dgy)
|zel¢n ) _ 21|2€,J¢21 LN

$11822 — S12821 |511 I's
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Since ¢1; = ¢, Eq. (C4) together with Eq. (C3a) gives

(11 + byy)
S11S32— SppSyy =@ 1Tt (C5)

For the lossless reciprocal two-port circuit of Fig. (C1), all properties of the 2 x 2 scattering matrix
derived up to this stage are easily shown to be valid regardless of the numerical values of the parame-
ters.

For many types of discontinuities in homogeneous waveguide, the corresponding equivalent cir-
cuit will have a reactive network containing only a shunt element (X, = 0 and X, =0 in Fig. Cl).
Examples are a change in width or a change in height of rectangular waveguide, for which the shunt
reactance is inductive or capacitive, respectively [1,7,33]. Numerical values of the reactance (normal-
ized to one of the transmission line impedances) for both of the latter discontinuities, as well as for
many other discontinuities which may be represented by an equivalent circuit containing only a shunt
reactance, have been obtained by several different analysis methods [1,2,7,38,39]. The scattering
matrix for such an equivalent circuit is of special interest because a relationship may be found between
the phase of s;; and the phase of s,,. If the shunt reactance in Fig. Cl is X3 = X, with X; = 0 and
X, = 0, the scattering matrix elements are given by

sn= [fX(Zoz - Zoy) — 201202]/[1X(202 + Zy) + ZmZoz]
S12= 501 = j2X\ Zo Zof |iX (Zoy + Zg)) + 201202]

[" JX(Zoy— Zo) — 201202]/[1X(Zoz + Zoy) + 201202]-

Il

S22

For this circuit, the relation between s, and s,, may be expressed as

822=—S|.| (1 +S“)/(1 +S{1). (C6)

The validity of Eq. (C6) is easily proven by substitution for s,, and sy; in terms of the circuit elements.
An alternative way of stating the relation between sy, and sy, is

|S|1'= lszzf

11)22 = — (f)]] +7+2 tan“ lSl]I sin d)“/(l + ISIII COoS (]5]1)] .

For an equivalent circuit containing only a series reactance (where X, =0 and X; = « in Fig.
C1), the relation between sy, and s, is given by

$3p=— S;l(l — Sn)/(l - 5;1) (C7)
or alternatively

|822| = |Sn|

$=— ¢+ +2tan"! |5yl sin ¢,/ (1 = |s;;] cos ¢“)].

For any discontinuity which can be represented by an equivalent circuit containing only one reactance,
either series or shunt, inductive or capacitive, the full scattering matrix may be found if the phase and
amplitude of either s;; or s,, is known.

For the general representation of the discontinuity as shown in Fig. (C1), no fixed relationship

exists between the phases of s, and s,;, as may be shown by example. In the limiting case of X; — 0,
the phase of s, is determined entirely by the ratio X,/ Zy,, while the phase of sy, is determined entirely
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by the ratio X5/ Zy,; thus the two phases of this (extreme) example are completely independent of each
other. Of course, if quantitative values for the equivalent circuit are known, all complex S-parameters
may be calculated.

The discontinuity of interest for this investigation occurs at the junction of the homogeneous
rectangular waveguide used in the microwave test facility and the dielectric slab loaded (inhomoge-
neous) double ridged waveguide to be measured. The overall discontinuity is thus a simultaneous com-
bination of different types of simple discontinuities: (1) change of width in rectangular waveguide, (2)
change of height in rectangular waveguide, (3) abrupt transition from rectangular to ridged waveguide,
and (4) abrupt transition from homogeneous to inhomogeneous (dielectric slab loaded) waveguide.
Each of the first three types of discontinuities has a dominant mode equivalent circuit containing only a
shunt reactance [7,38,39]. The equivalent circuit for the last type of discontinuity has been shown
[36,37] to be the general circuit of Fig. C1. For this equivalent circuit, X; and X, have opposite signs;
i.e., one is capacitive and the other is inductive, while the shunt element X3 is inductive and is nor-
mally the major contributor to reflection among the three elements of the reactance junction network
[36].

No specific equivalent circuit to represent the composite discontinuity was found in the technical
literature. Since three of the four simple discontinuities which form the composite discontinuity have
equivalent circuits containing only a shunt element, and the fourth simple discontinuity has an
equivalent circuit in which the shunt element predominates, the equivalent circuit for the composite
discontinuity may be approximated by a single shunt element for many applications.

If in Fig. C2, port 1 represents the waveguide of the test facility while port 2 represents the
waveguide under test, the complex parameter s;; may be measured directly by terminating the WUT
with its characteristic impedance. This latter condition may be approximated by inserting tapered resis-
tive film in the plane of maximum electric field inside the WUT to absorb the microwave energy with
minimum reflection. Since this technique does not provide a perfect matched load to the WUT, there
will be a small amount of ripple in both magnitude and phase of measured s;; as a function of fre-
quency. However, if the assumption is made that sy, is not varying rapidly with frequency, s;; may be
determined by constructing a smooth curve through frequency plots of measured {s;;| and é11. The
desirability of having an equivalent circuit with only a shunt reactive term to represent the discontinuity
is apparent, even if the quantitative value is unknown. With s;; determined experimentally, s,, may be
calculated using Egs. (C6), then (C3) and (C4) used to find s, and s;;.

The only element of the scattering matrix that can be obtained directly by measurement of a sin-
gle WUT is s;;. For those applications where the approximation of the discontinuity equivalent circuit.
as a single reactive element is not applicable, and the equivalent circuit is that of Fig. C1, only the rela-
tionships between S-parameters based upon the lossless and reciprocal properties of the circuit may be
used:

'811| = |S22|
S12 = 871
|S11|2 + |S21|2 =1

Jlppy + ép))
Susp — sSpspy=e 1T,

For some calculations, it may be necessary to consider the loss factor in the WUT. For
waveguides with loss, the scattering matrix to represent the waveguide discontinuity is no longer uni-
tary. However, if the WUT has reasonably low loss (little attenuation) the effect on the scattering
matrix is small and will be neglected. The loss factor will be used only to determine attenuation of sig-
nals traversing the length of the sample, and the scattering matrix of waveguide discontinuities will be
assumed unitary.
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Appendix D

EFFECTS OF STANDING WAVE PATTERNS
ON SAMPLE MEASUREMENTS

Microwave measurements of any component will be affected by the standing wave pattern resuit-
ing from the interaction of two or more mismatches caused by discontinuities within the measurement
system [40,45,75,77]. For the measurements to be made in this investigation, the only applicable
mismatches to be considered are at the junctions between the standard waveguide used in the measure-
ment facility and each end of the sample waveguide section to be measured; any mismatches in the
remaining portions of the measurement system are corrected for in the calibration procedure when
using a computer-aided automatic network analyzer [71-73].

Properties of the dominant mode scattering matrix for the discontinuity formed by the junction of
different waveguides are derived in Appendix C. The relevant transmission line circuit to be analyzed
to determine the effects of standing waves within the waveguide under test (WUT), and to correct for
these effects, is shown in Fig. D1. The initial analysis will consider the discontinuities, and therefore
the representative scattering matrices, at either end of the WUT to be different. Each scattering matrix
will use the port designation indicated within the box representing the equivalent circuit for the discon-
tinuity, as shown in Fig. D1. Each of the different traveling waves indicated will be normalized to the
square root of the characteristic impedance of the transmission line which the wave is traveling; i.e., the
power carried by a given wave is one half the square of the absolute value of the amplitude coefficient.
This wave normalization and the use of normalized S-parameters is a conventional procedure
[1,8,16,45,76]. The wave a* is the wave in the standard waveguide (SWG) traveling in the + x
direction and incident on the front face, or port 1, of the WUT. The wave a{~ is the wave in the
SWG traveling in the —x direction from port 1 of the WUT. Both a{* and a{~ will use port 1 as the
reference position. Using port 2, or the back face, of the WUT as a reference position, az‘“ is the
wave transmitted through the WUT and traveling in SWG in the + x direction. The SWG on the back
side of the WUT may be considered to be terminated in a matched load; thus there is no incident wave
on the back face. Within the WUT, 5 is the wave traveling in the + x direction and will be refer-
enced to port 1 of the WUT, while b is the wave traveling in the —x direction and will be referenced
to port 2 of the WUT. At any point within the WUT, the total wave will be the sum of the two travel-
ing waves

b= b" exp (—yx) + 5T exp y(x — L) (D1

where L is the physical length of the WUT and vy is the complex propagation constant, y = a + jB,
with o being the attenuation factor and B being the phase factor. The time dependence exp (jw¢) is
implicit.

Port 1 \ Port 2
X I
i |
] o |
! A B l
Z,, |1 ST 2 Z,,, L 2 S 1 ¢ Z,4,
RS R T T
8 ' + ! | (+)
§ (=
a(L) 1 —> b b <« |—> 22
<
! x=0 x=L

Fig. D1 — Equivalent transmission line circuit for
analysis of standing wave effects in WUT
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In Fig. D1 the transmission line with characteristic impedance Z,, represents the SWG, while the
transmission line with characteristic impedance Z,, represents the WUT. The equivalent circuits
representing the waveguide discontinuities at either end of the WUT are composed of lumped elements
and thus have no associated lengths. For this analysis, the following assumptions are made: (1) the
SWG and the WUT will each support only a single (dominant) propagating mode, (2) the WUT is of
sufficient length such that there is negligible coupling between the discontinuities at either end via
higher order evanescent modes generated by the discontinuities, and (3) the equivalent circuit for each
discontinuity is lossless; i.e., the corresponding normalized scattering matrix is unitary [Appendix CJ.

At port 2 in Fig. D1, the wave traveling in the + x direction will be
b(+’L= L= 5 exp (—yL).
Since there is no incident wave on port 2 in the —x direction,
b5 = sBb™ exp (—yL). (D2)
At port 1 the wave traveling in the —x direction is
b(‘)L= o= b exp (—yL)
thus
b = sfaf + s4,6) exp (—yL).
Substituting for 5 from Eq. (D2) gives
b = sfa + sfhsBho™ exp (—2yL)
or
b = sfia(P /11 — sthsh exp (—2yL)]. (D3)
The wave a 1') is given by
al™ = sfaf® + sfhp) exp (—yL).
Substitution from Egs. (D2) and (D3) then yields

sths#is® exp (=2yL)

(=) — o4 , () (+)
a = §1141 a . (D4)
1—shs8, exp (—2yL) '
The wave a* is given by
af? = sBp™ exp (—yL)
which becomes, upon substitution from Eq. (D3),
4B +)
stsh, exp (—yL)a
af = 21512 €Xp \—y 1 (D5)

" 1— shsh exp (<2yL)

Measurements made on the network analyzer will have results expressed in terms of the normal-
ized scattering matrix for the complete WUT. This scattering matrix will be designated as T, with ele-
ments ;. For transmission measurements, the SWG will be the same at each end of the WUT; thus,
the waveguide interface discontinuities are identical, and with the S matrix port designations indicated
S§4 =S8, From symmetry considerations, f, =1ty and f;=ty, with f;;=al’/a{" and
tr = ai"/a{ . For transmission measurements, only f,; is of importance. Letting S = 4, Eq. (D5)
becomes

812821 €Xp (_')/L)

i = (D6)

1~ s3 exp (<2yL) "~
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If the elements of the scattering matrix S were known, it would be a simple exercise in algebra to cal-
culate v from the measured complex transmission term ;. Since quantitative knowledge of the
discontinuity equivalent circuit is not generally available, the elements of S may not be obtained
directly from theory. With certain approximations, measured s,; may be used to calculate the three
remaining terms of S, as discussed in Appendix C. Before this latter approach is considered, it is
instructive to examine closely the quantitative effects of the discontinuity mismatches on the measured
transmission term f,;.

All four elements of the scattering matrix S are determined uniquely at any given frequency by
the discontinuity at the waveguide interface and are independent of the length of the WUT. If the
denominator term in Eq. (D6) could be ignored, measurements on two different lengths of the sample
waveguide could be used to eliminate the quantity s;,s,; and easily calculate y. Unfortunately, the
denominator term cannot be ignored for short lengths of the WUT. Expressing the various scattering
matrix parameters in terms of magnitude and phase,

Sik = IS,'kI €xp (i‘;bik) . {9
ti = ltul exp GOy) | " k=12
shows that

021 =d1n+dn—BL—Y
where ¢ is the phase of the denominator

—ls3,1? exp (—2aL) sin 2(¢y, — BL)
L%mpprhLMWan—BUy

The measured phase 8,; is seen to be basically linear with length but with a periodic perturbation. The
period of the phase perturbation is L = /B while the peak phase deviation from the linear case is
easily shown by inspection of a phasor diagram to be

A‘l‘max = isin_1[|s22|2 exp (=2aL)].

¢ = tan™!

If the small variations with frequency of the elements of S are ignored, the same phase ripple in 8y;
will occur for a fixed length WUT with changing frequency. For a waveguide discontinuity with a 5:1
VSWR, and assuming zero loss in the WUT (« = 0), the phase error caused by the standing wave set
up between the ends of the WUT could be as much as £26.4° or 7.3% in a sample one wavelength
long. If the attenuation of the WUT is small, the phase error will be reduced only slightly.

The standing wave pattern will also affect the loss measurement. From Eq. (D6)
|s12521] exp (—aL)
|1 - |522|2 exXp (—2aL) eXp j2(d>22 - ﬁL)l ’

The measured loss also has a periodic component, with period L = w/B. The extremes of || occur
when

|f21|=

¢22 - BL = :4:n7-r/2.
Since |s13851] = 1 — |55,[? for a unitary scattering matrix S, the extremes of || are given by
(1- 'Szzlz) exp (—aL)

D7
1- |S22|2 €Xp (‘2(1[.) ( 2

|t21|max =

and
(1— |822|2) exp (—-aL)
1+|spl? exp (=2aL)

lt21 | min = (D7b)
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For |55,/ > 0Oanda > 0
(1- |322'2)
11— [322!2 €eXp (“"‘2C¥L)
thus even the minimum measured loss, |f;lmax, Will be greater (in dB) than the actual loss in the
WUT, exp (—aL). For a sample waveguide with a loss of 0.2 dB and a 5:1 VSWR mismatch at each
face, the measured extremes in loss, also expressed in dB, will be [tylmex= 0.51 dB loss and

[t51]min = 8.38 dB loss. These large variations in loss may be viewed as a cavity effect [2,40-42] where
the WUT forms the cavity.

<1

Errors in the transmission measurement #,; caused by the standing wave pattern within the WUT
will decrease rapidly as the match between the WUT and the SWG is improved. For a perfect match
(s52 = 0), the standing wave will vanish as will the measurement errors for both phase and magnitude.
A perfect match is impossible to achieve other than at a single frequency, and fabrication of matching
structures may be impractical, especially for measurements covering a large frequency bandwidth and
involving a number of different geometries for the WUT, because of the very low mismatch required
before the standing wave effects on the transmission measurements may be neglected. However, there
are a number of approaches that may be utilized to correct for the standing wave effects, even when the
mismatches at the waveguide interfaces are large.

In the approach that will be referred to as Method 1, the exact equivalent circuit for the
waveguide discontinuity is used to caiculate the elements of the dominant mode scattering matrix S.
The complex propagation constant y for a particular sample waveguide is then found from Eq. (D6)
using the measured transmission coefficient ¢;; for a single length of the WUT. If only the general
form of the equivalent circuit is known for the waveguide discontinuity, this method is not applicable.

In Method 2, the equivalent circuit to represent the waveguide discontinuity is assumed to consist
only of a shunt element with unknown numerical value. With this assumption, the scattering matrix
elements sy, §7;, and s,; are found from the measured value of sy, as described in Appendix C. Then,
Eq. (D6) may be used to calculate y directly from the measured transmission coefficient 5, of a single
length sample.

Other methods for obtaining the propagation constant of the waveguide from measured data were
investigated, including those which assumed the WUT to be lossless (o = 0) with the phase term 8 the
desired quantity. None offered any real advantage over the approach which will be referred to as
Method 3. This method requires the measurement of the complex transmission coefficient #;; from
three different lengths of sample waveguide, each with the same cross-sectional geometry. The advan-
tage of this method is that it requires no knowledge, either measured or theoretical, of the waveguide
discontinuity equivalent circuit or the associated S matrix. For the WUT with length L;, let the
corresponding measured transmission coefficient ¢,; be represented by

thWiL=L)=m7;i=123.

Then Eq. (D6) may be written as

L, —yL,
Tie '—rT1;e Vi

3 = spsal.
Since the quantity 5,5, is independent of the length of the WUT,
vi;

i Ly —vLi 2

—vL.
s} —Tre " 'ShH

Y
T"e _T,'e $92 =Tke

for any combination of lengths i, k = 1,2,3. This last equation may be rearranged to yield
Ly

rL; Y
Ti€ ’_‘Tke

= ¢2
vL, oL, S (D8)

Tie - T.e
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Since s, is also independent of the length of the WUT, Eq. (D8) is valid for any combination of i,k,
thus

~r3e7L3 — 7 fze"l‘z - rlew‘l
e "= 7 B e P — e

from which

L S S TRy S IRy NI

= 7372e_7(1‘3— L) _ 1-37197("" —Ly T‘Tzey(Lz— Ly 4 Ti.
Expressing the length differences as

L~ L,=Ay, k=123
then
737 sinh (yAj;) + 77 sinh (yAyy) + 7173 sinh (yA;3) =0 . (D9)

Thus, the unknown elements of S have been eliminated by utilizing the measured complex transmis-
sion term t,; of three different lengths of the WUT. Of course, Eq. (D9) must be solved at each fre-
quency for which v is sought using the corresponding measured data.
The left-hand side of Eq. (D9) is a complex function of a complex variable,
F(y) = Fla + jB)

and for the value yo= ag + jB¢ at which the function is zero, its real and imaginary parts may be
equated to zero separately:

R (a,80) = 0 (D10a)
I(ag,By) = 0 (D10b)
where R (a,8) = Re [F(a + jB)] and I(a,B) = Im [F(« + jB)]. Use of the mathematical identity
sinh (x + jy) = sinh x cos y + j cosh x sin y
will show that
R(a,B) = X5Py — Y303 + Xy Py — Yy On + Xi3P3— Y3013
I(@,8) = X303 + Y32P3y + X300 + Yo Py + X303 + YiaP3
where
Xy = Re [r;7,]
Yi = Imlr;7,]
P, = sinh (@A) cos (BA,)
Qi = cosh (aAy) sin (BA,)

for the index pair ik = 32,21,13. Newton’s method in two dimensions [64] may be used to find a solu-
tion to Eq. (D10). With y; = @ + jB, used as an initial estimate for vy,

R(ay,B) = R,
I{ay,B8) = 1,.
With ap = a; + Aa and By = B; + AB,
Ra; +Aa,8; +A48) =0
I(o; + Aa,8; + AB) = 0.
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Approximating each of the functions R («,8) and I(«x,8) by a first order Taylor series [51,78] then
gives

R R _
R| + aa Aa + BB ABLMBX 0
0/ 9/
+ A + o =
11 9a (44 aB ABLPB! 0

or in matrix form

Aa

AB

dR/da OR/DB
31/9c 81/0B |ays,

_ _|”
= -5l
Since the function F(y) is an entire function, i.e., 8 F/dy exists at all points in the complex y plane,
advantage may be taken from the Cauchy-Ricmann condition [78], with
OR/dc = 91/08
dR/3B8 = —31/0a

to show that

2 2
- _J|9R 5 _ 3R R OR
Aa = laa RI 63 11] / oo + aBz (Dlla)
a8y
R oz | |(aV . (ar)
AB = — [%Rl‘ka_ah]/ l&‘ + ‘W (D11b)
apfy

The derivatives are given by
OR/da = Aaz[stUsz R £7! V32] + Azn[le Uy = Yy VZI] + A13lX13U13 - Y VlSl
OR/08 = —A32[X32 Vi + Y32U3z] - A21[X21 Va + Y21U21]‘A13IX13 Vis + Y13U13]
where

Uy = cosh (@A) cos (BA,)
V, = sinh (@A) sin (BA)

for the index pair ik = 32,21,13.

The function F(y) is a relatively simple function possessing no poles or singularities, and
Newton’s method, via repeated iterations of Eq. (D11), will quickly converge on the root yo. The com-
puter program CROOT3 utilizes this approach (Method 3) to solve for the complex propagation
constant v when provided with the measured complex transmission coefficient f,; of three different
lengths of the WUT. A FORTRAN listing for this program is given in Appendix E3.

The loss term « of the complex propagation constant may be found independently of the phase
term B at frequencies where the measured transmission loss of the WUT is minimum. This may be
accomplished by measuring s;, as described in Appendix C, at the frequencies where |ty is max-
imum. Since |sy| = |syl, then from Eq. (D7a)

(1=1s111») exp (=aL)
1— Isy |2 exp (=2aL) "

ItZIImax =
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Thisllast equation is quadradic in exp (—aL) and is easily solved. With X = exp (~aL) and
T = t21|max

X = ([0 + s D2+ 475 A2 + [5,1>=1)/ 2T 15, 1D (D12a)
«= —In X/L. (D12b)

This technique for obtaining the loss term a of a given WUT will be referred to as Method 4. The
number of points at which |t21| will be maximum will depend on the length of the WUT and on the
frequency band for the measurements. As with the other methods, this technique is valid only if a sin-
gle mode propagates in the WUT.

A similar development to find « at frequencies where |#,;| is minimum is possible; however, this
procedure is not recommended for the following reasons. First, the measured value of |t21| will have a
minimum that is much less sharply defined than is the maximum as can be seen by examination of Eq.
(D6) or as can be shown by experiment. A second and more important reason is that the sensitivity of
calculated « to measurement errors in both [s;| and [#,;| is much greater when |z,,| is minimum than
when [t5] is maximum. Thus, Method 4 will ignore the minima of |¢y| and calculate & only at fre-
quencies where the transmission magnitude is maximum, or equivalently, where the transmission loss
is minimum.

Up to this point, the effects of the standing wave within the WUT on the reflected signal have
been ignored since the emphasis has been on the measured transmission ¢, through the effective two-
port network, with little or no additional knowledge of y to be found from the measured reflection
coefficient #;;. If one port of the WUT is terminated, the effective circuit becomes a one-port network
and reflection is the only measurement possible. In particular, if port 2 of the WUT is terminated with
a short circuit, then in Fig. D1 s% = —1. From Eq. (D3), with $4 = S.

5™ = 55,aP /11 + 5,5 exp (<2yL)].
The power contained in the wave traveling in the +x direction within the WUT is given by
55112
P 21 _
|1 + sy exp (—2yL)]
where P, is the power incident on the front face, or port 1, of the WUT. Like 4, the power P™ is
referenced to port 1 of the WUT, but will drop off as exp (—2ax). If the attenuation of the WUT is
small, and if the length L is only a few wavelengths, exp (—2aL) may be approximated as unity

(equivalent to assuming « = 0) for calculations to determine the peak voltage within the WUT. With
this approximation, from Eq. (D2)

P o= (D13)

b = — p™ exp (—jBL).
Then, from Eq. (D1) the total voltage at any point within the WUT is
b(x) = bP[exp (—jBx) — exp (jBx — j2BL)]
or
[6()] =269 sin [B(L — x)]I.
The total voltage will be maximum
16 G) | pax = 216
when sin [ 8 (L — x)] = %1, or equivalently, when
L—x=Qn+DrJ/4,n=012,...
where the guide wavelength A, is given by
Mg = 27/B.
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Since power is proportional to the square of the voltage magnitude, the voltage maximum is the same
that would be produced by a single wave, traveling in either direction, with a power four times that of
either wave forming the standing wave pattern. This power will be referred to as the maximum voltage
equivalent power, or Pyyg. Thus, from Eq. (D13)

Pyve = 4P; ISHP .
"1+ sy exp (—j2BL) |
Since |sy1> =1 — |s5]?
4(1 = [55|H P,
Pave= 17 |S(22|2 +| 222||52)2| oo 3 -
where
¢ = by — 28L. (D14b)

Peak power breakdown in a waveguide occurs when the electric field intensity at any point
exceeds the electric breakdown strength of the dielectric medium at that point, thus causing arcing to
occur. With a WUT terminated at one end with a short circuit, points of maximum E field thus will be
located at odd muitiples of quarter wavelengths from the short. The equivalent unidirectional power
Pyve at breakdown may be calculated in terms of the power incident on the WUT from Eq. (D14).
Even if the phase term B is known, the phase and magnitude of s, must be found for accurate calcula-
tion of Pyve. As in the case for determination of the propagation constant y from measured transmis-
sion through the WUT, quantitative knowledge of the discontinuity equivalent circuit will not be avail-
able for most geometries of the WUT, thus Method 1 is not applicable for finding s,,. Assumption of
an equivalent circuit containing only a shunt element to calculate s,; from measured s;; (Method 2)
may be applicable for some geometries of the WUT, but in general will give rise to some error in the
calculated phase (¢,;) of sy. As the calculation of Pyyg from Eq. (D14) may be very sensitive to
errors in ¢»y, a more reliable method to determine ¢, is indicated.

A method analogous to Method 3 is possible to determine peak power breakdown. This method
would require testing three sample waveguides, each with the same cross-sectional geometry but with
different lengths, to their respective breakdown levels of incident power. Using Eq. (D14) together
with the three measured power levels, s, could be eliminated as an unknown and Pyvg calculated.
This approach was rejected because of two major practical deficiencies: (1) the actual peak power break-
down levels of the three different length samples could vary significantly because of slight differences
in construction, and (2) the length of the WUT must be such that the standing wave pattern produces a
electric field null at the interface of the WUT and the SWG. The latter condition is required to prevent
arcing at the interface and is discussed in greater detail in the section on peak power measurements in
Section 3.

The technique that was chosen to calculate Pyvg from measured incident peak power at break-
down will be referred to as Method 5. The phase factor 8 will be assumed known as a function of fre-
quency (either from theory or from measurement). For a single WUT with length L, the measured
reflection, t; = a{~/a{*, from the front face, with the back face shorted, from Eq. (D4) is

S12521 exp (=2yL)
1 + sy exp (=2yL)

1= 3Sn—

or
_su+ (51159 = s12821) exp (=2yL)
1 + sy exp (=2yL)
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From Appendix C

S1153 — Sipsy = ¢ e
thus
Y |sul + e—zaLef:#zz -_ZBL)
|+ |spy|e—2al o/ ®22= 28D
Letting
sl = Isyl = G
o2l _ x
by —2BL =¢
then
It ] = G+ Xef:f
1 + GXe’*
and

G+ X2+ 2GX cos &
1+ G X2+ 2GX cos ¢

If the WUT is lossless, then a = 0, X = 1, and [#;;| = 1. However, even a small amount of loss will

have a pronounced. effect on the magnitude of the reflected signal. The extremes in reflection will
occur when d |#;|%/ 8 ¢ = 0. From Eq. (D15)

26X(G2+ X2 - G*x2—1) .
(1 + G?X% + 2GX cos £)?

|t11|2= (D15)

*a%,tn'z= né.

Since
GC+X-GX-1=(G-1D0-x)=0
the extremes of |#;;|*> occur when sin & = 0 or, equivalently, cos £ = +1. Return loss will be
minimum (|#,;|? maximum ) for cos £ = 1, or
E=2nm,n=0,1,2,...
and return loss will be maximum (|¢;;}> minimum) for cos ¢ = —1, or
E=Q2n+D=m, n=0,1,2,...

as may be shown either from (1) calculating 82|¢,,/%/8&% as negative or positive, respectively, for
sin & = 0, or (2) direct inspection of Eq. (D15) for cos & = + 1.

When measured on a swept frequency basis, |t11|2 will display a broad maximum but a very sharp
minimum. If the peak power breakdown test is to be run at a frequency fy, then the frequencies of the
first minima on either side of £y, f; < fp and f, > f, may be accurately measured. The phase of s,,
may then be calculated at each of these frequencies

¢nly = Qn+ Dr +g,L, i=12 (D16)

since 8; = B(f;) is known. The ambiguity of n in Eq. (D16) is easily resolved since — 7 < ¢y < 7.
A linear interpolation is then used to find ¢,, at the desired frequency f:

¢>22|f2 - <l’>22|fl '

D17
fa— N (b17)

¢22|f0= ¢’22|f| + (fo— /D
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The accuracy of the linear interpolation will depend on (1) the dependence of the phase ¢,; on fre-
quency, and (2) the spacing of the frequency points f; and f,. The latter factor is dependent on the
length of the WUT, with a greater length yielding closer spacing, hence greater accuracy in the calcula-
tion of ¢,y at f. If the difference in phase between the two measurement frequency points is less than
a few degrees, the error in the calculated value of ¢, at f due to linear interpolation will be negligible.
’ll"he| malgniltude of s, at fy is found by measurement of s;; as described in Appendix C, with
$221 = 1S11l-

All measurements to determine the phase and magnitude of s, may be accomplished at low
power levels since the WUT is a linear device. However, these low-power measurements must be done
prior to the actual high-power breakdown test since any arcing may leave conducting paths of carbon
build-up which could affect subsequent low-power measurements. Once sy, at the frequency of the
high-power test is determined, the WUT (with a short circuit on the back face) may be subjected to
increasing levels of peak power until breakdown, i.e., arcing within the WUT is detected. The final step
of Method 5 is then to calculate from Eq. (D14) the effective, or undirectional, peak power breakdown
level using the known phase term 8 and the measured incident power at which breakdown occurred.
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Appendix E
COMPUTER PROGRAMS
El PROGRAM TRMWG

E2 PROGRAM DLDRWG
E3 PROGRAM CROOT3
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PROGRAM TRMWG

00100 C THIS IS PROGRAM TRMWG.FOR - CLY -DCT 80

00200 C THIS PROGRAM USES R TRANSVERSE RESONANCE METHOD TO
00300 C SOLVE FOR SOLUTIONS OF SYMMETRICAL DIELECTRIC LDADED
00400 C DOUBLE RIDGED WAYEGUIDE. WAVEGUIDE MODES ARE FRESUMED
00500 C TD EE TE(M»0> MDIES.

00600 INTEGER RIK

00700 P1=3.1415927

00200 C=2.99752SE+(2

00500 R1=39, 37008

01000 R2=2. 0+R1

01100 RRMDI=180. 0~/ (PI+R1)

01200 Ci=(2.0E+0S+PI/C) ++2

01300 NEWRUN=0

01400 TYPE 100

01500 100 FORMAT (/s FROGRAN TRHWG/CUY-/DCT £07)

01600 105 TYPE 110

01700 110 FORMAT ¢~ WAVEGUIDE DIMENSIONS IN INCHES - AsEsDrS: 79
01800 READ(S: ¢>As By Ds S

01900 115 TYPE 120

02000 120 FORMAT ¢~ RELATIVE DIELECTRIC CONSTANT OF CENTER
2100 1 LOADING: -$)

02200 READ(Ss +>EPSR

02300 TYFE 125

02400 125 FORMAT ¢4 WIDTH IN IHCHES OF CENTER LOADING: ‘®)
02500 RERD (S o> T

02600 129 TYFE 130

02700 130 FORMAT ¢ WAYEGUIDE HODE — TEC1»0> [11 OR TE@ 0 (21 -
02500 1 1 OR 287 7%

02900 ACCEPT 133: ITE1Z

03000 133 FORMAT <11)

03100 IF C(ITE12.ME. 1. AND. ITE12. NE.2>60 TD 128

3200 IFTGS=0

03200 IF <T.6T.3> IFTGS=1

03400 140 TYPE 145

02500 145 FORMAT ¢’/ DRUGDL PAFAMETERS ————-—- DIMENSIONS IN
02600 1 INCHES’/8%’ R‘9X‘B’9X’D’9X’ S’ 12X’ T/ EN4HEPS)
02700 TYPE 150sRsEsD»SsTHEPSR

03800 150 FORMAT (4F10.4sF13.4:F10.3)

03900 R=D/B

04000 RS=Ree2

04100 IFR=0

04200 IF (RESCR=1.0) .LT.1. 0E-0&) IFR=1

04300 W1=C1-IFTGS) + (A-S) Z/R2+IF TGS+ A-T) /R2

04400 U= (1-IFTGS) « (S-T) /RE+ IFTGS* <T-S) /R

04500 W3= (1-IFTGS) ¢ T/RE+IFTGSeS/R2

04600 ATRY=1.5¢A+ (1. 0+1. 0 P+ (EPSR-1. 0> +T/A)

04700 IFCITE12.EQ.2) ATRY=2.5+A

04200 C THE ARDVE QUANTITIES ARE TO PE USED FOR CALCULARTING
Q4200 C RPPROXIMATE STARTING VALUES OF CUTDOFF FRECUENCIES

asooo IRC=1

as1o00 FRER=CeR1/ (ATRY*2. OE+ (%>

05200 XNDEL=1.5+FREQ

05300 Ry=0.0

05400 GO TO £15

05500 160 IFCNEURUN.LT.2>GD TO 165

0S600 IFFSTRART.GT.FCGH3>6O TO 180

0S700 165 CONTINUE

052800 IFITELIR.EQR.2>GO TO 480

05900 TYFE 167

06000 167 FORMAT ¢/ WISH TEK1> 0> FROPARGATION CONSTANTST 7§
06100 ACCEPT 133, IEETA

06200 IFCIFETA.NE. 1>G0 TO 480

ea300 189 TYPE 170

0e400 17o FORMAT ¢ FREQUENCIES IN GHZ - STHRT,STODFs INCREMENT: ‘%3
as500 RERD (S+ ¢>FSTRRTs FSTOF» LELF

06500 178 FORMAT (FO, 35 IXsFR. S INsFR. D
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QE700
NES00
0£900
07000
07100
07200
07300
07400
075090
07600
97700
07200
072900
08000
0z100
02200
02200
02400
02500

2600
027040
as300
agoo0
0000
09100
go200
09300
09400
02500
0eE00
0e700
Qazo0
09200
10000
10100
10200
10200
10400
10500
10600
10700
10200
10900
11000
11100
11200
11200
11400
11500
11600
11700
11800
11900
12000
12100
12200
12200
12400
12500
12600
12700
12800
12900
13000
13100
13200
13200
13400
13500

CHARLES W. YOUNG, JR.

IF(FSTART.LT.1.CE-13 GO TO 420

IF CFSTAFT.GT.FCGHT D TO 150

TYPE 185

FOFMAT ¢ FRECUENCY, MUST BE GREARTER THAM CUTOFF )

GO TO 165

IF (FSTOP.LT.1.0E-13)FSTOP=FSTART~1.0

TYPE 195

FORMAT (/4X4HFREOEX4HPETASKIHGUL7XSHRAT IDSKEHGRRIR/

1 SHASHGHZEXE6HDEG/ INEXSHINCHES4X8HGUWL /FSWL7X6HR DR 1)

FREQ=FSTART
BY=0.1

C THIZ IS R FIRST TRY FOR BETA

210
215

2el

2e%

240

[
)]
[~

Ny
DAY
(=)

ny
=4
(=]

XK¥DEL=10. 0¢FREQ
CONTINUE

COMTINUE

IETRY=0

IRST=2

C1F=C1+FREGCs+2
C1FEP=C1F+EPSR
IETRY=IETRY+1
IFCIETRY.LT.26>6G0 TO 235
TYPE 230

FORMAT < MORE THAN 25 TRIES AT ROOT7D
60 TO 420

BYSQ=EYe+2
GX3S@=C1FEP-RYSQ
GH1SQ=C1F-PYSQ
GH2=8QRT {AERS (GHISM >
GX1=8SGRT (AES (GX1SD >

IF (GR3S 24 0+2350:250
CHS3Z=SINH (GX2+W
CHC3=COSH (GX3I+WW3Z
IRGX2=1

GO TD 260
CHIZ=SIH(GXTI+U
CHC2=COS (GXZ+U3D
IRGH3=~1

COMTINUE
IF(GXIS270,280: 280
CHS1=SINH (GX1+l1)
CHC1=COSH(GK1+U1)
GXAIR=GK

RIK=1HR

IRGX1=1

G0 TO a25
CHT1=SINGNLelIL)
CHC1=CDS (GX1eli1)>
IRGX1=-1
GNRIR=GX1eREMD]

RIk=1HI

CONTINUE
IFKIFTGS.EQ.1>GO TO 290
IRGNE2=C(IRGXRi+1)> 2
Gra=6X1

60 TO 200
IRGHE=(IRGX3+1)> 2
GR2=GN3
CHIZ2=IRGX2¢3INH (GR2+W2) + (1 -IRGKE) ¢SIN (GX2+U2D)
CHC2=IRGX2¢COSH (GX2eU) + (1-IRGX2) «COS (GX2+W2)
EDY=0.0

IFKIFR.EQ.1>GD TD 320
IF(IRGX2.EQR.1>6G0 TO 320

C CALCULATE E-Y TERM

P=<1+R> /7 (1-R>

GL=2. 0+P1/GX2
2ARG=1.0-(B/ (R1eGLY) e o2

P3ARG=1. 0~ (D7 (R1eGL) ) +¢2
IF (F2ARG.LE. 0. 0> PERARG=0.0Q
IF (PERRG.LE. 0. OOP3RRG=0,. 0
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13600
12700
1Z800
12900
14000
14100
14200
14200
14400
14500
14600
14700
14800
14900
15000
15100
15200
15300
15400
15500
15600
15700
15800
15900
16000
16100
16200
16300
16400
16500
16600
16700
16800
162040
17000
17100
17200
17200
17400
17500
17600
17700
i17eoq
17900
12000
12100
12200
12200
18400
18500
18600
18700
18¢00
18900
19000
12100
19200
19200
12400
19500
19600
19700
19500
19900
20000
20100
20200
20300

32¢0

F2=SQRT (F2ARG)
P2=SORT (P3ARE)
FR=Pe+ (2, 04R) * (1. (+F2) # (1. 0-F2)> = (1. 0+3. 0+RS) /(1. 0-RS)
PAF=Pee (2. 0 R ¢ (1, 0+FP3) ~ (1. 0-FP + <3, (4R~ €1, 0-FD

PC= 0 (4, DeFY 2 (1. 0=F TV Yoo
PT1=ALOG (1, 0-RS) /¢4, 0#R) +P++ (0.5 (R+1.0-F)))

PT2=2. 0+ (PR+PAF+2. 0¢PC) 7 (PA*PAP~-PC++2)

NRL REPORT 8917

PT3=(B/ (R1+4, 0eGL) ) *e2¢ (1, 0/P)ee (4, 0eF) ¢ ( (S, (eF2

1 =1.0>7<1.0-R3>+4. (eRSePC/ (3, 0¢PAY ) ¢¢2
BOY=2. 04¢E* (PT1+PT2+PT2) 7 (R1GL)

CONTINUE

C CALCULATE FC(BETA)
IFCITElIR.EQ.2>GO TO 324

330

340

C rROOT

CR
420

430

FR3N=CHS3
FR3D=CHC3
GO TO 326
FR3N=CHC3
FR3D=CHS3
CONTINUE

ONEPM=IRGX3
IFCITE12.EQ.2)DNEPM=1. 0
IFCIFTGS.ERQ.1>60 TO 230

FRETR=Re (-FOY+CHS1+CHC1) « (GK2+¢FR2DeCHC2

1 +0OHEPMeGX3+FR2IN4CHEE) +CHS 1+ (IRGX1¢GX2+4FR3IeCHS2
2 +DNEFPMeGXIeFRINeCHC2)

GD TDO 240

FEETA=FR3De (IRGX2+6X2¢CHI1¢CHS2+GX1+CHC1+CHC2>
1 +(OHEFM*FR3IN/R-POY*FR3D) ¢ (GX2+CHS1¢CHC2+GX1eCHC1¢CHED)

IF (IEC.EQ. 1> XX=FREQ
IFCIEC.EQ.2) XX=BY
SEARCH ROUTINE

IFCIERTRY.GT.1>G0 TO 350
XXNEW=XX+XXDEL

GO0 TO 3%
KROS=1

IF(FEETR+FEROLD.LT. 0. OO KROS=-1
IFCIRST.EQ.1>GO TO
IFCKKROS.GT.0>GO TO

IRST=1
REU=RX
XXL=Xx0OLD
GO TO 320

355

345

IF (ARSCFRETR» .LT. 1. 0E—-04.AND. AES (XX-XXOLD> .LT.
1 0.001>G0 TO 420

IFCKKROS.LT.>G0O TO

A
Sbo

IF (XX.GT.XXOLID GO TDO 370

GO TO 375

IF(XN.GT.XROLDXGO TO 375

NNL=NN
G0 TO 3&0
KXU=XK

XXHEWM=NX-FRETA* (NN=-XXDLID> » (FRETA-FEOLID
IF CXNHEW . GT . NXL.AMD. KKHEW.LT. KXW G0 TO 320
XNNEWM={0. 5 (NHL+XXD

FREOLDB=FEETH

XXOLD=XX
RR=XXNEW

IFCIRC.EG. 1260 TO 395

BY=XX

60 7O 2295

FREG=XX

60 TO 220
DOT NOW KNDUWN

IFCIRC.EQ.2>GO TO 4350
FCGHZ=FREQ

TYPE 430, ITE12,FCGHSs BOY
TEC(“I17,0> MODE CUTDFF FREQUENCY

FDRMRT ¢~ “
1 BrY =

‘Fe.
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20400
20500
20600
20700
20800
20900
21000
21100
21200
21300
21400
21500
21600
21700
21800
21900
22000
22100
22200
22300
22400
22500
22600

PROGRAM DLDRWG

00100
00200
00200
00400
00500
00600
oovoe
0n300
00900
01000
01100
01200
01200
01400
01500
01500
81700
01200
01200
02000
02100
02200
02300
02400
02500
02600
02700
02300
02s00
03000
03100
02200
02300
02400

2G00
02e.00
03700
0zz00
030
04000
04100

480
490

500

OOcOO0O000

100
110

121
124

123

leg

129

IRC=2

GO TD 160

CONTINUE

CHARLES W. YOUNG, JR.

BYDI=EY+RRMDI

GWL=360. 0vEYDI

FSWL=R1+C/ (FRE(te1,QE+09)
RGLFS=GUL/FSUL

TYPE 470:FREQs EYDIsGULsRGLFSENAIRSRIK

FOFMRAT

X T e N F R s SR F . s dNs FRL Gy ZHVFEL S 1IN ALY

IF (FREQ.GE.FSTOP>GO TO 480

C SET FIRST TRY BETA FOR NEW FREQUENCY

FNEW=FREG+DELF

BY=0.5¢FEY+SORT ((FNEIl+¢2-FCGHZ+42) / (FREQ¢+2~-FCGHZ+*2))

XADEL=EY
FREO=FNEW
GO TO 210
TYPE 490

FORMAT (/¢ WISH NEW PRARAMETERS? NONE=0,
1 CENTER LOADING=2s FREG=3> MODE=4 : “®

ALL=1»

ARCCEPT 133 NEWRUN
60 TOCEG05,105:11551691285480> HELRUN+1

CDONTINUE
END

THIS IS PROGRAM DLDRWG.FOR - C, U,
THIS PROGRAM USES A SERIES MODAL EXPRNSIDN FOR THE
FIELDS»ALONG WITH APPROPRIATE ROUMDRRY CONDITIDNS, TD
CALCULATE CUTOFF FREQUENCIES AND PROPAGATIDN VALUES AT
FREQUENCIES APOVE CUTOFF FOR DIFFERENT WAVYEGUIDE MDLES
IN DOUBLY SYMMETRIC DIELECTRIC SLAE LDADED RIDGED
WAVEGUIDE <LOSSLESS APPRONIMATIOND .
BREAKDOWN LEVELS AND ATTENUATIDN FACTORS MAY BE
CALCULATED FDF THE QLSEC1,0> MODE.

DIMENSIDH
DIMENSIDON
DIMENSION
DIMEHSION
DIMENSION
DIMEMSIDN
LIIMENSION
DIMENSION
DIMENSION
DIMEMSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENMSION
DIMENSION
DIMENSION
DIMEHSION
DIMENSION
TYPE 100

YOUNG JR. - SEPT 1923

IF DESIRED» POWER

GY1 (162 56GY180 (16> 5 GYRC1ED s GYISOIE) »F1 (16D
P1SOCIEXsP2C16) s PRSQR(16) s P3C16) yPISQACLED
GHX1SQ(16) s GHX3SA €16> y HC1 {16) s HCE (16D s HEZ (16)
HSP1 (163 » HEP2 (1> s HH2 (16) s TMATX (32, 22)
Z11C18) 521201631 222<1€) 3 T211<16216)
TZ12(16518)>,TE21 (165 16> s TZ22(16416)
XXACL16) s XXV (16D s FAM 16> s QAP (16)

SMEY (165 16) » SMEZ (1635 16> y SMHY (165 16D

SMHZ (165 16) s CAM (32132 + QDM (186> s GDP (1 8)
UKARER (70> » VWEC (32D

A1<1Rd s F1 (1623 C1 <162 D1 (16D »F1 (16> G1 (16D

2P (163 » AZM (16) » BEP (16) s E2M 16D

Ca2P (16> »C2M (16> s TI2P (16> s DEM (16D

FEPC16> s FEMIB) s GEP (163 s GEM (162

AZC1A> s B3 A6 C3USG s DI 1B »FI(16D » G2 (1E)
EXADI (182 »EYADI (18> s EZADI (16D s HXARDIT (18)

HYRDI €163 +HZRDI <163 » AR (161 s BIR (16)

C2R(16> s DIR (168D s FRR (162 5 GER (16>

PXH1 (16 s PRM2 162 s PXNI (16D

FORMAT (777 PROGRAM DLIRWG.FOR - NOV 19337)

NRERUI=0
TYPE 121
FORMAT (77
TYFE 125
FORMAT ¢~

ALL DIMENSIONS ARRE IN INCHES”’/)

"A" DIMENSION = “$>

READCSs > ADIM

IF (MRERPUHN.

TYPE 1€9

EQ.2>G0 TO 144

FORMAT ¢ ["B* DIMENSION = 7%
RERALD(Ss «>RDIN

IF (NRERUM.

EQ.2>G0 TO 144
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0a200
04300
04400
04500
04500
04700
4200
04900
asaaa
0S100
05200
NS00
aS400
asso0
e 00
Uy dy
05800
0500
0a00Q
05100
03200
08300
&4 00
06500
Qe 00
0ev o
0200
05900
0?2000
07100
07200
07300
07400
07500
Q7600
07700
Q7800
07900
08000
08100
08200
03300
08400
02500
025600
028700
a2800
033400
09000
09100
09200
09300
09400
09500
09s00
gev 0o
09200
093800
10000
10100
10200
10300
10400
10500
10500
10700
10200
10300

[
0 1)

(oo

L) 0
=)

140
141

144

152
162
167

7S
17¢

190
191

192

197

200
201

NRL REPORT 8917

TYPE 133

FOFMATCZ "D” DIMENSION = ‘3D

READRCSs > IDDINM

IF (MRERUN.EG.4XG0O TD 144

TYPE 137

FORMAT (- "S" DIMENSION = ‘%>

READ (S +>SDIN

IF (NRERUN.EQ.SO>GD TD 144

TYPE 141

FORMATC(Z "T" DIMENSION = ‘%

READRCSs X TDIM

DBR=DDIM-/EDIM

SAR=3IDIM-ADIM

IF(DPR.GT.1.C0E-6.ANL.DBR.LE. 1. 0G0 TO 146

TYPE 1€&2

GO TO 1Sa

IF(SRAR.GE. 0. 0.RND,.SAR.LT.1.00G0 TO 1%2

TYPE 167

TYPE 151

FORMRART (- RESUBMIT DIMENSIDNS )

GO TO (124+12451245 12251321 136> NRERUN+1
IF(NRERUN.NE. OGO TO 203

GO0 TO 17S

FORMATC” DrsE RATIO MUST RE POSITIVE AND UNITY DR LESS?)
FOFMAT(* S,A RATIOD MUST EE POSITIVE AND LESS THRN DHE)
TYPE 178

FORMAT(* RELATIVE DIELECTRIC COHSTANT = ‘%)
FEAD (S5s +>RDC

TYPE 191

FORMAT ¢ DESIRED WAYEGUIDE MODE —— QLSCE OR M) sMs 2 45
ACCEPT 192, EMMDDE s MMDDE s NMDLE

FORMAT CA1»211)
IF(EMMDDE.NE. “E“ . AND.EMMDODE.NE. “M“>G0 TO 195

1F <EMMODE.EQ®. “E“) MEH=1

IF ¢EMMODE.EQ. “M’) MEH=2
IF(MEH.EQ.1.AND.MMOLE.GE. 1. AND. MMODE.LE. 2. RND. NMODE
.GE. 0.AND.NMODE.LE.2)>GO TO 197
IF(MEH.EQ.2.AND. MMODE.GE. 0. AND. MMODE.LE. 1. AND. NMODE
.BE.1.AND.NMODE.LE.4>G0O TO 197

TYPE 198

FORMATC” ALLDWED MODES ARE ELSEC1s0 THRYU 2,3 ABND
QALSMC0s1 THRU 154> )

GD TO 190

MED=<{-1) «+NMDDE

MEO=(~1) ¢+MMOLE

IF (HNRERUN.EQ.9 6D TO 230

TYPE 201

FORMAT ¢ NUMEBER OF HIGHER DRDER MDDES TD BE USED IN
ANALYSIS?

READ (S, «) NHOM

IF (MHOM.GE. 0. AHD.NHOM.LE.1S>GO TO 203

TYPE 202

FORMRT ¢ MUMRER 0OF HIGHER ORDER MODES MUST BE FDSITIVE
AND IS LIMITED TO 157%)

G0 TO €00

TYPE 204

FORMAT ¢~ WISH TO CHANGE ANY PARAMETEREY MO=0. YES=1
T

ACCEFT 210sIFCP

FORMAT CXI1>

IFCIFCP.EQ. DGO TO 110

NTERMS=NHDM+1

HR=DOTIM-EDIM

HRI=1.0-HR

JTTYPE=1

IFCTDIM LE.SBIM UTTYPE=~1

IFCITTYPE.GT. 0>GO TO 220

H1=0.5¢ (ADIM-SDIM>
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11000
11100
11200
11200
11400
11500
11600
11700
11200
11900

2000
12100
12200
123200
12400
12500
12600
12700
12800
12900
13000
13100
13200
13300
13400
13500
13600
13700
13200
13900
14000
14100
14200
14300
14400
14500
14600
14700
14800
14900
15000
15100
15200
15200
15400
15500
15600
15700
1500
15300
16000
16100
16200
163040
16400
16500
16600
16700
168040
16900
17000
17100
17200
17200
17400
17500
17500
17700

2e0

CHARLES W. YOUNG, JR.

AXE=0.5* (SDPIM-TDIM>
AX3=0.5¢TDIN

GO TO 230

AM1=0.5* (ADRIM-TDIM
AX2=0.5« (TDIM-STIM
AX3=0.5+8DIN

C SET FREDUERNCY INDEPENIENT TERNS

230

IO 240 1=1sNTERMS:1
IARG=E+ (I-1> +NHODE

EY1 <I> =1ARG+2.141593/FDIN

GY3 CI)=GY1 CI>/HR

GY1SQCII=GY1 (I el

GYZSO (I =GYI (I +e2

DO 240 J=1,NTERMS»1

JARG=2+ (J-1> +NMODE

SHEZ (I» 1) =HR#SINC (~NEO» 0 JARG: IARG HR)

SMEY <I, 1> =HReSINC (NED» 2> JARG s IAFGs HR)

SMHY (Ty J> =SINC (~NEO>» 0s IARGs JFARE HRD

SMHZ (I+ J>=SINC (NED» 15 IRRG» JFRG s HRY

FIRST FOR CUTOFF FREQUENCY

IFFC=0

TYPE 249

FORMAT (/¢ WISH CUTOFF FREQ SERRCHCO) OR FIX(1>7 “$)
ACCEPT 210sMNRSF

IF (MRSF.EQ.1>60 TO 255

TYPE 251

FORMATC” CUTOFF FREQ (GHI) — - START,STOP: INCREMENT: <8
RERD {5+ +) NN15 XN NDEL

FREG=XX1

60 TO 260

TVFE 2%

FORMAT ¢ SET LIMITS FOR FIXING CUTOFF FREQCGHI) <~”

1 LOYWERs UFPER: -3)

READ (Ss+> ¥LL s XUL

FRE@=XLL

BDG=0.0

BD6SG=0.0

CONTINUE

IF(MRSF.EQ.1>6G0 TO 275

TYPE 270

FORMAT (SX“FRER“SX“EETA“10X DET I37SX/P33Q(1>”

1 SX/P2SR (1> 76X HHI (1> >

295
C START

301

31e

NCOUNT=0

KFC=0

IF (NMODE.EQ. 0.RND. IFFC.EQ. 0 KFC=1
FREQUENCY LDOP
OMEGhR=6.282185E+09+FREQ
WEFS=2.299005E-13+0MEGA
WER=WEFS+RDC

UYU=3. 191&64E- 05+0MEGA
GDSSQ=UEF<UWU
GFSSO=WEFSeUWU
BETA=BDG-S57.29578

BETA LOOP
EETASR=BETA+BETA
BDLS=SQRT (GFSSR*RDC)
Z2DLS=376.73-SART (RIC)
NCOUNT=NCDBUNT+1
IFC(NCOUNT.LT.26260 TO 210
TYPE 301

FORMAT ¢« MORE THANM 25 TRIES AT ROOTS
G0 TO 24%

CONTINUE

C SET MATRIX VRLUES FOR K» P, HC» HSP» ROQ

220

DO S20 J=1sNTERMS,1

GHX1SQR (D =EETASCO+GY1 (1) ++2
GHX3SH (D =RETASO+GY2 (I) ++2
P1SQ@ (D =5NX1S0 {(J)-GFSSQ
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17ena PaSQ (D =GHX1SE (U —-GDESQ
17200 IFUTTYPE.LT. .M PEEQ (D) =GHASIA (I -GF 38R
18000 P3SQ (W =GNXISO (D -GD3ER
1g100 P1(J>=SQFT (AES CF1SQ I )Y)
18200 P2 (J)=SRRT (RES(F2SQ (I D)
2300 P3 (I =SORT (RES(PISQ (I D)
18400 ARG=P1 (U> +AX1

128500 IFCPISD(J>) 3545246 34¢€
18500 344 HC1 (J>=CO0S (RR&

18700 HSP1 (D =SINCAFRG #FP1 (D
18200 PRN1( I =1.0

18200 G0 TO 250

19000 346 HC1d(WD=1.0

12100 HEP1 (D =RX1

19z00 PAN1 (I =1.0

19200 GO TO 3S

19400 348 PXN1 (D =0, S+EXP (ARG
19500 HC1 ¢J> =COSH ‘ARG

19600 HSP1 () =SINH (ARG /P1 (D)
18700 350 ARG=P2 (N +AX2

19260 IF (P2SQJ>)> 354+ 356,358
19200 35 HCZ (J>=COS (ARG

20000 HSP2 (I =STHN (ARG /P2 (D
20100 PXN2(D=1.0

cozno 60 TO 360

20300 356 HC2<(J>=1.0

20400 HSP2 (1) =AX2

20500 PXN2C(DH=1.0

20600 G0 TD 360

20700 3358 PXN2 (> =0.S5¢EXP (ARG)

20800 HC2 ¢J>=COSH (ARG)

20900 HSP2 (M =SINH(ARG) /F2C(WD

21000 360 ARG=P3 (1> *AX3

21100 IF(PISQ (I I3IE2+ 3645 366
a1z 00 362 HC2=COS {ARG>

21200 HEP2=-SINCARG) /P2 (D
21400 PHN3 (I =1.0

1500 GO TO 362

21600 364 HC3=1.0

21700 HSP3=-AX3

21800 PAN3 (U =1.0

21900 G0 TO 368

22000 366 PXNZ (D =0.5+EXP (ARG>
22100 HC3=CO3H (ARGD

22200 HSF3=-SINHH (ARG> 7P3 (D
22300 36E CONTINUE

22400 IFCMED.GT.O GO TO 435

22500 HE3 (W) =HC3

22600 HH3 (D =HSP3

22700 XXACD=1.0

22800 XXV (D =P3SQ (D

22900 GO TO 440

23000 425 HE3 (J) =HSP3

22100 HH3 (J> =HC3

22200 XXA (D =P2SQALD

23300 XXV(DH=1.0

22400 440  CONTINUE

23500 IFC(P2S0 () .GT. 0. 0G0 TO 445
22600 TX2P=HC2 (W

23700 THEM=HSP2 (D

22800 60 TO 450

23900 445 EPZK2=EXP (~2. 0+P2 (J) +AX2
24000 TX2P=1. 0+EP2X2

24100 TXEM= (1. 0—-EF2X2> /P2 (D

24200 450 CONTINUE

24300 IFCITTYPE.LT. 0060 TO 465
24400 IFPISQCDH .GT. 0. OGO TO 45
24500 THX1H=HC1 (P
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TR1E=HEP1 (>

GO TO 450

EP1X1=EXP (—2. 0+P1 (U)> +AX1)

TX1H=1, 0+EP1X1

TX1E=Q1.0~-EPINI> 7P1 (D

QAP (D =RIC+P1SQ (I +TRIESTH2P+P2SQ () ¢ TX1HeTHIM
QAM LD =RDCH+PISQ (D * TRIESTHN2M+TH1HeTXEP
QDF (D =TX1HeTX2P+P2SQ (I} ¢ TXIE*TXEM
QDM (D =TXIE+TX2P+TX1HeT¥2M

GO TO S00

CONTINUE

IF(PRSE(H .GT. 0. 0050 TO 470

HCEN=HC2

HSP2N=HSP3

GO TO 4vS

EPSHI=EXP (=2. 0¢P2 () ¢AX3)

HC3M=1. 0+EF3X3
HSP2N=- (1. 0—-EF3X3) 7P3 (D

CONMTINUE

IF(MED.GT. GO TO 480

TX3E=HC3N

TX3H=HSF3N

60 TO 490

TR3E=HSP3N

TX3H=HC3N

OAP (D =TXIETREP*XXA (J> —RDC+P2SH (1D ¢ TXIHeTXEM
QAM (J) =RDC+TX3He TXEP-TXIE*TX2MeXXA (D
QDP (D) =TXBHSTREP ¢ XXV (I —TXIE*TX2M*FISQ (D
QDM (I =TXIE*THZP-TXIHeTX2Me XXV (D
CONTINUE

KD1=0

IF (KFC.EQ.1.AND.J.EQ. 1>KDi=1
BS1=BETA+KD1

BS1S@=ES1ee2

IFCITTYFE.LT. 0OGD TO 510

ZR==XNA{J) 7UER

ZS=WU-RNV (D

GYK=GYIWD

GYKSD=RY2S0 (WD

DENDOMZ=GNX350 ¢J> +KIi1

GD TO 520

ZR==UEFS/P13SQ (D

Zs=1.0/WU

GYK=GY1 ()

GYKSQ=GY1SQ (J)
DENDMZ=GNX1SQ (J> +KD1

211 ¢J)> = (BS1SQeZR+GYKSQ+ZS> ~DENOMZ
212 ¢J> =NED+GYK+ES1+ (~ZR+ZS) /DENDMZ
222 ¢J) = (GYKSQ+ZR+BS1S0+ZS)> ~DENDMZ
CONT INUE
P3AVG=SORT (P3 (1) +P3 (NTERMS) >

IF (PRAVG.LT. 1. 0 P3AYG=1.0

C MATRIX VALUES FIXED

S40

DO SS0 J=1sNTERMSs1

D0 SS506 I=1,NTERMSs1

T211 <1y HD=0.0

T212C sy D=0.0

T221<(I»H=0.0

T222<¢Is HN=0.0

D0 SS0 K=1,NTERMS»s 1

IFCTTIYPE.LT. OGO TO 545

RHEHH=HER (K> 7HH3 CK>

TZ11 T s D=TZ11 T s HD+SMEZ €I K> ¢RHEHH*Z11 (K> ¢ SMHY (K» )
TZ12<¢I s D =TZ212 (I s D+SMEZ (15 KD ¢RHEHH*Z12 (K> ¢ SMHZ (Ks D
T221CIsy D=TZ21 (I D +EMEY (I s K) ¢RHEHH#Z12 CK> ¢SHMHY (K 1>
T222¢Is D =TZ22<¢I s JD+SMEY (I s K> ¢RHEHH*Z22 (K> ¢SMHZ (Ks D>
60 TO S50

RHHHE=HC1 ¢K> #7HSF1 KO

T211 I D=TZ11 I s D +SMHY (1K) ¢RHHHE* 211 (K> ¢ SMEZ <Ky J)
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31500
21600
31700
21800
31900
220600
32100
32200
22200
32400
32500
32800
32700
32800
32900
33000
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2z200
33300
32400
23500
33500
33700
22800
33900
34000
34100
34200
34300
34400
34500
34600
34700
34800
34900
35000
35100
35200
35200
35400
35500
25600
35700
35e00
35900
35000
35100
36200
36300
36400
36500
36600
36700
36200
36900
37000
37100
37200
37300
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37900
38000
38100
32z00
32200
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T212CT» D=TZ12 (15 J> +SMHY (13 K> $RHHHE$Z12 ¢K> #SMEY (K» 1)
TZ21 (1> D =TZ21 (15 J) +SMHZ (I K> +RHHHE 212 ¢K> ¢SMEZ (Ks
TZ22(T» N =TZ22 (Is > +SMHI (15 K> +RHHHE+Z22 ¢K> ¢ SMEY (K» 1
550 CONT INUE
MCAMP=0
560 DO S&5 I=1,NTERMS:1
ESI=EETH
IF (KFC.EQ. 1.AND. I.EQ. 1> BSI=1.0
GKI=NED+GY1 <>
IF (ITTYPE.LT. 0 GKI=NED*GYZ<I)
DD S85 J=1:NHTERMS, 1
ESJ=EETH ,
IF (KFC.EQ. 1. FND. J.EC. D BSJ=1. 0
KDIJ=0
IF C1.EQ. PKDI=1
Q11=TZ11 (I,
Q12=TZ12¢Is .0
Q21=TZ21<Is >
QR2=TZ22<Is
GKJ=NEDGY1 <
IF (UTTYPE.LT. 0> GKJ=NED*GYZ (D
PSI=GNX1S0 (D
IF CUTTYFE.LT. 0 PSI=6NRISQ <)
IF C(KFC.EQ. 1.AND. J.EQ. 1DPSI=1.0
TQ11=FS14011¢ESI-EST+012+GKI-GKI+Q21 o BSI+GK I o022 eGK L
TQ12=-ESI+Q114GKI-BSI+Q12+BSH+GKI 021 +GKI+GK ¢ Q22+ES
TOZ1=-GKI*011BSJ+GKI+Q12+GK J-ESI+R21eBSI+ES1+022+6K ]
TQ22=GK1+0114GKI+EKI +Q12+FSJ+BSI+021 ¢GKI+ES1+(22¢BS Y
IF CJTTYPE.LT. )GO TO 580
TMATX (1> 1> = QAN CI) ¢ TO1 1 +WER/PSI+KDT JeQAF (1)) / (2(+FRED
TMATX (15 J+NTERNS) =0RM (1> ¢TQ12/ (PSI+SERT CWLLAUER) +206FREM
TMATX CI+NTERMSs J> =CDP (1> «T021 +WER/PSI
TMATX CI+NTERNS) J+NTERMS) = (QDP <I) ¢ TO22-PSI-KDI Je U
1 *QDM () 7SORT WU/WERD
GD TO S85
580 TMATX (15 J) =RAP (1> ¢TQ11/PSI+KDIJ*QAM CI> SUEFS
TMATX CI> J+NTERMS) =—LIUSQAP (1> +TQ12/PSI
TMATX CT+NTERNS» 1> =QDM (1> ¢ TQR21/PST
THATX CI+NTERNSs J+NTERMS) =~UU+ QDM (1) ¢ TE22-PS]
1 +KDIJeQDPCI>
C MATRIX FOP CONDITION OF TDIM LESS THAN SDIM IS nOT
C NORMALIZED. IF A LARGE NUMEER DF MODAL TEFMS IS FECUIFED
C THIS MATRIX SHOULD BE MORMALIZED EY A POSITIVE
C DEFINITE MATRIX TO AVOID NUMERICAL INSTREILITIES.
525 COMT INUE
IF CMCAMP.ED. 1>60 TO 600
DO 5906 I=1»NTERMS,1
DO S90 J=1,NTERMS> 1
TN11=1. 0/P3AVG
TN12=P3 (J) /P3AVG
TN21=P3 (NTERMS~1+1) #/P3AVG
TH22=P3 (NTERMS-1+1) +P3 (J> /P2AVE
TMATX CI» 1> =TMATX CI» 1> +TH11
TMATX (I +NTERMS) =TMATX (I » J+NTERMS) ¢ TN12
TMATX CI+NTERMS» J> =TMATX CI+NTERMS s J> ¢ TN21
a0 THMATX CT+NTERMS » J+NTERMS) =THATH CI+NTERMS» J+NTERMS) ¢ TN22
DETERMINANT OF TMATX = ZERO FOR SOLUTION
00 IF CIFFC.6T. 00GO 7O 625
MXSIZE=NTERMS
IF CMEH.EQ.2)60 TO 650
KMFC=1
IF (NMODE. NE. 0) KMFC=NTERMS
610 DO 620 I=1,MXSIZE»s1
D0 €20 J=1,MXSIZE»1
620 TMATX C(I» 1> =TMATX (T+KMFCy J+KMFC)
60 TO 650
625 IF <NMODE.NE. 0>GO TO 640
MNSIZE=NTERMS+NHOM
I0 630 I=1,MXSIZEs1

»Oa
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33400 DO 630 J=1sMASIZEs1
32500 630 TMATX (I I3 =THMATX CI+1s J+1D

33600 GO TO 650

3g700 640 MXSIZE=2¢NTERMS

38200 850 IF ¢(MCAMP.NE.1>GO TO 200

38200 MVSIZE=MXSIZE-1

22000 2P (1>=0.0

39100 SMC12=0.0

29200 DO €65 I=1sNHOMs1

39300 VVEC (1> =THATX ¢I s NTERMS)

39400 YVEC (1+NHOM) =TMATH (I +NTERMS» MTERMS)

39500 DO €65 J=1sHHOMs 1

29600 CAM I B =THATX CI51D

2700 IF CIFFC.EQ. 0G0 TO €65

39200 CAM<T s J+NHOMY =TMATX (I s JHNTERMS)

29200 CAM CI+NHDOMs J) =TMATY CI+NTERMS» U

40000 CAM ¢ I+NHDMs J+NHOMY = TMATH (I+NTERMS s J*NTERNS)
40100 665 CONTINUE

40200 ID1=1.0

40200 CRLL LINVZF (CAMs VWECs 25 MVSIZEs 32, DD1 > DD2; WKAREAs 1ER)
40400 DENORNM=1. 0/SORT (MU-WER)

40500 20 ¢1> =-T2HORH

40500 D2P ¢1)>=D2M (1> +0DM 1) ~QLP {1

40700 DO 675 1=2sNTERMS, 1

40300 A2P ¢I» =WWEC (1-1>

40200 ASM (1> =0AP CID> +AZP (1) ~QAM (DD

41000 IF CIFFC.EQ. 0G0 TO &7

41100 D2 ¢I> =D2NOFMeVWEC ¢I—1+NHOMD

41200 2P (1> =DM CI> +D2M (I> /QDF <I>

41300 G0 TO 675

41400 670 DEPCI»=0.0

41500 2MLD=0.0

21600 675 CONTINUE

41700 630 D0 695 I=1>NTERMS»1

41800 ZONE=0. 0

41900 1F ¢(KFC.EQ.1.AND. I.EQ. 1) ZONE=1. 0

42000 PHI=BETA+ZONE

42100 PSI=GNX1SQ<I> +Z0ONE

42200 GY2=NEDOeGY1 (D)

42300 C2P CI> = (—PHI*A2M (1> —LU+GY24D2P ¢1) ) ~PS1
42400 B2P CI) = (GY2+A2M (1> ~WUePHI+D2P ¢I) ) #PS]
42500 F2P (1) = (PHISUEP+AZP (1> -GY2+DEM 1)) ~PS1
42600 2P (1) = (~UER*GY2+AZP CI> ~FHI+DEMCI) ) #PS1
42700 2M D) = (-PHI*P2SQ (1) *A2P (I> —LIUeGY2+DEMIID ) ~PS ]
42300 SM{I> = (GY24F2S0 CI> RSP (I ~LILUsPHI DM IV ~PS ]
42900 F2M (1> = CUEF*PHI*AZM (I —GYZ+P2SRCI) ¢ D2P ¢13 ) ~FE]
43000 G2MCI) = (~HER*GY2+A2M (1) ~PHI#P2SQ (I> «D2P (13 ) ~FS1
42100 A1 CI> =RDC+AZP CID ~ (ORMCID +PXN1 CID #PYN2 CID >
43200 D1 (1> =D2M (1) / (QDP (I> +PXN1 CI) +PXN2 CI> >

43300 EXADI CI>=A1CI> «HC1 CI>

43400 HXADI (I>=D1 CI> «HSP1 CI)>

43500 B1 CI>=(GY24P1S0 CID> +A1 (1) ~LU+PHI*D1 CI>> ~PS]
43600 C1<I>=(~-PHI*P1SQ(I> +A1 CI> ~WUsGY2eD1 CI)) ~PSI
43700 F1<ID> = (WEFSePHI*AL (1> ~GY2+D11 CI>) ~PSI

43300 61.¢1)> = (~UEFS+GY2+A1 C(I>~-PHI+D1 CI>)> /PS]

43900 EYADI <I>=E1 (I> ¢HSP1 I

44000 EZADI (1>=C1 (1> +HSP1 (I

44100 HYRDI CI>=F1 ¢I>+HC1 <I>

44200 685 HZADI ¢I>=G1 (1> +HC1 CI>

44300 DO 690 I=1sNTERMS,1

44400 F3R(I>=0.0

44500 G3R(1>=0.0

44600 DD 690 J=1sNTERMS, 1

44700 F3R ¢I>=F3R CI>+ (SMHY (I J> ¢F2P (D)

44800 690 G3R (I =GIRCI> + CSMHZ CI» 1D +G2P (D)

44900 DO 699 I=1;NTERMS,1

45000 20NE=0.0

45100 IF CIFFC.EQ. 0. AND. NMGIE. EQ. 0. AND. I.EQ. 1> ZONE=1. 0
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45200
45300
45400
45500
45600
45700
45800
45200
45000
45100
4&z00
45200
45400
45500
45400
46700
45200
45900
47000
47100
47200
47300
47400
47500
47EeN0
47700
47200
47200
438000
42100
48200
48300
48400
42500
42600
4¢700
42200
43200
42000
49100
42200
49300
49400
49500
492600
49700
49200
45200
SaQ0Q
S0100
So2e0
S0300
50400
50500
50600
S0700
S0800
50900
51000
51100
51200
51300
S1400
S1500
51600
51700
51800
51900
52000

695

7e8
729

731
735
738
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PSI=GHX2SQ (I> +Z0ONE

PHI=EETA+Z0ONE

LD=PISQ CI>

WA=1.0

IF(MED.LT.0>GD TD 625

Ub=1.0

W= PRSI

FPMES=NED*GY3 (I>

F3(I>=F3R(I> #HHI D>

G (IX=G3R (1) 7HH3CID

AZ(IY= (PHI*F2 (I} -FMKI*GR(I> ) #WER

DB =(-PMKGeFI I —FHI*G3I(ID> > 7LD
C3(I)=(~PHI*WIR*A3 1) —LIU+FHMK3+D2CId> > /PS1

B2 (1) =(PMKI*IR*AZ (1) -LIU+PHI+DZ (I > 7PS]

AR (I>=A3 (I} *+HHZ (DD

SR =R2(I) +HER(I>

CER(I=CA K1) «HE2 (DD

D3R (I =D3 (1) «HEZ (I

MCRMP=0
PRINT DUT MOIAL COMFOMENT COEFFICIENMTS IF FECUESTED
IFCIFMCAP.NE. 1)GO TO V32

TYFE 703

FOFMAT (/7 N74X7EXADI (N> 74X 7EVADI (NY “EX7EZADI (N 7
SKHRADI () SX7HYADI (N 73X HZRDIT (N 7D

D0 V705 I=1sNTERMSs1

TYPE 723 1»EXADI KD +EVADI (ID +EZADI CID s HMADICID 5
HYADI <I) » HZRILI <I>

TYPE 706

FORMAT (/¢ H76X7AZR (N> 76X BIR (M) “SX CIR N -
SX/DIR (N 7SR FIR (ND “SX G3R (NY “ »

DD 710 I=1«NTERMSs1

TYPE 729 IsAZRCID s ESR(ID s CERC(ID s D3R CI) sFIR(IM s GRR (D
TYFE 711

FORMAT (/7 N7TR7RIN “PR7B1C(N) “7€X7C1,CM> 76X D1 <N “
EXF1 N 76X7GL N> 7>

DO 715 I=1sNTERMS» 1

TYPE 729 1:R1CIDsEBIC(IXH»C1CID s DICI?sF1 (12 »G1CID
TYPE 716

FORMAT (/7 N78X ASM N> 76X BEEM (N 75X C2M N ¢
SX/DEMCND 7SX FSM(N) “SX7G2M <Ny 7>

DO 720 I=1sNTERMS»1

TYPE 729y IsRZMCID s B2MID s C2MCID s D2MIY s FEM I « GEMCID
TYPE 721

FORMAT C#7 N’&X7A2P (N “6X“B2P (N> “SX CEP (N> “
SX7DEF (N *SX7FEP (N) “SX“G2P (N> 7>

DO ¥85 I=1,NTERMS»1

TYFE T2 IsAZFCIM s BEP D) s C2P (D s D2P KD s FEF (I GEF LY
TYPE 736

FORMAT (/7 NYTM7AS N 77X BR N 76N CI (MDY 787 DR ey
EXFRAD 76X B3N D

DO 722 I=1sHNTEPMS,1

TYPE 729 1sRA3CI) 9 B2(I)»C3CID»D2<I) s F3 (1) s G3CI)
FORMAT (I3 2E12.454E11.3)

TYPE 731

FORMAT (/7  HN’SX‘P1SO (N “S¥ P2SQ (N “SX/P3SQ N )
D0 725 1=1,NTERMS»1

TYPE 7363 1,P1SQ<I),P2SQCI)»P3SOCD)

FORMAT CI3»3E12.4

COMTINUE

IFCIFPRA.NE. 1>G0 TO 790

SURFRS=SORT (FREQ-/LIGCHCU> 2. 25E-03

LL1=0.0

wLe=0.90

WLE=0.0

W.4=0.0

WLS=0.0

wLISe=0.0

WLDS3=0.0

PWRN1=0.0
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PWRN2=0.0

PURN3=0.0

DO 754 N=1,NTERMS, 1

FlaNi=1.0

IF(N.ERQ.1>F12N1=2.0

FOIN1=2. 0-F12N1

WLI=WLI+BDIMe (FOLNIeF1 (M) ¢¢2+F1ZN1«G1 (MY +2D
D0 7?54 M=1,MHTERMS,1

IF(N NE.M>GDO TDO 750

PSE1=0.5¢ (HIP1 (N) «HC1 (MY -AX1) /P1SQ N
PCC1=0.Se (HSP1 (N> «HC1 (M) +AX1)
PCSE=(1.0-CHC2C(MD ) +42) 7 (2. 0+P2SQ (MDD
PEC2=PCS2

ARG=E.28318%5+HRe (N-1)

IF(N.GT.1>60 TO 743

S§a=0.0

CCe2=0.5¢ (EDIM-DIDIM

GO TO 74%

£82=0.2%« (EDIM-DDIM+DDIM+ESIN {ARGY /REG)
CC2=0.25+ (EDIM-DRIM-IDIM+SIN ARG ~ARGD
PSS3=0.5¢ (—=HHZ (N> ¢HEZ (N> —ANEY ~P3SC (D
FCC3=0.5¢ (—HH3 (N> ¢HEI (M) +AN3D

RCESQRA=HC1 (NI +HEPZ (N) # COAM (N> +FXN1 (MY «PXNE (N) >
RSESOA=RCSQA+HSP1 (N> /HC1 ¢

RCSOD=HC1 (N} ¢HSP2 (N> 7 CQDP (N +FPXH1 (M) ¢PXNE (MDD
RSSQD=RCSAQDeHSF1 (N> #/HC1 (D

SEXM=0.5+F Q1N1+ (AX2+ (A2F (M) *+2— CR2M M) +42) /PESOCNI D +
RCEDA+ACP (N) ¢+ +2+RNC+P1S0Q (M) ¢RSIQACAZP (N »

AZM N> /P2SQ (NDD

SEVYN=0.5¢F12N1¢ (AX2+ (ECP (1) ¢ +2—- (ESM (NI +o2> ~

PETQ(ND ) + (GY1 (N> ¢A2P (N> ¢+ (RDC*P1SQ (N> «RSSQRA+R2F <MD
+RCSOASBEM (N ) —ULIe EETA«D2HM (1) + (RSSELeR2P (N
+RCSQIeBZM (N> 7/P2SQ (N) > > #GNXM1SQ CND >

SEZN=0.5¢F01N1+ (AX2+ (CEP (N) ++2~(CEM(Nd e o2~

PESOND > - (BETR*A2P (N) « (RDC+FP1SQ M) ¢RESCA+CF (D
+RCSDASCEM (NI ) +UWLIeGY 1 (N «D2M (N)> ¢ (RESEDC2F (D
+RCSQDeC2M (N> Z/P2SQ (N) ) ) #/GNNISACND D

WLDS2N=SEXN+SEYN+SEZN
ULDI3N=F01N1* (PSS3¢A3(N) ¢+2+PCC2+C (N> e

+F12N14PCC3+RI(N) ¢e2

WLDS2=ULDS2+ULDS2N
WLDSI=UILISI+ULDS3IN
PUR1TN=0.5+FDIMe (FOIN1+R1 (N} +F1 (N> +PCC1

=F12N1eR1 (N> +D1 (N> «PSS1)

PURN1=PWURN1+PUR1ITN
PUR2AF=0.S*¢F01N1+ (RX2e (AZ2P (M) «F2F (M) —~A2M (N)

*F2M N Z/P2SQ (NI ) +A2P (N) « (RCSOARSFZP {N) +RIC+P1SQ <N
*RSSQASFZM (N> 7P2SR (N D)

PWR2FD=0.5+F12N1+ (AX2+ (B2P (N> «D2P (N> ~B2M (ND

*DEM N ZFES0 (D ) +DEM (N> ¢ (RSSQDeRZP (N> +RCSAD
SESH (N Z/PESENDD

FWRETN=0.5¢FDIMe (PUREAF-FPURIED)
PLIRH2=PWRN2+PWR2TN
PURSTH=0.0DDIMe (FOIN1*RS (M) ¢F2 (N) ¢PSS3
~F12H1+EB3 (N> «D3 (N> *PCC2)

PURHI=PURN3+PWR3TN

HZZ0=0, S*AX2¢ (G2P (N> +42~ (G2M (N) 2> /P2SO N )
HZ2Z21=—0.5¢G2P (N>  (GY1 (N> ¢LERRCSQA+AZP (N

+BETA*RCSQL*DZM (N> > /GNX 1SR (N>

H2Z22=—0.5¢G2M (N> ¢ (GY1 (N) +INER*RDC+P1SQ (N> +RSSORA
*A2P (N> 7/P2S0 (N> +EETA+RESADeD2M (N> ) #/GHX1SE <ND
HZ2NM=HZZ0+HZZ1+HZZ2
HXX0=0.G+RKX2¢ (D2P (N ¢+~ (D2M (N> ¢ 42> /PESO N )
HXX1=0.5¢D2M (N> ¢ (RSSQDe 2P (M) +RCSQD«D2M (M 7P2SQ (N) >
HXXHM=HKX 0+H=X1
GO 7O 7?52
PSS1=(HC1 (N> «HSP1 (M) —HGP1 (M) ¢HC1 (MDD
/(P1SOCH -P1SQ (M)
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58300 PCC1=<P1SQ (N> ¢HSP1 (N> ¢HC1 (M —-P13Q <MD
52000 1 *HC1 (HM*HSP1 (MDD /7 (PISE (N> -FP1SQ <MD
59100 ANN=1. 07 (PXN1 (ND> «PXN2 (1D
59200 RCEAN=HC1 (N> «CNN-QRM (ND
S9300 RSQAN=HSP1 (N> «@HN/QRM (N
59400 RCQDN=HC1 CM> «@NN/QDP (N>
59500 REQDN=HSP1 (N> «QNN/QDP (N>
Se600 NM=1. 07 (PXN1 (M) ¢PXN2 (MDD
Sava0 RCQAM=HC1 (M> «@NM-0ORM (M>
59200 RSCAM=HSP1 (M) «QNM/QAM (1D
59900 RCODM=HC1 <M> «@QNM-QDF (M)
60000 RSEDM=HSF1 (M> «QHM-QDP (M)
60100 TDENDM=1. 0/ (GNXISQR(ND «GHX1SQ (M) ¢ (F2EQ (M
60200 1 —F23@ M >D
60300 HZZ 0= {GZM (M) +G2F (M) —~GZP () ¢+ GEM (MO d # CF2SA D
60400 1 —P2Sa<r )
60500 HZZ1=R2P (M) +AZP (M) ¢ UERSLER*GY1 (N} ¢GY'1 (M) «RDC (PL1EO D
SUE00 1 *RCOAN*RIPAM-P 130 (N> ¢RSQAN+RCOAMY « TDENOM
60700 HZZ2=D2M (M) «DEM (MI ¢« EETASO# (FE2S0 (MO «RCODN+RSODM
ez00 1 —F230 (N «REQDN+RCODMY « TDEMDM
&0e00 S=AZF (N> *D2M (MY ¢ BETASWER*GY 1 (N> ¢ (F2E0 (MDD
61000 1 +RCORNeRSCDM-RIC+P1SQ (N> «RSOAMSRCODMY « TDENHDOM
€1100 HZZ4=A2P (MY +DEM (MY sEETASUMEF «GY'L (M) « (RDC+P1EQ MY
é1z00 1 *RCOIN$RSPAM-F280 (N> ¢RSQODN«RCOAIM « TDENON '
51200 HIZNM=HZZ0+HZIZ1+HIZ2+HZZ3+HIZ4
61400 HNNO= DM (N> ¢ D2P (MY —D2F CHY «DZM MDD 3 7/ (FESO CNY ~PETO (MY D
61500 HRX1=DZM (N> «D2M (M) ¢ (RSODNSRCADM-FECODN+FSQDMY ~ (PET0 (M)
61600 1 —-P2SQCD)D
61700 HXXNM=HNX0+HXX1
61800 ARGP=3.141593¢HR* (N+MN-2>
61900 ARGM=3. 141593¢HR* (N~M)>
62000 SS2=-0.C3¢DDIM+ (SINARGHY »ARGM-SIM CRRGF)Y 7ARGF)
ez210¢0 CC2=-0.25+DDIMe (SINCARGM) #ARGM+SIH CRRGPY #RRGP)
e2200 PCC3=—(P3ISQ (N} ¢HH2 (N> ¢HEZ (M) ~P3IQ (M)
62200 1 ¢HES{ND ¢HHR (MY D / (PISE CH) —PESSQ D)
€2400 PSS3=~ C(HEZ (N> «HH3 (M) —HHZ (N> ¢HEZ (MDD
&2500 1 7 (PASQLNY -PISQ M)
6ce00 7vSe ONEPM= (-1, (1) ¢ (H+M
avoon ULE=ULE+4. O+ONEPMe (D1 (N> ¢D1 (M) ¢PES
62800 1 +G1 (N> +G1 (M>ePCCL)
62900 WLI=WL3+3. 0¢ONEPMe (HXXNM+HIZNM)
63000 WLa=UL G+, 0¢ (F2P (N) ¢F2F (M» ¢ SS2+G2P (N> «G2P (M) «CC2D
62100 WLS=WLS+4. 0¢DHEFM® (D3 (N)> «D3I (M) ¢FPCCI+GZ M) ¢GRI (M) ¢P]ED
63200 754 CONTINUE
62300 PURN=PURN1+PUREN2+PLIRN3
63400 TYPE 756sPURN
63500 756 FORMAT (/¢ NORMALLIZED FDWER = “El12.4
63600 ECLN=0.0
63700 DO 760 I=1>NTERMS,1
63800 760 ECLN=ECLN+ARS (B (I))
63200 EM2ADI=0.0
€4000 DO 772 I=1+33»1
64100 EXMRDNI=0.0
&gz00 EYMADI=0.0
64200 DO Tod J=1+NTERMS» !
54400 ARG=CI=-12+GY1 (D ¢IDIM-84. Q
43500 EXMADI=EXMADI+EXAD] (J> «SINCARG)
64600 764 EYMADI=EYMADI+EYADI (J> «COS (ARG)
€4700 - EM2I=EXMALIIe¢Z+EYMADNI o2
64200 C eeee SKIP PRINTOUT FOR MDST APPLICATIDNS
6490¢C 60 TO 770
65000 I32THS=1I-1
65100 TYPE 766sEM2Is IB2THS
65200 766 FORMAT (4X7 CETRANS)Y ¢+2 AT Al = “El12.47 FOR Y = 7127 32THS
653200 1 OF D2
65400 770 CONTINUE
65500 IF<EMZI.GT.EMERDIYEMEADI=EM2]
65600 773 CONTINUE
65700 PEDADI=5S.8054E+06+PURN/EM2ADI
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65200 PEDCL=0. 001 +PLIRN® (76200¢EDSD/ECLN) ¢¢2

65900 TYPE 776sPEDARIDIs PEDCL

66000 776 FORMAT (7 POWER CAPACITY <AIR EREAKDOWN) =“F10.3“
65100 1 KILOWATTS’/7 POUVER CARPACITY <DIELECTRIC ERRERKDOUWN) =7
66200 2 F10.37 KILOWRTTS?

66300 WLC=CWL1+WL2+WL3+WL4+ULS) ¢SURFRS¢ 0.5

66400 ALMC=WLC/ (2. 0+PWRN)

68500 RLCIEL=8.6258%«RLNCLIGUWL

66600 ALCREF=ALCIDEL+12. 0-LIGUL

66700 TYPE 779sWGCNCU

65800 rea: FORMAT (* CONDUCTIVITY <NORMALLIZED TO COPPERY> OF
56900 1 WAVEGUIIDE WALLS = “F4.2

evane TYPE 721sALMCs ALCDRFsALCDEL

67100 781 FORMAT ¢ ARTTENUARTIDN FROM COMDUCTOR LOSSES == RALPHR =-
67200 1 E11.4/6X7=“F7.57 DE/FOOT OR “F7.57 DE/VAVELENGTH")
&7200 FLIF=WEReDLT (4. Q¢FURMN)

&r4100 ALDE=ULDS2¢EDIMeFLIDF

67500 ALD2=WLDSI*IDIMeFLDF

67EN0 ALDL=ALD2+ALID2

57700 ALDDEF=8. 68589+ALIL*12. 0

67800 ALDDEL=LIGLL*RLDDEF/12. 0

67300 TYFE 785sILT

62000 785 FORMAT ¢~ DIELECTRIC LOSS TANGENT = “E9.3)

62100 TYPE 78&»RLIDLyALDDEFsALDIDEL

egzo0 vas FORMRT ¢ ATTENUARTION FROM DIELECTRIC LOSSES —— ALPHA =
e300 1 “E11.578%7="F7.57 DR/FOOT OR “F7.5” DE/WAYELENGTH?)
&8400 30 CONTINUE

£eS0n IFCIFFC.EQ. Q0> GD TO &40

"R 00 795 TYFE 795

[Send (o 796 FORMAT ¢~° WISH NEW FREQUENCY? ‘%)

ES200 ACCEPT 210sIFFREQ

62500 IFCIFFREQ.EQ.1>60 TDO 7S

59000 GO TO 96¢Q

52100 800 Dpi=1.90

A9200 CRLL LINVIF(TMRATXsTUMMY s 4 s MRSIZEs 221D DD
893200 1 UWKARER: IER)

689400 DET=DD1e2. 0eeDD2

69500 XX=FREQ

69600 IF CIFFC. EQ. 1> X¥=BDG

69700 IF (MRSF.NE. 1560 TO S20

59300 IF(NCOUNT.NE.1>GD TO €10

69900 FNI1=DET

70000 RXNEUW=XUL

70100 GO TO 818

70200 810 DRX=0.0001

70300 IFCIFFC.EQ. 1> DR¥=0, 01

Y0400 IF (ARS (XX-x¥0OLD) .GT.DRY.OR.AES(RET-FN1) .6T. 0. 01)G0O
70500 1 70 813

70600 GO TO 8231

70700 €13 XXNEW=XX-FOLDe (XXOLD-XX> - ¢(FOLD-DET?

70800 IFCDETFOLD.LT.0.00GO TO 815

70900 IF (XX.GT.XXOLD) XLL=XX

71000 IF (XX. LT . XXOLD) XUL=XX

71100 GO TO 817

71200 815 IF (XX GT.HNNOLID XUL=XX

Y1300 IF (XX LT XNDLD) KLL=XK

71400 817 TFCXXNEW. GT.XUL.ORAXNEW. LT NLLYKXXNEW=0, Se (XUL+XLL)
T1S500 g18 FOLD=DET

T1600 RNOLD=XX

71700 60 TD 225

vigoo 820 TYPE 821sFFECEDNGyDETy IERsPISQ (1) s P2SG (1) s HH2 (1)
71900 ecl FORMAT(2F9.35E£13.3514,2E12.3)

72000 IF (XX.GE.%%2>G0 TO 829

72100 RKXNELI=XX+XDEL

72200  §25 CONTINUE

72200 IFCIFFC.EG. 1>GO TO 828

72400 FREQ=XXNEN

72500 60 TO 290

72600 823 BIG=XXNEW
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72700 GO TO 2¢%S

72800 &2 TYPE €30

72900 ezo FORMAT (7 UWISH HEW TRYS AT RDOT? “%>
73000 ACCEPT 2105 INEWXX

73100 IF(INEWKX.EQ. ¢>GO TO 930

73200 IFCIFFC.EQ. 0DGD TD 245

73z00 GO TO g7e

73300 ezl IFROOT=1

TIS00 C +ee++ ROOT KNOM KHOUN

TI600 833 IFIFFC.EGQ.1>G0O TO 820

73700 FCGHZ=FRE®

73800 3% TYPE 2%5sFCGHZ

73900 €36 FORMAT (7 CUTOFF FREQ IN GHZ ="F&.4
74000 IFMCRP=0

74100 IF (MMODE.NE.1.OR.NMODE.NE. 0.OR. JTTYFE.NE. 1>G0O TD €40

74200 € MODAL COMPONENT RMFLITUDES RRE CALCULATED ONLY FOR
74300 C QLSEC150) MODES WITH TOIM GREATER THAN SDIM.

74400 TYPE £33

74500 83 FORMAT ¢~* WISH MODAL COMPOMEMT AMPLITUDES? “$)

L]

7400 ACCEFT 210 IFMCAF

74700 IF{IFMCAF,NE. 1>GO TO €40

74300 IFPAR=Q

74900 MCAMP=1

vSaon GO TO S&0

7a100 40 TYFE S41

voEno 841 FDEMAT < 0 yOU WISH CARLCULATIDHNS FOR FREQUENCIES
TSZ00 1 AEDOVE CUTDFFYT HO=0s YES=1 P

7400 ARCCEFPT 210s IFFFEO

7S500 IFCIFFREG.EQ. 1260 TD 8432

voe0o IFC(IFFREGQ.EQ. 0XGO TO 950

=r U GO TO &40

ToRa0 £42 IFFC=1

TS0 IFPAR=D

Tenon IF (MMODE.NE.1.0R.MMODE.HE. 0. OR. UTTYPE.NE. 1)GD TD 875
TELO0 TYPE &4

TEZNO 846 FORMAT ¢ WNISH FOMER EREAIDOWUN AND ATTENURTIONT “$)
TA3Z00 ACCEFT 210+ IFFAA

7Ee400 IFCIFPRA.ME. 1DGO TO &70

FeSon &on TYFE 2%

cEana &51 FORMAT(” BREARKDOWN STRENGTH (RELATIVE TO THAT DOF
o700 1 DRY RIR OF DIELECTRIC: “$>

ve200 RERDI (S > EDSD

TER00 IF(EDSD.GE. 1. 00GD TO &858

vroao TYFE 8%6

7100 ete FOFMAT <’ FELARTIVE EREAKDDOWN STRENGTH OF DIELECTRIC
7veoo 1 SHOULL PE UMITY DR GRERTER)

7300 GO TO 850

v7400 858 TYPE 8¢1

77300 ge1l FORMART ¢ COMDUCTIVITY <(RELATIVE TO COPPER> DF WAVEGUIDE
y7eeQan 1 VALLS: 7%

7veen RERI (S > WGONCU

77800 855 TYPE &¢6

77300 ) FORMAT ¢~ LOSS TANGENT OF DIELECTRIC: %)

reouoQ REATI (S > DLT

veloo &7 0 TYFE &71

vazoo &71 FORMAT ¢ WISH MDTAL COMFONENT AMPLITUDES (YES=1) 77%)
Ta00 ACCEPT 210s IFMCRP

TE400 &S TYFE &7Veé

vesan &'e FORMAT ¢ DESIRED FFEQUENCY IN GHZ: 9

Teeon READ (S«eXFRER

TET IFFFEQ.GT.FCGHIYGED TO &78

TEERC TYWFE €TV

78200 87?7 FORMAT ¢/ FREQUENCY MUZT BE GREATEFR THAN CUTDFF FREOUENCY )
79000 GD TD 875

79100 grve TYPE €7¢

79200 879 FOPMAT (/7 WISH PETA SEARRCHCD) OR FIX<K1D? ‘D

79300 ACCEPT 210sMRSF

79400 IF(MPRSF.EQ. 0>GO TD &880
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79600
79700
79800
79200
80000
80100
80200
80300
20400
80500
80600
80700
80300
80200
s1000
e1100
g1200
€1300
21400
€1500
g1600
§1700
g1e00
€1200
gza00
g2100
eza0o
gzaen
22400
a2500
e2enn
gevno

24100
a4200
84200
84400
84500
84600
84700
24800
24900
85000
85100
5200
{5300
85400
85500
85500

880
881

85
886

890

1100

1110

1120

1125
1130

1

-

)

fos

ey

CHARLES W. YOUNG, JR.

IF(MRSF.EG. 1560 TO 885

GO TO &78

TYPE 281

FOREMAT ¢/ BETA (DEG/IN> - — START>STOP» INCREMENT: ‘%
READ (S ¢)> XX1 s XX2y XDEL

BDG=XX1

GO TO 265

TYPE &26

FORMAT ¢ SET LDUWERSUFPER LIMITS ON EETA (DEG-/INY: “®)
READ (S»s o> XKLL » XUL

EDG=XLL

XDEL=0.35+ (XUL-XLL>

G0 TO 265

BRGR=EIG

WGWL=2360. 0/PDGR

TYPE £94:FREQ> ELGR

FORMAT C6X“FREQ“11X“RETA/F10,.3,F15.3

MCAMP=0

IF(IFPRA.NE.1.AMND. IFMCAP.NE. 1>G0 TO 795

MCAIMP=1

GO TO S&0

TYPE 962

FORMAT ¢/77’ WAVEGUIDE PARAMETERS —- DIMENSIDMNS IN
INCHES 795 7A’QX R 9X’D’OM’S a8’ T FH’FRDC*D

TYFE 962sHDIMs EDIM» DDIMsSBIM, TRIMs RDC

FORMAT (FYF10.9>

TYFE Q&S+ EMMODEs MMODE s NMODE s FCGHZ » NHOM

FORMAT (/7 WAVEGUIDE MODE IS GLS’A17¢ I1“s7117)7SN
‘CUTOFF FREQLENCY IN GHZ =“F2.4-“ NUMEER OF HIGHER QOFDEF
MODES USED IN ANALYSIS = 7122

IFCIFFFEQ.EC. 02 GO TO 2920

TYPE 921

FORMAT ¢ ~-r7 DD YOU WISH A RERUNT 73>

READ (S ) NREFRUN

GO TO(P39+981s 124+ 128+ 1229136+ 1305 1752004190, 110

» 920> NRERUN+1

TYPE 935

FOEMAT (7 TO CHANSE: FA=32s E=
HUMEER OF MODRES IN ANALYSIS=
FROM SCRATCH=10")

GD TO <20

END

FUHCTION SINCCKSINCYMFS12yKINT» KHRsHRATI
SCKXP=1.570795+ (KINT+KHFeHRRTID)
SCHM=1.570795¢ (KINT-KHR+HFAT IO}

IFCKINT.HNE. 0. AND.KHR.HE. (> GD TO 1120

IFCKINT.EQ. 0.ANDI. KHR.NE. (OGO TO 1110

IF(KINT.NE. 0. AND.KHR.EQ. 0> GO TO 1100
SINC=1.0

IFMFS12.EQ.0)SINC=0.0

GO TO 1130

SINC=0.0

GO TO 113¢

SINC=MFS12¢SIN(SCXP) /SCXP

GO TO 1130

IF (ARSCSCHM .GT.1.0E~05)>G0 TO 1125
SINC=KSINCeSINCSCXP) 7/SCNFP+1.0Q

G0 TO 1130

SINC=KSINCeSINC(SCXP) /SCNF+SINCSCHM) /SCNM
COMTINUE

FEETURM

EMD

3
e

y D=d4s S=8» T=ns EPER=T
» 77 DESIREID MODE=%9START

PROGRAM CROOT3

00100
oozon
00200

C PROGRAM CRDOOT3.FOF

DIMENZION XL <2 s TDEC2Y » TRNHGD(3) »CAC(R) » CED (3D
COMPLEX CT1sCT2>CT3:CG125C621»CG23y PG
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00400 COMPLEX CF»PGAsCGSQ» TC1sTC2

00500 TYPE 20

00600 20 FOFMAT ¢ PROGRAM CRDOT2 CALCULATES THE COMPLEX
00700 1 PROPAGATIDN CONSTANT GF A GIVEN‘/“ TRANSMISSION LINE
00300 2 BY USING THE MEASURED TRANSMISSION CDEFFICIENTS
00200 3 777 DF THREE DIFFERPEMT LENGTH SAMPLES TO

01000 4 CORRECT FOR MISMARTCH EFFECTS’//)

01100 TYPE 21

01200 21 FORMAT ¢ WISH PRINTOUT AS ROOT IS SOUGHT?-$)
01300 RCCEPT 215, IFRSPD

01400 24 TYPE 25

01500 25 FORMAT (© LENGTHS ARE IN INCHES*)

01600 DO 28 I=1s3»1

01700 TYPE &7»1

01800 27 FORMAT (v LENGTH DOF SAMPLE #7I17: ‘%)

01900 READ (T» ¢ XL C(ID

02000 28 CONTINUE

02100 TYFE 30

oz200 a0 FORMAT ¢~ MERSLURED TRAMSMISSION DRTR IS TO EE ENTERED
Q2300 1 A% LDSS IN DEs PHASE IN DEGFEES”

62400 a1 TYPE 3&

0zS00 32 FORMAT (7 FREGUEHCY IN GHZ: ‘%

02E00 READ (Ss > FFEQ

02700 DO 35 I=1,Gs1

ozaqae TYPE 33sXL D ‘
02500 23 FORMAT(” LOSS» PHASE OF‘F6.3“ INCH SAMPLE: ‘%)
02000 READ (S «X TDECI) s TANGD CID

03100 395 COHTINUE

0z200 TYPE 40

0z300 40 FDRMAT (~7 ENTER FIRST TRY VALUES FOR ALPHAs BETACDEG-/INM: ‘%)
02400 READ(SseMAL1LEDIL

TIMAG=10, (ee (-TDEC1>/20. 0
TEMAG=1 0, 0+ (-TDED) ~20. 0>
T3MAG=10. (ee (-TOE(E> 720, O
TIANGR=TANGD (1> /87, 2957795

aQ

200 T2ANGR=TRNGD (2> /57. 2957795

04000 T2ANGR=TANGD (3} /57. 2957795

04100 TRZ1=TEMAG+ T 1MAG+COS (T2ANGR+T1ANGR)
a4200 TI21=TEMAG*T1MAG+SIN CTZANGR+T1ANGR)
04200 TR13=T1MAG* TEMAG+COS <T1ANGR+TIANGR)
04300 TI13=T1MAG* T3MAG+SIN <T1ANGR+T2ANGR)
04500 TR2E=TSMAG+ TEMAG+COS (TRANGR+T2ANGR)
04600 TI2E=T2MAG* TEMAG* SIN (T2ANGR+TZANGR)
04700 DL13=KXL (1) =XL (2

04200 IL32=XL (3> =XL &)

04200 DL21=XL (2> -XL (1)

0SQ00 ITRY=1

05100 ALFPHA=A1

0s200 EETR=ED]1/57.2957795

05300 S0 KCA13=COSH ¢(ALPHA+DL13)

05400 HSA13=SINH (ALPHA+IL12)

05500 HCR21=COSH (ALPHASILZ 1)

0SE00 HTA21=SINH (ALFHA+IL21)

05700 HCR22=COSH (ALPHA+ILS2

SS00 HSR32=3 INH ¢ALFPHADL32)

05500 CE13=COS (PETA+IL13

0s000 SPF13=SINC(FETA+DL12

05100 CE21=COS (RETA+DL21)

05200 SE21=SIN(FETA*DL21)

06300 CE32=COS (EETADL3E

05400 SE32=SINCEETA*DL32)

05500 HSS13=HSR13¢SF13

05600 HSC13=HSR13+CF13

05700 HCS13=HCR13+SE13

05300 HCC13=HCA13+CE13

06900 HSS21=HSA21+SP21

07000 HSC21=HSA21+CB21

07100 HCS21=HCR21+SE21
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07200
07300
07400
07500
07600
07700
07eeo
07900
oge00
og100
gazo0
08300
ga400
038500
02600
08700
03800
02900
02000
02100
09200
09300
09400
0es00
Q2500
Q%2700
[USTRY]
0a3a00
10000
1e100
10200
10300
10400
10500
1000
10700
10200
10200
11000
11100
11200
11300
11400
11500
11600
11700
1180Q

va

€0

aqQ
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HCC21=HCR21eCB21
HSS32=HSR32¢SE32
HSC32=H3A32¢CB32
HCS32=HCR32¢SE32
HCC32=HCA22+CE32
FR=TR3Z*HSC32-TI32+4HCS32+TR21¢HSC21~-TI21+HCS21

1 +TR13+HSC13-TI13¢HCS13

FI=TR22eHCS32+TI32+HSC32+TR21¢HCS21+T121+HSC21

1 +TR134HCS13+T113eHSC13

FMAG=SORT (FReFR+FI+FI)
IFCIFRSFPO.NE. 1)GD TO 60

TYPE 58sALPHARy BETAYFRyF1»FMAG

FORMAT (2F10.5532E10.3)

CONTINUE

IF(FMAG.LT.1.0E-07>GD0 TO 80
IFCITRY.LT.11>60 TO 70

TYPE 65

FORMRT ¢ MORE THRHN 10 TRYS AT ROOT“>
G0 TD 80

PFRA=DL22¢ (TRI24HCCR2~TI32+HSS32>+DL 21+ (TRE1+HCC21

1 —-TIZ1eHSS21>+DL13¢ (TR13+HCC13-TI134HISS1I

PFRE=—DL232¢ (TR2Z+HSSI2+TIBS+HCC32) —DL21+ (TRE1 +HSS21

1+TI21¢HCCZ1) -DIL13¢ {TR13¢HSS13+TI12¢HCC13D

DET=FFRA+PFRA+PFRE*PFRE

DELRA=~ (PFRA+FR-FFRE*FI)>7DET
DELP=—(PFRE+FFR+FFRA*FI) /DET

ALPHA=ALPHA+DELA

RETR=EETA+DELE

ITRY=1TRY+1

GD TD S0

EDI=S7.2957795+RETA

TYPE 20

FORMAT ¢/~* MERS #73X/LENGTHC(IN) “3X‘TMAGKIE LOSI)

1 TANGCDEG) 7>

DO 95 I=1,3s1

TYPE Q45 1%L CI>» TDECI) « TRHGIDICID

FORMAT CITsF13.4:F16.3»F12.2

COMYINUE

TYPE 1Q0,FREQs ALPHA, ED]

FORMAT (¢ FREQUENCY ¢(GHZ) =‘F7.3>5X“ALPHA ="F&.4y4X"

1 BPETR(DEG-/INCH) =“F8.2>

TYPE 210

FORMAT <77 WISH HEW FREQUENCY DATAT ‘%)
ACCEPT 215, NRERUN

FDRMATCI 1)

GO TO<225,31y225> NRERUN+1

END
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