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SYMBOLS AND DEFINITIONS

VPS - vertical plane of symmetry
HPS - horizontal plane of symmetry
TE - transverse electric
TM - transverse magnetic
LSE - longitudinal section electric
LSM - longitudinal section magnetic
QLSE - quasi-LSE
QLSM - quasi-LSM
FHOM - first higher order mode
DRWG - double ridged waveguide (empty)
DSLRWG - dielectric slab loaded rectangular waveguide
DLDRWG - dielectric loaded double ridged waveguide
PBD - peak power breakdown
PMVE - maximum voltage equivalent power
(M,E) - magnetic wall at VPS, electric wall at HPS
(E,E) - electric wall at VPS, electric wall at HPS
(M,M) - magnetic wall at VPS, magnetic wall at HPS
(E,M) - electric wall at VPS, magnetic wall at HPS
BW - bandwidth
J - IF-
co - radian frequency
f - cyclic frequency

- permittivity
c, - relative permittivity
AO - permeability of free space
p - x-directed component of wave vector
k - y-directed component of wave vector
/3 - z-directed component of wave vector
ca - loss term of complex propagation constant
y - complex propagation constant, = a + /
8mn - Kronecker delta function
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AN INVESTIGATION OF
DIELECTRIC LOADED RIDGED WAVEGUIDE

1.0 INTRODUCTION

1.1 Background

Many types of transmission media are used in the microwave portion of the frequency spectrum
for guidance of electromagnetic energy. Waveguide, coaxial cable, twin lead, stripline, and micro-
strip constitute some of the more common types, and a variety of different configurations exists for
each. In this report such waveguide types as dielectric waveguide and coplanar waveguide are not con-
sidered, and the term waveguide is restricted to mean conducting cylindrical tubes with a uniform, but
not necessarily homogeneous, cross-sectional geometry.

Two important characteristics of waveguide are: (1) low insertion loss and (2) high-power capabil-
ity. In both of these categories, waveguide is distinctly superior to other transmission media, and for
many high-power applications, waveguide is the only choice. Waveguide is not without its disadvan-
tages, however. Factors such as size, weight, and cost are outside the scope of this investigation, but
the dispersive nature of waveguide [1,2] and the problems that can arise from multimoding, or the
simultaneous propagation of different waveguide modes [2,3], are important considerations and are dis-
cussed in detail in Section 1.2.

Most early waveguide development [4-71 concentrated on rectangular and circular cross sections
with homogeneous loading. The solutions to the boundary value problems posed by these regular cross
sections are straightforward [1,81, and the real effort was in work on special features (bends, tuning
posts, junctions, coupling slits, etc.). One of the first nonregular waveguide cross sections to receive
much attention was ridged waveguide (Fig. 1). Early analyses of such waveguide geometry have been
done with a number of different approaches [2,7,9-131. One of the first investigations using numerical
solutions was conducted by Montgomery [14] in 1971 using the Ritz-Galerkin method.

(a) double ridged (b) single ridged

Fig. 1 - Cross section of ridged waveguide

Every mode of propagation in any waveguide may be characterized by its field distribution. For
homogeneous waveguides, modes are usually classified as TE (transverse electric) or TM (transverse
magnetic) [1,2,8]. The principal, or dominant, waveguide mode is the mode with the lowest cutoff fre-
quency. A fractional bandwidth may be defined as the ratio of the cutoff frequency of some higher
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order mode and the cutoff frequency of the dominant mode. For a true single mode bandwidth, the
maximum operating frequency is limited to the cutoff frequency f of the first higher order mode that
can propagate; thus, the single mode bandwidth is

_ f, (first higher order mode)
BWSM- f, (dominant mode)

Ridged waveguide achieves a large single-mode bandwidth as a result of the excess capacitance in the
center of the waveguide (a consequence of the reduced height in the gap region) which has the effect
of lowering the cutoff frequency of the dominant TE1,0 mode. The next propagating mode is the TE2,0
mode which has an electric field null in the center; thus, the added capacitance has only a second order
effect on the TE2,0 cutoff frequency. A characteristic of ridged waveguide is the high wall current den-
sity in the ridge region, which results in a greater transmission loss than conventional waveguide. For
many applications, a more serious disadvantage is the greatly reduced peak power breakdown level due
to the increased electric field intensity in the ridge gap.

An alternative method for increasing the TE1 ,O-TE2 ,0 bandwidth of rectangular waveguide is place-
ment of a dielectric slab vertically in the center (Fig. 2). This dielectric slab loaded rectangular
waveguide has received considerable attention [15-241. The two most notable features [18] are: (1)
TEIO-TE2,0 bandwidths comparable to those of ridged waveguide could be achieved, and (2) the
power-handling capacity was increased over that of air-filled rectangular waveguide as a consequence of
the higher breakdown strength of the dielectric material. The increase in power-handling capacity was
emphasized in 1976 by Findakly and Haskel [23]. Dielectric slab loaded rectangular waveguide also
achieves a large TEO-TE2,0 bandwidth as a result of the added capacitance in the center of the
waveguide, but with the added capacitance due to the higher dielectric constant of the slab rather than
to a reduced height. However, the first higher order mode to propagate in this waveguide structure
usually is not the TE2,0 mode. Because of the dielectric loading, LSE (longitudinal section electric) and
LSM (longitudinal section magnetic) modes [1-3,18] may propagate prior to the TE2,0 mode. Except
for waveguides with small aspect ratios (height-to-width ratios), the first higher order mode to
propagate will be the LSE1 l mode as shown by Gardiol [19]. The extensive bandwidth-power capacity
design information of [23] uses a TE1,O-TE2,0 definition for bandwidth, assuming that intervening LSE
and LSM modes could be suppressed or eliminated. The importance of limiting the waveguide propaga-
tion to a single mode is shown in [3] and [24].

Fig. 2 - Cross section of dielectric slab loaded
rectangular waveguide

One shortcoming of dielectric slab loaded rectangular waveguide is the limited increase in
bandwidth provided by dielectric materials with low to moderate values of relative dielectric constant E,.

The TE1,O-TE2,0 bandwidth is dependent on the thickness of the dielectric slab as well as E,; however,
the minimum required value of E, increases very rapidly with bandwidth. From [23], a fractional
bandwidth of 5.25 requires a value of E, of at least 50. High dielectric materials are available but gen-
erally have much greater loss than low e, materials [25,26]. Also, large er materials are usually more
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difficult to machine, can be very sensitive to temperature and atmospheric humidity, and in many cases
are anisotropic.

1.2 Objectives

The purpose of this investigation is a theoretical analysis of a waveguide structure which is a com-
posite of the two types discussed in Section 1.1, air-filled ridged waveguide and dielectric slab loaded
rectangular waveguide. The generalized cross section of this partially dielectric loaded double ridged
waveguide is shown in Fig. 3. The principal objective will be a complete modal analysis of this
waveguide structure. The only previous theoretical investigation of this waveguide found in the techni-
cal literature was conducted by Magerl [27], with analysis restricted to a geometry where the dielectric
width was exactly that of the ridge and with only a limited discussion of modes other than presumed
TEm0o modes. Although Magerl's analysis is valid for cutoff frequencies of the TEno modes, true TE
modes do not exist above cutoff [281. With the complete modal analysis of this investigation, the cut-
off frequency of any waveguide mode may be calculated, thus allowing the true single mode bandwidth
to be determined. Also, this analysis will take into account the deviation of the dominant mode from a
true TE mode for frequencies above cutoff, and will allow numerical evaluation of propagation terms
(phase and loss) and peak power breakdown levels as a function of frequency for the waveguide of Fig.
3. A secondary objective of this investigation will be to show that the dielectric loaded ridged
waveguide may be designed to have a much greater theoretical peak power breakdown level than either
air-filled ridged waveguide or dielectric slab loaded rectangular waveguide having an equal single mode
bandwidth.

d E

a

Fig. 3 - Cross section of dielectric loaded
double ridged waveguide

The single mode bandwidth condition, where the maximum operating frequency is limited to the
cutoff frequency of the first higher order mode that can propagate, is an important consideration.
Although waveguides may be used in an overmoded condition where more than one mode may
propagate, it is standard practice to limit if possible the operating frequency to the frequency range
where only the dominant mode propagates. This is done to prevent coupling between modes. If more
than one mode may propagate, some degree of coupling is inevitable in any real device because of
slight geometrical imperfections. Energy coupled from the dominant mode into any propagating higher
order mode may then be trapped between discontinuities, such as bends, and give rise to cavity effects.
For high Q cavities, even a small coupling may thus produce sharp absorption peaks at the resonant fre-
quencies of the cavities [2,8,19]. Mode suppression techniques such as properly oriented resistive film
act to increase the attenuation for the higher order modes [3,241, thereby lowering the Q factor of the
corresponding cavities and greatly reducing the absorption peaks. For high-power operation, where
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such techniques for higher order mode suppression may be impractical due to arcing or melting of the
resistive film, single mode bandwidth operation is therefore highly desirable.

A simplified explanation of how the composite waveguide structure of Fig. 3 could achieve a
larger single mode bandwidth-power breakdown product than either of its constituent waveguide types
may be made from an intuitive viewpoint. The added capacitance in the center of this waveguide is a
combined effect of the reduced height in the gap and the dielectric loading. The added capacitance
lowers the cutoff frequency of the dominant (TE1 0 -like) mode which has a maximum electric field in
the center of the waveguide, but has little effect on the cutoff frequency of the TE2,0-like mode which
has an electric field null at the center. The modes are referred to as TE, 0 -like because true TE modes
do not exist in this structure ( nor do true TM, true LSE, or true LSM modes), as will be shown. The
effect on the power breakdown level of the increased electric field intensity for the dominant mode in
the region of the gap is offset by the increased breakdown strength of the dielectric. Since the vertical
walls of the ridge are conducting surfaces, tangential electric fields may not exist there. The higher
order LSE-like and LSM-like modes, which have electric fields tangential to the ridge wall, will there-
fore have an effective height less than the waveguide height, with a corresponding increase in cutoff
frequency.

The dielectric slab must extend past either wall of the ridge, with the H shape shown in Fig. 3, if
the addition of the dielectric is to maximize the power breakdown level. This is necessary because the
strong fringing fields from the gap could cause arcing in air.

In Section 2, the mathematical development of the theoretical analysis is made to confirm this
intuitive explanation. Numerical results obtained from this theoretical analysis are compared with the
results of other theory. In Section 3, this analysis is further substantiated by comparison of theoretical
results with experimental data from measurements on waveguide samples with varing geometries. Sec-
tion 4 presents some of the characteristics of dielectric loaded ridged waveguide and compares the
waveguide performance parameters with those of air-filled ridged waveguide and dielectric slab loaded
rectangular waveguide.

2.0 WAVEGUIDE THEORETICAL ANALYSIS

2.1 Discussion of Analysis Approach

As noted by Lewin [29], the number of waveguide problems capable of exact solution is limited
to a few very simple shapes, even when the common approximations of ideal geometry and infinite wall
conductivity are made. Approximate solutions for more complicated waveguide shapes may be found
via a number of methods and techniques. Some classes of waveguides are more suited to certain
analysis methods than to other methods. Of the variety of methods available for finding numerical
solutions to the hollow waveguide problem [30,311, many are not applicable for analysis of inho-
mogeneous waveguides. A review of different analysis methods which are suitable for obtaining a solu-
tion to the general inhomogeneous dielectric loaded waveguide problem may be found in Ref. 32.
These methods include the transverse equivalent transmission line concept [1,7,9,11,33-39], perturba-
tion methods [1,40-45], variational methods [1,38,41,46-50], Rayleigh-Ritz methods [1,38,41,
46,47,51-53], reaction concepts [41,47,54], and finite difference or finite element methods [55-60].

The transverse resonance method is probably the least complex of the possible approaches that
may be used to find solutions for waveguide configurations of the type shown in Fig. 3. In this
method, an equivalent transmission line circuit is formed to represent propagation characteristics in one
of the transverse dimensions of the waveguide rather than along the waveguide axis [1,21. Discontinui-
ties along the transverse axis are reflected as lumped elements in the equivalent circuit. In general,
each propagating mode will require a different equivalent circuit for analysis.

The computational requirements of the transverse resonance method are much less than those of
other numerical methods, but there are two drawbacks to the use of this method to analyze the
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waveguide of Fig. 3. First, the transverse resonance method gives only the propagation characteristics
with no insight into the behavior of the fields; the electric field distribution is required to determine the
power breakdown of the waveguide. Second is the question of a suitable equivalent circuit to represent
the discontinuity formed by the ridge walls. This discontinuity is reflected as a change of the
waveguide height in the transverse direction. By use of quasistatic methods and conformal mapping,
such a discontinuity may be shown to have an equivalent transmission line circuit consisting of a shunt
capacitance at the junction of two transmission lines of unequal characteristic impedance [7,33,38,39].
However, this derivation of the shunt capacitance assumes a propagating TE mode with only a vertical
component of electric field incident upon the discontinuity formed by the height change, and further
assumes the discontinuity to be isolated, i.e., far removed from other discontinuities in the waveguide.
In the case of air-filled (or any homogeneous dielectric loaded) ridged waveguide, the TE1,0 and TE2, 0

propagating modes each satisfy the first assumption: the propagating component of the transverse wave
is TE to the ridge wall with no axial component of electric field [7,9,11]. Corrections to the value of
the shunt capacitance in the equivalent transmission line circuit may be made to correct for proximity
effects due to narrow ridges and/or close in sidewalls [101.

When attempting to find an equivalent circuit to represent the ridge wall in the partially dielectric
loaded ridged waveguide of Fig. 3, several problems arise as a consequence of the inhomogeneous
dielectric loading. In the absence of the ridge, modes other than TEno are characterized as LSE or
LSM. Introduction of the ridge will cause distortion of the fields from true LSE or LSM nature, but as
in the undistorted case the propagating components of the transverse wave will have axial components
of electric field. Equivalent circuits to represent the change in waveguide height for incident modes
other than the dominant mode (no axial electric field component) were not found in the technical
literature. Without a suitable equivalent circuit to represent the effects of the ridge walls, the
transverse resonance method is not applicable for analysis of the distorted LSE,n,, (n X 0) and LSM
modes. Even for the distorted TEm,o (LSEm,0 ) modes, the accuracy of an equivalent circuit such as that
from [7] may be questionable. An axial component of electric field must exist to satisfy the required
boundary conditions at frequencies above cutoff [281. Although this axial electric field may be evanes-
cent, leaving the propagating portion of the transverse wave incident on the effective waveguide height
change the dominant mode, the equivalent circuit derivation does not consider any axial electric field
since none exists for the homogeneous case. An additional limitation on the accuracy of the derived
shunt capacitance is due to the possible proximity of the discontinuity at the air-dielectric interface to
the discontinuity at the ridge walls. Corrections to the shunt capacitive term for proximity effects such
as in Ref. 10 do not consider a change of the dielectric media.

Despite the drawbacks of the transverse resonance method for analysis of the waveguide of Fig. 3,
approximate solutions for the propagation characteristics of the dominant mode that may be obtained
using this method are useful for several reasons. As the ridge depth becomes small (d - b in Fig. 3),
the solution must approach that of the dielectric slab loaded rectangular waveguide for which the dom-
inant mode is the TE1,0 mode. At the dominant mode cutoff frequency of the actual ridged waveguide,
the axial component of electric fields vanishes, thus the equivalent circuit derivation from Ref. 7 to
represent the effect of the ridge walls need only consider proximity effects. At frequencies above cut-
off, the dominant mode may be considered as a TE1,0 mode distorted by the presence of the ridge. To
a first order approximation, the evanescent axial component of electric field may be ignored and the
dominant mode treated as true TE1,0. The departure of the dominant mode from a true TE1,0 mode
will increase as the ridge gap becomes smaller. The solution obtained by the transverse resonance
method thus will not be exact, but may provide sufficient accuracy for many purposes. Since the com-
putational requirements are minor, the method is useful to provide approximate propagation charac-
teristics of the dominant mode as a starting point in the search for a numerical solution of the more
rigorous (and considerably more complex) analysis developed in Section 2.2.

Appendix A outlines a detailed development of the transverse resonance method to solve for the
propagation characteristics of the waveguide of Fig. 3. The development includes the TE2 0 mode as
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well as the TE, 0 mode since all of the arguments made concerning the approximations of the method
for the distorted TE1,0 mode apply to the distorted TE 2,0 mode as well.

As pointed out in Section 1.1, the first higher order mode to propagate in dielectric slab loaded
rectangular waveguide may not be the TE2,0 mode. Both the LSE1 ,1 and LSM0,1 mode are likely to have
lower cutoff frequencies than the TE2,0 mode. For the partially dielectric loaded double ridged
waveguide, the distorted versions of these longitudinal section modes must have their cutoff frequen-
cies determined if the single mode bandwidth criteria is to be used. For lack of a suitable equivalent
circuit to represent the effects of the discontinuity at the ridge walls, the transverse resonance method
is unsuitable for analysis of these higher order modes, thus another analysis approach must be found.
A second reason for finding another means of waveguide analysis is the questionable approximations
that were made for the distorted TEn,o modes. A more rigorous solution is desirable, preferably one
that uses the same analysis method for all waveguide modes.

A perturbation method was rejected as a viable analysis approach for the partially dielectric loaded
ridged waveguide because of the possible large deviation from the unperturbed problem, the dielectric
slab loaded rectangular waveguide, for which the solution is readily available (Appendix B). Some con-
sideration was given to the possibility of deriving an equivalent circuit to represent the effects of the
ridge walls for higher order LSE- and LSM-type modes, as well as to account for the axial electric fields
for the distorted TE,o modes, thus allowing a more accurate analysis with the transverse resonance
method. It was determined that an accurate equivalent circuit could not be derived for which the ele-
ment values would be a function of the ridge wall discontinuity alone; all of the geometry parameters
(Fig. 3) would be required to numerically define the element values. Such a process essentially would
constitute the rationale "solve the problem to find the quantity needed to solve the problem," an obvi-
ously circuitous approach.

Many of the analysis approaches described in Ref. 32 are appropriate for obtaining numerical solu-
tions for waveguides with arbitrary or very complex cross sections. While such methods could be used
to obtain numerical solutions for the partially dielectric loaded double ridged waveguide, the computa-
tional requirements would be considerably in excess of a method which utilized the rectangular features
of this waveguide with analysis restricted to the generalized cross section shown in Fig. 3. The
approach of the latter method was selected for the waveguide analysis. Section 2.2 presents the
mathematical development of the analysis. This analysis uses the Galerkin form [46,47] of the
Rayleigh-Ritz method. This procedure is commonly referred to as the Ritz-Galerkin method [14] and
constitutes a mode-matching technique [48,58].

2.2 Analysis of Lossless Waveguide

The appropriate physical parameters of the partially dielectric loaded double ridged waveguide
under investigation are defined in Fig. 3. Only those configurations possessing physical symmetry in
both the vertical and horizontal planes are considered. For the initial analysis, the following assump-
tions will be made:

v The waveguide is lossless, with the metal walls being perfect conductors and the loss tangent of
the dielectric material equal to zero. Loss calculations will be made at a later stage by using
perturbational techniques.

* The dielectric material is homogeneous and isotropic with a relative permittivity Er and a per-
meability equal to that of free space, gu.

* The interior volume of the waveguide is charge-free.
* Axial propagation is unidirectional in the +z direction.
* Time dependence of all fields has the form exp (+jco t), where j = -,-- and co is the radian

frequency.
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Advantage may be taken of the horizontal symmetry to reduce the model for analysis to a half
cross section as shown in Fig. 4, with either a magnetic wall or an electric wall placed at the vertical
plane of symmetry (VPS) at x = X3 . The model could be further reduced to one quadrant of the cross
section by virtue of the vertical symmetry, but such a further reduction would offer no real advantages
for this analysis. Because of the vertical symmetry, however, either an electric wall or a magnetic wall
must effectively exist at the horizontal plane of symmetry (HPS) at y = 0. The type of wall, electric
(E) or magnetic (M), at the VPS is independent of the wall type at the HPS. The resulting solutions
will be different for the four possible combinations of symmetry conditions. Until further clarification
can be made, the wall conditions at the planes of symmetry will be indicated by a two-letter combina-
tion, with the first letter denoting the wall type at the VPS and the second denoting the wall type at the
HPS. The four solutions will then be defined as (M, E), (M, M), (E, M), and (E, E).

Vertical Plane of Symmetry

(VPS)-Electric Or Magnetic Wall

Region Region Region I
2 3l/A

V=h / f 7 77 1Y

Y=-b/2

y =d /2

Y =0

x

z

y=-d/2

x x3
Horizontal Plane of Symmetry

(HPS)-Electric Or Magnetic Wall

Fig. 4 - Model for analysis

The relationship between the x-direction parameters of the model for analysis (Fig. 4) and those
of the waveguide (Fig. 3) are given by:

xl= (a - s)/2

x2= (t - s)/2

X3= s/2.
The model will be separated into three homogeneous rectangular regions:

Region 1

Region 2

Region 3

(2. la)

(2.1b)

(2.1c)

-Xl', < - X 2 , -b/2 Ky< b/2
-x2 < x < 0, -b/2 <y b/2
0 < x < x3, -d/2 <y d/2.

7
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The rectangular coordinate system is the natural choice for an analysis of this configuration. The axes
are defined in Fig. 4. The respective unit vectors are ax, ay, and az.

For the assumptions noted, Maxwell's equations reduce to:

V E = -jcouH (2.2a)

V H = jeE (2.2b)

V E= 0 (2.2c)

V H= 0. (2.2d)

Amplitudes are peak rather than RMS. Appropriate boundary conditions are:

n x E-° 0 at all electric walls (2.3a)
n H 0 (.a

n E = 0 | at all magnetic walls
n x H =0 j(2.3 b)

n x H continuous across the
n x E J air-dielectric interface (2.3c)

where n is the unit vector normal to the applicable surface. Taking the curl of both sides of Eq. (2.2a)
and substituting Eq. (2.2b) gives

V x V x E=w 2,o EE.

Using the vector identity

V x V x E=-V2E+V (V E)
and (2.2c) gives the Helmholtz equation [40]

V + co20 E = 0 (2.4a)

where V 2 is the vector Laplacian operator [441. A similar derivation for H gives

V2 H + co2 u e H = 0. (2.4b)

In rectangular coordinates,

V = a V2 +a V2 +a V2

where

i2 = 2 + 2 + a2

ax2 0y2 az2

Thus

li2+O92 + 2 j=_Whgo E Py (2.5)

for = Ex Ey, E, Hx Hy or H,.

Because of the homogeneous nature and rectangular shape of each region in Fig. 4, a separable
solution may be presumed to exist [61] for all the fields in the region. The full solution will be a
superposition, or linear combination, of particular solutions each of which satisfies Maxwell's equations
at all points within the region. The required boundary conditions for the region will be satisfied by the
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full solution, but in general may not be satisfied completely by any particular solution. For f
representing any of the six field quantities,

4 (,y,z) = an 'P (,y,Z)
n

where the constants a must be determined and each particular solution has the form

'P (yZ) = X, (X) Y (Y) Zn (Z).

The vector representation of the particular solution may be expressed as

En ax Exn + ay EYln + az Ezn

Hn =ax Hx,n + ay Hy, + az Hz n,
Since each particular solution must satisfy Maxwell's equations,

V x En = -jco o Hn (2.6a)

V Hn = ij e En (2.6b)

V *En = 0 (2.6c)

V Hn = 0 (2.6d)

Also, Eq. (2.5) must hold for all field components of each particular solution, thus
X, Yn, Zn + X, Y'Zn + Xn Y Z, =- uo e Xn Yn Zn where the double prime superscript denotes the
second derivative with respect to the corresponding variable. The time dependence has been stipulated
to be harmonic with the form exp(jwt) and is implicit for all fields. Since the product X, YnZ cannot
be zero if a solution is to exist, Xn/X + Y Yn + Zn/Z =Z-n= 2AOE. Since x, y, and z are indepen-
dent variables, each function must separately equal a constant. With

Xn'lX, = p 2 (2.7a)

Y' Y = -k' (2.7b)

ZI Zn = -3p2 (2.7c)

the separation equation is given by

n3" + k pn = O E. (2.7d)

The general solution for Eq. (2.7c) is

Zn(z) = c exp (Jp3,Z) + C2 exp (-j3nz).

Any propagating mode must have a unique axial dependence. Since propagation has been assumed to
be unidirectional in the + z direction, ,32 is single valued, '3n2 = ,B2, and because the time dependence is
taken as exp Uwt), the axial dependence for all fields is Z(z) = exp (-j/3z). Like the time depen-
dence, the axial dependence will be implicit henceforth for all field quantities. The amplitude will be
absorbed into the individual field amplitude term.

The general solution for the differential equation of Eq. (2.7b) is

Y, (y) = c sin (kny) + c2 cos(kny).

In a region with height h, the fields Ex E,, and Hy must be zero at y = h/2 and at y = -h/2 by virtue
of Eq. (2.3a). Then for T = Ex, E,, or Hy

'Iy=+hI2 = Xn(X) Yn (Y)iy=ih/2 0
n

9
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which can be true for all x in the region only if Y, (y = + h/2) = 0 for all n. Thus,

cl sin (k,,l2) + 2 cos (k,,h/2) = 0

and

-cl sin (k,,h/2) + 2 cos (kh/2) = 0.

Addition and subtraction of these last two equations will show that Y, (neglecting the amplitude term
which will be absorbed into the overall amplitude for n ) must have one of two forms:

Y (y) = cos (k,,y), with kn = (2n + 1)7r/h (2.8a)

or

Yn (y) = sin (k,,y), with kn = 2n7T/h (2.8b)

for n=0, 1, 2, 3, .... If Maxwell's equations are to hold at all points within the region, then Es,,, Er,,,
and Hyn must have the same y-dependence. Furthermore, Ey,,,, Hr,,,, and H,,, must have the com-
plementary y dependence. If the y-dependence of the nth term of E, E, and Hy is
cos [(2n + ) 7r y/h], then the y dependence of the nth term of E H , and H must be
sin [(2n + 1) 7r y/h]; if the y-dependence of the nth term of E,, E2 , and Hy is sin (2 n r y/h), the
y-dependence of the nth term of ED, HI, and H is cos (2n 7 y/h).

The boundary condition (electric or magnetic wall) at the HPS will determine the type of y-
dependence for the fields. For (M,E) and (E,E) solutions, E,, E,, and Hy must vanish at y = 0. The
y-dependence for Es,,, E,,, and Hy n is therefore sin (2n 7r y/h) and that for Ey,,, H,, , and H,,, is
cos (2n w y/h). The (M,M) and (E,M) solutions require Ey, H,, and H, to vanish at y = 0, thus
Es,,, E2,n, and Hy, must have the y-dependence cos [(2n + 1) v y/h] while E,,,, 1H ,n, and H,,,
have sin [(2n + 1) r y/h] as their y-dependence.

The general solution to the differential equation of Eq. (2.7a) may be expressed in several forms.
For positive values of pn , the solution is normally expressed as

X,, (x) = aln cosh pn x + a2,n sinh p,,x

where p, = A. For negative values of p,2, the solution is normally expressed as

X"(x) = a,, cos ( x) + a2,, sin ( x).

The solution when pn2 equals zero is

XI (x) = a,,,, + a2 ,,n X.

The hyperbolic form may be used for Pn2 negative or zero if for the former case p, is taken as imag-
inary,

Pn= n = n for pn < 0.

This would result in a complex representation for X, (x) when p,2 is negative since

cosh 101 = cos I I (real)

sinh j 10 = sin loI (imaginary).

Such a complex representation may be avoided by expressing the general solution to (2.7a) as

A, (x) = a,,, cosh (px) + a2 ,n sinh (pnx) p,,. (2.9)

10
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This expression is equivalent to the conventional hyperbolic solution, differing only in the form of the
constant of the sinh term. To conform with the known solution when p,2 is zero, the limiting definition
will be used:

sinh pX = . sinh p,,x
= lim

PPn = Pn_0 Pn

= x for p,2 = 0.

By using Eq. (2.9) to represent the x-dependence of the fields regardless of the value of p,
unnecessary complications in the mathematical notation will be avoided as will the need for imaginary
amplitude coefficients. Examination of Eq. (2.9) will show that A, (x) and all of its derivatives remain
real when the amplitude terms are real, regardless of the value of p,2 (positive, negative, or zero).

The development of the field expression thus far may be summarized as follows: in each region,
the x- and y-dependence of each of the field quantities may be expressed as a series,

'P (x, y) = WAX,1(x) Y, (Y)
n

The x-dependence will have the general form

X,,(x) = an cosh (p,,x) + b,, sinh (p,,x) pn

where the amplitude terms a,, and b,, will differ for the different fields. The value of p, in each region
is determined by the separation equation, with

p2 = 32 + k2 - 2L,~,E

and

pn = X for p2> 0

Pn = iJpT for pn2 < 0.

The y-dependence will use a double notation for compactness. The fields E, E, and Hy will have

sin

(YM) = cos kny

while the fields Ey, Hx, and H2 will have

Cost
Yn (Y) = Isini k,,y,

where the upper trigonometric function is to be used for (M,E) and (E,E) solutions (an electric wall
at y = 0) with kn = 2nir/h and h is the waveguide height in the particular region. For (M,M) and
(E,M) solutions (a magnetic wall at y = 0), the lower trigonometric function is to be used, with
kn = (2n + 1) 7r/h. The question of limits on the summation in the series representation for the fields
will be deferred until a later stage in the analysis development.

The boundary conditions at the horizontal conducting surfaces of the waveguide have been used
to formulate the field expressions to this point. The remaining boundary conditions to be satisfied are
at the vertical side wall, at the air-dielectric interface, at the plane of the ridge wall, and at the vertical
plane of symmetry. Before proceeding to these boundary conditions, it is necessary to consider in more
detail the analysis approach and how it will be expected to yield a numerical solution. In Appendix B,

11
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the general solution for the dielectric slab loaded rectangular waveguide is shown to reduce to an eigen-
value problem of the form

E,

[M4 - = 0
H,

where the eigenvectors are the modal coefficients of the x-directed electric and magnetic fields. The
field distribution for any mode of the partially dielectric loaded double ridged waveguide may be viewed
as a distorted field distribution of the corresponding mode in dielectric slab loaded rectangular
waveguide, with the distortion resulting from the presence of the conducting surfaces of the ridges.
Therefore for this analysis the approach follows that for the dielectric slab loaded rectangular
waveguide.

If the eigenvectors of the eigenvalue problem are to represent the x-directed electric and magnetic
fields, it will be necessary to find the relationship between these fields and the orthogonal fields.
Maxwell's curl Eqs. (2.2a, 2.2b) may be expanded as

-Jco O Hx = a E - - Ey (2.1Oa)

-jco O Hy = ad Ex - a E, (2. 1 b)
O z O X

-jw, AGO H = d Ey - a Ex 21cooe x s -a4y (2.10c)
ico E E= a H - aHy (2.1Od)

ay az -

jCOEE~~Ha -- H 2 (2.l1Oe)

Ji e Ez = -x Hy - a Hx. (2.1Of)
ax a~ y

Since the z-dependence for all fields is implicit as exp (-j,1z), the differential operator /8z may be
replaced by -j,3. Substitution of Eq. (2.10c) into Eq. (2.10e) will yield the relation

(W 2Au + a 2 ) Ey = a sa E - Ao )3 Hx (2.11la)
x2 ax y

In a similar fashion, substitution of Eq. (2.10b) into Eq. (2.10f) will give

wl , I + a 2 ) E = -j a Ex + 9H da H 21bOx 2 a xX ay 21 b

while substitution of Eq. (2.10f) into Eq. (2.10b) gives

(CO 2AE + 2 ) Hy = e E + a a H, (2.1Ic)
ax 2 a x y

and substitution of Eq. (2.10e) into Eq. (2.10c) gives

2 2
(co2/A.0e + -.' ) H2 = -jco E - Ex-j3 - H, (2.1 Id)

ax2 ay Ox

Since Eq. (2.11) were derived directly from Maxwell's equations, they may used to determine the rela-
tionship between fields on a term-by-term basis in the series expansion for the fields.

In Region 1, the conducting sidewall at x = -xl (Fig. 4) requires Ey, E2 , and Hx to vanish at this
plane. This boundary condition may be used to eliminate one of the unknown amplitude coefficients in

12
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the generalized form of the x-dependence for each term in the field expansion. With
' (x, y) = £m n (x) Y,, (x) representing any field, Ey, E, or Hx, it is easily shown that each term Xn
must be zero at x = -x 1 if P is to vanish at all points on the sidewall. Using the generalized form for
A,(x) from (2.9),

a1,,, cosh (-p,,xl) + a2,, sinh (-pnxl) IP = 0,

thus

sinh (xI)
al,, = a2,,,- p,,cosh (p,,xl) 

The x-dependence for these fields now becomes

Xn(x) = ah x) [sinh (p xl) cosh (&x) + cosh (px 1)X)p,,cosh (pn,1 ,x) (,x oh sn 

A new constant may be defined as

bn = a2,n /cosh (pnxl)

and the mathematical identity

cosh sinh + + sinh 0 cosh 0 = sinh ( + +)
used to further reduce the x dependence to

A,(x) = b sinh [p (x + x)] Ip,

for the fields E, E, and H,. Since Maxwell's equations must be satisfied on a term-by-term basis,
and at every point within the region, the x-dependence for the nth modal component of the field
E, H', and H2 must have the form

X,,(x) = c cosh [pn (x + x)].

The l/pn term is absorbed into the constant to maintain consistency with the form of Eq. (2.9).

The fields of Region 1 are now expressed as

1) = A 1 ,n cosh [,, (x + x 1)]
1

EG) = BI
n

sinh [p,, (x + x)]
Pl,,n

Isin1
cosJ kl,n Y

cos
ks,,, y

(2.12a)

(2.12b)

H1L) = D,n
n

sinh [p ,,, (x

Pl ,n

sinh [l, (x

Pl,,n

X1)] sinl
cosJ k 1,,n Y
cosl

+ cs ] Ic ,,, y(sin1

IsinI
c ks Ic,,, y

cosk1,n Y

[Cos)

sin klln Y

13

(2.12c)

H ) = F, cosh [Pi,n ( + xd)]
n

Hz(') = jGIn cosh [PI,, (x + x1)]
n

(2.12d)

(2.12e)

(2.12f)

E-,(I) = I XI, n
n
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where the extra subscript 1 on the amplitude constants and the constants p, and k,, and the extra
superscript (1) on the fields are to distinguish these quantities from the corresponding quantities in the
other regions. The constant is included in the expressions for the axial (z-directed) fields to allow
the amplitude coefficients to be real, thus avoiding the need for complex arithmetic in the numerical
computations. The dual y-dependence notation will avoid much of the notational repetition that other-
wise would be necessary for separate derivations to correspond to the two different types of wall condi-
tions (electric or magnetic) at y = 0 imposed by symmetry consideration. For (M,E) and (E,E) solu-
tions, the upper trigonometric function is applicable, with

ki,,, = 2n7r/b. (2.13a)

For (E,M) and (M,M) solutions, the lower trigonometric function is applicable, with

k ,,, = (2n + 1) 7r/b. (2.13b)

The separation equation for Region 1 becomes

pi2, =32 + k 2,, -C_
2 LOEO (2.13c)

and Pin will be real or imaginary, depending on the sign of p,,,

Equations (2.11) may be used on a modal component, or term-by-term, basis with the fields
given in Eqs. (2.12) to obtain a relationship between the various amplitude coefficients. Applying Eq.
(2.11a) to (2.12) yields

(0) AO'e0 + P,,) B,n sinh PI,n ( + )] PI n sing kl n

Coso
-( kIn) PI,n A,, sinh [Pin (x + x)] [sin] k,,, y

(Cos1
-CO, 0 DI,n sinh [pl,, (x + xI)] /PIn sin k,,n Y (2.14)

The + notation on kln is the result of the dual notation for the y-dependence; whenever the ± (or T)
notation is encountered, the upper symbol is to be used for (M,E) or (E,E) solutions while the lower
symbol is to be used for (M,M) or (E,M) solutions. The expression Pl,n sinh [PIn (x + xl)] may be
replaced by the expression p?,n sinh [,n (x + xI)] PI,,, for all p?,n (l,, real or imaginary) if the lim-
iting definition is used,

sinh [PIn (x + xI)] l li sinh [Pl,,, (x + xl)]

Plan ln-0 P1'n_0 Plan

= X + XI.

With this replacement in Eq. (2.14), the relationship between the amplitude coefficients must be

(co2
0 6e0 + p?2,) B1,, = ± kc,, pk, A - Co O 3 DI,,,

for Eq. (2.14) to hold at all points in the region. From Eq. (2.13c)

CO2 jO E0 + P?,n = 132 + kIn;

thus

(132 + kIc,,) B1,n = ± kI,n Prn A1 ,n-coLo 1 DI,n.

14
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In a similar fashion, Eqs. (2.11b), (2.11c) and (2.11d) may be used with Eqs. (2.12) to obtain the
relationship of the amplitude coefficients of EPTa), Hf(L), and H(1), respectively, with the amplitude
coefficients of E(l) and H,(). The complete results are given by

(132 + k2,,)B ,, = + c,,, a?, A1 ,,n - CO Ao13 D1 ,, (2.15a)

(132 + k,) Cl," = -13 P2, A , T k, co AO DI,,, (2.15b)

(132 + k ,) Fl,,, = E 0 13 A 1,, T k, D, (2.15c)

(132 + kI2n) G = kc nO EO A1 ,, - 3 D1 ,,. (2.15d)

The relationships expressed in Eq. (2.15) may be reduced to matrix form as

C [ - I i K1 1o C U 1° 1 Al
I : ~~~~~~ ~ ~~~~- - -I - - - ---- K- - - --:- -0 ----(2.16)

0 F1 (AI ( -o10U 

I G 0 F K O U | AlK I -- -- --- ---I (2.17)
0 I 1 I +KI - | U LD1

where the vectors C1, B1 , F1, GI, Al, and D are column vectors having the ordered components Cln,
Bl,,, Fn, G,,, Al,,, and DI,,, respectively.

The matrices qA, CF, K1 , and P? are diagonal matrices with elements

{tIJ I) mn - (12 + k2,,) 8m, (2.18a)

{f?}m,n = 8mn (2.18b)

{Kjmn = kln 8mn (2.18c)

{P Imn= P1, 8mn (2.18d)

where 8,,n is the Kronecker delta function

amn =1 for m =n

=0 for m n

and U is the unit matrix. Since the question of limits on the summation in the series expansion for the
fields has yet to be addressed, no attempt will be made in the analysis to make the index notation of
the various vectors and matrices conform with the conventional notation in which the integer indices
start at one. Such a departure from convention should not cause confusion in the mathematical treat-
ment of the analysis. When programming a computer to solve for a numerical solution, however, cau-
tion must be exercised since most computer routines require the conventional indexing method.

From Eqs. (2.12), it is apparent that for terms where kl,,, is zero (encountered only in
(M,E) and (EE) solutions with n equal to zero) the corresponding modal components of
E,, ), E('), and H(l) vanish everywhere, and the amplitude coefficients A 0, C1,0, and F1,0 are there-
fore meaningless. To maintain a consistent notation, these elements will be carried in the development

15
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when k, is zero, but strictly as dummy elements not to be included in the final solution. There is
further discussion of this issue later in the development of the analysis.

The situation at the waveguide cutoff frequency (where by definition = 0 ) for any mode con-
taining terms with ki, = 0, where i = 1, 2, or 3, in the series expansion for the fields will be referred
to as a singular condition. For a singular condition (2.15) losses meaning for kl,, = 0 since both sides
of each equation are zero. However, Eq. (2.10c) may be applied directly to Eq. (2.12) to give

B1,0 = co o G1,0 for = 0, kl ,, = 0. (2.19)

The result of Eq. (2.19) alternatively could be obtained by a limiting definition with Eqs. (2.15a) and
(2.15d). With k1,0 = 0

132 B 1,0 = - O /L0 13 D 1,0

132 G1,0 = - 3 D1 ,O.

Obviously, lim D1,0 = 0; however,
13-0

lim B O = coO
13-o G, 0

For the matrix equations of (2.16) and (2.17) to remain valid for the singular condition, the matrices
q and qu must be modified as

{#P)mn = (p2 + k, + 60) Bm" (2.20)

1}mn= (3 + 50) mn (2.21)

where

= Ootherwise. (2.22)

Also, for the singular condition the leading element of the vector DI must be - G1,0 rather than DI,0 .
The modifications to the matrices lp and CD will cause (2.16) and (2.17) to give

C 1 ,O = - P,o A 1 ,0

F1,0 = CO E0 A 1,0

for the singular condition, but the relationship of these three coefficients is meaningless since they are
dummy elements.

In Region 3, the development of the x-dependence for the fields is similar to that for Region 1.
For (M,E) and (M,M) solutions, the vertical plane of symmetry represents a magnetic wall, thus
Ex, Hy, and H2 must vanish at x = X3, and the x-dependence for the modal components of these fields
is found to be of the form

X (X) = C3 ,n sinh [P3, (x - X 3 )] /P3,,, (2.23)

For Maxwell's equations to hold for all points in the region, the x-dependence for the modal com-
ponents of the fields Ey E, and Hx then must have the form

A,(x) = C3,n cosh [p3,,(X - X3 )]. (2.24)

For (E,M) and (E,E) solutions, the VPS represents an electric wall, thus Ey, E, and Hx must vanish
at x = X3. The x-dependence of the fields then reverses from the case for (M,E) and (M,M) solu-
tions, with the x-dependence of the modal components being given by (2.23) for the fields
Ey E and Hx and by (2.24) for the fields Ex, Hy, and H,

16
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For (M,E) and (M,M) solutions, the series expansions for the fields of Region 3 then become

E(3)= A3n
sinh [P3,,, (x - X3)]

P3,n

Ey(3) = I B3,n cosh P3,n (X - X3 )] '

E = Y i C3,n

Isin
. Sk 3,,, Y (2.25a)

Cosl

sinJ k 3 ,, Y

cosh P3,n (x - X ()]3 Ic n Y

(2.25b)

(2.25c)

(2.25d)= £ D3 n cosh [P3n (X -X 3 )I ] osJ | k3

sinh [P3,, (X - X3 )]

P3,n

sinh [P3n (X - X3 )]

P3,n

Isin
. s OS k3,n Y (2.25e)

(c. inJk3,n Y (2.25f)

while fo'r (E,E) and(E,M) solutions the fields are

(3) = X A3 n cosh [P3 ,n (X-X 3 )] 

E(3) = B 3
sinh P3,, (x - 3)]

P3,n

Isin

Cos k3In y

C osi
siJk 3 ,, Y

(2.26a)

(2.26b)

sinh [p3 ,(X - X3 )]

P3,n

sinh p3,n (X - X3)]

P3,n

|sin|
iCosJ 3 Y

s)J k3,n Y

Hy(3) = 1 F3 ,, cosh [P3,, (x - X 3 )] * Icosl k3,, Y

H(3) = Yj G3,n cosh [P3,n (X - X3)]
ICos

in k3,,, Y-

Analogous to the case for Region 1, the upper trigonometric function for the
used for (M,E) and (E,E) solutions with

k3,n = 2n7r/d

(2.26f)

y-dependence is to be

(2.27a)

while the lower trigonometric function is to be used for (M,M) and (E,M) solutions with

k3,, = (2n + 1) f/d.

The separation equation for all solutions is given by

P32n = p02 + k3
2n - CO

2tto E0 Er

where Er is the relative dielectric constant of the dielectric material.
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EZ (3) =Y i C3,n
n

HX(3) = SD 
n

(2.26c)

(2.26d)

(2.26e)

(2.27b)

(2.27c)

H 3) = Y F3,,

H. (3 = F
z , i G3,n
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The relationship between the amplitude coefficients of the modal components in the series expan-
sion for the fields in Region 3 may be found in a manner similar to that of Region 1. For
(M,E) and (M,M) solutions, (2.11) is applied to (2.25) on a term-by-term basis, with the results

(p2 + k3,n) C3 ,, = -3 A3 ,n T k3,n co p0 D3 ,n (2.28a)

(p2 + k3,,) B3 ,n = + k3,,n A 3, n - o 8 p D3 , n (2,28b)

(p2 + k3,) F3 ,n = CO 3 /3 A 3 ,, T k 3,, P3,n D3 ,, (2.28c)
(pB2 + k ,n) G3,n = T k 3,n 0 3 A 3,n - 3 p3,n D3,n (2.28d)

where E3 = ErEO. For (E,E) and (E,M) solutions , the results of applying Eq. (2.11) to Eq. (2.26) are

(p2 + k3,n) C3 ,n = 3- Pn A 3,n F k 3,, Co AO D3,n (2.29a)

(p2 + k 3,n) B3 ,n = + k 3,n P3,n A 3,n, -Oo /3 D3 ,n (2.29b)

(p2 + k3,,) F3 ,n = CO E 3 A3 ,,, F k3,, D3 ,n (2.29c)

(p2 + k 3,n) G3 ,n = F k3 ,n CO E3 A 3,,n- D3,n.n (2.29d)

Expressed in matrix form, Eqs. (2.28) and (2.29) are given by

'k3 10 C3 1 F -+ +K 3 WA 0 ° A 3I = - -I --- (2.30)
0 I 3 B 3 J K 3 1 CF 0 -Co,-oU D3

# k3 10 F3 -CF K 3 |OE 3 U 0 A3

I -=-- - - I… -- ----- (2.31)
0 I#13 G 3 4 K 3 I j O WD D3

where the vectors C3 , B3 , F3 , G3, A3 , and D3 are column vectors, with the elements of C3 being the
ordered amplitude coefficients C3 ,n, etc. The matrices th, K 3 , and P3 are diagonal matrices with ele-
ments

{#13)m,,n = (p2 + k,n + 8)8mn (2.32a)

IK 3)m,n = k3,n~mn (2.32b)

{P3 m,n = P3,n8mn, (2.32c)

The matrix CF is the same as for Region 1 and is given by (2.21). The matrices WA and WD are also
diagonal, and for (M,E) and (M,M) solutions

WA= U (2.33a)

WD =P3 (2.33b)

while for (E) and (E,M) solutions

WA =P3 (2.34a)

WD= U. (2.34b)

18
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The singular condition (80 = 1) in Region 3 is treated in a manner similar to that
k3o, equal to zero, then in the limit as 13 becomes small, from Eqs. (2.28)

for Region 2. For

lim D3 ,0 = 0

B 3 ,0 CO/o
lim = 2

13-o G3 ,0 P3,0

for (M,E) solutions, while for (EE) solutions, from Eqs. (2.29)

limD 3 0 = 01-0
B3 0lim = co

13- o 3,

Thus, for the matrix equations of Eqs. (2.30) and (2.31) to remain valid, the leading element of the
vector D3 must be replaced as -G 3 , p32, for the singular condition in (M,E) solutions. For the singu-
lar condition in (EE) solutions, the leading element of D3 must be -G 3 ,0. For the singular condition,
the coefficients A3,0, C3,0, and F3,0 are dummy coefficients; thus, the relationship between them is
immaterial. In (E,M) and (M,M) solutions, the singular condition is not encountered since kj is
nonzero for all n in each region, i = 1, 2, 3.

In Region 2, the x-dependence of each modal component in the series expansion
will retain the general form given in Eq. (2.9) with two unknown amplitude coefficients.
Region 2 are then given by

E -(2) = [Al(+) cosh (p2,nx) + Al-) sinh (P2,nX)/P2 ,n C os} k2,,,Y

[B(+) cosh (p2 ,,x) + B(-) sinh (P2 ,nX)/P2,n sin 2,nY'Y 2,i- {cosj

for the fields
The fields of

(2.35a)

(2.35b)

(2) = j C+n) cosh (P2 , nX) +
n

H(2)= [D (+) cosh ( 2 ,nx) + 
n

- [F+) cosh (p2,nx) + 
n

Hz(2 = D[ Gj(+) osh (P2, nX ) +

where the upper
tions, with

Con) sinh (P x/~n Csin2b

D() sinh (P2 ,,X)/P 2 n] Isin Jk2 ,,y

(-) sinh (P2,,X)/P2, n] * |Cos k2,,Y
sin*

Fl- sinh ( 2 ,,X)/P 2 ,] lCosJ k 2,,,Y

G(-)~ sinh (P 2 ,,X)/P 2 ,,, ' Csi JkI2 , nY

trigonometric function in the y-dependence is applicable for (M,E) and (EE) solu-

k2,,, = 2n7r/b

and the lower trigonometric function is applicable for (E,M) and (M,M) solutions, with

k2, = (2n + 1)/rlb

and for all solutions the separation equation for Region 2 becomes
2 = 2+ O2

P2,,, p k2',n (0/.0 E2
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(2.35e)

(2.35f)

(2.36a)

(2.36b)

(2.36c)
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where E2 = e,eo. The superscript notation on the amplitude coefficients in this region is used to distin-
guish between these (unknown) constants. The choice of the (+) and (-) superscript notation was
made to reflect the fact that the cosh (sinh) function may be expressed as the sum (difference) of two
exponential functions.

Obtaining a relationship between amplitude coefficients in Region 2 is slightly more complicated
than in Regions 1 or 3 because of the presence of both sinh and cosh terms in the x-dependence of
each modal component in the series expansion of the fields. Upon application of Eqs. (2.1 la) to (2.35)
on a modal component, or term-by-term, basis

[CosI
qP2,n B+) cosh (p 2 ,,x) + B2(n sinh (P2,,X)/P2,]* sin k 2,1 y

-(±k2 ,,p 2 ,,)[Al,+) sinh (p2 ,,x) + A () cosh (P2,nX)/P 2,n1 Iosin k2 ,1 1Y

2,n 2,n ~~~~~~~~~~Icsin
- coMjo I[DB+) cosh (p2,nx) + D (-l sinh (P2,nX)/P2,] Jk2,ny (2.37)

where

p2
4J2,n = Ct) E 2 - P2,n

= p2 + k2 

The function P2,n sinh (P2,nx) may be expressed as p2, sinh (p2,nx)/p2n, and the function
P2,n cosh (p,, x)/p 2 , expressed as cosh (p2,x), if the limiting definitions are used for P2, equal to
zero. Since Eq. (2.37) must hold for all points within the region, the coefficients of the cosh and sinh
terms may be collected separately, with the results

(p2 + k )Blt+ = ± k2B Al (- goPD (,+ (2.38a)
(p2 + ki2§I) B t = ± k p2 A - cqo/3jD (2.38b)

In a similar fashion, the remaining equations of Eqs. (2.11) may be used with Eqs. (2.35) to give

(12 + 2,) C ( = -fl pI-)Tk 2,,wz D(+t) (2.38c)
(22 + 42,n)C< = pnALt)Tk 2,wcto DI) (2.38d)
( 2 + k2,,)F2 , = we2 3 Al%"Tk 2,n D) (2.38e)

,(2±+ ,, ) Fn) = w 23 Al)Tk 2 ,pL,, D%+ (2.38f)
( 2 + k2,n)Glt = TOk2,e 2 A l +)-/ Dl, (2.38g)

(p82 + k2,)GI) = Tk2,,WE2Aj) - pp2,nD +). (2.38h)

As for the case in Regions I and 3, the dual sign notation associated with the k2,n term arises as a
consequence of the dual notation in the trigonometric representation for the y-dependence of the vari-
ous modal components. For (M,E) and (EE) solutions the upper sign is applicable, while the lower
sign is applicable for (E,M) and (M,M) solutions.

The equations of (2.38) may be expressed in matrix form as

0 # ° C+| -W -+K 2 U 0 2

I-- --- -I- ---- (2.39)
0 1 W2 BI~' 'p + K2 1 O I -@2U DI(+)

IP2 2 K (D~~~2
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I2 1 °0 I C 1 - +K 2 1 22 0 I
--- - = -I - -- I 1 (2.40)

0 I 2 ( BI-) +K 2 1 0 -WI U D (-)

L/)2 O 1f TI" 1K 2 CE2 U, A 11- ----- ------- ---- (2.41)
| O 1 +2 |lGI+) I | +K2: D | | 0 U D)

0P2 0 F( ) 1K 2 COE2 U fA
0 5: 0 2 G) J K 2 I || 0 p 2

2 D2(+)

where the vectors are column vectors with each having elements corresponding to the ordered terms of
the respective amplitude coefficients. The matrices '2, K2 , and p22 are diagonal matrices whose ele-
ments are

(1423in - (12 + k 2,, + a0Ji mn (2.43a)

fK 2)m,n = k 2,n3mn (2.43b)

{P2 2m,,,=Pn mn (2.43C)

The matrix F is given by Eq. (2.21). The treatment of the singular condition in Region 2 is similar to
that for Regions 1 and 3. From Eqs. (2.38)

lim D,+O) =0

limO D2(.0) = 
13-0

lim B 215+) C/Io

1'0 G2(0) P 2 ,0

BI-)lim '=
13-0 G 2 CO W/1o

for k2,0 = 0. Thus, the leading elements of the vectors D2+) and DI-) must be changed from D(o) and
D(-) to -G-) /p220 and - GO) respectively, for the singular condition if the matrix equations of
(2.39)-(2.42) are to remain valid. Analogous to the case in Regions 1 and 3, the amplitude coefficients
AI+ ), A() , C+) C) F+o), and F are dummy coefficients for the singular condition and the
resulting relationships of these terms are immaterial.

In each region i, with i 1, 2, 3, the matrix notation may be condensed somewhat with the fol-
lowing representation:

i 0T= I-- -- (2.44)

A i = - - -- - - - (2.45)
+K 4 
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Simple matrix multiplication will show

AiA = 'gi, for i = 1, 2, 3. (2.46)

It is apparent that Ai and 4ri each possess an inverse, with

A = TPAj. (2.47)

The need for the special treatment of the singular condition is obvious if inverse operations are to be
made with these matrices.

While matrices in general do not commute, diagonal matrices do commute [62,63]. Thus, the

matrix P and its inverse P-' will commute with any matrix of the form - - - - - - where each of
1X3 041

the submatrices is a diagonal matrix (hence all are square matrices of the same size), and the matrix

F 0
A, will commute with any matrix of the form - - - I - - - where each submatrix F is diagonal, as

0

may be shown by simple matrix manipulation. These commutation properties will be used in later
stages of the analysis without further comment as to the validity of the commutation operation.

In each of the three regions for the waveguide analysis, the y-dependence functions sin k,,,y and
cos ki,,y may be considered the basis functions for the series expansion of the fields [46,47,511. These
basis functions are orthogonal on the interval -h/2 • y _ h/2, where h is the height of the particular
region. For (EM) and (M,M) solutions, with ki, = (2n + 1)/h

-h2 sin (k,,y) sin (,,y)dy = | h/2 for n,;- m (2.48a)

Ir/2 ( for n • m
- h/2 Cos (ki,,y) cos (kic, y)dy = h12 for n = m (2.48b)

-h/2 sin (ny) cos (kiy)dy = 0 for all n, m. (2.48c)

For (M,E) and (E,E) solutions, ki,,, has the form kin = 2nir/h, and the orthogonality of the basis
functions is the same as for (E,M) and (M,M) solutions with the exception of n and m both equal to
zero:

h12 sin (ki,,,y) sin (ki,,my)dy = 0 for n = m = 0 (2.48d)

h/2
J-h/2 cos (kiny) cos (ki,,y)dy = h for n = m = 0. (2.48e)

The interface between Regions 1 and 2 is the air-dielectric boundary at x = -X2 . The tangential
components of the electric and magnetic fields must be continuous at this interface, thus

E(2)=-X2 E (1) X2 (2.49a)

z( k=_ 2 Ez(1) =- X2 (2.49b)

(2)= - X2 = y(1Q x2 (2.49c)

Hz( k=-X2 H(), _ X2- (2.49d)
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For any given waveguide mode, symmetry considerations require the same effective wall type (electric
or magnetic) for all regions at the HPS, y = 0. Since Region 1 and Region 2 each have a height b,
k1,,, = k 2,, for all n and all modes. The result of applying an integral operator ff (W) df to a function
g(f) will be defined as ff (()g(e)dgd, where any integration limits on the integral operator will reflect
as limits in the resultant integral. The series expansions for the various fields may be substituted into
Eq. (2.49). Subsequent application of the appropriate integral operator, either fbP32 sin (kl ny)dy or
fNb32 cos (kl,my)dy, dependent on the form of the basis functions for the particular field, to both sides
of the equations will show that the equalities of (2.49) are valid on a modal component, or term-by-
term basis. Thus,

B1,, sinh [Pi,, (xI - 2)]/PI,n = B2(+) cosh ( 2,,x 2) - B(,) sinh (P2 ,nx2)/p 2 ,n (2.50a)

C1,n sinh [Pi, n (x1 - 2 )]/p1, n = C +) cosh ( 2 ,,x 2) - CI, sinh ( 2 ,nx 2 )/p2 ,, (2.50b)

F1,, cosh [Pi,n (x1 - x2 )] = F cosh ( 2 ,nx 2)- n sinh (p2 ,,x 2 )/p2 ,, (2.50c)

GI cosh [PI,n (x1 - x 2)] = G+) cosh (p2 ,nx2) - ) sinh (P2 ,nX2)/P2 ,, (2.50d)

where the y-dependence has been eliminated by virtue of the orthogonality of the basis functions. The
relationships of Eqs. (2.50) may be expressed in matrix form as

10 10 H 
ofE o C1 0 °2 0 1 2

0 I -f- = - I 2 - , (2.51)
0 (E) B 1 ° I i(+) B0(+) ° 0-) B-)

[(H) I O (F 0 2| iF
0 FI 0 0 F 0 I- 0 fF2 -

0 0 (H) 1 0 0 1 1(2520 : 0 1H) |l 1 J | O T Ht ) ll (+) J 0 12-) G2 -)

where each of the 0 matrices is diagonal with

{O(E)m n, = sinh PI,,, (X- 2 )]/Pinamn (2.53a)

(OH)) m = cosh [pI,, (x - X2)I8,nn (2.53b)

{02(+)}mn,, = cosh (P2,nX2)8mn (2.54a)

{01j}m,n = sinh (P2,nX2 )/P2,n8mn (2.54b)

Further compactness for the matrix notation may be obtained by defining new matrices for the doubled
0 matrices:

0 E) I0

I} - - - - -(2.55a)
0 I 0 fE)

(H) I0
9 >H) - - - -_ t _ _ _ (2.55b)

0 0 H)

2 0
_ -_ (2.55c)

0 I +
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(-): O2 0
---- I - - - -

0 I (-)
0rp-) =

Premultiplication of Eq. (2.51) by the matrix

®(H-)
o U U 

0 I U

COEO U I

I
0 

while Eq. (2.52) may be premultiplied by the matrix expression

p2
I1 1

p2 1

0 ?
0 

0

-COAO U

But from Eqs. (2.16) and (2.47)

Af

while from Eqs. (2.17) and (2.47)

The commutation properties of the matrices may then be used to show
(2.56) and (2.57) are both equal to

I I

0 1

0

-cogo

that the left-hand sides of

Al

24

(2.55d)

gives

CO

@ (H) -- 0
- - I ---- - A10( --- = H

I U B
----- A (+)- (2.56)

to give

0

-W/o U

AIEJ(H)f --

p 2

= _E) (E) I I

0 I

F (+)

G2f
| ( ,| ) | |

0 1

0 

0

-CoL U D,

(2.57)

(2.58)

(2.59)
oOE UI

0 1

- 0. 2(-)

C,
--- =
BI

0
- - - - -

U

0
------ AI E) (+)
-(OA( U 2

F,
-Al ---

GI

E) �E)o (H)
I
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thus the right-hand sides of these two equations may be set equal. Substituting from Eqs. (2.39) to
(2.42), the results are

WEO
o (H) - --

0

U I-A 1
U

p 2 1
2 

0 - - - I
0 1

U I

0 1

0

--- o U

0 -coyo U D2(-)

ce0/o( IDi() J
I 0

- - I--- -- I - 2 2 A
I -coA U

+ (-4) 'A 2

COE2 U I

I
01l p22 D2(+) J

The matrix Al commutes with the matrices - (+) and 0 2-), and since A1 = A2

A,' -'A 2 = U.

With both sides of Eq. (2.60) premultiplied by
-1

COE0 U I
I

0 I

0

-WO/ 0 U

collection of like terms will then give

I ®(H)®(+) +
ErP? IePI 0 

0_ I I 0 _ _ (E) (-) 

erP 2 0EA IH z (E ) () (+ )- - - - I- - - -02

0 U +l
_ 0

--- I- -- I 20 1 U

The results of Eq. (2.61a) may be expressed as

Q(+)A(+)= QA A(-

QD(+) D2 +) = QD (D2-

25

°2 2 2 -

2

= _- 9I (E) - - -_
O

2

Coe2 U I
I

0 1
I

(2.60)

(2.61a)

(2.61 b)

(2.6 lc)

0
- - - - -

U
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where the diagonal Q matrices are given by
Q) = Erp 20 E)0(+) + p 2 0 H)oj (2.62a)

QA = ErP2 o E)ol-) + 0 H)01+) (2.62b)

QB+) = 0 0o (H)ol+) + P 2 02E)o (2.62c)

= o ltE)+) + of(H)o (-) (2.62d)

With this Q matrix notation

QA) A ( Q ~0 2-)

2 |)QA) I () (2.63)

O IQ(-) D D(-) 0 QD'+) D (+)

The remaining boundary conditions to be satisfied are at the interface between Regions 2 and 3.
This interface is the plane of the ridge wall, x = 0. Continuity of tangential magnetic field requires

H (2)L = Hy3, ) (2.64a)

H(2)L = HZ(3)L (2.64b)

for all y Y, where

{Y,) = {-d/24 y • d/2}.

The tangential electric field must also be continuous at this interface. In addition, the tangential elec-
tric field of Region 2 must vanish on the conducting surface of the ridge walls, thus

E (~3 )1 ~0 for y E Yj
1(0 | 0 for x = 0, y E Y2} (2.65a)

E( 3 )1x= 0 fory E Y1} (2.65b)
E~~10 = 0 for x = 0, y E Y2 ) 26b

where

Y2) = -b/2 < y -d/2, d/2 < y < b/2}.

The requirements of Eqs. (2.65) ensure the condition that H(2) will also vanish on the surface
x = 0, y E Y21 since H(2) may be expressed in terms of Ey(2) and H(2) by means of Maxwell's curl
equation (2.2a).

It is apparent that an infinite number of terms must be used in the series expansion for the fields
if the requirements of Eqs. (2.64) and (2.65) are to be completely fulfilled. If a numerical solution is
to be obtained, the series must be truncated to some finite number of terms. The resulting error in the
solution will depend on the number of terms used in the numerical calculations and on the convergence
properties of the solution, i.e., how rapidly the solution converges with an increasing number of terms.
The convergence properties will be discussed at a later stage of the analysis, and it will be shown that
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accuracies of better than 1%'/6 may be obtained with as few as five or six terms in the series expansion
for the fields.

At x = 0, the tangential field components in Region 2 reduce to

E(2)l x=0 = N2 cs

E21= = i (;+) co k2nY

Hf2,l = F [sin] 2,y

n=0

N2

EJ(2) XO = i £ G+n) s 2, y

where the number of terms in the series expansion for the fields has been truncated to NT terms, with

N = N2 + 1.

In Region 3, the tangential fields at x = 0 are given by

Ey(3ix=o = 03(,?B3,,n lsn c3 ,,y

EZ(3) I= =n Cs £{C3,, knY

2) N2 si
Hy'I~ =~o' F3 , (:)'IkI,,,YHy3)x=0 = Y, 2,H)n [COS] 3n

H') X=O= j 'G 3,, [cos) I3

2n sin

where for (ME) and (MM) solutions

0 N = cosh (p3 ,,X 3) (2.66a)

In = -3sinh (P3R, x3)/p3,, (2 .66b)
while for (E,E) and (E,M) solutions

0 = -sinh (p3 ,,x 3)/p3,, (2.67a)

= cosh (p3 X3 ). (2.67b)

Note that it is not necessary to truncate the number of terms for the series expansion of the fields in
Region 3 to the same number of terms used in Regions 1 and 2. For this analysis, however, the fields
in all regions will use the same number of terms in the series expansion to obtain numerical solutions.

To proceed further with the boundary conditions of Eqs. (2.64) and (2.65), it is necessary to dis-
tinguish between the two types of wall conditions, electric or magnetic, at the HPS. For an an electric
wall at y = 0, the solutions are (M,E) and (E,E), and the upper trigonometric function in the y-
dependence is used, with Ic2,, = 2n~/b and I 3 , = 2nw/d. Substitution of the truncated series for the
fields into Eq. (2.64b) gives

N2 N2

£ G3,, nCOS (2 n7ry/ d) = COS (2n ry/ b).

nsO n=O~~n=
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Applying to both sides of this equation the integral operator f'W2 COS (2mry/d)dy, where m
takes the values 0, 1, 2, ... , N2 then gives

N2

dO3(H)G = dG(,o + £ G(+
n=1

and

do(H)G d/2 N22 3,m3,m = 'J,0J d/2 cos (2miry/d)dy + ,
n=o

for m > 1. But

d/2

-d/2 COS (2niry/b)dy

(+) d/2
G2, f-dl2COS (2nry/b) cos (2m~ry/d)dy

Id/2
-d/2 COS (2nlry/b)dy = d sinc (n7rd/b)

1d/2
-d12 COS (2m,7y/d) dy = for m > 

and using the mathematical identity

cos a cos 13 = [cos (a -3) + cos (a + 3)]
2

the second summation integral may be evaluated as
r d/2

J 12 COS (2nvry/b) cos (2m7ry/d)dy = {sinc [7r(m -

where the sinc function is given by

sinc(T) = sin(r)

With the height ratio defined as

r = d/b

then
N2o (H ~ ~ ~~ snc(3(,) G3,0 = G (+o) + sinC (n r) G (+)
n-l

and
N2

03(,m G3,= ,sinc [r(m - nr)] + sinc
n-l

for m > 1. In matrix form, the results are

03 )G3 =M4G

where the matrix 0 (H) is diagonal with

(O3 )m.n = o'n) 8mn
and the matrix M4 is given by

1 for m = 0, n = 0
sinc (n7rr) for m = 0, n

(M43in Oform On=O
sinc [r(m - nr)] + sinc

[b7(m + nr)I}G,+)

(2.68)

(2.69)

(2.70)

fir(m + nr)] for m • 0, n ; 0.
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Substitution of the truncated series representation for the fields H (2) and H (3) into Eq. (2.64a)
gives

N2 N2

£ o,,n)F3,n sin (2nry/d) = £ F2,' sin (2niy/b).
n=O n=O

Here the coefficients F3,0 and FN are strictly dummy elements since the modal components in both
regions corresponding to n = 0 are nonexistent. Applying to both sides of this equation, the integral
operator f d2 2 sin (2miry/d)dy with m = 1, 2, ... N2 , and using the mathematical identity

sin a sin 13= +[cos (a -1)- cos (a +)1

will yield
N2

03n)F3,m = {sinc (m - nr)] - sinc [(m + nr)]IF2+)
n=l

for m > 1. The dummy elements F3 ,0 and F2(+) may be expressed as

= 0 H03(,0 ) F3, 0 ° ' F2(,0)O

Thus, in matrix form

0(H)F 3 = M3F ) (2.71)

where the diagonal matrix 0(H) is given by Eq. (2.69) and the matrix M 3 is given by

10 for m = 0 or n = 0
{M3 1m,, = sinc [(m - nr)] - sinc [7r(m + nr)] for m X 0, n 0 (2.72)

The boundary conditions for E (2) and E (3) at x = 0 are given by Eq. (2.65a). Applying to both
sides of this equation the integral operator fid1j 2 COS (2mi7y/b) dy where m = 0, 1, 2, .. . N2 gives

Id/2 (21d/2 31x=CO
E 2)Ixo cos (2m7ry/b)dy = J E 1 cos (2mlTy/b)dy.

Here the integration limits on the left may be extended to + b/2 since E(2) must vanish on the con-
ducting side walls of the ridges at x = 0. y E { Y2}. Thus,

b/2 EIx2 l1o cos (2md1y/b)dy = J2 Ey(3 ( x=0 cos (2mry/b)dy. (2.73)

Since a finite series representation for E(2) cannot be identically zero for all y E { Y2} at x = 0, the
approximation is apparent for the truncated series. With this approximation, substitution of the series
representation for E( 2) and E (3) into (2.73) will show that

B(+) =9 r(E)>B3,0

N2

B(+= 2r sinc (mgrr)0O)B3 0 + r {sinc [(n - mr)] + sinc [(n + mr)1]0 3,nB3,, for m > 1.
n=1

In matrix form these results may be expressed as

B2+)= M2 01E)B 3 (2.74)
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where the diagonal matrix 0 (E) is given by

{03 )mn = 0,n 8,n, (2.75)

and the matrix M2 is given by

r for m = 0, n = 0
0 for m =0, n 0

(M2}mn = 2r sinc (m7r) for m X O. n = 0 (2.76)

r sinc [7r(n - mr)I + sinc [ir(n + mr)]} for m • 0, n 0.

The boundary conditions for EM2 ) and EM at x = 0 are given by Eq. (2.65b). Application to
both sides of this equation of the integral operator f2dl 2 sin (2mrry/b)dy, with m = 1, 2, ... , N2, and
extension of the integration limits in region 2 to ± b/2 (since E(2) 0X=0 = 0 for y E Y2}) gives

(2) sin (2mry/b)dy = JI/ E Ixo sin (2mry/b)dy.

Substitution of the truncated series representation for EM and E,(3) and appropriate evaluation of the
integrals will then yield

N2

2= r ,{sinc [7r(n - mr)] - sinc [7T(n + mr)]}0 3,nC 3 ,,,.
n I

The coefficients C4J5) and C3 ,0 are dummy elements and may be included in the matrix representation
with

2= M,03E)C 3 (2.77)

where the matrix M, is given by{ for m = 0 or n = 0

{Mi mn | r sinc [7r(n - mr)I} - sinc [r(n + mr)]} for m • 0, n • 0. (2.78)

The relationships developed thus far between amplitude coefficients of similar tangential fields in
Regions 2 and 3 have been for (M,E) and (E,E) solutions. The dummy coefficients as described are
included only as a convenience to simplify the notation. These dummy elements will later be discarded
as they have no bearing on the numerical solution.

For (M,M) and (E,M) solutions, corresponding to a magnetic wall at y = 0, the lower trig-
onometric function of the y-dependence is used in the series expansion of the fields, with
k2,, = (2n + 1)ir/b and k3,, = (2n + bIX/d. For these solutions, the singular condition does not
exist; i.e., neither k2,, or k3,, is zero for any value of n; thus, there are no dummy coefficients. The
procedure for obtaining relationships between amplitude coefficients of similar tangential fields is simi-
lar to that used for (M,E) and (E,E) solutions. Application to Eqs. (2.64a) and (2.64b) of the integral
operators fidl 2 cos [(2m + 1)iry/d)dy and Sl{2 2 sin [(2m + 1)ry/d]dy, respectively, will yield upon
substitution of the truncated series representation for the fields

N2

03F 3 = {sinc [(2m + 1) - (2n + l)r] + sinc 72 [(2m + 1) + (2n + )r]}F2(+)
n=O0 2 

N2

(,f3,m = {sinc -v [(2m + 1) - (2n + )rI - sinc 2 [(2m + 1) + (2n + )r])G(+)
n=O

for m = 0, 1, 2, . .. , N 2. Application to Eqs. (2.65a) and (2.65b) of the integral operators
rf-ld2 sin [(2m + 1)7ry/b]dy and J'.•2/2 COS [(2m + 1biy/b]dy, respectively, with the integration limits
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extended to + b/2 for the tangential electric fields in Region 2, and subsequent substitution of the
truncated series representation for these fields will yield

N2

B(+} = r (sinc T-[(2n + 1)
n=O

N2

= r {sinc -T-[(2n + 1)
n=O 2

for m = 0, 1, 2, ... , N2. In matrix
solutions, with

-(2m + l)r] - sinc 72 [(2n + 1) + (2m + )r1}0,)B3 ,EB

- (2m + )r] + sinc 72 [(2n + 1) + (2m + )r}0jE)B3,n
2 n

form the results appear identical to those for (M,E) and (E,E)

Cj+ = M03(E) C3

B2+) = M 2 01E)B 3

0jH)F3 = M3Fj+)

0jH)G 3 = M4G2(

(2.79a)

(2.79b)

(2.79c)

(2.79d)

where, however, the matrices M1 , M2 , M 3 , and M4 are different. For (M,M) and (E,M) solutions

(Mllm,n = r{sinc -2 [(2n + 1) - (2m + l)rl + sinc "' [(2n + 1) + (2m + l)r]}
2 2

{M2}mn = rsinc 3T [(2n + 1) - (2m + 1rl - sincT [(2n + 1) + (2m + )r]
2 2

IM3}mn = sinc "r [(2m + 1) - (2n + l)rI + sinc -t [(2m + 1) + (2n + l)r]
2 2

(M4},n, = sinc -T-[(2m + 1) - (2n + 1)r] - sinc -[(2m + 1) + (2n + 1)rI.
2 2

(2.80a)

(2. 80b)

(2.80c)

(2.80d)

The elements of the diagonal matrices 0 3E) and 0 1H) are given by Eqs. (2.66) or
the type of wall condition at the VPS, x = X3.

With the matrix form of Eq. (2.79) valid for all solutions, the
be combined into a pair of matrix equations as

| |-I = M2(E)| 
12 3 3 J

fOJ3H)~ M34 - - -34)- |=M4 G2(+)|

where

Ml 0

0 1M

IM3 0
M34 = - -- I -- -

0 IM 4

(2.67), dependent on

four separate matrix equations may

(2.81)

(2.82)

(2.83a)

(2.83b)

31



CHARLES W. YOUNG, JR.

&E) = - - (2.84a)

0 E

03(H): o

E3(H} _ (2.84b)
0 i01H

From Eq. (2.30)

C31 WA 0 ° A31
= qf 3 - -- - --- -- - ----

B3 0 I-cO/iU D3

while Eqs. (2.31) and (2.46) may be used to give
.- I

|-- =-I ---- ---- A3 ---,
D3 L ° 0 WD G3

thus

1 WA I

c|! W A F3 | (2.85)

This last result will be expressed as

-- = z ---. (2.86)|B3 | |G 3 |( . 6

where the matrix Z may be partitioned into submatrices as

IZ21 Z221

Substitution of Eqs. (2.44) and (2.45) into Eq. (2.85) will show the submatrices of Z are diagonal with

IIZ1 = 3 [ coe - WAC + oK3 WD 3 (2.87a)

Z12 = + K 3 [ zr WA O/0 WD 1q 3 (2.87b)
COE3J

Z2,= Z12 (2.87c)

Z22 = 03 [-UL K 3 WA K3 + COAC WD ICF I (2.87d)
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The + notation for the submatrices Z12 and Z2 1 is analogous to that for the individual regions, with
the upper sign used for (M,E) and (E,E) solutions and the lower sign for (M,M) and (E,M)
solutions.

Substitution of Eq. (2.86) into Eq. (2.81) will give

[- -( M |i 3(E) | ---

which may be used with Eq. (2.82) to yield

( 1~~~~EZ H 
= M1 2 0E)Z 3 H) 4 -J- (2.88)

or

C2(+) F2(+)r -R (2.89)
B(+) G (+)

where the matrix R is given by

R = M12 E) E)Z 3E)H)1hlM 3 4. (2.90)

If R is partitioned as

R = --- I---
R21 I R22

substitution of the appropriate lower order submatrices into Eq. (2.88) will show that each of the sub-
matrices of R is a square matrix, with

R = MQ3E)ZI 1 [E)§H)]-i M 3 (2.91a)

R12= MI34E)Z 12 [eOH)1-l M 4 (2.91b)

R21 = M 201E) Z21 [(H)- I M 3 (2.91c)

R22= M2 E03E)Z2 2 [01H)]-1 M 4 . (2.9 1d)

Using Eqs. (2.44) and (2.45), Eq. (2.41) will show that

F2() ( O2 U 1 A2(+) 1

I1,(I = -'A2 - , ---- (2.92)

while Eq. (2.39) will show that

I2 1 U I 0 A-)1
A 2 -- - ------ ------ --- (2.93)

B2(+) O I-w/oU D (+)
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Premultiplication of Eq. (2.89) by A2 with subsequent substitution of Eqs. (2.92) and (2.93) will give

A2-) coE2 U1 O D-- = -A2Rq--A2 ---------
D (+) 2 ~0 I 

(2.94)

From Eq. (2.63)

Q,(+) 0

0 IQO I Qy

thus premultiplication of Eq. (2.94) by

1 QA- 0

=_ - l 1- -

will give

U I00I .O -I------

Q(+) I 0----1 1 
0 D-

2(+)
| - ---- A2 RV2 'A 21

l I QD+

or

f A+)

T -- = O

D2(-)

(2.95)

with the matrix T defined as

U I
---- I

0 1

0

-co-U

where the matrix S is given by

S = A2 RT-'A 2 (2.97)

= A2 RA2 P2 -

Partitioning the matrix S as

Sil S2.
S = - -I - -

S21 1 S22

substitution of the appropriate lower order submatrices into Eq. (2.97) will show that the submatrices of
S are square, with

SI = CFR,,F T CDR12K2 F K 2R 2 1 F + K 2R2 2K 2

S12 = T (R ,,K 2 - (DR 12C + K 2R 2 1K2 ± K2R22D

(2.98a)

(2.98b)

34

U

0

coE2 U

0

A (+

D2(-)

QA

0
'V

I 0
- --- +

I QB(-

QA

0

I ° s ---- S 
I QDB+)

(JE 2 U I
I

0 1

0

U
(2.96)

I
I 0

- -1 - - - - - -
I -W/.LOU

I
I 0-1 - - - - -
I U

*1
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S21 = TK 2 RjjF + K 2R12 K2 -DR 214 + FR2 2 K2 (2.98c)

S22 = K 2RIIK 2 + K 2 R 124 ± R2 1 K2 + FR 22.- (2.98d)

Again, the () and (T) symbolism is the result of the dual sign notation used to distinguish the type
of wall condition at y = 0, with the upper sign to be used for (M,E) and (E,E) solutions and the
lower sign for (M,M) and (E,M) solutions.

The expression of Eq. (2.95) represents an eigenvalue problem for which the eigenvalue is zero
[51,63]. For a nontrivial solution to exist, the determinant of the matrix T must vanish:

det [TI = 0.

All elements of T are determined uniquely for given values of radian frequency w and propagation con-
stant , when the type of solution; i.e., (ME), (M,M), (E,M), or (E,E), is specified. Thus, the fre-
quency may be fixed and,/ taken as the unknown, with

det [T()] = 0

the requirement for a numerical solution for , or the propagation constant may be fixed and w taken
as the unknown. In the latter case, only the cutoff 'frequency will be sought, with p = 0; thus

det [T(w)] = 0

is the requirement for a numerical solution for cutoff for any mode.

The matrix T may be partitioned into square submatrices as

F1 1 1 2

T21 T2 2

where from Eq. (2.96)

T11 = QII+) + wE2Q A S1

T t 2= Qjg)5S2

T2 = We2 QD+)S2

T 2 2 = QD(AS22 - w)AOQD-

For the waveguide modes where the singular condition is not encountered; i.e., • 0, examination
of the matrix equations used to develop Eq. (2.95) will show that all elements of the matrices 12 and
T21 vanish at the mode cutoff frequency wherep = 0. Thus, when solving for the cutoff frequency of
these modes,

T1 1 0

det [TI = det- --- 1- - -
0 T22

= det [] det [ 221

= 0
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and the requirement for the cutoff frequency is either

det [ T, (oC) = 0 (2.99a)

or

det [T22 (wlc)] = 0- (2.99b)

In the general case, both determinants will not be zero simultaneously, i.e., for the same frequency.
For Eq. (2.95) to remain valid when det [Tu,(C)I = 0 but det [T22( oW)] • 0, the vector D-) must
vanish. If D (-) = 0, then from (2.61-c) D () = 0. Thus, the waveguide mode with cutoff frequency
determined by Eq. (2.99a) has no x-directed component of magnetic field at cutoff, analogous to the
condition for LSM modes in dielectric slab loaded rectangular waveguide (Appendix B), and will be
referred to as a quasi-LSM, or QLSM mode.

If det [T2 2(co)] = 0, but det [Tjj(wo,)] • 0, then the vector A2(+) must vanish for Eq. (2.95) to
remain valid. From Eq. (2.61b) Al-) = 0 if Al+) = 0, and the waveguide mode corresponding to the
cutoff condition imposed by Eq. (2.99b) thus has no x-directed component of electric field at cutoff,
analogous to the condition for LSE modes in dielectric slab loaded rectangular waveguide (Appendix
B), and will be referred to therefore as a quasi-LSE, or QLSE mode.

Note that the QLSE and QLSM modes of the dielectric loaded ridged waveguide do possess x-
directed components of electric field and magnetic field, respectively, at frequencies above cutoff. This
is in contrast to the LSE and LSM modes of dielectric slab loaded rectangular waveguide, for which the
x-directed components of electric field and magnetic field, respectively, maintain zero magnitude at fre-
quencies above cutoff. Additional discussions of the QLSE and QLSM modes at frequencies above cut-
off will be postponed until a more specific classification is formulated for the different waveguide
modes.

For the waveguide modes where the singular condition exists at cutoff, i.e., kj,0 = 0 for i = 1, 2,
3, the vector element A (+) is a dummy element. To eliminate this dummy element, the eigenvalue
problem of Eq. (2.95) must be modified to

A2(+)

T - --- = 0 (2.100)

where T' is the matrix formed by deleting the first row and first column of the matrix T. The vector
A2(+) is the vector A(+) less the first, or dummy, element A (,). When solving for P at frequencies
above cutoff, the vector D2(-) is the same as the vector DI-). When solving for the mode cutoff fre-
quency, with p = 0, the vector D2(-) is the vector DI-), but with the leading element D () replaced as
-G . The matrix T' may be partitioned as

T . III T12

T21 IT2

where T is the matrix T,, less the first row and first column, T 2 is the matrix T12 less the first row,
T2'1 is the matrix T21 less the first column. The matrices T 2 and T are nonsquare. It is straightfor-
ward to show that the eigenvalue problem of (2.100) is exactly the same as would have been obtained
had the development not included the dummy elements to maintain a consistent notation for the
mathematical analysis. The required condition for a numerical solution is thus

det [T'(co,P)] = 0
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where either co or 13 may be treated as the unknown quantity. The only types of waveguide modes for
which the singular condition exists, thus requiring modification of the matrix T to T' in the eigenvalue
solution, are QLSE modes. This point will be clarified after the discussion of additional parameters
which may be used to further specify the different waveguide modes.

Thus far in the analysis of the dielectric loaded double ridged waveguide, the specifications for the
waveguide mode(s) have been the effective wall conditions, electric or magnetic, at the two planes of
symmetry, with an additional classification of each mode as either QLSE or QLSM, dependent on the
eigenvalue solution at the cutoff frequency. For each of the wall condition solution types,
(M,E),(M,M),(E,E), and (E,M), there will exist an infinite number of both QLSE and QLSM
waveguide modes. This situation is comparable to the infinite number of LSE and LSM modes that
exist in dielectric slab loaded rectangular waveguide (Appendix B). In the case for the latter
waveguide, an index integer pair is used to uniquely specify each of the LSE and LSM modes with any
given mode characterized as the LSEm,, mode or the LSMmn mode. The first index m refers to the
number of half cyclic variations of each of the existing (nonzero ) fields E , E , E , H, H, and H, as
a function of x within the waveguide, i.e., from sidewall to sidewall. The second index n refers to the
number of half cyclic variations of each field as a function of y, i.e., from topwall to bottomwall.

In the dielectric loaded ridged waveguide, the fields of every propagating mode consist of an infi-
nite number of modal components. A single index integer pair may be used, however, to uniquely
specify each mode, in a manner analogous to that for the LSE and LSM modes of dielectric slab loaded
rectangular waveguide, if the integers refer to the number of half cyclic variations of the fields of the
lowest order modal component present, i.e., the modal component with the smallest value of n. The
y-dependence of the nth modal component in region i is

,x sin y
f (Y) = COS) in

with the choice of the sin or cos function determined by the specific field. For (M,E) and (E,E)
modes, with an effective electric wall at y = 0, in each region with height hi

ki,, = 2nTr/hi;

thus the number of half cyclic variations (topwall to bottomwall) of fields of the nth modal component
is 2n. For (M,M) and (E,M) modes, with an effective magnetic wall at y = I ki,, = (2n + 1)7Ir/hi;
thus the fields of the nth modal component have 2n + 1 half cyclic variations from topwall to bot-
tomwall. With each waveguide mode classified as QLSEmn' or QLSMm,,,', the lowest order modal com-
ponent of the propagating mode is given by n' 2n for (M,E) and (E,E) modes, and by n'= 2n + I
for (M,M) and (E,M) modes. In the series expansion of the fields, this represents a lower limit no on
the summation index n. For n' an even integer (corresponding to an electric wall at y = 0) the
QLSEm ,,, and QLSMm,,' modes have the lowest order field components with n = n2, or
kino = n'ir/h. For n' an odd integer (corresponding to a magnetic wall at y = 0), the QLSEm,,, and
QLSMm,,' modes have the lowest order field components with no = (n'- 1)/2, or ki,,0 = n'ir/hi. With
the lower limit set on the summation for all fields in each region, each of the matrices developed earlier
in this section is thus dependent on this value for no. Some caution must be exercised when assigning
the index notation for matrix and vector quantities in any computer program since most computer sub-
routines for matrix operations require a lowest order index of one.

For each propagating waveguide mode, the type of effective wall condition at the vertical plane of
symmetry, x = X3, will determine the symmetry aspects of each of the field components. With an
effective magnetic wall at x = x3, the tangential magnetic fields H, and H, and the normal electric field
E, must be antisymmetric about the VPS, while the tangential electric fields EY and E, and the normal
magnetic field Hx must be symmetric about the VPS. For an effective electric wall at x = X3, the sym-
metry conditions are reversed, with the fields Ey, E, and Hx antisymmetric and the fields Hy, H, and
Ex symmetric about the VPS. The dependence of the field symmetry (antisymmetry) on the effective
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wall type at the VPS is identical to that for the LSE and LSM modes of dielectric slab loaded rectangu-
lar waveguide (Appendix B). To maintain the analogy with the propagating modes of the latter
waveguide, the first index of both the QLSEm,' and QLSMm,,' modes of the dielectric loaded ridged
waveguide will be an odd (even) integer for an effective magnetic (electric) wall at the VPS, x = X3.
The four combinations of effective wall conditions at the two planes (vertical, horizontal) of physical
symmetry thus are reflected as restrictions on the index pair m,n' for either the QLSEm,,' mode or the
QLSMm,n' mode with

Wall conditions m n'
(M,E) - odd even
(E,E) - even even

(M,M) - odd odd
(E,M) - even odd (2.101)

In any propagating mode, the higher order modal components (terms of the series expansion for
the fields with n larger than the lower limit no) will in general be evanescent with respect to x; i.e., the
fields of these modal components will decay exponentially with distance from the ridge walls. For this
reason, and to maintain an analogy with the index notation for modes of dielectric slab loaded rectangu-
lar waveguide, the first index m of both QLSEm,n' and QLSMm,n' modes will be used to describe the
number of half cyclic variations (sidewall to sidewall) in the fields of the lowest order modal com-
ponent, i.e., the field terms (with other than zero amplitude) corresponding to n = no in the series
expansions.

An equivalent but considerably more simplified description for the correlation between the field
structure and the propagating mode designation may be obtained by viewing the modes of dielectric
loaded ridged waveguide as the corresponding modes of dielectric slab loaded rectangular waveguide
with fields that have been distorted due to the presence of the ridges. Thus, the QLSXm,,' mode,
where m and n' are fixed integers and X denotes either E or M, would become the LSXM,,n mode if
the ridges were to vanish, i.e., if the ridged waveguide was reduced to rectangular waveguide. Of
course, the mode cutoff frequency and the propagation characteristics, as well as the exact field struc-
ture, would vary as the ridges were withdrawn.

The assumption of a lower limit no other than zero for the summation index n in the series
expansion for the fields of dielectric loaded ridged waveguide has an equivalent assumption if the
corresponding waveguide mode is viewed as a distorted mode of dielectric slab loaded rectangular
waveguide. The equivalent assumption is that the single modal component of the undistorted mode (in
rectangular waveguide) remains as the lowest order modal component upon introduction of the ridges.
As an example, the LSE 2 mode of dielectric slab loaded rectangular waveguide has fields that have a

y-dependence f(y) = (sin 2ry/h. Upon introduction of the ridges, the fields of this mode are dis-
torted, with the mode becoming the QLSE,,2 mode. Using the y-dependence to form the basis func-
tions for a series expansion of the fields in each region i, with f" = (csin 2n7ry/hi the assumption is

that the lowest order modal component has f,,,, = cos 27rylh, or that the lower limit on the summa-
tion index n is no = 1.

The assumption of a lowest order modal component for the higher order waveguide modes is sup-
ported to some extent by numerical calculations made for several modes and several waveguide
geometries. The cutoff frequency was calculated using the appropriate value for no in the series expan-
sions (thus setting the elements of the matrix for the eigenvalue solution) and compared with the cut-
off frequency obtained when the lower limit was forced as no = 0. For most waveguide modes and
geometries tested, the agreement was excellent-less than 1% difference. Some comparisons were
poor, possibly because of the difficulty in finding numerical solutions to the eigenvalue problem due to
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the close proximity of poles and zeros of the determinant for the higher order modes. Such compari-
sons were made only for QLSEmn' and QLSMm,,,' modes with n' > 2 since the lowest order modal
component of modes with n' = 0 and n' = 1 correspond to the lower limit no = 0. As discussed in
the following paragraph, both the dominant mode and the first higher order mode will always have a
lowest order modal component no = 0. Since the primary objective of this investigation concerns the
single mode bandwidth and field characteristics of the dominant mode, no further effort was made to
rigorously justify the assumption of a lowest order modal component with no • 0 for these higher
order waveguide modes.

For the QLSXmn' mode (X = E or X = H) of dielectric loaded ridged waveguide, increasing
either integer index will raise the cutoff frequency, analogous to the case for the modes of dielectric
slab loaded rectangular waveguide. Also, by analogy with the latter waveguide, the first index of the
QLSEmn' mode is restricted to nonzero positive integers, while the second index of the QLSMm,,,
mode is restricted to nonzero positive integers. The possible propagating modes for dielectric loaded
ridged waveguide are thus the QLSEmn,' modes, with m = 1, 2, 3, ... and n' = 0,1, 2, ... , and the
QLSMmn' modes, with m = 0, 1, 2, ... and n' = 1, 2, 3, . As discussed earlier, the matrix of the
eigenvalue problem is a function of each of these indices. A simple comparison of index pairs for the
different modes will show that the two waveguide modes with the lowest cutoff frequencies, i.e., the
dominant mode (lowest f) and the first higher order mode (second lowest f), must be a pair of
modes from a group of four modes: the QLSEIo mode, the QLSE2 ,0 mode, the QLSEIl mode, and the
QLSM0,l mode. These four modes represent respectively the four mode types, (M,E),(E,E),(M,M),
and (EM), describing the effective wall conditions at the (vertical, horizontal) symmetry planes. For
practical applications, the waveguide geometry usually will be chosen so that the QLSEIo mode is the
dominant mode.

Discussion on two issues raised earlier concerning certain properties of different waveguide modes
may now be continued with greater clarity since the mode designation has been completed. Since the
singular condition arises only at waveguide cutoff for modes with the lowest order modal component
having kio = 0 and thus occurs only for modes with the index n' = 0, and since n' > 0 for QLSMmn'
modes, the singular condition exists only for QLSE modes, or more specifically the QLSEm,0 modes,
and then only at cutoff. The second issue is that of the x-directed electric and magnetic fields of the
QLSEmn,, and QLSMmn' modes where n' X 0. As pointed out earlier, Ex = 0 at cutoff for the
QLSEm,n, mode but at frequencies above cutoff Ex • 0, while for the QLSMm,,' mode H, = 0 only at
cutoff. If solving for the propagation constant 13 at some fixed frequency, the full determinant T must
be used with

det [T] = 0 (2.102)

the requirement for a numerical solution. If the frequency is above the cutoff frequency of the
QLSEmn,,, mode and that of the QLSMmn' mode, where m and n' are fixed with n' > 0, separate roots
to (2.102) will be found corresponding to the different values of:1 for the two waveguide modes. The
lower root for 8 will normally (but not always) correspond to the mode with the larger cutoff fre-
quency. The specific waveguide geometry will determine which mode has the larger cutoff frequency.
By tracking the root(s) for 3 as a function of frequency from cutoff for each mode, and solving the
eigenvector problem to determine amplitude coefficients of the various modal components, it is possi-
ble to compare the field magnitudes of the different modes. Such a procedure was used to compare the
fields of the QLSE1,1 mode with the fields of the QLSM, mode for several waveguide geometries. In
each case, the most pronounced variation of any field component between the two modes at a fre-
quency well above cutoff of either mode was in the relative magnitudes of the lowest order
(kio = 7r/hi) modal component of E and H, With all fields normalized to unit power flow in the
waveguide, the QLSE1,1 mode had a consistently smaller magnitude for the lowest order term of Ex and
a consistently higher magnitude for the lowest order term of Hx than the corresponding modal com-
ponent amplitudes of the QLSM1,1 mode. The amplitude difference between like fields varied from a
factor of 3 to more than 2 orders of magnitude, dependent on the specific waveguide geometry and the
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point where the comparison was made. For the QLSEI,1 and QLSMI,, modes at least, this comparison
lends additional credence to the nomenclature of quasi-LSE and quasi-LSM modes.

As discussed earlier, the QLSEmo modes use the matrix T in the eigenvalue solution, where the
matrix T' is formed by deleting the first row and column of the matrix T of (2.96). This reduction of
the matrix is necessary to eliminate the effects of the dummy vector coefficients-corresponding to the
zero amplitudes of the n = 0 order modal components of Ex, Ez, and Hy-on the eigenvalue develop-
ment. For any given frequency above cutoff, the requirement for a numerical solution is

det [T'(p)I = 0.

When solving for the cutoff frequency of a QLSEm0o mode, the computational requirements may be
reduced by partitioning the matrix T' as

T' =T - - - .
T21 I T22

If NT terms were used in the series expansion for the fields, then the matrix T will be square, with size
2 NT X 2 NT. The matrix T' is square also, (2 NT - ) X (2 NT - 1). The submatrices T1I and T22 are
both square, where T II is NT x NT while T22 is (NT - 1) x (NT - 1). While the submatrices T12 and
r21 are both nonsquare, it is a straightforward procedure to show that each is a null matrix, i.e., all ele-
ments are zero, when 3 = 0. The requirement for a numerical solution for cutoff

det [T'(co,)] = 0 (2.103)

may thus be reduced to

det [Ij(co,)] det 722(Wc)] = 0-

With the matrix T' partitioned as described, the full eigenvalue problem for cutoff of a QLSEm0o mode
is given by

A 21

|ii 1, 0 |T- -2 0 (2.104)

0 T22 D

D~7

where the coefficient D has been replaced as -G(+) as discussed for the singular condition. If at
some trial value of c, the determinant of the matrix T22 were to vanish, but det [TIII • 0, then all of
the lowest order (n = 0) model field components must vanish if (2.104) is to be satisfied, since D ()
= 0 at cutoff. Thus, det [221 • 0 for a QLSEm0o mode at cutoff, a fact confirmed by numerical
evaluation of this determinant for a variety of waveguide geometries.

The requirement for waveguide cutoff of a QLSEm0o mode is thus

det [Tll (C,)] = 0. (2.105)

Since det [T22(Wc,)] 0, then H = 0 to satisfy (2.104). This is in contrast to the cutoff of
QLSEmn,>0 modes, for which E = 0. However, the lowest order modal component of E EXo, is
zero for the QLSEm0o mode.

40



NRL REPORT 8917

In addition to the null field features that have already been pointed out for cutoff conditions of
the different waveguide modes, other features are readily seen upon examination of the relationships
developed earlier between the x-directed electric and magnetic fields and the remained field com-
ponents. For waveguide cutoff, the fields can be summarized for different modes:

,z x Hy-
QLSMmn modes Ex, Ey H X

(EXEyH H 0QLSEm,, modes |E, H• 0 °

QLSEm,0 modes Exo = 0

Ex,n>o ;z 0-

Once the solution is obtained for a given waveguide mode, i.e., either the cutoff frequency wC
(with 1 = 0) or the propagation term p (for a fixed frequency) is found to satisfy the null requirement
of the appropriate determinant, conventional linear algebra techniques [51,62-651 may be used to calcu-
late the eigenvector associated with the full matrix, from Eqs. (2.95) or (2.100). With the amplitude
coefficients represented by the elements of the vectors A(-) and DI') then known, calculation of the
remaining field amplitudes in all regions may be accomplished in a straightforward manner.

For the purposes of this investigation, the only mode that requires numerical evaluation of the
fields is the dominant mode. Because of practical considerations, only those waveguide geometries for
which the dominant mode is the QLSE1,0 mode will be considered. As with any waveguide, the opera-
tional frequency cannot be too close to cutoff because of greatly increased attenuation and dispersion.
These considerations will normally limit the lowest frequency of operation to 15 to 20% above cutoff.
Therefore, the details of the numerical determination of the fields will be given only for the QLSE1,0
mode at frequencies above cutoff.

Once 8 is found for any given frequency co > oCc, i.e., det [T'(c0,1)] = 0, the matrix T' is fixed
and the vectors A2(+) and D(-) may be calculated from Eq. (2.100). Because A is effectively zero
(since k2,0 = 0), the full vector A+) is thus known. The vectors Al-) and D may be calculated
from Eqs. (2.61b) and (2.61c):

= [Q (A

D2(+) [Q (+)]-l Qk)DI-).
The remaining amplitude terms of Region 2 may then be found by using Eqs. (2.39) to (2.42), with

= [q,2]L"[K2A2( - &/o3D (+)]

B( = [4,2 '1[K2P224~ A2+- CO/A01D(-

-2(+) = -[ 2
1 [A2- + COiK2D2(]

= -[ 2 K p22 A2+) + o/Log2D( )1

I-) [+2 [E2PA4+2-2K 2 D21 2

C()= [W2] [e 2 I-) - K2P22 D+)

- -I [ 1 2 1 [e 2K2Al+) + D(-)]
GI+) = - P21'[&)E 2K 2AI() + p22 D)]
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where the matrix CF is replaced as 3U for co > Cc and the upper (+) symbolism used for +K 2 since
the QLSE1,o mode is a (M,E) mode. All of the vector elements may be calculated on a term-by-term
basis in Region 2 since all of the matrices involved are diagonal.

A number of different methods could be used to find the coefficients of the field components in
Region 3 once those of Region 2 are calculated. The method chosen was to first calculate F3 and G3.
From Eq. (2.79c)

F3 = [0 (H)]-IM3 F(+

while from Eq. (2.79d)

G3= [0 H)]- IM4G2+)

Determination of F3 and G3 requires matrix operations since neither M3 or M 4 are diagonal matrices.
Since WA = U and WD = P2 for a (M,E) mode, Eqs. (2.44) to (2.46) together with Eq. (2.31) will
give

A 3 = 1 [F 3 - K3G3 1
coE3

D3 = -[P3 [K3F3 + 13G3].

Then Eq. (2.30) may be used to obtain

C3 = -[ip3 >1 IpA3 + W/ioK3D3]

B3 =[q 3 V' [K3A3 - &)/io13D3]-

The elements of the vectors A3, D3 , C3, and B3 may be calculated on a term-by-term basis since all of
the matrices involved in calculating these vectors are diagonal.

The modal component coefficients of the fields in Region 1 may be found by matching tangential
fields on a term-by-term basis at the air-dielectric interface, x = -X2 . With this procedure, terms of
the form

an cosh ( 2,, 2) - b sinh (P2,nX 2)

will be encountered where the coefficients a, and b approach the same value as n becomes large. For
large n, the term P2,n is almost proportional to n, thus the cosh and sinh functions increase exponen-
tially with n. With as few as five terms in the series expansion for the fields, significant errors can be
caused by the numerical inaccuracy inherent in the calculation of the difference between two very large
numbers [64]. Such computational errors may be avoided by matching the normal field components at
x = -X2 . Using the matrix notation of Eq. (2.53),

OtH)A = E, -[(+)A (+)- 0()A2()] (2.106)

oJE)DI = 0 -(+)DD+)- 7 (2.107)

where the vector elements A1,0 , A(+) and A(o) are zero magnitude. Substitution of Eq. (2.61b) into
Eq. (2.106) gives

oIH)Al = Er [Q.({)]- [Q.(-)02(+) - Q(+)0 )]Al+).

Subsequent substitution for the matrices Q(-) and Q+) from (2.62) and appropriate commutation of
the diagonal matrices yields

OtH)AI = Er[Q( )]V{ErP0t(E)[0(+)0 2() - W()o02] + o(H)[01+)0 +) - p2 0 -) 0 -))A+).

But

0j+)0j+) - P2oj-)0(j-) = U,
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thus premultiplication by [01]-I yields

A, = Er[QlVA;+). (2.108)

In a similar fashion, Eqs. (2.61c) and (2.62) may be used with Eq. (2.107) to show that

DI= [QD+)1-'D)-1. (2.109)

The results of Eqs. (2.108) and (2.109) could also have been obtained by matching the tangential fields
at x = -X 2 and using the relationships between the fields from Eqs. (2.16) and (2.17) to obtain cancel-
lation of many terms. Such a procedure is straightforward but considerably more detailed than the
method shown.

Once numerical quantities for the elements of Al and DI are found from Eqs. (2.108) and
(2.109), calculation of the remaining field coefficients in Region 1 may be accomplished by using Eqs.
(2.16) and (2.17) directly:

cl = -[iI~]'[pPI Al + CO/KID1I
B, = [q,,]-'[K1p2AI - wOAPD11

F, = [ 1-[OE 01PA1 - KID,]

G = -[qjI-[,CoE 0KAl - pDIL]

Since all matrices involved in the calculation of the amplitude vectors in Region 1 are diagonal, the
coefficients may be determined on a term-by-term basis. The magnitude of any field may then be cal-
culated at any point within the waveguide.

The number of terms NT used in the series expansions of the fields affects the accuracy of the
numerical solution. Numerical calculations for a variety of waveguide geometries indicated rapid con-
vergence of solutions, for both C9c and P3. For all geometries tested, as few as five terms gave solutions
within 0.5% of the numerical value obtained by using many more terms. Convergence characteristics of
the cutoff frequencies for the four lowest order waveguide modes are shown in Table 1 for a typical
waveguide geometry. The convergence characteristics for , of the QLSEI,0 mode are shown in Table 2.

2.3 Peak Power Capacity

The peak power capacity of a waveguide is the maximum microwave power the waveguide will
carry without arcing due to the large electric fields within the waveguide. The power level at which arc-
ing occurs is referred to as the peak power breakdown level. The specified peak power capacity for
some waveguides may include a safety factor; however, for purposes of this investigation the peak
power capacity and the peak power breakdown level will be considered as equal unless otherwise noted.

The time-averaged power transmitted across any closed surface S is [40,411

1 t'i
P = ReJJ E x H* dS.

2 f S

The coordinate system used in Section 2.2 will be used here also, with the waveguide axis in the a,
direction. Propagation again will be assumed to be in the positive a, direction. The surface of integra-
tion is thus the interior cross section of the waveguide of Fig. 3, and with dS = azdxdy, then

(E x H*) dS = (E Hy - Ey H,*) xdy.

Advantage may be taken of the waveguide symmetry to limit the integration to the left half if a factor
of 2 is included in the power calculations. The surface integration will be separated into three regions
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Table 1 - Convergence Characteristics of Cutoff Frequencies
for Different Modes

Waveguide geometry parameters:

a = 1.0 (2.54)

b = 0.4 (1.02)

d= 0.15 (0.38)

s = 0.2 (0.51)

t= 0.4 (1.02)

e, = 4.0

1

2

3

4

5

6

7

8

9

10

I1

12

13

14

15

16

Dimensions are in inches (cm)

Mode Cutoff Frequency in GHz

NT QLSEI,o QLSE2 ,0 QLSE, 1 QLSM0,,

2.4528

2.2497

2.2478

2.2392

2.2353

2.2352

2.2329

2.2327

2.2321

2.2313

2.2315

2.2310

2.2308

2.2308

2.2304

2.2304

9.6587

8.8459

8.8425

8.8062

8.7911

8.7903

8.7808

8.7800

8.7776

8.7747

8.7748

8.7729

8.7722

8.7720

8.7706

8.7706

14.3651

14.8782

15.0177

15.0146

15.0555

15.0611

15.0667

15.0782

15.0776

15.0831

15.0862

15.0862

15.0899

15.0903

15.0915

15.0935

12.3792

12.3141

12.3065

12.3058

12.2996

12.2996

12.2983

12.2967

12.2979

12.2959

12.2955

12.2955

12.2949

12.2948

12.2946

12.2943
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Table 2 - Convergence Characteristics of Waveguide Parameters
for QLSE,,0 Mode

Waveguide geometry

a = 1.0 (2.54)

b = 0.4 (1.02)

d = 0.15 (0.38)

Dimensions are in inch

Frequency = 3.5 GHz

parameters:

s = 0.2 (0.51)

t = 0.4 (1.02)

Er = 4.0 tan 8 = 10-4

es (cm) Copper Walls

QLSE,o f = 2.23 GHz

NTg 13 (/cm) Breakdown Breakdown a, ad
Power (kW)I Power (kW)2 (dB/meter) (dB/meter)

6009.4

2863.4

2841.2

2833.8

2837.0

2835.1

2830.4

2831.2

2828.7

2828.0

2838.3

2826.4

2826.6

2826.1

2825.4

2845.4

7195.8

8984.8

8957.5

9120.1

9187.4

9188.9

9221.6

9225.3

9232.6

9242.6

9242.0

9248.7

9250.9

9251.5

9255.6

9321.3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

365.89

395.17

395.48

396.65

397.18

397.21

397.54

397.56

397.61

397.54

397.54

397.76

397.81

397.81

397.84

397.84

0.1791

0.1806

0.1858

0. 1885

0. 1902

0.1916

0.1929

0.1935

0.1946

0.1951

0. 1957

0.1964

0. 1966

0. 1970

0. 1973

0. 1963

0.0818

0.0768

0.0768

0.0766

0.0765

0.0765

0.0765

0.0765

0.0765

0.0765

0.0765

0.0765

0.0764

0.0764

0.0764

0.0768

Notes:
(1) Power for breakdown at air-dielectric interface
(2) Power for breakdown in dielectric
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to conform with the region definition shown in Fig. 4. Since the expressions developed for the
transverse fields E, Ey, H, and Hy are real, the power carried by the waveguide is

3
P=2 IPi (2.11Oa)

i=1

with

P= 2 1 xy Wi)H(i)- Ey(i)Hx()]dxdy (2.110b)

where the i subscripts and superscripts denote the particular region and with the appropriate integration
limits for each region.

The only propagating mode for which power breakdown is of interest for this investigation is the
dominant, or QLSE,,0 mode. For this mode, in each region the nth modal component of Ex and Hy
has a y-dependence given by sin (2n7ry/h), while the nth modal component of Ey and H has a y-
dependence given by cos (2n7ry/h), where h is the height of the region. Because of the orthogonality
of these functions, the cross products generated by substitution of the series representation for the
fields will vanish when the y integration is performed. Thus the expression for the power in each
region may be reduced to

"; = 1 J SJx [E (')H() - E ()H(i)]dxdy (2.111)

where the n subscript on each field quantity denotes the nth modal component for that field. For the
dominant mode, the lower limit on n in the summation is zero. The upper limit is theoretically infi-
nite, as in the analysis to determine the propagation characteristics; but as in the latter analysis, the
number of terms must be truncated at some finite value for a numerical solution. The number of
terms that can be used to find Pi is obviously limited by the number of terms NT used in the propaga-
tion analysis, and for power breakdown calculations will be set equal to NT. The effect of the series
truncation on power breakdown determination will be discussed after the mathematical development
has been completed.

In Region 1, substitution of the series representation for the fields from Eq. (2.12) into Eq.
(2.111) gives

I N2 C~~~ b/22 JIs 1
2 2pi A 2 sin |nybd - BIn -2 -Bb12 cos (2niry/b)dy

where

I= cosh 2 [Pl,n (X + xI) ] dX

and

Iss= sinh 2 [p,,, (x + XI) ]/p?,2 dx.

The mathematical identities

cosh2 0 = (cosh 20 + 1)/2 (2.112a)

sinh20 = (cosh 20 - 1)/2 (2.112b)

may be used to evaluate I and IjP, as

Ic = cosh [p,n(xI - X2)] sinh [n(xI - X 2)]lpln + (Xl-X2W2

Iss, = cosh [P,n (X - X2)] sinh [P,n (xi - 2)]/PIn - (XI - 2)}/2 pj,,.
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After the y integration is performed, the expression for PI becomes

=_bB,, 0 D, 0o b N 2Pl = 2 - + 1 £ (A I,,FI,,,Icn ) (2.113)

In Region 3, substitution of the series representation for the fields from Eq. (2.25) into Eq.
(2.111) gives

P3 = 2 £ A 3,nF3 ,nI3f,, I d/2 sin2(2nffy/d)dy - B3nD3 lcn -d/2 cos2 (2 nryl d)dy

where

= o3 sinh 2[p3 , (x-X 3 )/p,, dx

and

1C = IX3 cosh2 [P3,, (X - X3 )]dc.

The mathematical identities given in Eq. (2.112) may be used to evaluate J5,, and I as

II = [cosh (p3 ,,X3) sinh (P3 ,nX3)/P 3,, - X 3 /2p3,

Ic5 = [cosh (p3 ,,X3 ) sinh ( 3,,X3)/p 3 ,, + X31/2.

The y integration will then yield

_dB 3,OD3,0 Ic + d N2-(214
P3 =- 32 3'0,60 +4d (A3,nF3,nI3n - B3,nD3,nI3ccn) (2.114)

In Region 2, the series representation of the fields from Eq. (2.35) is more complicated than in
Regions 1 and 3, and substitution into Eq. (2.111) will give rise to additional terms:

I N2 )SC b/2 2
2 n +, 2,,, ,n2n 2 n2n n2,n 2,, J-1P2 = = [2,,n)2(,,n,2 + Ak(,)F2()I~s,, + (A(snF(j~ + A,)F()I2n]-b/2 sn(nybd

- [Bjn)Dn )Ic, + B (-)D (j)Iss,, + (B2 -n)D(s+) + B(s+)D2¶;))I c,] I 2 cos2 (2n7ry/b)dy}

where
0

Ic= cosh2 (P2,n x) dx

I = { sinh2(p2 ,x)/p2, dx

Ise= J2 cosh (P2,,X) sinh (P2,nX)/P 2 ,n d.

Again, using the identities given in Eq. (2.112), the hyperbolic integrals may be evaluated as

I2cf = [cosh ( 2 ,nx2 ) sinh (P2,,X 2)/P2 ,n + X2 ]/2

I-, = [cosh (p2,,x2) sinh (P2,nX2)/P2,n - X2 /2p ,

I2cn= - [sinh (P2 ,nx 2 )/p2 12/2.
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After performing the y integration

P2=- 2 [Bj+)D(j+)Ico + B (-)D (-)IIss + (B (-) D(+5) + B2(+D2j) )DIsco]

b 2

+ {[Aj+n)Fj) - B )D (+) I Ic + [A (-) FI-) - B (- D (-)]I ss

+ F + F (-) 2n ,n- B2,n)D2,n)2,n (2.115)

Calculations using Eq. (2.115) directly will cause numerical errors when the number of terms NT in the
series expansion for the fields is large. These errors arise because Eq. (2.115) requires taking the
difference between two very large numbers, analogous to the situation when calculating numerical
values for the modal amplitudes in Region 1 as discussed in Section 2.2. Such numerical accuracy
problems may be avoided in this case by using the elements of the Q matrices from Eq. (2.62) to
reduce the expression given in Eq. (2.115). Using the notation of Eq. (2.54), with

0 (+) = cosh (P2,nX2)

= sinh (P2,,x 2)/P2,n

then

I =c =[o02(,+n) 0 I,2 + X2 ]/2 (2.116a)

I = [o2s, n -2(,n -X 2 ]/2p22,n (2.116b)

SC= - [ (-.)2/2. (2.116c)

In Eq. (2.115) the notation

02 - A (+)F(+)I2c + A (-)F()Iss + [A ()F(,+) + A(s+)F2(n)]Iscn (2.117)

and

2= B j+)D )I(+c + (-)D (-)I~ssn + [B () D (+) + B (,) D (-)Il, I (2.118)

will be used for all values of n. Substitution of Eqs. (2.116) into (2.117) will yield

AF = 22 Aj~~ ¢2A,nF X2 [A 2+n)F2(+n) -A (-)F( -) p n12

+32,n2,n [2,n2,n -2,nA2,n)/ +20,n ,n ,nA2,n)2, -0(, (s+)/2.+ 0 F-[o A 0 A ~ 2 + 0 O - , 2,

From Eq. (2.61 b)

QA,n = A 2,n QAn AI-)

thus,

?2,nAn - 0L,, A2 ,n - [Q2,,n n02 QA ,n{,]A/ 2,n - QA, (2.1 19)

0(+)A ,/P2 - nA = [Qn 02, /P2, n QA n 2,n 2,n n (2.120)

From Eqs. (2.62a) and (2.62b)

QAn = rPl'n n n+ P2,nO n) (2.121a)

QAs = rP 2, -,0 02n) + (2.121b)
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where 0 (E) and 0(H) are given by Eq. (2.53). Substitution of Eq. (2.121) into Eqs. (2.119) and (2.120),
with proper rearrangement of terms and use of the mathematical identity

cosh2 4- sinhE = 1,

will yield

0 )A% - 0 o1 "(H~'

O o)A(,)p2 -(n-0)A ()= 2 () () / [,n Q

,n 2,n 2,n 2,n 2,n = 6rPln ,n) 2,n 2, n

Thus, OAF may be expressed as

X 2 2 [A J+) F,+n) - A 2n) Fj,)/p2,,] + 02<A 1 2'+ [o ( + Erp?,, 0 i(, F(n/p22,n]/ QAh2}. (2.122)

In a similar fashion, substituting Eq. (2.116) into Eq. (2.118) and using Eqs. (2.61c), (2.62c), and
(2.62d) will yield

02= 2 {X2[B D () - B2 n)D + 0n D2 n[0nB2 + n i$B n 2/p2,n]/QD+n . (2.123)

The expression for the power in Region 2 then becomes

-BD b 2
P2 B + 2 b (2,n _2 D2n) (2.124)

If in both Eqs. (2.122) and (2.123), the quantities 0o(H) and 0 (E) are calculated as

-,n exp [PI,,(XI - X2) 1 + exp [-2pl,n(xI - X2)}/2 (2.125a)

,n= exp [,,(X - 2 )]{1 - exp [-2p 1 , (X - X9]}/2p 1 n (2.125b)

and the common exponential term taken outside the brackets, the numerical computation does not
require taking the difference between two very large numbers.

Calculations in all regions must consider the sign of pi2n,. For those modal components where 2
is negative, the hyperbolic functions may be replaced by their trigonometric counterparts with

Pi,=n =/ for p2n < 0-

The power being carried by the waveguide, as calculated from Eq. (2.110) together with Eqs.
(2.113), (2.114), and (2.124), is dependent on the magnitude of the (arbitrary) normalization constant
used in solving for the eigenvector of amplitude coefficients in Eq. (2.100). Since the waveguide is a
linear device, the power is proportional to the square of the electric field magnitude. Using a zero sub-
script to denote numerical quantities corresponding to the eigenvector normalization,

P/IE 12 = Pd IE0 12 (2.126)

for a given waveguide geometry and fixed frequency. The equality is valid for the electric field at any
point and in any direction as long as E and E0 are similarly defined.

Peak power breakdown in the dielectric loaded ridged waveguide of Fig. 3 will occur when either
(1) the maximum electric field in the air region exceeds the electric breakdown strength of air, ED, or
(2) the maximum electric field in the dielectric exceeds the electric breakdown strength of the dielec-
tric, Eectric. In any complete rigorous analysis, such as this approach with an infinite number of
terms in the series expansion for the fields, a singularity in E will be found at the corners of the ridge
[11,14,661. Any ridged waveguide with perfectly square ridge corners would, in theory, break down at
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vanishing small power levels. However, if the corners of the ridge are slightly rounded, as is done in
practice [11], the E fields remain finite. The ratio of the maximum electric field intensity at the ridge
corners, E, to that at the center of the ridge, E, is then a function of the corner radius [11]. Peak
power breakdown will occur in the dielectric when Es > EDlectric. Different dielectric materials have
different breakdown strengths which in general will be dependent on several variables such as dielectric
thickness and moisture content [25,26]. Rather than introduce additional parameters, the power break-
down aspect of this investigation will make the following assumptions unless otherwise noted: (1) the
breakdown strength of the dielectric is 10 times that of dry air, and (2) the Es/EC ratio is 2.5. The
basis for the first assumption is the dielectric strength of polystyrene, with EBD = 700 volts/mil [25].
Other dielectrics such as polyethylene have substantially greater breakdown strengths [26]. The basis
for the second assumption is the article by Hopfer on ridged waveguide [11] which shows a ratio of 2.5
for E/EC to be a conservative value. For most configurations of the dielectric loaded ridged
waveguide, air breakdown will occur at a much lower power level than that for breakdown in the dielec-
tric, and the exact values of Es/EC and E9Dlectrc will not be relevant. If the waveguide is such that the
actual value of either of these two parameters is sufficiently different from the assumed values-larger
Es/EC or smaller E6Dlecic-so as to result in dielectric breakdown at a lower power level than that for
air breakdown, appropriate corrections must be made for power breakdown.

At all points in the waveguide, the axially directed electric field E, is small in comparison with the
transverse electric field ET. where ET = aE, + ayEy, for the dominant, or QLSE,,0 mode at frequen-
cies above cutoff. Since E is in phase quadrature with E and Ey, the maximum electric field will lie
in the x-y plane. At the center of the waveguide E is zero for the QLSEI 0 mode because of the effec-
tive magnetic wall at that plane; thus, the maximum electric field will be Eylmax. From Eq. (2.25b),
Ey at the waveguide center is

N2

Ey ,X3= I B3,, cos (2n 7y/d).
n=O

Since the coefficients B3,n are a function of frequency and waveguide geometry, no rigorous procedure
is available to find the maximum in terms of a general function of the coefficients. Investigation of
numerous configurations, however, has shown the coefficients to alternate in sign. At the ridge sur-
faces, y = 2,

N2

y X=X3 (-1)" B3,n;
n=O

thus, the maximum value of Ey occurs at the ridge. Calculation of E as
N2

E = £ y , (2.127)

must then be a worst case condition since

I Ey (x =x 3 ) 1 E (2.128)

where the equality in Eq. (2.128) is valid at y = +d/2 for all of the many waveguide geometries that
were checked. The maximum electric field within the dielectric will then be taken as 2.5 Es with EC
calculated from Eq. (2.127). The peak power level for dielectric breakdown is thus

(10 E'D )
2 po

Pdielectric [2.51 I B 3,, I]2

or

dielectric = 16 (E., )Po/I 1B3.I (2.129)
n=O
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where the coefficients B3,, are the same used to calculate the normalized power PO. Unless otherwise
noted, the value for air breakdown will be taken [11,25] as

Eair = 30,000 volts/cm. (2.130)

In the air region, the maximum electric field will occur at the air-dielectric interface, x =-X 2 in
Fig. 4. At this plane, the fields are found from Eqs. (2.12)

N2

ExI X=-X2 = I A ,,, cosh [p1 ,,(xI - X2 )] sin (2nrylb)
n=I

N2

Ey x=Jx2 = S Bl,, sinh [PI,, (x - 2)]/p,,, COS (2niry/b).
n=l

The magnitude of the transverse field is

IETI - (E2 + E2)1/2

Investigation of several waveguide geometries showed the point of maximum ETI to occur at varying
distances from the horizontal plane of symmetry at y = 0, depending upon the thickness of the dielec-
tric piece and the ridge gap. For large (t - s)/d ratios, the maximum occurs at y = 0; as this ratio
decreases the point of maximum ETI approaches y = d/2. Such behavior is to be expected when the
fringing nature of the fields due to the ridge is considered. To determine the maximum electric field in
the air region, IETI was calculated at x = -X 2 for 33 equally spaced points for y, from y = 0 to
y = d/2, with ETmax taken as the maximum of these values. The peak power level for air breakdown
is thus calculated as

pBD = P(E4BD)2/jET1' (2.131)
air - 0'-air' max

where the coefficients used to find ET max are the same used to calculate the normalized power PO.

Of course, the peak power capacity of the waveguide is the lesser of the two breakdown power
levels, pBD or PBDectric- As mentioned earlier, the power capacity will be limited by air breakdown for
most of the configurations investigated. The distinction will be'made apparent for those conditions
where breakdown is in the dielectric rather than in the air.

Convergence characteristics of the numerical values calculated for power breakdown, both in air
and in the dielectric, are shown in Table 2 for a typical waveguide geometry. While the calculated
values for power do not converge as rapidly with increasing NT as do the values for f, or 3, as few as
four terms in the series expansion for the fields will generally yield a value within 2% of that
obtained using many more terms.

2.4 Attenuation Calculations from Perturbation of the Lossless Condition

Up until this point, the waveguide of Fig. 3 has been assumed to be lossless, with the complex
propagation constant y = + j13 having the loss term a equal to zero. This is a conventional assump-
tion made when deriving the propagation characteristics of low loss transmission lines such as
waveguide [1,2,16,41]. Of course, any physical transmission media has some finite loss. If the
transmission loss is small, the conventional approach to theoretically determine the loss term is to
assume that the perturbation of the actual (lossy) fields from the fields of the lossless condition is
negligible. The lossless field distribution, together with parameters such as the conductivity of metallic
conductors and the loss factor of dielectric materials, is then used to calculate the loss term [1,21. Such
an approach will be used to calculate the loss of the dielectric slab loaded ridged waveguide of this
investigation.
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For this attenuation analysis, the axis definition of Fig. 4 will be used and propagation in the posi-
tive a direction will be assumed. Each of the fields of the waveguide will vary as exp (-az), thus the
power will vary as exp (-2az). If the power flow at a point z is PO, the power flow at a point incre-
mentally removed from z, z + Az, is PO exp (-2aAz). Thus,

P(z =zo) P(z = zo + Az) = P - exp (-2aAz)].

If the increment Az is small,

P(z = ZO) - P(z = Z + Az) = WLAZ

where WL is the power lost per unit length of the waveguide. Thus,

P0[1 - exp (- 2aAz)] = WLAZ

and if the series expansion

exp (-x) = 1 - x + x2/2! - x3/3! +
is used for the exponential term, then in the limit as Az approaches zero

a = WL/ 2 PO. (2.132)

For the purposes of this investigation, the power loss will be attributed to two factors only: (1) the
imperfectly conducting metal walls of the waveguide, and (2) the finite resistivity of the dielectric
material used in the center region of the waveguide. Such additional factors as radiation loss are not
applicable. Loss in the air dielectric region will be neglected.

The power per unit length dissipated in the waveguide walls is given by [1,2]

WC 2= i3IJ 5 I2dl (2.133)

where J is the surface current density and R, is the surface resistivity of the metal. The contour
integration is clockwise around the waveguide boundary. The surface current density is assumed to be
that of the lossless waveguide, with [40,441

is= n x H

where n is the unit vector normal to the conducting surface. Thus,

IJ1I2= IH 12

where Ht is the tangential component of magnetic field at the surface. The surface resistance R is
[2,451

Rs= 7j7I

where f is the frequency in Hertz, 2 is the permeability of the metal (usually ,u = /uo), and a- is the
conductivity of the metal. The attenuation due to conductor losses then becomes

R4 I H,1 Pd!
X=* (2.134)

The power flow PO in the waveguide has already been derived in Section 2.3 and will not be repeated
here.
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Advantage will be taken of the field symmetry to calculate the conductor losses. Defining the fol-
lowing surfaces of Fig. 4 as

Su: x=-x 1 ,-b/2 y b/2

S2: -X < X -X 2 , y = b/2

S3 : -X2 < x < 0, y = b/2

S4: x= 0, d/2 < y b/2

S5: 0 < x < x 3, y = d/2

and letting W(') be the corresponding power per unit length dissipated at each surface, then

= 2WC() + 4(W(2) + W(3) + W(4) + W (2.135)

On the surface SI

W (1) y[ Hy()1I2 + IHz ()12]x=.xdy.
-b/2

Substituting the series expansion from Eqs. (2.12) for the fields Hy(') and H(u) gives

c= 25 F Y [Fl, F mU bl2 sin (2nly/b) sin (2mvy/b)dy
n=O m=O

+ 1, 1,Ib/2 (21ybd]
+ GllnGl,.~w b/2 cos (2niry/b) cos (2mmylb)dy].

Because of the orthogonality of the y-dependent functions on the interval -b/2 < y < b/2, the last
equation reduces to

Wc(') b f2Go + S (F?,, + G,,). (2.136)

On the surface S2

W(2)= RS x 2[IH(1)12 + IH(I12]=b/2dx

Substitution of the series expansion from Eqs. (2.12) for H(1) and H(l) then yields

-= Rs N2 N2
c (_)+m[DnDm0-.f + GlnGim q'cfcn]

n=O m=O

where the x integration is that for Region 1, with

(,X2 sinh [P1,n (X + X)] sinh [PI,m (X + xl)]
VI 1, nm f-X ~Pu,,, P,m

and

x2
ql1,nm = -Jw cosh [p ,,n(x + xl) cosh [p ,,n(x + x ) dx.
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These two integrals may be evaluated as

rim = (cosh [p,, (xI - X 2 )] sinh [,m (X-X2)]IPI,

- cosh [P ,,, (X - X 2 )] sinh [pl,,,(xl - 2 )]/P I,,}/(Pl 1 , -Pl,m) for n m

qj Snm = (cosh [pI,,(xI - X2 )] sinh [pn(xI - X 2 )]I/pn - (X1 - 2 )}/2p2,, for n=m

q fm= (pn 1,, cosh [PI,m (X - X2 )] sinh [P, (XI, -X-2)]/PI,n

Pm cosh [P,,,(x - x 2 )] sinh [PI,m (X - 2 )]/PIm1/(P, - m) for n m

Viom = (cosh [p1,,(x - X 2)I sinh [pn(xI - 2 )]/P1,n + ( - X2))/2 for n = m.

On the surface S3

W4(3) = RS [(2)2 + IHZ(2)12]y b/2dx

Substitution of the series representation for the fields H( 2 ) and H) 2) from Eqs. (2.35) gives

W = C (21)fl+ ,in,[D2?)D2,n) + G+G(+m) + lIJcs[mfD2(+)D2() + G2+n)G2)
n=O m=O

(2.138)+ JSC m D ()D(s+) + G ,n)G+4)] + " mID (-)D(-) + G (-) G ,ml

where the x integration is that for Region 2, with

0

mn = J 2cosh (P2 ,nX) cosh (p2 ,mX)dX
e 0

2, nm = J -X2 cosh (P2,nx) sinh (P2,mx)/p 2 ,mdx

#2,,nm = X2 cosh (P2,mX) sinh (p 2 ,x)/p 2 ,ndX

Snm O snh(p 2 ,x) sinh (P 2,mX)
Atritgaigwtrepcto, thee iP2,nP2,m 

After integrating with respect to x, these integrals are found to be

j2 nm= {p22,,cosh(p2.mx2 ) sinh ( 2 ,,x9/p 2 ,,

- p22,m cosh (p2,,,x2) sinh (P2,m X2)/p2,,,}/(p22, - 2,m)

INCC= {cosh ( 2 ,,x 2) sinh (P 2 ,,X 2)/P 2 ,n + X2112 for

r2nm= (cosh (p2,nx2) cosh (P2,mX2)-1

2 sinh (P 2,nX 2 ) sinh (P2,mX2) 2 - 2
P2,,, P2,nP2,m (P2,,, P2,,n)

12nm= {1 - osh 2(p2 ,,x 2 )}/2p2?, for n = m

2nm= {1 - cosh ( 2 ,,x 2 ) cosh ( 2,,,,x2)

p2,m sinh (p 2,,x 2) sinh (P 2 ,mX 2) 2 - 2
+2,m P- M } / (P2,n P2,,m)

P2,nP2,m

'k2
5
%, = 11 -cosh

2 (p2 ,x2 )}2p2, for n = m

n = m

for n # m

for n • m
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2 nm = cosh (p2 ,,X2) sinh (P2,,mX2)/P2,m

-cosh (P2,mX2 ) sinh (P2 ,,X2)/P2 , }/(p2,n - 2,n)

'Msms = {cosh (p 2 ,nx 2 ) sinh (P2 ,nX2)/P 2,, - 2}/2p22

for n # m

for n = m.

The loss per unit length on the side of the ridge wall, or surface S4, is

W(4) = RS fb/2 [IH(2)12 + IHz(2)121 0 dl.

The series representation for the fields may be substituted from Eqs. (2.35), and since dl = - dy
because of the clockwise contour integration

N 2 N 2 n N2 N2

2() Rs 2 F2(+)F (+) 4ss + sWC( = 2 £ £' F'n m 2,m0nm 2 , 
n=l m=l n=O n=O

(+) G (+) 0 cc (2.140)

where
r b/2

) m = d/2 sin (2n7ry/b) sin (2miry/b)dy

r' b/2
ccim = Jda CO fd/ 2 cos (2nvy/b)cos (2miry/b)dy.

These trigonometric integrals are evaluated as

nSS 4{sinc[v(n + m)r] - sinc[1r(n - m)r]}

tnsm = {b - d + d sinc(2n7Tr))/4 for n = m

¢ cc = - 4d sinc[b(n + m)r] + sinc[(n - m)rI}nn 4

nc= (b - d)/2

where r is the height ratio, r = d/b.

Finally, on the surface S5

(5) Rs
C - 2

for n = m 0

for n = m = 0

fo3 [IIX12 + IHZ Iyd/2 dx.

Substitution of the series representation for the fields from Eqs. (2.25) will yield

R N2 N2
WC(5) =-- 25 £ (- 1)n + m D3 ,nD3 ,m qccm + G3,n G3 ,m 3snm}

n=O m=0

where the x integration is that for Region 5, with

C n= Iox3 cosh [P3 ,n (x- X 3)] cosh [P3 m (X -x 3 )]dX

ss fx3 sinh [p3,n (X -x 3 )] sinh P3m (X -X 3)] dX
3, n 0 ~ ~~~~P3,nP3,m
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for n • m
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These hyperbolic integrals are easily evaluated as

3n = {(p 2,, cosh (P3,mX 3) sinh (p3 ,,X 3)/p 3,,

- (P3,m cosh (p3 ,,,X3) sinh (P 3 mX 3 )/P 3 m}/(P3n - P3,m) for n m (2.142a)

P3,nm = Icosh (p3,nX3) sinh (p3 ,,X 3)/p 3 ,, + X3}/2 for n = m (2.142b)

35n = {cosh(p 3,nX3) sinh (P3,mX 3)/P 3,m

-cosh (P3,mX3) sinh (p 3 ,,x 3 )/p3 ,,I}l(p 3, -P3,) for n X m (2.142c)

35nm= {cosh (p3,nX3) sinh (P3 ,,X3)/P 3,n - X 3 /2p n for n = m. (2.142d)

On the four surfaces where the double summation is required to obtain the loss, the contributing
factors are symmetric; i.e., on each surface the loss term for n = i, m = k is the same as the loss term
for n = k, m = i. This fact is easily shown by examination of the various integration terms and may
be used to reduce the number of computations required for numerical solutions. Having obtained the
loss per unit length W(i) on each of the five surfaces Si the total conductor loss per unit length W, is
found from Eq. (2.135), and the attenuation due to the finite conductivity of the metal walls is

c= W/2Po.

Of course, the set of modal component coefficients used to calculate Wc must be the same as that used
to calculate PO as outlined in Section 2.3.

Any physical dielectric will absorb some energy when placed in a time varying electric field. In
addition to conduction loss due to finite resistivity, there are a number of mechanisms which will gen-
erate loss in an imperfect dielectric [2,26,40]. The physics of dielectric loss is outside the scope of this
investigation. The effects of such phenomena on the microwave properties of the subject waveguide
may be included by expressing the dielectric constant as

E = E' - jE" (2.143)

where E' is the a-c capacitivity and all loss mechanisms are included in the dielectric loss factor E"
[41]. A commonly used alternative expression to Eq. (2.143) is

E = Ele exp (-i8D)

where D is the dielectric loss angle. Thus,

E'/E'= tan D (2.144)

where tan D is the dielectric loss tangent of the material. Good dielectrics have values of tan SD in
the 10-5 -10-3 range [25,261.

For macroscopic properties, an equivalent conductance representing all losses in the dielectric [2]
is

TJe = CO E

The power loss in the dielectric is given by

PD=f I -Ce" IE l2dv.
volume

The power loss per unit length along the z-axis due to imperfect dielectric is thus

Wd = C°2 f r{j£ i2+IEyI2I 1z 2}dx dy (2.145)
S
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where the surface integration is over the dielectric portion of the waveguide. Advantage may be taken
of the waveguide symmetry to give

Wd = 2(W(2) + WJ(3)) (2.146)

where W(2) and WJ" are the power loss per unit length in Regions 2 and 3, respectively, of Fig. 4.
Wd2 ) and Wd f) are calculated from Eq. (2.145) using the fields and integration surface of the

corresponding region. In each of the two regions, the integration in (2.145) may be done term-by-
term, with

W(i= Wd(,) + Wdy + Wdz) (2.147a)

for i = 2, 3, where

d= WE f IE(i) 12dx dy (2.147b)

for p = x, y, z. Substitution of the series representation for Ex2) from Eq. (2.35a) gives

d()= C° I- IuJI2 | £[2, cosh (P2,,X) + A2(-j sinh (p2 ,,x)/p2,,] sin (2nry/b)}
(2 N2E 0 12N

£ [A2 cosh ( 2 mX) + sinh (P2 mX)/p 2 m] sin (2mry/b)}dx dy. (2.148)
m~~~~~l=

Since the functions sin (2niiy/b) and sin (2m7ry/b) are orthogonal on the interval -b/2 < y< b/2,
the y integration will eliminate cross products of the different modal components and Eq. (2.148)
reduces to

wx I) {[A )]2I2c, + 2A (+A(-)Ise, + [A )n2I,,1

where the x integration terms Ic5,, Isf,, and JMS,, are the same as those used in the power analysis of
Section 2.3, and the same as tIm, IJc m and qj Im, respectively, of this section with n = m and are
evaluated in Eqs. (2.139b), (2.139f), and (2.139h).

The development of W?(2) and W(2) is similar to that for W(2x). With substitution of the series
representation for the fields from Eqs. (2.35b) and (2.35c) into Eq. (2.147b)WE, , N2 f

Wd( = _22 £(I + a no),[Bj+) ICn + 2 2,,+ BI-)2s,, + [B2Issn

Wdl = 2 2 £{ [cj
2

I ,, + 2C(C2(, , + [C2 )]22Isn 2

In Region 3, the calculation of Wd3 ) is similar to that for wd2 ) in Region 2. Using the series
representation for the fields in Region 3 from Eq. (2.25) gives

d~~~~~~~2~~N

Wd=2 2 ,,- sI~s

W b N2 (+)121c~~cOEse" d N2 2j

dy 2-2 £(1 + ,O) B2(I3Cn

W (3) W~ d 2)sC

WE d N2w23) 2 2,
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where the x integration terms I3sn and In are the same as those of Section 2.3 and the same, respec-
tively, as 14I,,,, and tpccnm of this section with n = m, and are evaluated in Eqs. (2.142b) and (2.142d).

Once the full loss per unit length Wd due to the imperfect dielectric is found from Eqs. (2.147)
and (2.146) the dielectric attenuation constant is then calculated as

ad = Wd/2Po (2.149)

where the amplitude coefficients of the fields are the same for numerical evaluation of both Wd and PO.
The total loss per unit length of the waveguide is Wc + Wd, thus the total attenuation factor due to
conductor losses and imperfect dielectric is

a = ac + ad- (2.150)

Each of these attenuation terms is in nepers/unit length. To convert to the more conventional
engineering terminology of dB/unit length, the relation is

exp(-2a nepz) = 0 (adBZV10

where atep = nepers/unit length and adB = dB/unit length, thus

adB = 20a,,ep/lnIO

or
adB = 8.686anep.

In calculating numerical values for both ac and ad, large errors may result when the number of
terms NT in the series expansion for the fields is large. This is due to the computational difficulty
encountered for numerical evaluation of factors such as

an cosh (px) sinh (mx) - bm cosh (pmx) sinh (pnx) (2.151)

when the hyperbolic terms are very large. Accuracy problems were found to be particularly trouble-
some when evaluating the quantity Wc for determination of ac and the quantity Wd2) for determina-
tion of ad. To avoid errors caused by such computational limitations, (2.61) and (2.62) may be used to
reduce the various terms in the double summation equations to expressions where factors like those of
Eq. (2.151) are not present. Such a technique is similar to that used in Section 2.2 for calculation of
the coefficients A ,n and DI,,.

Convergence characteristics for the attenuation terms a and ad of the QLSEuo mode as a func-
tion of NT are shown in Table 2 for a typical waveguide geometry.

2.5 Computer Program Implementation

The mathematics of the theoretical analysis developed in the preceding sections of this chapter
was incorporated in to the computer program DLDRWG to calculate numerical solutions for the dielec-
tric loaded double ridged waveguide. Appendix E2 lists this program. The program is written in
FORTRAN-10 and is designed for use on the DEC-10 timesharing computer.

Input parameters required for the program are the five physical dimensions (in inches) and the
relative dielectric constant of the dielectric material (Fig. 3). The waveguide mode for which a solution
is sought must be specified, as well as the number of terms NT to be used in the series expansion for
the fields. The cutoff frequency of the particular mode must be found first, then if desired the propa-
gation term 13 may be found for any frequency c > wc. When solving for a root, either coc or ,, two
modes of operations are available. The first is a search mode, for which the user must provide start,
stop, and incremental values of the unknown quantity. This mode enables examination of the deter-
minant value as a function of the unknown parameter and is useful to distinguish sign changes of the
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determinant due to poles from those at the zeros (roots). The second operational mode is an automatic
seek mode to find any root between specified limits. The seek mode uses a combination of the binary
search method and Newton's method to obtain the root [64,651. Because of the wide variation in the
magnitude of the matrix determinant, the criterion used for root determination was that the unknown
variable, coc or 1, be within 0.001% of the actual determinant zero.

The program will calculate attenuation and power breakdown levels for the QLSEuo mode only.
If numerical values for these characteristics are requested, the user must supply additional parameter
information: (1) the conductivity of the waveguide walls, normalized to that of copper; (2) the loss
tangent of the dielectric materials; and (3) the electric breakdown strength, relative to that of dry air, of
the dielectric material.

The program will also supply, if desired, the modal amplitude coefficients for the fields in each
region of the waveguide.

In addition to the waveguide configuration of Fig. 3, program DLDRWG will provide numerical
results for waveguides in which the dielectric width t is less than the ridge width s as shown in Fig. 5.
The mathematical development of an analysis for such a waveguide geometry closely parallels the
development presented for t s, but the details will be omitted since the primary objective of this
investigation concerns large power breakdown levels. The waveguide of Fig. 5 obviously is not
appropriate for high peak power operation because of the large electric field intensity that would be
present at the sides of the dielectric material.

d

a

Fig. 5 - Dielectric loaded double ridged
waveguide with t < s -

Numerical solutions for dielectric loaded single ridged waveguide, Fig. 6, may be obtained with
this theory by considering the waveguide as the top half of a dielectric loaded double ridged waveguide
operating in a (M,E) or (E,E) mode, i.e., with an effective electric wall at the horizontal plane of sym-
metry. The modes of the waveguide of Fig. 6 thus would be the QLSEm,, and QLSM,,, modes, with
n restricted to even integers, of the waveguide of Fig. 3 where all vertical dimensions of the latter
waveguide are double those of the single ridged waveguide. The attenuation calculations for the double
ridged waveguide, however, would not be valid for the single ridged waveguide.

Theoretical results obtained using program DLDRWG are presented in Fig. 7 for a typical dielec-
tric loaded double ridged waveguide. Cutoff frequencies for the four lowest order waveguide modes are
shown, while the power breakdown and propagation characteristics of the dominant QLSE,,0 mode are
plotted as functions of frequency. As with any waveguide, the phase term 3 and the power breakdown
rapidly drop to zero as the frequency approaches cutoff, while the attenuation terms a (conductor
loss) and ad (dielectric loss) each display a minimum value as a function of frequency.
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Fig. 6 - Cross section of dielectric loaded single
ridged waveguide

Waveguide Parameters Mode f,(GHz )

Dimensions In Inches (cm )

a= 0.6
b = 0.36
d = 0.09
s: 0.1
t= 0.2
e= 4.0

(1.524)
(0.914)
(0.229)
(0.254)
(0.508)

QLSEI , 3.17
QLSE, L 16.03
QLSE1 1 2376
QLSMo j 14.83

8 10

Frequency (GHz )

BW =4.68

1.0

0.8

0.6 
0

3
0.4 Z

0.2

0

Fig. 7 - Typical waveguide characteristics for QLSE, 0 mode

2.6 Comparison with Other Theory

Numerical results obtained from the theory presented in this chapter were compared with results
obtained from other sources. For the reduction of the waveguide of Fig. 3 to empty rectangular
waveguide, i.e., d = b and E, = 1, the results obtained from program DLDRWG-cutoff frequencies
and propagation characteristics for all modes, as well as attenuation and power breakdown values for the
dominant TE1,0 mode-were identical to results obtained from conventional theory [1,2,41,42,67].
With the waveguide of Fig. 3 reduced to dielectric slab loaded rectangular waveguide, d = b, the results
of this theory again were identical with other published results [3,18,20,23,68,69]. Such favorable com-
parison is expected, of course, since for both types of waveguide the mathematics of this theory reduce
exactly to the corresponding mathematics of the conventional theory. This exact reduction is a conse-
quence of the matrices MI, M 2, M 3, and M 4 of Section 2.2 being diagonal when d = b, thus leading to
a diagonal matrix for the eigenvalue problem.
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Comparisons for empty double ridged waveguide (r = 1 but d < b in Fig. 3) were made from
several sources. Table 3 shows the agreement of this theory with results of Hopfer [111 for the normal-
ized cutoff wavelength of the TE1 O(QLSE1 O) and TE20 (QLSE20 ) modes. The attenuation results of
this theory were between 2% (for BW = 3) and 18% (for BW = 5) less than the graphical results
presented by Hopfer.

Table 3 - Comparison of Cutoff Frequencies
with Results from Hopfer

Air-filled double ridged waveguide

X/a TE1,0 mode X/a TE2,0 mode
s/a dl |

This Theory Hopfer This Theory Hopfer

0.1 0.1 4.104 4.11 0.911 0.91

0.1 0.3 2.863 2.89 0.935 0.93

0.1 0.5 2.414 2.43 0.956 0.96

0.3 0.1 5.160 5.15 0.823 0.82

0.3 0.3 3.257 3.26 0.927 0.93

0.3 0.5 2.623 2.62 0.960 0.97

0.5 0.1 5.395 5.40 1.113 1.12

0.5 0.3 3.324 3.33 1.132 1.12

0.5 0.5 2.657 2.67 . 1.090 1.09

Notes
(1)

(2)
b/a = 0.5
NT = 6

(3) Results from Hopfer [111 are graphical

Power and attenuation comparisons were made using published technical data for standard double
ridged waveguide [67]. For all waveguide geometries tested, the results of this theory agreed within 8%
of the listed values for both attenuation and power. For this comparison, the corner correction data
from Hopfer [11] was used to correct for the increased electric field at the rounded ridge corners and
the power safety factor of 4 included for this theory.

The only published data found in the open literature concerning higher order modes other than
TEn, 0 modes for empty double ridged waveguide were calculated by Montgomery 14]. For the
waveguide case with E, = 1, the QLSErno mode designation of this theory may be replaced as a TEn,o
mode since E= 0; i.e., all modal components of E, vanish for all frequencies. Also, all QLSM modes
reduce to TE modes while all QLSEn,, modes (with n > 0) reduce to TM modes when E, - 1. A
comparison of cutoff frequencies for different TE modes obtained from this theory and those from [14]
is shown in Table 4. The trough modes of Montgomery are cross-polarized to the hybrid modes; also,
the trough modes occur in pairs which are almost degenerate, hence the one to two correspondence
with the modal designation of this theory. No numerical results were given in [141 for TM modes
corresponding to the QLSErnn (n > 0) modes of this theory.
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Table 4 - Comparison of Numerical Results with
Those of Montgomery

Empty Double Ridged Waveguide

a = 0.5 (1.27)

b = 0.4 (1.02)

d = 0.11 (0.28)

s = 0.1 (0.25)

Dimensions in inches (cm)

bs-

With NT = 6
Trough modes are almost degenerate pairs

Magerl [271 had the only information found in the technical literature on dielectric loaded ridged
waveguide, but the investigation was restricted to the case where the dielectric width was exactly equal
to the ridge width (t = s in Fig. 3). Although the analysis incorrectly assumed a true TE modal struc-
ture, the derivation of cutoff frequencies for modes corresponding to the QLSEio and QLSE2,0 modes
of this theory was valid [28] since E, does vanish at cutoff for these modes. Within the limitations
inherent in obtaining numerical values from the graphical data of [27], the results were found to be
identical with those of this theory for cutoff of the QLSE1,0 and QLSE2 ,0 modes. Although a brief dis-
cussion of other waveguide modes was made in [27], no analysis was given.

3.0 COMPARISON OF EXPERIMENTAL DATA WITH THEORY

3.1 Propagation Characteristics

Measurements were made on experimental sections of partially dielectric loaded double ridged
waveguide for comparison with the predicted performance of the theory based on the mathematical
analysis derived in Section 2. Since the waveguide is a linear device, propagation characteristics are
independent of power level. The propagation characteristics thus were measured at low-power levels
due to the greater flexibility, increased accuracy and simplified hardware of a low-power measurement
facility as opposed to that for a high-power facility.
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This theory 1 ) Montgomery

Mode fi (GHz) Mode f (GHz)

QLSE o 6.8907 TE 1,0 Hybrid 6.8570

QLSE2 ,0 24.9308 TE2,0 Hybrid 24.8582

QLSE3 ,0 32.0311 TE3,0 Hybrid 32.0246

QLSMo I 15.076 TEuo Trough(2) 15.1046

QLSM I 15.127

QLSMO,2 29.5737 TE2,0 Trough(2) 29.5363

QLSMI,2 29.5742

QLSM 2,1 33.228 TEu,1 Trough(2) 33.2723

QLSM 3,1 33.295

Note
(1)

(2)
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All low-power measurements were made on a computer-aided automatic network analyzer
(ANA), a Hewlett-Packard Model 8409B. This unit can measure complex transmission and reflection
coefficients between 0.1 and 18 GHz of one and two port devices. The theory of operation and charac-
teristics of this type of microwave measurement system are well documented [70-73] and need not be
discussed further. Measurements were made in two bands, the first (low band) covering the 8 to 12
GHz range, and the second (high band) covering the 12 to 18 GHz range. This was necessary to allow
transitions from the coax system of the ANA to the rectangular waveguide sections used to interface
with the waveguide under test (WUT). The interfacing waveguide was standard X-band waveguide for
the low band and standard K- band waveguide for the high band. These frequency bands were
selected since precision waveguide calibration kits were available for both X and Ku waveguide; with
the increased accuracy of the ANA calibration greater accuracy could be achieved in the measurements.
Measurements were made in frequency increments of 0.5 GHz or less.

To obtain the propagation characteristics for a particular dielectric loaded double ridged
waveguide, measurements were made on three different lengths of the waveguide, where each
waveguide sample had the same cross-sectional geometry. Then at each measurement frequency, the
three measured complex transmission coefficients were used, along with the measured physical lengths
of the three samples, to correct for the inherent mismatch between WUT and the interfacing rectangu-
lar waveguides. The effect of the mismatch on the measured propagation characteristics is analyzed in
detail in Appendix D, where the technique used for mismatch correction is derived as Method 3. The
values of the propagation constant /3 that will be shown as experimental data thus are not direct meas-
urement results, but are derived directly from the measured data. Discussion of the waveguide loss, or
attenuation, term a will be made at a later stage in this section.

To allow measurements of waveguides with a variety of cross-sectional geometries, brass test fix-
tures were fabricated as shown in Fig. 8. For each length of waveguide the top and bottom wall sec-
tions were common for all cross-sectional geometries. The sidewall sections as well as the ridge sec-
tions were fabricated in pairs. Screws were used to assemble the complete structure, along with steel
locating pins to minimize side play and allow accurate positioning when changing the geometry. While
not a recommended construction method for an operational waveguide, this method of fabrication
afforded a large degree of freedom in the choice of geometries for the waveguide. The three lengths of
the waveguide used for the low-power tests were 1.25 in. (3.18 cm), 1.474 in. (3.74 cm), and 1.998 in.
(5.07 cm). Corresponding lengths of H-shaped dielectric inserts were machined from polystyrene (e,
=2.54) and from Emerson and Cummings Stycast K-12 (, = 12) to mate with several housing

geometries. Because of the slight imperfections in both the machining and assembly processes of the
brass housing, it was necessary to make the dielectric inserts slightly undersize to allow assembly and
disassembly of the complete waveguide test pieces.

o 0f

a. Exploded End View

Note:

Locating Pins And I

Assembly Screws

Not Shown. L
I b. Assembled Side View

Fig. 8 - Low-power test housing
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The first measurements were made on samples of dielectric slab loaded rectangular waveguide
(DSLRWG) and air-filled double ridged waveguide (DRWG) as a check on the validity of the program
used to correct for mismatch effects. For both waveguide types, the theory of this analysis has already
been shown to agree quite closely with the results of other researches (exact agreement in the case of
DSLRWG). Figure 9 shows the very close agreement between theoretical and measured values of 3
for DSLRWG operating in the dominant TEI,0 mode. The agreement is good even for frequencies
where higher order modes may propagate. The absence of an effect on propagation characteristics of
the TE1,0 mode by higher order modes may be due to the fact that the higher order modes are not
present; i.e., although higher order modes may propagate, they are never launched by coupled energy
from the dominant mode. Alternatively, the higher order modes could be present but with no frequen-
cies for resonant conditions near the frequencies at which the measurements were taken, thus produc-
ing negligible effects. If higher order modes of significant magnitudes were present, they would cause
abrupt spikes at resonant frequencies in the otherwise smooth trace of transmission (both magnitude
and phase) through the sample waveguide when the measurement was made in the manual mode of
operation for the ANA on a continuous swept frequency basis. Such a swept frequency measurement
showed no discernible evidence of higher order modes up to 18 GHz for the waveguide of Fig. 9.

Waveguide Parameters Mode f, (GHz)

Dimensions In Inches (cm)

300 - a= 0.6 (1.524) LSE1Q 7.00
b= 0.3 (0.762) LSE,, 15.33
t = 0.202(0.513) LSM0 16.38

250 - E = 2.54 LS E 16.79

o 200
a

Theoretical

D o Experimental
qu.

100 -

50 - Higher Order Modes
May Propagate

8 10 12 14 16 18

Frequency (GHz)

Fig. 9 - Comparison of theory with experimental data for
dielectric slab loaded rectangular waveguide

The agreement between theoretical and measured /3 is shown as a function of frequency for the
TEI,0 mode of DRWG in Fig. 10. For this waveguide, the cutoff frequency of the first higher order
mode is greater than 17 GHz. Any higher order modes would thus be very close to cutoff at the largest
measurement frequency, 18 GHz, and the resultant attenuation so great as to preclude any effect on
the TEI,0 mode measurements.

The initial measurements on the first sample of dielectric loaded double ridged waveguide did not
indicate good agreement with theory, as indicated by the triangular data values of /s in Fig. 11. For
these measurements, the actual volume of dielectric material was less than the theoretical volume
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Waveguade Parameters

Dimensions In Inches (cm)

a = 0.6 ( .5 24 )
b =O.35 (0.889)
d= 0.1 (0.254)
s = 0.098 (0.249)
Er= 1.0

- Theory
o o Measured

I I
10 12 14 16

Frequency (GHz)

Fig. 10 - Comparison of theory with experimental data for
empty double ridged waveguide
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Fig. 11 - Comparison of theory with experimental data for
DLDRWG with QLSE, 0 f = 4 GHz
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because of the required loose fit of the dielectric piece for assembly. An effective dielectric constant
may be calculated on a volume basis as

Er V' + (V - V')

Eeff v
where V is the theoretical volume of the dielectric piece and V' the actual volume of dielectric material.
With E, = 2.54 and V' estimated to be 98% of V, Eeff was calculated to have a value of 2.51. How-
ever, the initial measurements on this waveguide indicated a good fit for eff = 2.2. The possibility
that the dielectric piece (polystyrene) might have some value other than the presumed Er = 2.54 was
considered as a cause for the discrepancy between theory and experiment. Sample pieces of poly-
styrene, machined from the same stock as the waveguide insert, were checked and found to have the
expected E, = 2.54, however. The conclusion was reached that correction for the air gaps at the inter-
face between the dielectric material and the metal waveguide surfaces by a simple volume approxima-
tion to determine Eeff was insufficient.

Rather than trying to derive a more sophisticated method to correct for air gaps, it was decided to
simply eliminate the air gaps. Use of coil dope (polystyrene dissolved in toluene) was considered as a
solution but rejected because of the need to disassemble the waveguide structure to change geometries.
The method finally adapted was to fill the slots of the polystyrene piece with silicone grease prior to
assembly. The relative dielectric constant of this material is slightly greater than that of polystyrene,
with Er 2.7. Upon assembly of the waveguide structure the excess grease was forced out of the
metal/dielectric interface volume, leaving no air gaps. Such assembly had to be performed slowly and
with caution in order to give the excess grease time to flow and prevent cracking of the polystyrene due
to a build up of hydraulic pressure. The slight difference between Er of the silicone grease and Er Of
the polystyrene was then ignored because of the relatively small volume of grease. Of course, the sil-
icone grease did not harden as would have coil dope, and thus caused no problems with disassembly.

Using this silicone grease method for assembly, the measurements on the dielectric loaded double
ridged waveguide were repeated. The agreement between the theoretical and measured values of 83
were excellent as indicated in Fig. 11. For frequencies above 14.3 GHz, swept frequency measure-
ments gave no indication of the presence of propagating higher order modes.

All waveguides using polystyrene as the dielectric material were then assembled with silicone
grease. The agreement between theoretical and measured values of 3 (QLSE1,o mode) as a function of
frequency is shown in Fig. 12 for a waveguide similar to that of Fig. 11, but with an increased
waveguide width. Swept frequency measurements on the waveguide of Fig. 12 gave definite indications
of the presence of some higher order mode(s) for frequencies above 16 GHz. The large deviation of
the measured /3 (corrected from the raw data) from theory is due to these higher order mode(s) since
the mismatch correction assumes a single mode to be propagating in the sample waveguide (Appendix
D). A similar situation existed for another waveguide with a different geometry as shown in Fig. 13.
For this waveguide, agreement between theory and experiment was good also until higher order modes
began to propagate.

By using the same brass housings, similar experiments using E, = 12 dielectric material were
attempted, although it was recognized that because of the heavy dielectric loading most of the single
mode bandwidth would lie below 8 GHz. An assembly method similar to the silicone grease method
was used, but using a material with E 12 rather than silicone grease. For such a material it was
decided to use the filler portion of a two-part castable dielectric epoxy with E, = 12.5, without adding
the hardening agent. Two such experiments were made, but both gave poor agreement with theory. In
both cases, one or more of the dielectric pieces was found to be badly cracked when the waveguide
housing was disassembled. This failure of the dielectric material was attributed to two causes. First,
the material from which the dielectric insert was machined was old; experience has shown that dielectric
materials of this type tend to become brittle with age. Secondly, the dielectric epoxy used to fill the air
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Waveguide Parameters Mode f,(GHz)

- Dimensions In Inches (cm)
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Fig. 13 - Comparison of theory with experimental data for
DLDRWG with QLSEo,0 f, = 5 GHz
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gap was considerably more viscous than silicone grease; the hydraulic pressure encountered during
assembly split the dielectric. With the poor agreement between experiment and theory attributed to the
cracked dielectric insert, no further experimental attempts were made using a high E, material; the
excellent agreement for the E, = 2.54 waveguide configurations was felt to constitute sufficient experi-
mental verification of the propagation aspects of the theory for the phase term /3.

By using the waveguides with polystyrene dielectrics, the actual cutoff frequencies for the QLSE, 0
mode were confirmed directly. This was done by operating the ANA in a swept frequency mode to
find the frequency at which the transmission through the waveguide rapidly approached zero. For this
measurement, the interfacing waveguide had to be large enough to propagate at the cutoff frequency of
the sample waveguide, and conventional S-band rectangular waveguide was used. For some measure-
ments, the S-band waveguide was operated at frequencies where the TE2 ,0 mode could propagate; in
this case, however, overmoding of the interfacing waveguide was immaterial since the sample
waveguide would still have infinite attenuation at its cutoff frequency. Since the interior size of the S-
band waveguide was larger than the brass housing of the sample waveguide, aluminum foil and conduc-
tive copper tape was used to seal the gap between the waveguides and prevent coupling of the two
interfacing waveguide sections via radiation. Dielectric slugs were glued to either end of the sample
waveguide to increase the coupling between it and the adjacent sections of S-band waveguide, i.e., to
form crude matching transformers. Such matching transformers, of course, had no effect on the cutoff
frequency of the sample waveguide and were employed to partially overcome the huge discontinuity
resulting from the drastic change in cross section.

Although the accuracy of such an elementary method to measure f of the sample waveguide is
considerably less than the accuracy of the method used to measure for f>f,, the measurements
resulted in values of cutoff for the dominant mode that were within 6% of the theoretical value for all
waveguide geometries tested. Comparable deviations of measured values of f, from theory were found
when rectangular waveguide was used as a sample, and when the cutoff frequency was known exactly.

Attempts were made to compare the propagation characteristics of some of the higher order
modes as determined from experimental data with the theoretical values, using resonance conditions for
the propagating higher order modes in a manner similar to that used by Tsandoulas et al. [241. At fre-
quencies where any higher order mode could propagate in the WUT, a sharp spike in the transmission
loss indicated that a significant degree of coupling existed between the dominant mode and the higher
order mode, with a high Q resonant cavity being formed by the WUT for this higher order mode since
such a mode could not propagate in the adjoining rectangular waveguide. Thus, at the frequency of the
transmission loss spike, the WUT represents to the higher order mode a transmission line with an
effective electrical length equal to an integral number of half wavelengths. The effective length
includes the phase term of the reflection coefficient seen by the higher order mode at either end of the
WUT as well the product BHOML. With an analysis similar to that developed for the dominant mode in
Appendix D, resonant conditions for any higher order mode occur at frequencies where

A6L -022 = n, for n = 1, 2, 3, ... (3.1)

with 22 the phase of the reflection coefficient at either end of the WUT. Of course, the frequency
dependence of both /3 and 022 is determined by the particular higher order mode.

The waveguide geometry described in Fig. 12 was chosen for the higher order mode measure-
ments. Determination of the higher order mode causing the resonant cavity effect was essential for
comparison of experimental results with theory, and two techniques were tried to deliberately launch
the QLSE2,0 mode since the QLSE2,0 mode was the higher order mode with the lowest cutoff frequency.
The first technique used a small rectangular dielectric piece, E, = 13, in the input section of KU
waveguide adjacent to the front face of the WUT and lined up with one arm of the H-shaped poly-
styrene insert. The generation of an asymmetrical component of electric field, due to the off-center
dielectric in the input Ku waveguide, was quite effective in launching the QLSE2,0 mode in the WUT as
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evidenced by the appearance of spikes in the measured dominant mode transmission loss. However,
this technique did not lead to good agreement between experiment and theory for /3 of the QLSE2 0

mode. It was determined that the addition of the dielectric piece in the Ku waveguide effectively
increased the length of the WUT for this mode since the LSE2 ,0 mode could propagate in the short
length of dielectric slab loaded (off center) rectangular waveguide thus formed.

The second technique tried to deliberately launch the QLSE2,0 mode in the WUT consisted of a
simple shift, or offset, of the input KU waveguide (no dielectric loading) relative to the front face of
the WUT. With this offset, the incident field pattern seen by the WUT was nonsymmetrical about its
vertical plane of symmetry, thus increasing the coupling to the QLSE2 ,0 mode for which the Ey fields
are asymmetrical about the vertical plane of symmetry. This technique also proved effective in launch-
ing the QLSE2 0 mode, as evidenced by the spikes in the measured transmission loss at frequencies
close to the theoretical cutoff frequency of this mode. The magnitude of these loss spikes was reduced
as the waveguide offset was decreased, and vanished when no offset was used. Other transmission
spikes remained at higher frequencies, but were determined probably to be due to modes other than the
QLSE2 ,0 mode. Only the transmission spikes produced by the waveguide offset were used to obtain
experimental verification of the propagation characteristics for a higher order mode since these spikes
could be attributed to a given mode-the QLSE2 ,0 mode-with a high degree of confidence.

The change of the phase term 022 with the offset of the input KU waveguide was immaterial since
this phase quantity could not be measured directly under any circumstances. The condition for higher
order mode resonance given by Eq. (3.1) remains valid if 22 is taken as the average of the phase
angles of the reflection coefficients at either end of the WUT for the higher order mode. Since the
quantity 022 is some unknown function of frequency, the following approach was used to determine G
for the QLSE2 ,0 mode. With equal amounts of waveguide offset on the input end of the WUT, each of
the three lengths of the waveguide described in Fig. 12 was measured for transmission loss on the ANA
using the manual swept frequency mode. For each length, the frequencies at which transmission loss
spikes occurred-due to the waveguide offset-were recorded, and the value of 22 was then calculated
and plotted using Eq. (3.1) and the theoretical value of /3 for the QLSE2 ,0 mode. For the short lengths
used for the WUT, determination of the integer value for n was straightforward. Since 22 was
independent of the length of the WUT, the plotted values of 022 were used to construct a best fit linear
dependence of 022 as a function of frequency between 14.05 and 16.15 GHz. The theoretical cutoff
frequency of the QLSE2 ,0 mode was 13.74 GHz for this waveguide geometry. The lowest frequency
transmission loss spike, at f = 14.05 GHz, occurred in the shortest length sample, corresponding to n
= 1 in Eq. (3.1). The lowest frequency spike for each of the two longer samples occurred at frequen-
cies corresponding to n = 2. The absence of spikes at frequencies corresponding to n = 1 for these
longer samples was disconcerting initially. However, when an extension of the assumed linear fre-
quency dependence of 022 was used to calculate the frequencies at which transmission loss spikes would
be predicted for n = 1, such frequencies were found to be very close to the theoretical cutoff fre-
quency. For frequencies very close to cutoff, the attenuation of the QLSE2 ,0 mode would be very large,
and the cavity formed by the WUT for this mode would have such a low Q as to preclude a spike in the
transmission loss of the dominant mode.

Loss spikes due to the waveguide offset were indicated at frequencies above 16.15 GHz, but were
ignored because of the erratic measured transmission loss at these frequencies-due to unknown higher
order modes-that existed with no offset. The linear approximation of 22 varied from -38 at
f = 14.05 GHz to -78° at f = 16.15 GHz, with the calculated values of 022 having a maximum devia-
tion of + 50 from the linear approximation. With the values of 22(f) taken from the linear best fit
curve, calculations for /3 using Eq. (3.1) gave values within 3% of the theoretical value for all frequen-
cies where spikes were noted in the measured transmission loss. It is recognized that this comparison is
of limited value because of (1) the assumption of a linear dependence of 022 on frequency, and (2) the
use of theoretical /3 to calculate the points of 022 (f) from which the linear best fit curve was derived.
A more accurate determination of / as a function of frequency for this or any higher order mode would
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require either a continuously variable length WUT-ideal, but obviously impossible from a fabrication
standpoint-or a very large number of different lengths of the same waveguide geometry, in order to
have multiple measurements (different lengths) at each spike frequency and thus be able to eliminate
022 as an unknown in Eq. (3.1). With the three lengths of WUT used, two did have transmission
spikes at one frequency, f = 15.2 GHz. Using Eq. (3.1), 022 was eliminated and X calculated directly
as X = 94.70 /cm. This value compares favorably with the value 3 = 94.50 /cm as determined using the
linear approximation of +2 2 (f) and the theoretical value /3 = 95.8 0/cm for the QLSE2 0 mode at this
frequency, thus tending to justify the bootstrap calculations used to compare the theoretical and experi-
mentally derived propagation characteristics at other frequencies for this higher order waveguide mode.

The approach of Method 3 of Appendix D used to correct for mismatch effects yields an attenua-
tion factor, or loss term a, as well as the phase term 3 for the dominant waveguide mode. However,
this method was found to be unsuitable for calculating a from the measured data. Using the measured
complex transmission coefficient of three different length samples resulted in wild fluctuations of calcu-
lated a as a function of frequency, even calculating a as a negative quantity (waveguide gain rather
than loss) in some instances. This was determined to be a result of the sensitivity of the mismatch
correction program to variations of a in the three different length samples. With the construction tech-
nique used for the waveguide housing-with six separate metal pieces held together with screws-the
conductor losses were greatly affected by the effective extra resistance formed at the metal-to-metal
interfaces, although such imperfections had only a negligible effect on the phase term /3. Sizable varia-
tions in attenuation (loss/unit length) thus were not unexpected since the nature of the metal-to-metal
contacts could not be controlled. The effect of variations in actual a between sample lengths on the
calculated values of or and 3 was checked for a variety of conditions. In each case, the complex
transmission coefficient t21 of three lengths of an imaginary waveguide was computed, assuming a fixed
/3 and fixed values for the S-parameters representing the discontinuity at either end of the WUT. Only
e was changed for the three different lengths. Then using the approach of Method 3 incorporated into

program CROOT3, these computed values of t 21, along with the three assumed lengths, were used to
calculate the "measured" values for a and /3. In all cases, 3 was calculated to be within 1% of the
presumed value, but in general the calculated value of a was far removed from the average of the three
presumed values.

The method that was used to experimentally determine the attenuation of the dominant mode for
comparison with the theoretical value was the approach of Method 4 described in Appendix D. With
this method, only one length of WUT was required, and the loss term a was calculated at frequencies
where the measured transmission loss was minimum, or equivalently where I t2l I was maximum. At
these frequencies, with I t21 max =T

(1-T s,12) exp (- aL) (3.2a)
1- s1,1 2 exp (-2 aL)

from which

a(nepers/length) = -(InX)/L (3.2b)
where

X [(1 - IS, 12)2 + 4T 2 Is 112]0 + iS1112
- 1/(2TIsI12). (3.2c)

The 5.07 cm length sample of the waveguide described in Fig. 12 had minimum transmission loss
at frequencies fI = 8.34 GHz, f2 = 10.52 GHz, and f3 = 11.85 GHz, with measured losses of 0.35 dB
(It 21 = 0.961), 0.5 dB (It211 = 0.944), and 0.55 dB (t211 = 0.939), respectively. Using resistive film
loading of the WUT as described in Appendix C, the value of sl I at these three frequencies was then
measured as 0.776, 0.750, and 0.724, respectively. With a (dB/m) = a (Np/m) 20/InlO, the attenua-
tion was calculated from (3.2) as aV(f) = 1.74 dB/m, a(f 2 ) = 2.83 dB/m, and a (f3) = 3.47 dB/m.
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From the theory, taking the conductivity of brass as o = 1.41 x 107 mhos/m [74] and the dielectric
loss tangent of polystyrene as tan 8 = 4.3 X 10-4 [261, the total loss term, a = a. + ad, was predicted
to have values of a(fI) = 1.15 dB/m, a(f 2) = 1.37 dB/m, and a(f 3) 1.50 dB/m. At each fre-
quency, the conductor loss term was slightly more than the dielectric loss term. In a ratio comparison,
the ratio (in dB/m) of measured loss to theoretical loss was 1.51 at f, 2.07 at f2 , and 2.31 at f3. Mea-
surements of other waveguide geometries resulted in similar ratios of measured/theoretical attenuation;
in all cases the discrepancy was attributed to the multisection design of the waveguide housing for
which the added resistance at the joints was not taken into account by the theory. Previous experience
with sectioned experimental waveguide housings has indicated discrepancies of similar magnitudes
between theoretical and measured attenuation values.

3.2 Peak Power Breakdown

The peak power breakdown level was measured for one sample of dielectric loaded double ridged
waveguide to give a comparison with the theoretically determined value. The fabrication of this
waveguide was different than that used for low-power tests. A two-piece housing was machined from
aluminum, with the ridges being direct extensions of the top and bottom waveguide walk to prevent
possible arcing at the joints between the walls and separate ridge sections. Repeated assembly and
disassembly was not a consideration, and a fabrication method was sought that would ensure the com-
plete absence of air gaps at the metal/dielectric interface. With polystyrene chosen as the dielectric
material, an H-shaped insert was machined to form a loose fit in the assembled aluminum housing.
The polystyrene surfaces that would mate with the metal surfaces of the housing were then deposited
with a thin (3000 A) evaporated gold film. The complete waveguide section was then assembled
using silver epoxy to fill any voids between the metal walls and the plated surfaces of the polystyrene.
When the high-power tests were made, breakdown occurred in the dielectric rather than in air at the
dielectric side walls although the theory predicted a power breakdown level for the dielectric more than
five times that for air breakdown. It was determined that the dielectric breakdown was due to the
rough surface left by the milling operation at the bottom of the slot in the polystyrene, where the
evaporated gold film effectively formed a conducting surface with very sharp protrusions and irregular
features. The conflict with the theory was attributed to the extreme buildup of electric field intensity at
these sharp points, since the theoretical analysis assumed smooth wall surfaces (Section 2.3). To avoid
arcing within the dielectric due to rough surface conditions, the metal evaporation technique was aban-
doned in favor of the construction method which was finally used for the high power test. This method
used coil dope to fill the space between the smooth metal surfaces and the solid polystyrene H-shaped
insert as shown in Fig. 14, analogous to the use of silicone grease for the low-power tests. The
waveguide was assembled using screws and steel locating pins, and then baked at 90'C in an oven to
drive out the toluene from the coil dope. A rectangular steel insert was then used to remove any last
traces of coil dope from the top and bottom walls at the junction with the polystyrene insert. One end
of this waveguide was shorted by an aluminum plate screwed to the end of the housing. The other end
had a flange to mate with X-band waveguide (not shown in Fig. 14).

The physical length of the waveguide sample (WUT) was chosen to that at a frequency f = 9.368
GHz (the frequency of the high-power measurement facility) the electrical length would be such that
the front face of the sample waveguide would be close to a voltage null position of the standing wave
pattern caused by the short circuit. This aspect of the high-power measurement was necessary to
ensure that power breakdown (arcing) would first occur within the WUT rather than in air at the inter-
face of the WUT and the X-band waveguide of the high-power system. The WUT was fabricated with
an initial length longer than necessary. A brass plunger, U-shaped with rectangular arms machined to
fill the air region of WUT, was then inserted into the WUT to form an adjustable quasi-short circuit.
Using the ANA in the swept frequency mode, the position of the quasi-short was adjusted to a position
where the front face of the WUT represented a near short circuit to the adjoining section of X-band
waveguide. The insertion depth of the plunger was measured, and a corresponding length then
removed from the backside of the WUT by machining. Addition of the aluminum plate to form the
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Note:CoI Dope Thickness Exaggerated
For llustration

Fig. 14 - High-power test housing

backside short circuit then completed the fabrication. The dimensions of the waveguide used for the
high-power measurement were: a = 0.600 in. (1.524 cm), b = 0.250 in. (0.635 cm), d = 0.150 in.
(0.381 cm), s = 0.100 in. (0.254 cm), t = 0.200 in. (0.508 cm), and a length L = 1.587 in. (4.031
cm). With the polystyrene used as the dielectric material, E, = 2.54.

Because of the standing wave within the WUT set up by the short circuit, points of maximum vol-
tage occur at distances equal to an odd number of quarter wavelengths from the short. At these points,
the voltage is twice that due to the wave traveling in either direction. (The small amount of loss in the
short length of the WUT was neglected.) Such voltage peaks thus are equal to the voltage that would
be produced by a single unidirectional wave carrying four times the amount of power carried by either
wave forming the standing wave pattern (Appendix D). Peak power breakdown of the waveguide
occurs when, at any point, the electric field intensity (proportional to the voltage in the equivalent
transmission line circuit) exceeds the breakdown strength of the medium (either air or dielectric) at
that point. Since the power-handling capability of the waveguide has been assumed to be the peak
power breakdown level of the waveguide when propagating energy in a single direction, the power
quantity of interest in the high-power measurement will be the maximum voltage effective power, or
PMVE, equal to four times the power carried by each of the waves forming the standing wave pattern in
the WUT.

Because the actual power levels within the WUT could not be measured directly, it was necessary
to calculate PMVE in terms of power incident on the front face of the WUT since the latter power could
be measured. From Appendix D, Eq. (D14)

4(1 - Is2212)
PMVE = 2j 22s2 12 + cs pi (3.3)

= -22-2L (3.4)

where Pi is the peak power incident on the front face of the WUT and 22 is the complex reflection
coefficient of the discontinuity formed at the junction of the WUT and the X-band waveguide, as seen
from the side of the WUT, with

S22 = S221 exp (j022)-
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Prior to the high-power testing, measurements of the WUT were made at low power using the ANA to
determine the necessary parameters required to calculate PMVE using Eq. (3.3). Using resistive film to
load the WUT (Appendix C), the complex reflection coefficient of the junction discontinuity, as seen
from the side of the X-band waveguide, was measured as a return loss of 4.4 dB with a phase angle of
176 deg, or equivalently

s= 0.6 1760.

From Appendix C, I 221 = s 1 thus

1S221 = 0.6. (3.5)

After removing the resistive film, the complex reflection coefficient of the shorted WUT was measured
as t1l. At the frequency fo = 9.368 GHz,

t1Ilf.f=o = 0.999 / -165°,

thus verifying that the front face of the WUT would present an approximate short circuit to the X-band
waveguide. Return loss maximums (minimum Itll1) were found at frequencies of fi = 8.775 GHz
and f2 = 10.76 GHz. The procedure outlined as Method 5 in Appendix D was then used to calculate
022 From (D16)

0221f=f, = (2n + )r + AiL, i = 1, 2 (3.6)

where i is the propagation constant of the WUT at the frequency f,. Using Eq. (3.4), 022 for the fre-
quencies fl and f2 were computed as 33.2° and 31.80, respectively. From (D17), linear interpolation
was used to determine

022lf=f0 = 32.5%

Then from Eq. (3.4)
4 = 67.6 (modulo 360 ) (3.7)

at the frequency fo. With the values given by Eqs. (3.5) and (3.7), the relationship expressed in Eq.
(3.1) was calculated to be

PMVE = 1.409 Pi (3.8)

at the high power frequency fo. Of course, the numerical constant in Eq. (3.8) would change if either
the length or geometry of the WUT were different.

Peak power breakdown was measured using a pulsed high-power source. The experimental facility
used is depicted schematically in Fig. 15. The high-power modulator, an FXR 1 Megawatt Test Modu-
lator, was triggered from a 1 kHz pulse generator and powered a Raytheon QK-172 X-band magnetron.
The pulsed output from the magnetron was at an RF frequency of 9.368 GHz, with a repetition rate of
1 kHz and a pulse width adjustable from 0.1 to 1.0 s. The pulse width was set to 0.8 ,us for the
high-power measurement. Maximum peak power available from the magnetron was 100 kW. The
motor driven power divider was not used and locked into the low loss state. The high voltage from the
modulator was set to achieve maximum power from the magnetron. Peak power incident on the WUT
was controlled by manually adjusting the ganged waveguide sliding shorts, which together with the short
slot 3 dB hybrid coupler and the folded magic tees formed a high-power attenuator, with the excess
power from the magnetron being absorbed by a high-power waveguide load. The coupling between the
main RF line and the thermistor head was measured independently at low-power levels on the ANA for
accuracy in determining the power level incident on the WUT. The total coupling was measured as
-49.8 dB at f = fo, equivalent to a power ratio of 1.05 x 10-5. The power in the RF pulse was flat
within the 0.8 pss pulsewidth as measured by the crystal detector output on the oscilloscope. The peak
power incident on the WUT was thus calculated as

P Pulse width P
(Repetition rate) (power coupling)
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Fig. 15 -High-power test circuit

where P was the average power measured at the thermistor head. With the appropriate numerical
values,

Pi (kW) = 1 19 PI (m W).

A peak power meter was used s a check for the power measurement, using a crystal detector in place
of the thermistor, and showed agreement within 2% of the peak power as calculated from the average
power reading. The crystal detector shown connected to channel B of the oscilloscope in Fig. 15 was
used to monitor the shape of the high-power pulse incident on the WUT, while the detector shown
connected to channel A was used to monitor the reflected power pulse.

In of the plstyrene e Tese inervacor ndthe power level was slowly increased from zero
while carefully monitoring the reflected pulse displayed on the oscilloscope and listening for any sounds
of arcing within the WUT with the aid of a stethoscope. The first evidence of breakdown was a sudden
onset of strong jitter in the reflected pulse, accompanied by the sudden and distinctly audible arcing
noise. This first breakdown occurred at an average power of 0.58 mW as measured by the average
power meter, corresponding to an incident peak power level of 69 kW incident on the WUT. Because
of the accumulation of carbon deposits in the WUT, subsequent measurements yielded decreasing
power breakdown levels. After the high-power measurements were concluded, the WUT was disassem-
bled. As expected, the arcing, as evidenced by the carbon buildup, was at regular intervals along the
sides of the polystyrene insert. These intervals corresponded to a half wavelength in the WUT, with
the arcing closest to the short occurring approximately one quarter wavelength from the short and hav-
ing the greatest degree of carbon buildup. There was a very slight trace of arcing within the poly-
styrene, but the majority of breakdown was at the air dielectric interface as predicted by the theory.
There was evidence of arcing at the front face of the WUT also, between corners of the ridge, as evi-
denced by carbon paths across the end of the polystyrene insert. This arcing at the interface of the
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WUT with the X-band waveguide was attributed to a shift in the position of the maximum in the stand-
ing wave pattern. Prior to the initial breakdown, an approximate voltage null was located at the inter-
face. When the power level was increased sufficiently to cause arcing at a point Xg/4 from the short,
such arcing effectively produced a short circuit at that point during the short interval of the arc, thus
shifting a near maximum of the standing wave pattern to the front face of the WUT and producing the
arcing at that point.

From Eq. (3.8), the incident peak power of 69 kW for the initial power breakdown measurement
corresponds to an equivalent unidirectional power level of PMVE = 97.2 kW. With the voltage break-
down strength of air taken as 30 kV/cm, a peak power breakdown value of PBD = 696 kW is predicted
by the theory. The discrepancy between the peak power breakdown level predicted by the theory and
that determined experimentally was attributed to three factors. First, a power safety factor of 4 is com-
monly utilized in practice for peak power ratings [671. With this safety factor included, equivalent to
reducing the breakdown strength of air to 15 kV/cm, the theoretical power breakdown of the WUT
reduces to PBD = 174 kW. The second factor was the presence of small but sharp protrusions of hard-
ened coil dope left at the junction of the top and bottom waveguide walls with the sidewalls of the
polystyrene insert. Such protrusions were the result of using the metal mandrel to attempt to remove
all of the excess coil dope from the waveguide. Just as at sharp corners of conducting surfaces,
extreme buildup of electric field intensity can occur at sharp dielectric corners [661. The theoretical
analysis did not take into account such possible electric field enhancement caused by a flawed assembly
technique. The third factor was the unknown effects of heating within the polystyrene insert. At peak
power breakdown, the average power carried by each wave forming the standing wave within the WUT
was 20 W. Using the theoretical value of dielectric loss, power dissipation within the dielectric was cal-
culated as 0.5 W. Since the thermal conductivity of polystyrene is very low and the power level was
raised gradually, it is quite possible that the heating caused portions of the dielectric to weaken or even
melt, forming irregularities on the otherwise smooth sidewalls, thus sharply increasing the electric field
intensity at some points. Thermal effects caused by average power heating were not considered in the
waveguide analysis of this investigation.

4.0 WAVEGUIDE PERFORMANCE CHARACTERISTICS

4.1 Discussion of General Waveguide Characteristics and Parameters

For the purposes of this investigation, the primary waveguide characteristics of concern are the
single mode bandwidth and the peak power handling capability. Attenuation is also an important factor
but will be considered secondary to the primary characteristics. All results presented in this chapter are
based on the theoretical analysis derived in Section 2.

Material properties such as metal wall conductivity, dielectric breakdown strength, and dielectric
loss tangent will affect the waveguide performance. However, these material properties will not be con-
sidered as design parameters, but will be assumed constant as discussed in Section 2. The wall conduc-
tivity and dielectric loss tangent affect only the waveguide attenuation; corrections to the calculated
attenuation must be made as outlined in Section 2.4 to account for deviation from these assumed
parameter values. The exact value for the dielectric breakdown strength will not affect the peak power
breakdown calculation for most waveguide configurations since breakdown will occur in the air region
rather than in the dielectric. For those cases where the power level for dielectric breakdown is less than
that for air breakdown, or where the actual dielectric strength is significantly less than the assumed
value, corrections to the waveguide power handling capability must be made as discussed in Section 2.3.

The design parameters will consist of the five waveguide dimensions shown in Fig. 3 and the rela-
tive dielectric constant of the dielectric loading material. The six waveguide design parameters are thus
(1) the width a, (2) the height b, (3) the gap height d, (4) the ridge width s, (5) the dielectric width
t, and (6) Er. For many design purposes, the number of variable parameters may be reduced to five by
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normalizing all dimensional quantities to the waveguide width. Conventional frequency scaling tech-
niques [8] are applicable for such a normalization process. The power-handling capability and attenua-
tion also may be normalized. Since these waveguide characteristics are of interest for the QLSE1 ,0 , or
dominant, mode only, they will be normalized to the corresponding characteristics of an empty
rectangular waveguide operating in its dominant (TE10O) mode and at the same frequency. The normal-
ized power will thus be calculated as

PBD (normalized) =PD
PBD (reference WG)

while the normalized attenuation due to conductor loss will be calculated as

a, (normalized) = a 
a, (reference WG)

For each configuration of the dielectric loaded double ridged waveguide (DLDRWG), the correspond-
ing reference waveguide is conventional rectangular waveguide with the necessary width to give a TE1,0
mode cutoff frequency equal to f for the QLSE1,0 mode of the DLDRWG. The reference waveguide
will use an aspect ratio (height/width) of 0.5 regardless of the aspect ratio of the DLDRWG, and will
assume copper walls and an air voltage breakdown of 30 kV/cm. Since the reference waveguide has no
dielectric loss, the dielectric loss of the DLDRWG will be normalized to the conductor loss as

anrm *zd ad (frequency (GHz)) 11 2

ad (normalized) =-a,(erncWG
aic (reference WG)

The added factor of f 112 is necessary because of the difference in frequency dependence of a. and ad
(Section 2.4).

Even with the number of design parameters reduced to five, it is obviously impossible to present
complete design information, either in graphical form or otherwise. However, sufficient theoretical
results will be displayed to show typical characteristics for the DLDRWG, and more detailed results will
be presented for a specific dielectric material.

Figures 16 and 17 emphasize the fact that the first higher order mode that may propagate in
DLDRWG is dependent on the exact waveguide geometry. For the fixed parameter ratios given in Fig.
16(a), the first higher order mode (FHOM) is the QLSE1,1 mode for values of dlb > 0.73, but is the
QLSE2,0 mode for smaller values of dib. With the fixed parameter ratios changed slightly, Fig. 16(b)
shows the FHOM to be the QLSE,, mode for dlb > 0.82 but the QLSM0,1 mode for smaller values of
dib. In Fig. 17, the parameter ratio s/a is treated as the variable, with the ratio t/a maintained as t/a
= s/a +0.1 and with the other parameters fixed. The FHOM is the QLSM0 ,1 mode for s/a < 0.2 and
the QLSE2 ,0 mode for s/a > 0.2.

For dielectric slab loaded rectangular waveguide with an aspect ratio of 0.5, the LSE1 ,1 mode is
normally the FHOM. The corresponding QLSE1 ,1 mode in DLDRWG was found never to be the
FHOM for a variety of geometries where b/a = 0.5 and d1b < 0.5. The elimination of the quasi-
LSEJ1, mode as the FHOM is the principal reason that the DLDRWG can achieve large single mode
bandwidths without having to reduce the waveguide aspect ratio.

4.2 Variation of Performance About a Fixed Geometry

To demonstrate some of the characteristics of DLDRWG, a fixed (normalized) geometry was
chosen, with b/a = 0.5, db = 0.3, s/a = 0.3, t/a = 0.4, and E, = 6. Each of these quantities was
then treated separately as a variable, with the remaining quantities held constant, and the resulting
change in normalized waveguide performance plotted. The attenuation and power breakdown levels
were calculated at a frequency f = 3 f, where f is the QLSE,0 mode cutoff frequency for the
corresponding waveguide geometry.
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In Fig. 18, the waveguide performance is plotted as a function of the ratio db. The dashed por-
tion of the bandwidth curve represents a condition where the QLSE1 1 mode is the FHOM, and the
solid portion, the condition where the QLSE2 ,0 mode limits the single mode bandwidth. A decreasing
value of dlb provides an increasing bandwidth, but also results in a decreasing power breakdown level
and an increasing attenuation due to conductor loss. Note that most of the increase in bandwidth arises
as a consequence of the lowered cutoff frequency of the dominant QLSE1 mode rather than an
increase in the cutoff frequency of the FHOM. For this particular geometry, as db is varied from
unity to a value of 0.1, the cutoff frequency of the QLSE1,0 mode is reduced by a factor of 2.65, while
the cutoff frequency of the FHOM increases by a factor of 1.41. The size of the reference waveguide
used to normalize the power and attenuation characteristics of the DLDRWG is determined by the cut-
off frequency of the QLSE1 ,0 mode, and thus increases with bandwidth. With increased size, the refer-
ence waveguide will have greatly increased PBD and decreased a,, thus the variations of normalized
PBD and a of the DLDRWG with dlb are accentuated relative to the variations of the corresponding
nonnormalized values.

Other Geometry Parameters
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Fig. 18 - Waveguide performance as a function of
d/b variation about a fixed geometry

The normalized dielectric loss as a function of db was essentially constant, with ad, = 10.2 for
dib = 1 and ad,, = 11 for db = 0.1. The solid portion of the power breakdown curve represents
voltage breakdown in air, while the dashed portion denotes breakdown of the dielectric material. A
similar convention for plotting power breakdown will be used henceforth.

The parameter ratio of s/a is treated as the variable in Fig. 19. The FHOM was the QLSE 2,0
mode for all values of s/a. The bandwidth peaks for s/a = 0.17, whereas the power peaks at s/a =
0.07. Any design must therefore consider some trade-off between bandwidth and power. Such trade-
off considerations will be required to determine most parameters. Here the variation of attenuation is
small, but in other cases the change of attenuation may be large and thus be a factor in determining a
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final waveguide geometry. The rapid drop in PBD as sa becomes small is due to dielectric breakdown
because of the increased electric fields in the gap region. As the ridge width approaches the dielectric
width, sa - ta, more of the fringing fields from the ridge gap extend into the air region, thus lower-
ing PBD.

In Fig. 20, the variable is the ratio ta. Again the QLSE2 ,0 mode is the FHOM. The trade-off
between bandwidth and power is even more pronounced than in Fig. 19. As the width of the dielectric
increases, more and more of the propagating energy is contained in the dielectric, thus dielectric break-
down becomes the limiting factor for power handling capability.

In Fig. 21, the ratio of b/a is taken as the variable quantity. Both power and bandwidth are weak
functions of b/a, and attenuation from dielectric loss is almost constant. Conductor loss is strongly
dependent on the height, however, increasing rapidly as b/a becomes small. A good design philosophy
would incorporate as large an aspect ratio as practical, making up lost power and bandwidth by varying
other parameters which would not lead to such drastic increases in attenuation.

Since the ratio d/b is fixed, small values of b/a result in small gap spacing, and the consequential
dielectric breakdown is apparent. The solid portion of the bandwidth curve denotes the QLSE2,0 mode
as the FHOM, while the dashed portion denotes the QLSM0,1 mode as the FHOM. For this geometry,
the QLSM0, 1 mode will remain the FHOM for b/a > 0.76, and the bandwidth will start to drop sharply
for larger values of b/a. As for any geometry, sufficiently large values of b/a will cause the QLSM0 ,1
mode to become the dominant mode. The practical upper limit on b/a for a good design would be the
value at which the bandwidth starts to degrade rapidly.

In Fig. 22, the waveguide performance is plotted with the relative dielectric constant Er as the
variable. Low values of dielectric result in the QLSMoj1 mode as the FHOM (dashed portion of the
bandwidth curve), while larger values of Er have the QLSE2 ,O mode as the FHOM. For values of Er >
4, the increase in bandwidth is negligible with further increase of Er, while the power is dropping and
the attenuation is increasing rapidly. The curves of Fig. 22, as well as investigation of other waveguide
geometries, dictate that a good design should use the minimum value of Er required to achieve the
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required power and bandwidth. Of course, there will still be performance trade-offs to be made in any
design, and dielectrics with very low values of Er will generally have lower breakdown values than that
assumed.

Any number of geometries could be chosen as the fixed geometry and plots made analogous to
those depicted in Figs. 18 to 22. The resulting variation of waveguide performance with each parameter
will depend on the initial geometry. It is obviously impossible to describe all of the combinations of
performance variations, but certain consistent design aspects stand out: (1) decreasing the value of dlb
will result in larger bandwidths, but will also result in reduced power and increased attenuation; (2)
both bandwidth and power will have peaks as a function of the parameter ratio s/a, usually at different
values of the variable; (3) as the parameter ratio t/a is increased, the power increases until dielectric
breakdown occurs, and the bandwidth will normally decrease but may peak for certain geometries; (4)
bandwidth and power are relatively weak functions of the ratio b/a if the QLSE2 ,0 mode is the FHOM,
but attenuation becomes large as b/a is decreased; and (5) best overall waveguide performance will
normally be achieved with the lowest practical value of Er.

4.3 Design Information for Er =-2.54

Since low values of E, will normally give the best waveguide performance characteristics, more
detailed design information will be presented for a dielectric with Er = 2.54. This value of Er is typical
for a dielectric material such as polystyrene [25,261. A loss tangent of tan 8 = 10-4 and a dielectric
breakdown strength of 300 kV/cm again will be assumed.

In Fig. 23, bandwidth is plotted as a function of s/a for different values of dlb. The ratio ta is
not fixed but varies as s/a, with ta = s/a + 0.1. The rationale for maintaining such a relationship
between ta and s/a is to have the high strength dielectric extend out far enough to prevent air break-
down due to fringing fields from the gap, yet not so far as to greatly reduce the bandwidth. The ratio
differential constant of 0.1 thus represents a design trade-off between power and bandwidth.
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The FHOM is seen to be the QLSM0,1 mode for low values of s/a, thus the dashed portion of the
bandwidth curves must be used to define the single mode bandwidth. The bandwidth as defined by the
ratio of cutoff frequencies of the QLSE2,0 and QLSE1,0 modes is included for low values of s/a to
emphasize the fact that the FHOM is dependent on the specific geometry. If the ratio of b/a were
reduced (at the expense of increased attenuation), f for the QLSMaI mode could be raised above f,
for the QLSE2,0 mode for all sa, and while both solid and dashed curves would be modified they
would not intersect.

In Fig. 24, the normalized waveguide performance at a frequency f = 0/3f is plotted as a func-
tion of s/a for d/b = 0.5, 0.3, and 0.1. Again t/a is maintained as t/a = s/a + 0.1. For all d/b
values, PBD increases with s/a, whereas bandwidth peaks for s/a 0.2 (from Fig. 23), and the
power/bandwidth trade-off is encountered once again.

In Fig. 25, the ratio s/a is held fixed and normalized waveguide performance plotted as a func-
tion of t/a for d/b = 0.5, 0.3, and 0.1. Bandwidth is also plotted to show the effects of variations of
t/a on this characteristic. In all cases, the power breakdown level is minimum for t/a=s/a. Such a
condition is to be expected since the fringing fields from the gap extend into the air region. The
increase of PBD with t/a is dependent on the value of dlb, with lower values of dlb giving a sharper
rise of power. This is a predictable characteristic, since the smaller gaps will have fringing fields which
do not extend out from the ridge walls as far as those of larger gaps.

Breakdown is seen to occur in the dielectric rather than in air for progressively lower values of
t/a as dlb becomes smaller. This is to be expected since lower values of dlb result in increased con-
centration of the propagating energy in the gap region.
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The bandwidth is essentially flat for low values of t/a, and decreasing moderately as t/a increases
to larger values. A maximum power-bandwidth product would set t/a as t/a = s/a + A, where A
would have to be determined for the remaining values of parameters. In general, A would decrease as
dlb decreases, and typically would have a range from 0.1 to 0.35.

The performance characteristics shown in Figs. 23 to 25 are not intended to provide a complete
design procedure, since even for a fixed value of Er there remain too many variables to plot all charac-
teristics. The depicted characteristics are intended to enable one to obtain an initial design geometry,
and to provide an insight on how to fine-tune the design parameters to achieve the optimum waveguide
performance.

4.4 Performance Comparison With Other Waveguide Types

The performance characteristics of a dielectric loaded ridged waveguide can be compared with
those of other types of waveguide. For a fair comparison, the other waveguides should have a single
mode bandwidth equal to that of the DLDRWG. The waveguides for which the comparison is made
are the dielectric slab loaded rectangular waveguide (DSLRWG) and empty double ridged waveguide
(DRWG). All waveguides are assumed to have copper walls, and all dielectric materials assume the
values tan 8 = 10' and E eCric = 300 kV/cm.

The design information presented by Findakly and Haskel [231 and Gardiol 681 for DSLRWG
was used to achieve the optimum design for that waveguide, but with the aspect ratio reduced to force
the TE2,0 (LSE2 ,0 ) mode to be the FHOM. The design information of Hoppfer 11] was used to
achieve the optimum design for the DRWG. Performance characteristics of both waveguide types were
calculated with the same program used in the calculations for DLDRWG.

The first comparison is for waveguides with a single mode bandwidth equal to 4.0 and a dominant
mode cutoff frequency .f = 4.0 GHz. For the DSLRWG, the minimum value of Er needed for BW =
4 was found to be E, = 18. The remaining parameters used for the DSLRWG were: a = 0.649
(1.648), b = 0.114 (0.290), and t = 0.071 (0.180). Dimensional values are given in inches (centime-
ters). For the DRWG, the parameters were: a = 0.833 (2.116), b = 0.416 (1.057) d = 0.098
(0.249), s = 0.221 (0.561), and E = 1. Parameters for the DLDRWG were selected as: a = 0.645
(1.638), b = 0.322 (0.818), d = 0.106 (0.268), s = 0.129 (0.328) t = 0.258 (0.655), and E, = 2.54.
With these parameters, all three waveguide types have f = 4.0 GHz for the dominant mode and f, =
16.0 GHz for the FHOM. The FHOM is the TE2 ,0 mode for DSLRWG, the TE2,0 mode for DRWG,
and the QLSE2,0 mode for DLDRWG.

Figure 26 shows the difference in the propagation constant /3 for the three different types of
waveguides. As should be expected, the DSLRWG has the largest /3 for frequencies above cutoff
because of the large dielectric loading with E, = 18, while the DRWG has the lowest }e since E, = 1.

Figure 27 compares the attenuation characteristics of the three waveguide types. The large
attenuation of the DSLRWG is due primarily to the reduced aspect ratio required to maintain the cutoff
frequency of the LSE1,I mode above that of the TE2 ,0 mode and achieve the single mode bandwidth.
As with any waveguide, the attenuation increase for all three types as f -f f is due to the rapid
increase of dispersion.

Figure 28 compares power breakdown. The difference in power of the DLDRWG and that of the
DRWG is actually greater than depicted since no corrections were made for corner effects in the latter
waveguide. Such corrections were not required for the DLDRWG since breakdown in air occurred at a
considerably lower power level than that for dielectric breakdown.
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Similar comparisons are made of the three waveguide types for each having a single mode
bandwidth equal to 5.0 in Figs. 29 to 31. The parameters used for the DSLRWG were: a = 1.056
(2.682), b = 0.119 (0.302), t = 0.076 (0.193), and Er = 42 (the minimum value Of Er needed for BW
= 5). An even smaller aspect ratio is required to prevent the LSE1,1 mode from being the FHOM than
in the case where BW = 4. The parameters used for the DRWG were: a = 1.396 (3.546), b = 0.698
(1.773) d = 0.108 (0.274), s = 0.378 (0.960), and E, = 1. For the DLDRWG, the parameters were
chosen as: a = 1.046 (2.657), b = 0.522 (1.326), d = 0.105 (0.267), s = 0.209 (0.531), f = 0.450
(1.143), and Er = 2.54. For each type of waveguide, the dominant mode cutoff frequency is 2.0 GHz
while the FHOM has f, = 10 GHz. The FHOM for DSLRWG and DRWG is the TE2 ,0 mode, but is
the QLSM0 ,1 mode for DLDRWG.

The propagation constant is shown as a function of frequency for each of the waveguide types
in Fig. 29. Because of the larger degree of dielectric loading in the DSLRWG, where Er = 42, the
difference between A of this waveguide and /3 of the other waveguides is more pronounced than for the
BW = 4 case where er = 18.

Comparison of Fig. 30 with Fig. 27 will show that the attenuation difference between the
DSLRWG and the other waveguide types to be more pronounced for the BW = case than for the
BW = 4 case. This is due to the smaller aspect ratio required for BW = 5.

In Fig. 31, the power breakdown levels are shown as a function of frequency for each waveguide.
The increase in powerbreakdown of the DLDRWG over that of the other waveguide types is consider-
ably more pronounced than for the BW = 4 comparison. The DLDRWG does have dielectric break-
down near the upper end of the design band.
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An interesting feature of the DLDRWG is the behavior of the power breakdown level as a func-
tion of frequency. Unlike the power breakdowns of DSLRWG and DRWG, which essentially flatten
out with frequency, the PBD of DLDRWG increases monotonically with frequency until dielectric
breakdown occurs, and is constant for higher frequencies.

When waveguide performance comparisons are made with DSLRWG, it should be noted that the
aspect ratio of this waveguide need not be reduced to maintain the TE2 ,0 mode as the FHOM. The cut-
off frequency and dispersion characteristics of the TE,,0 mode are independent of height, while the
power breakdown level is directly proportional to the height. Also, the attenuation decreases with
increased height. Although fa for the TE2,0 mode is independent of the waveguide height as well, the
cutoff frequency of the LSE1 1 mode is not, but decreases rapidly with increasing height, thus restricting
the single mode bandwidth. As an example, for the DSLRWG with BW = 5 used for comparison in
Figs. 29 to 31, the aspect ratio was taken as b/a = 0.113. With this aspect ratio, the cutoff frequency
of the LSE1, 1 mode was the same as that of the TE2,0 mode, 10 GHz. If the height is increased to give
b/a = 0.189, the cutoff frequency of the LSE1,, mode is reduced to 6.99 GHz (BW = 3.5), and if the
height is increased to give b/a = 05 fc for the LSE1,1 mode is reduced to 3.82 GHz (BW = 1.9). Of
course, the optimum values of t/a and e, to achieve a given bandwidth would be different if considera-
tion were given to the fact that the QLSE1, mode was the FHOM. However, for large single mode
bandwidths, the superior design must maintain an aspect ratio to keep the TE2 ,0 mode as the FHOM
because the drop in bandwidth as the aspect ratio is increased is much greater than the corresponding
increase in power breakdown. Waveguide performance comparisons with DSLRWG were thus confined
to the condition that the aspect ratio of this waveguide have equal cutoff frequencies for the LSE, and
TE2 ,0 modes.
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The conclusions that may be reached after comparing the theoretical performance characteristics
of the three waveguide types are apparent. For a given single mode bandwidth, the peak power han-
dling capability of the DLDRWG is superior to that of either DSLRWG or DRWG, with the power
advantage of DLDRWG increasing with bandwidth. The price paid for the greater power breakdown of
the DLDRWG is increased attenuation over that of the DRWG. Expressed in terms of percentages,
however, the increased attenuation is far less than the increased power breakdown level. Also, with
attenuation calculated in terms of loss/wavelength rather than loss/unit length, the percentage change
of attenuation between waveguide types is even less, as shown in Table 5. The same waveguides
described earlier in this section were used for this comparison. The DLDRWG is superior to
DSLRWG from the viewpoint of both power and attenuation, with the added advantage of not requir-
ing very large dielectric constant materials to achieve large single mode bandwidths. From a practical
viewpoint, some cost effective manufacturing method must be found for DLDRWG to achieve the
theoretical performance. The peak power breakdown would be particularly sensitive to any flaws in the
waveguide structure.

Table 5 - Comparison of Attenuation in dB/Xg for
Different Waveguide Types

Waveguide
Type

WGTI
WGT2
WGT3

#1-Air-filled double ridged waveguide
#2-Dielectric slab loaded rectangular waveguide
#3-Partially dielectric loaded double ridged waveguide

(a) Waveguides with single mode bandwidth = 4 and
dominant mode cutoff frequency = 4 GHz

Attenuation (dB/Xg)
Attenuation Waveguide

term type f = 5 GHz f = 8 GHz f =0 GHz

a c#1 0.0194 0.0090 0.0055

#2 0.0284 0.0113 0.0067

#3 0.0205 0.0088 0.0056

ad #2 0.0071 0.0041 0.0036

#3 0.0071 0.0035 0.0029

(b) Waveguides with single mode bandwidth = 5 and
dominant mode cutoff frequency = 2 GHz

Attenuation (dB/Xg)
Attenuation Waveguide

term type f = 2.5 GHz f = 4 GHz f = 10 GHz

a. #1 0.0205 0.0107 0.0061

#2 0.0373 0.0161 0.0081

#3 0.0227 0.0112 0.0065

ad #2 0.0074 0.0045 0.0037

#3 0.0074 0.0035 0.0028
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Appendix A

TRANSVERSE RESONANCE METHOD ANALYSIS

If the assumption is made that an electromagnetic wave propagating in a waveguide with cross-
section as shown in Fig. 3 is a TEmo mode, then a solution for the propagation constant A3 can be
obtained by a straightforward extension of the transverse resonance method used [9,11] to obtain solu-
tions for the homogeneous ridged waveguide. Because of the symmetrical configuration of the
waveguide, the resonance condition for the transverse component of the propagation wave will result in
an infinite impedance at the center for m odd and zero impedance for m even in the equivalent
transmission line circuit. Equivalently, this condition can be represented by a magnetic wall (m odd) or
an electric wall (m even) placed at the vertical plane of symmetry of the waveguide. The equivalent
circuit to be solved then reduces to that of Fig. Ala for m odd or Fig. Alb for m even. The capacitive
susceptance B is the lumped element term to represent the waveguide height discontinuity. Within
each region, where the regions are defined from Fig. 4, Z is the characteristic impedance, Y =
l/Zoi is the characteristic admittance, and O is the product of the physical transverse dimension of the
region and yxi, the complex x-directed propagation constant. For the lossless model, yxi, and therefore
0,, will be either real or imaginary.,

Xi X 2 x 3 x4

(a) Equivalent Transmission Line Circuit For m Odd

x1 X2 x 3 x4

(b) Equivalent Transmission Line Circuit For m Even

Fig. Al - Equivalent circuit for transverse resonance method
analysis of TErmo modes (a) m odd; (b) m even

The reflected impedance Z presented by a load impedance ZL terminating a transmission line of
characteristic impedance ZO with propagating constant y and length L is [75]

(ZL + Zo) exp (yL) + (ZL - ZO) exp (- yL)
Z Z' (ZL + Zo) exp (yL) - (ZL - ZO) exp (-yL) (Al)

For the circuit of Fig. Ala the open circuit at X4 will reflect back to X3 as

Z 4 3= Z03 coth 03 (A2)

or

4 3= Y0 3 tanh 03. (A3)
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The short circuit at x1 will reflect back to X2 as

Z =-2 = Z01 tanh 01

Equation (Al) may be expressed as

ZL cosh yL + Zo sinh yL
° ZL sinh L + Zo cosh yL-

Since Z 1-2 terminates Region 2, the short at x1 will reflect to X3 as

Z 1-2 cosh 02 + Z0 2 sinh 02

=3 Z02 Z1- 2 sinh 02 + Z2 cosh 02

Substitution of Eq. (A4) into Eq. (A6) yields

Z1 sinh 01 cosh 02 + Z02 cosh 01 sinh 02
=-3 02 Z1 sinh 01 sinh 02 + Z02 cosh O csh02

or

=3 Y02 1Z sinh 0i sinh 02 + Z02 cosh 01 cosh 02

410 sinh 01 cosh02 + Z02,coshOl sinh 02

(A4)

(A5)

(A6)

(A7)

(A8)

Since the equivalent circuit is a composite, dissipationless, passive line matched at both ends, it must
be matched at all points [2]. Therefore, the sum of the admittances at the point X3 must equal zero,

Y 1-3 + iB + Y 4- 3 = 0- (A9)

Substitution from Eqs. (A3) and (A8) gives

y03 tanh 03 + j - +
Y02 Y0 2

sinh 0 sinh 02 + 02 cosh 01 cosh 02
Z02

sinh 01 cosh 02 + 02 cosh 01 sinh 02
Z01

Since Region 2 and Region 3 have the same dielectric loading, 7x2 = Yx3, and the impedances are pro-
portional to the heights:

Zoj Y"O2 d= Y0 = .
Z02 Y03 b

(All)

Region 1 and Region 2 have the same heights, and since the transverse wave is TE the impedance ratio
is

Z0 2 VxI

Z41 7x2
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The left side of Eq. (A 10) may be expressed as a single fraction. All terms in the denominator are fi-
nite, so the numerator may be equated to zero. With substitution of Eqs. (All) and (A12), the resul-
tant expression is

(Yx2 sinh 01 cosh 02 + YxI cosh 01 sinh 02) ( b sinh 03 + - cosh 03) (A13)
d Y02

+ cosh 03 (x2 sinh 0o sinh 02 + YxI cosh 01 cosh 02) = 0

Within each region

Yxl + y2 + - 2 /Lo e, for i =1, 2, 3

with

el = 0 and E2 3EE= EOr-

For TEn,0 modes yyi = 0 and yj = j for all regions; 8 is the longitudinal propagation constant
(above cutoff) for the waveguide configuration. Substituting into Eq. (A13)

Yxi = p62 ,)2 1u. E, for 2 , e < 2

= J2, o - 32 for ) /tLO E fi 2 (A14)

and 0, = yxi Li with L = (a - t)/2, L2 = (t - s)/2, and L3 = s/2, where a, t, and s are the
dimensions from Fig. 3, then defines the transcendental equation that must be solved to obtain solu-
tions for the TEm , modes for m odd. When solving for the cutoff frequency, 8 = 0 and frequency is
the unknown quantity, with the smallest root of (A13) the solution for WoC of the TE1,0 mode, the
second root wc of the TE3,0 mode, etc. If the frequency is fixed and the propagation term 8 is taken as
the unknown, the solution (actually in terms of ,p2 rather than /3) to (A13) will yield multiple roots of
p82 if the frequency is greater than cutoff of the TE3,0 mode. The first root represents 8 for the TE3,0
mode, the second root P for the TE1 ,0 mode.

For 'Ermo modes with m even, the effective short circuit at X4 in Fig. Alb will reflect back to X3
as

Z4-3 = Z03 tanh 03-

The resultant transcendental equation (with either or /3 the unknown) that must be solved for
TEeveno mode solutions is given by (A13) with the terms cosh0 3 and sinh0 3 interchanged.

For all TEmo modes, m even or odd, the impedance ratio B,/ Y02 may be calculated as [7,39]

B A 2b 1 4 i,+ 1-r2 + r A +A'+ 2C
Y02 X 4r 2 I- 1 r AA'- C 2
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where

A + r|

A |1 + r 

C = 1 4r 1

1 + [1 - (b/X) 2 ]" 2 1 + 3r2

1 - [1- (b/X)']'/'

1 + [1 - (d/X,) 2 P]

I - [1 - (d/X,)2 ]2

1 - r2

3 + r2

1 -r2

with r the height ratio, r = d/b. The wavelength Xx is the transverse wavelength, X, = 2ir//x, where
the transverse propagation term /3x is that for Regions 2 and 3, with

Yx2 = Yx3 = JAx

since C021.OEoEr > /32 for any propagating mode.

The computer program TRMWG incorporates the mathematics of this Appendix and may be used
to calculate solutions for the TErn0 modes of dielectric loaded ridged waveguide. Since true TE modes
do not exist in this waveguide, the accuracy of the solutions is limited by the deviation of the actual
modal structure (QLSEmo or QTEmo modes) from that of the presumed TE mode.

Program TRMWG also may be used for calculating TEmo mode solutions (with accuracy limita-
tions already noted) for the waveguide where the dielectric width t is less than the ridge width s (Fig.
5). The analysis for this waveguide structure is similar to that for the case where t > s, with one
important difference. For large values of Er, the waveguide of Fig. 5 will have the propagating energy
concentrated in the dielectric at some frequencies above cutoff, with fields transversely evanescent in
the vicinity of the ridge wall. For co > coo, where cwo > c, C2OEo < /32 thus YxI(=7x2) will be real.
The definition of wavelength at these frequencies then loses meaning, and (A15) may not be used to
calculate a numerical value of the shunt susceptance term in an equivalent circuit for the transverse
wave. For these conditions, program TRMWG assumes a value BC = 0. This assumption is equivalent
to ignoring the effects of the ridge, but since the transverse wave is evanescent at the ridge wall for
w > co0, the assumption is reasonable for a first order approximation.

The FORTRAN listing for program TRMWG is given in Appendix El.
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Appendix B

DIELECTRIC CENTER LOADED RECTANGULAR WAVEGUIDE

In the analysis of dielectric loaded rectangular waveguide (Fig. 2), most authors [1,3,18,68]
correctly point out that propagating modes may be divided into two classes: (1) the LSE (Longitudinal
Section Electric) modes, which have no electric field component normal to the air-dielectric interface,
and (2) the LSM (Longitudinal Section Magnetic) modes, which have no magnetic field component
normal to the air-dielectric interface. The propagation analysis is based on this a priori knowledge of
the wave structure. Identical results may be achieved by a more rigorous analysis, similar to that used
in the main body of this investigation, in which all field components are assumed to exist until proven
to be nonexistent.

Vertical Plane Of Symmetry

Region 1 Region 2 1

y=b/2 

l0z

X= -X x=0 x = x

Fig. BI - Model for analysis of dielectric slab
loaded rectangular waveguide

If only the symmetric waveguide configuration is considered, the model for analysis may be
reduced to a half-waveguide cross section with either a magnetic or electric wall located at the vertical
plane of symmetry (Fig. B1). For this waveguide configuration, locating the y=O plane at the top or
bottom wall of the waveguide would simplify the analysis somewhat; however, in order to maintain
similarity with the analysis of the ridged waveguide, the y=O plane will be located at the horizontal
plane of symmetry. The derivations (from Maxwell's equations and the wall boundary conditions) for
the form of the field components in each region are exactly as for the ridged waveguide configuration;
the results are repeated here for clarity. In Region 1

E(') A SA,, cosh [p ,,,(x + X)] Csn kj, ny (B Ia)
n

EO) = B 1 sinh [, (x + x1)I *Csi kl,,y (Blb)
n

E.') =StjCl,n sinh [Pln(X + Xl)IPsn sin J k[COy)

H(l) = DI, sinh [p1,n (x + X 1)]/p1 n [ (sin) .41, si k, 1Y (B Ic)

H F1 cosh [P1 n (x + Xl)] * 1os

(cos] kl, 1y (Ble)

=~ Zi Incosh [~ ,(x + Xd . cs
ti
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with the separation equation given by
32+ k2 - 2~ = 2A E0 (2,2+ kln Pi n-d# == (B32)

for all n. For (M,E) and (M,M) solutions, corresponding to a magnetic wall at the VPS, the fields of
Region 2 are given by

E = £ A 2,n sinh [p2,,(x - X2 )J/p 2 n sin k 2,1nY (B3a)

E(2)= B2 ,n cosh [p2, (x -X 2)1 (oJ k2 ,nY (B3b)
n si

E(2= jC2 , cosh [P2,n (X -X 2 )] (sn k 2,nY' (B3c)
n

H = DX,21 cosh [p2,(x- x 2 )]'ls k21 1 y (B3d)

xy2 = 2,n sh P2, (X2] .*lcs 2 nY(Be= F2, 11sinh (x .~~ sin13d
n

Hj(2) = X jG2,1 sinh [p2,(x-x 2 )]/P2, (sin k2 1y (B3f)

with the separation equation given by

/2 + k22 - p22% = co2p9o E O r (B4)

for all n. For (E,E) and (E,M) solutions, corresponding to an electric wall at the VPS, the fields of
Region 2 are given by Eq. (B3) With the functions cosh [P2,t(x - x2 )I and sinh [P2,((x1- 3
interchanged. In both regions, kyn = k2, = n7r/b and the upper trigonometric function for the y-
dependence, with n restricted to even integers, is used where an electric wall is located at the HPS, i.e.,
(M,E) and (E,E) solutions. The lower trigonometric function for the ydependence, with n restricted
to odd integers, is used for the (M,M) and (E,M) solutions which have a magnetic wall at the HPS.

The remaining boundary condition to be satisfied is at the air-dielectric interface, x = 0. Since
the heights of the two regions are the same, the basis functions which form the y-dependence of the
modal components are orthogonal on the interval - b/2 y < b/2. Equating the tangential fields of E
and H of the two regions at x = 0 will then show

B1,n sinh (1,nX 1 )p 1 ,n = B2,, cosh (P2,1 X2) (B5a)

C l, sinh (p,xj)/pj, 11 = C2,n cosh (P2,nX2) (B5b)

Fln cosh (pl,xl) = -F2 , sinh (P2,nX2)/P2,n (B5c)

Gl,n cosh (pj,,xj) = -G2 ,, sinh (P2,nX2)/P2,n (B5d)

for (M,E) and (MM) solutions. For (E,E) and (E,M) solutions Eq. (B5) will be valid if the func-
tions cosh (p2,nx2) and - sinh (2,nx 2)/p 2,n are interchanged. In matrix form, Eq. (B5) becomes

ofE) 0 fC (E 0 [C 

0 I 1BI | 0 0 (E)2 1 C 2 |
| o ISIE) B 0 02) W B2
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F1 2 () 0 1F21
I --,-- - J-=I --- -- | (B7)

0 I 0 (H) GI 0 0 (H) G 2

where the matrices are diagonal with

(Oi(E))mn = sinh (p1 1xI)/p1 1 8mn (B8a)

(Oi(H)}rsn = cosh (p1 ,nX ) 8mn (B8b)

and for (M,E) and (M,M) solutions

(O2E)lmn = cosh (P2 ,1 1X 2 )8mn (B8c)

{0 2(H)}m n = -sinh (P2 ,n X 2)/P2 ,n8nn (B8d)

while for (E,E) and (E,M) solutions

{02(E)}rn = -sinh(p 2 nx2)/p2 2,n mn (B8e)

{0 2(H)lmn = cosh (p2,nx2 ) 5,n . (B8f)

The relationships between modal components coefficients within a given region have been derived
in the main body of this analysis. Expressed in matrix form, they are repeated here for clarity:

(Ai I 01

--- 1 --
0 l' 1J

IC)
- --
BI

- 1�

I 0 Al
- ---------- - -J

O I- wuo VUDI
(B9)

'A1 I F
- - -I - - - - -

1 GI

'P I 0 C

- -- I--- --
1 2 B2

'P2 0 1
- - -I- - -

1 2

= _- --- I - - -- I -----
:i-KI I OD I U

1 |+K21

IF2- --

G2

_ ¢D I K2 (1 E3 UI

±:kK2 1 --0 

where the indicated matrices are diagonal with

{Kl}m,n = (ngr/b) amn

{¢jmn = ( + 8*)8mn
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- --
DI

(B10)

(BlI)
WAI 0 (A2 1
--------- -- -
° I -cokto U D2

o I A2
W - - - - -

WD D2

(B1 2)

�-K2
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{( 'P1}n, = [ 2 + (n7r/b) 2 + 8 *] 8mn

{P)mn = pl,n8mn
{p2 m,n = P2 ,n8mn

K 2 = K1

tP2= 1

|=J 1 for /3= 0, n = 0
0 0 otherwise.

For (M,E) and (M,M) solutions

WA = U

WD = P2

while for (E,E) and (E,M) solutions

WA = P2

WD = U

The + notation on the K matrices corresponds to n being e1odd) integers.

Premultiplying (B6) and (B7)
'I I 0

by the matrix - - -- - - and
0 1 

then substituting from (B9 - B12) yields

I I
0 - FI±+KI P1

-1---- ---- ---- ----
I 01E) :i-K, I °D 

I 0 A l
~~~~~~~~~~~~~~- - --- - -- - -

I-w0 U DI

02(E I 
= - - - - - -

° 1 02(E)

H) I0 - DI±KI

---- I--- - - - - --
0 0 H) +-LK, I (

- I±:K2 WA
- --- --- - ---

, 4 K21 (D 0

w 0 U 1 0

OilU
I A1

- -
DI

(HI I
02H) I 0 -_ :±K2 (0E3

0- -- -- - - - - - - - - - - - - - -
0 101(H) K21 (D °

UI

- -I-
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0 1(E)

- - -
0

I 0 A 2

- -U - - - - - - - - -
I -o)-o U D2

(B13)

(B14)
0 A2

- - - - - -
WD D2
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after noting that diagonal matrices commute and

- - - -- - commutes with any diagonal matrix
±K, I 

premultiplied by

'2 = '1. Si ce K 2 = K1 , and since the matrix

0 
of the form - , (B13) and (B14) may be

O0 

-0s I+KI -I -

- - - -- --- I to give
-+- K I I J

1(E) 

0 - - -- I- - -- -

O 0E)

0 I(H) 0 WUE0

- - - - - - - - - - -

L°1 jOl()1 0

Pl2 J 1 2E)I 0 ld 0~E
----- - -- - -- = ---
0 I-coto U DI 0

u 0
U- ------
U

IA

- - -
D1

If (B15) is now premultiplied by

0

- - -- - - - - - -° 1 0E) °
U

Wco,

and (B.16) premultiplied by

1
WE0 I -- -

-I~~~~ U , th e
0 

left-hand sides of the two resulting equations will both be equal to

I
0E 0 0 (H) 

I 0g 0 I- |

Equating the right-hand sides of these equations then yields

I 0 1 0| E)I

I- - - - - - - - -I
I 0 (H) O j

0

0 JE)

WAIO I [A2

-- - -- -- -- I
O -U D2

-1 0 1(E) o

=1 - - -- I- -- I

! O j0(E)

0 (H) 21 0 (
2 I 0 ErPl I I A2

-------- ---- ---- -
I L 0' | I - WD| D2J

This last equation may be expressed as

l -

I- - -- I

I 02(E)

WA O
o-- - I- ---
0 1 - (A /4 

41A 21

U D2J

tA2 1
D2 J

0 (H) A2 0

0 0 D2-I --

(B1 5)

(B16)IlWE3 U
- - - -

0

I 0
I: 0

-l -----
I WD

0 fE)

0

I 

I (E)

0 (HT)

- - -
0

l

I ° 11 A2 1

1 2 1 D 2
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where the matrices fi and g2 are diagonal with
(H)0 (E) WA -e rP 2 0 (E)o (H) (B8a)

e2- o(E'H) WD - OI(H)0 E) (Bl8b)

The expression of Eq. (B17) represents an eigenvalue problem, [M]V = XV, for the special case where
X = 0. For Eq. (B17) to be valid, the determinant of the matrix must vanish:

I0
Det - = 0.

0 ~

Since the determinant in question is diagonal,

0
Det - - - - - = {}nn {2}n,n,

0 1 2 11

thus the determinant is zero whenever any diagonal term is zero. For the general case, the functions
forming the diagonal elements of the matrix in Eq. (B17) will have separate roots (zeros). For a given
diagonal matrix element equal to zero (whether as a function of o or /), all vector components other
than the one which is multiplied by the given matrix element must have zero magnitude in order for
Eq. (B17) to remain valid. Thus, any solution for a single propagating mode will have either H=O
(LSM modes) or E =0 (LSE modes). Furthermore, the field structure will consist entirely of modal
components corresponding to a single value of n.

From Eq. (B18) the individual diagonal components of the matrices (land 52 are

= cosh (pl,,xl) cosh (p 2,,x 2) + ErPi,n sinh (pj,,x 1) sinh (P2,nX2)/P2, (B19a)

(2}n,n = -cosh (PlnX) cosh (p2 ,,x2) - P2,, sinh (p2,,x 2) sinh (pj,1 x1)/p1 n (B19b)

for (M,E) and (M,M) solutions, while for (E,E) and (E,M) solutions they are

{I} = - P2,n cosh (P,nX ) sinh (p 2 ,, 2) - ErPI,n sinh (p1 ,nX) cosh (p2,,x 2 ) (B20a)

1'2),nn = cosh (P2,,X2) sinh (pj,,x 1)/p 1, + cosh (p1 ,x 1 ) sinh (p2,x21p 2,n1 . (B2Ob)

For a solution with the expression of Eq. (Bl9a) equal to zero, the resulting mode is LSM, with the H
field antisymmetric about the VPS, and hence is called an antisymmetric LSM mode. A similar defini-
tion may be made for modes corresponding to Eqs. (Bl9b), (B20a) and (B20b) being zero; in sum-
mary,

Eq. (B19a) = 0 ==> LSM modes, antisymmetric H
Eq. (B19b) = 0 ==> LSE modes, symmetric E
Eq. (B20a) = 0 ==> LSM modes, symmetric H
Eq. (B20b) = 0 ==> LSE modes, antisymmetric E .

The expression (solutions) of Eqs. (B19) and (B20) are easily shown to be equivalent to the solutions
obtained by others [3,18,20,68].

A short discussion of homogeneous rectangular waveguide is appropriate before the question of
index assignments is addressed. The field structure of homogeneous rectangular waveguide is normally
characterized in terms of degenerate modes, TEmn and TMmn were E, = 0 for TE modes and H, = 0
for TM modes [1,2,8,42]. The index pair m,n represents the number of half sinusoidal cycles the
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fields of E and H make within the waveguide in the x and y directions, respectively. For TEn1 modes,
both indices may not be zero, while for TMmn modes neither index may equal zero. For TEO,,, modes,
all fields are independent of x, while for TE,o modes all fields are independent of y. For any given
index pair, the propagation characteristics of the TE, 11 mode are identical to those of the TMm,n mode,
and any linear combination of the two degenerate modes constitutes a propagating mode. Of course, if
m = 0 or n = 0, the corresponding TMm,1 mode does not exist, and the field structure of the TE
mode is unique.

The homogeneous rectangular waveguide alternatively may be characterized by LSEmn and
LSMmn modes [41] with any single propagating mode consisting of the appropriate linear combination
of these two modes. The index pair has exactly the same interpretation as for the TE and TM modes.
For a given index pair with m • 0 and n • 0, the LSE,nn mode and the LSMm,, mode have identical
propagation characteristics (equal to those for the TEmn and TMm,n modes). Since Ey and E, must be
zero at the waveguide sidewalls, there must be a minimum of one half cycle for the fields in the x
direction if any fields are to exist for LSE modes where E = 0; i.e., m > 1 for the LSEmn mode.
The index n will equal zero for E, =0, thus the LSEno mode is identical to the TEnO mode. For LSM
modes, Hx is zero everywhere, and Hy must vanish at the top and bottom walls. Therefore, there must
be a minimum of one half cycle variation in Hy (and hence in the other nonzero fields) in the y direc-
tion since no propagating mode can exist with only an axial component of magnetic field. All fields
may be independent of x only if Ey and E, vanish everywhere; thus, the LSMOm mode is identical to
the TEOm mode.

Of course, in the homogeneous waveguide there is no air-dielectric interface to define the "nor-
mal" direction. The a unit vector was chosen to replace the normal unit vector of the dielectric slab
loaded waveguide to maintain similarity with that analysis. Had ay been chosen instead, the roles of
LSE and LSM would simply be interchanged, corresponding to a 90° rotation of the axis system in the
x-y plane.

For the dielectric slab loaded rectangular waveguide, the TEn,O and the LSEmo modes are identi-
cal. No other TE or TM modes exist, thus the reason for the LSEm,n and LSMm,n analysis. The index
n for these modes still represents the number of half sinusoidal cycles made by the nonzero field com-
ponents in the y direction within the waveguide. Although the fields within any homogeneous region
may have a sinusoidal x-dependence, the variation with x over the full waveguide may be greatly dis-
torted from a simple sinusoidal form [1-3,18,41]. However, the index m may still be used to represent
the number of distorted half cycles the fields make in the x-direction if the definition of a cyclic func-
tion is extended to include any function which is either (1) antisymmetric about the VPS with 6/Ox =
0 at the waveguide side walls, or (2) symmetric about the VPS and zero at the waveguide sidewalls.
The only questionable aspect of this definition of the index m arises for LSM modes, which in this
analysis will have index assignments m = 0, 1, 2, 3, ... and n = 1, 2, 3, ... which is in contrast to
Ref. 3 where the lowest index value for m is one. The LSMmn mode of Ref. 3 is the LSMm-ln mode
of this report.

There are several reasons for having m =0 as the lowest order index for the LSM modes:

(1) The dielectric loading may be considered a perturbation of the homogeneous condition. As
the dielectric loading is reduced (Erl), the field pattern of the waveguide must approach that of the
corresponding mode of the homogeneous waveguide. Since a LSMon (TEO,11 ) mode exists for the
homogeneous case, it is logical to refer to the perturbed mode as LSMO,n rather than LSMIn.

(2) A large change in the width ("a" dimension) of the waveguide has only a second order effect
on the propagation characteristics of the LSMO,, modes, analogous to the LSMOn(TEO,n) modes of the
homogeneous waveguide for which the propagation characteristics are completely independent of the
width.
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(3) The fields H and H, may not vanish at the waveguide sidewalls if any fields are to exist. For
a LSM mode with symmetric H fields ((E,M) and (E,E) solutions), these fields must possess an even
number of half cycles as a function of x, and with the definition used here m must be even (m is odd
in [31). For a LSM mode with antisymmetric H fields ((M,E) and (M,M) solutions), these fields
must undergo an odd number of half cycles as a function of x, thus m is odd (m is even in Ref. 3).

(4) Any LSM mode of dielectric slab loaded waveguide will have fields which are dependent on
the x variable. The LSM modes which have fields with the least dependence on x (corresponding to
the lowest order of m) are for (E,M) and (E,E) solutions and will have tangential E fields
(Ey and E,) for which the x-dependence function has two half cycles. However, the x-dependence
function of the remaining fields, E, Hy, and H, will not be cyclic; it will be nonzero for all x and may
be thought of as a perturbed constant. The next highest order LSM mode with (E,M) and (E,E) solu-
tions will have all fields with x-dependence functions which undergo two half cyclic variations (m -

2). Therefore, the index assignment m = 0 will describe those lowest order LSM modes.

In summary, the dielectric slab loaded rectangular waveguide has two types of modal structures,
LSE modes with E, = 0, and LSM modes with HX = 0. For (E,M) and (E,E) solutions, the modes
are LSErn, with m =2, 4, 6, 8, ... ,n = 0, 1, 2, 3, ... and LSMmn with m = 2, 4, 6, ... , n = 1,
2, 3, 4, .... For (M,M) and (M,E) solutions, the modes are LSEm,n with m = 1, 3, 5, 7, ... , n =
0, 1, 2, 3, ... and LSMrn,n with m = 1, 3, 5, 7, ... , n = 1, 2, 3, 4, . The characteristic equations
for these modes are given by

LSEoddn modes: cosh 0ln cosh 02,n + P2,n sinh 02,n sinh ki1,n/PIn = 0

LSE,,enn modes: cosh 2,n sinh 01,,/P,n + cosh ign sinh 02,n/P2,n = 0

LSMddn modes: cosh kin cosh k2,, + frpl, sinh io sinh k2,n/P2,n = 0

LSMevenn modes: P2,, cosh 'kI,n sinh 'k2,n + erPl,n sinh kI,n cosh ¢k2,n = 0

where

0i" = pi,nxi
Pi,n= [B2 + (nir/b) 2 - co 2 0E]1 /2, i = 1,2.

For a given m,n index pair, the LSEn n and LSMm n modes will have different cutoff frequencies and
different propagation characteristics, in contrast to the homogeneous waveguide, and thus are not
degenerate modes. Also, in contrast to homogeneous waveguide, for which knowledge of the cutoff
frequency of any mode may be used to immediately obtain the propagation constant /3 for frequencies
above cutoff [1,2,42], there is no simple formula to describe the dispersion characteristics for the
dielectric slab loaded waveguide; the transcendental equation appropriate for the desired mode must be
solved at each different frequency.
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Appendix C

SCATTERING MATRIX PROPERTIES OF
LOSSLESS WAVEGUIDE JUNCTIONS

Two different waveguides, each with a uniform cross section, may be joined together along a com-
mon axis of propagation. The resultant cross-sectional discontinuity will excite higher order modes in
both waveguides. Assuming the frequency is such that only the dominant mode will propagate in each
waveguide, the fields of these higher order modes will decay exponential in both axial directions from
the discontinuity. At distances sufficiently far from the discontinuity, the fields of the higher order
modes will have decayed to negligible magnitudes, and only the single (dominant) mode need be con-
sidered for circuit analysis if a suitable equivalent circuit is included to account for the coupling
between the dominant mode and the higher order evanescent modes caused by the discontinuity. Such
an equivalent circuit may be represented as a T-network of lumped elements as shown in Fig. Cl
[1,2,8]. Alternatively, a II network could be used. If the waveguide is lossless, as will be presumed,
each element in the equivalent circuit must be reactive, either inductive or capacitive, as shown. In
general, each reactive element will be a function of frequency and the cross-sectional geometry of both
waveguides. In the equivalent circuit, the reactive elements represent the energy stored in the higher
order evanescent modes. The dominant mode impedance of the waveguide on either side of the
discontinuity is reflected as the characteristic impedance of the corresponding transmission line in the
equivalent circuit.

i h-x-
zot [@ z 0 2

Fig. Cl - Lumped element representation of
waveguide discontinuity

The scattering matrix representation [8,42,45] for the two-port network of Fig. Cl is shown in
Fig. C2. Each term of the two by two scattering matrix [S] may be found in terms of the parameters of
Fig. C1. The importance of the S-parameter representation is twofold: (1) circuit analysis may be
greatly simplified by the use of S-parameter notation, and (2) the results of microwave measurements
are usually expressed in terms of S-parameters.

Port I Port 2

0--

zo [s] Z02

Fig. C2 - S-parameter representation of
waveguide discontinuity
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If the composite waveguide is assumed to be lossless, the normalized scattering matrix of the
equivalent circuit must be unitary [40,42,45] with S S*=U. Thus,

S11 S12 5 I1 521 1 0

S21 S22 S12 S242 Lo 1

or

511511 + 122 = 1 (CIa)

SlIS21 + 12S22 = 0 (CIb)

S21S]I + S22SI2 = 0 (Cic)

S2]S21 + 522522 = 1- (Cl d)

The unitary property of the scattering matrix alternatively may be expressed as S* S = U, yielding the
additional relationships:

SI15I1 + 21S21 = 1 (C2a)

S12SI2 + S22S22 = 1 (C2b)

When Eqs. (Cla), (CId), (C2a), and (C2b) are combined, the following equalities are found:

IsiI 2 + Is2112 = 1 (C3a)

Is2 2 12 + Is 12 12
= 1 (C3b)

Is11 = IS221 (C3c)

IS121 = 1S21 1- (C3d)

Expressing the elements of the scattering matrix as

SIi= slle

S12 = ISI21e IeJ'12

S21 = 1S21 ei21

522 = 1S2 2 1 ei22

and substituting into Eqs. (Clb) and (CIc) yields the following relationship between the phase terms:

exp [(011 - 21)] + exp [(i 12 - 022)] = 0
or equivalently

exp [(0 1 1 + k22)] = -exp [i0 1 2 + 021)] (C4)

The properties of the scattering matrix found thus far have depended only on the loss free
requirement. Since the waveguide junction is reciprocal, the scattering matrix for the equivalent circuit
must be symmetric [76]: 12 = S21, or 012 = k21. With this additional requirement, the determinant of
the scattering matrix is Det [S] = I1122 - 1221, where

SlIS22 - S12S21 = Is,, 12e(1I + 22) -1 s2 1 12ej(2 + 2d)
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Since 012 = 021, Eq. (C4) together with Eq. (C3a) gives

S1I22 - SI2S2I = eJ(1 I + 22) (CS)

For the lossless reciprocal two-port circuit of Fig. (Cl), all properties of the 2 x 2 scattering matrix
derived up to this stage are easily shown to be valid regardless of the numerical values of the parame-
ters.

For many types of discontinuities in homogeneous waveguide, the corresponding equivalent cir-
cuit will have a reactive network containing only a shunt element (XI = 0 and X2 = 0 in Fig. Cl).
Examples are a change in width or a change in height of rectangular waveguide, for which the shunt
reactance is inductive or capacitive, respectively [1,7,33]. Numerical values of the reactance (normal-
ized to one of the transmission line impedances) for both of the latter discontinuities, as well as for
many other discontinuities which may be represented by an equivalent circuit containing only a shunt
reactance, have been obtained by several different analysis methods [1,2,7,38,391. The scattering
matrix for such an equivalent circuit is of special interest because a relationship may be found between
the phase of and the phase of 22 If the shunt reactance in Fig. C1 is X3 = X, with XI = 0 and
X2 = 0, the scattering matrix elements are given by

S1 = -J 02-ZOI) - ZIZ2]/[X(Zo2 + ZOI) + Zo0 Z02 ]

512 = S21 = j2X.1 4 /Z021J[JX(Z2 + ZOI) + ZOZo2]

S22 = [ - jX(ZO2 - Z 1) - ZoIZo2]1/jX(Zo 2 + ZO1) + Zoz021.

For this circuit, the relation between sI, and 22 may be expressed as

S22 = -SI ( + s1 )/(1 + s ). (C6)
The validity of Eq. (C6) is easily proven by substitution for 22 and sH in terms of the circuit elements.
An alternative way of stating the relation between sI, and S22 is

Is I = S221

22 = - 011 + 7r + 2 tan1[1sl sin 0,,/(1 + Is,! cos 011)

For an equivalent circuit containing only a series reactance (where X2 = 0 and X3= 00 in Fig.
Cl), the relation between s, and 22 is given by

S22 =-511(1 - S1)/ ( 1- 5 ) (C7)
or alternatively

1S221 = IsI 11

022= -11 + 7r + 2 tan- ['ii sin ki1/(Il - 1s11 cos 01)I.

For any discontinuity which can be represented by an equivalent circuit containing only one reactance,
either series or shunt, inductive or capacitive, the full scattering matrix may be found if the phase and
amplitude of either sI, or S22 is known.

For the general representation of the discontinuity as shown in Fig. (Cl), no fixed relationship
exists between the phases of 511 and 22, as may be shown by example. In the limiting case of X3 - 0,
the phase of sI, is determined entirely by the ratio X1/ZOI, while the phase of S22 is determined entirely

110



NRL REPORT 8917

by the ratio X2JZ02 ; thus the two phases of this (extreme) example are completely independent of each
other. Of course, if quantitative values for the equivalent circuit are known, all complex S-parameters
may be calculated.

The discontinuity of interest for this investigation occurs at the junction of the homogeneous
rectangular waveguide used in the microwave test facility and the dielectric slab loaded (inhomoge-
neous) double ridged waveguide to be measured. The overall discontinuity is thus a simultaneous com-
bination of different types of simple discontinuities: (1) change of width in rectangular waveguide, (2)
change of height in rectangular waveguide, (3) abrupt transition from rectangular to ridged waveguide,
and (4) abrupt transition from homogeneous to inhomogeneous (dielectric slab loaded) waveguide.
Each of the first three types of discontinuities has a dominant mode equivalent circuit containing only a
shunt reactance [7,38,39]. The equivalent circuit for the last type of discontinuity has been shown
[36,37] to be the general circuit of Fig. C1. For this equivalent circuit, X1 and X2 have opposite signs;
i.e., one is capacitive and the other is inductive, while the shunt element X3 is inductive and is nor-
mally the major contributor to reflection among the three elements of the reactance junction network
[36].

No specific equivalent circuit to represent the composite discontinuity was found in the technical
literature. Since three of the four simple discontinuities which form the composite discontinuity have
equivalent circuits containing only a shunt element, and the fourth simple discontinuity has an
equivalent circuit in which the shunt element predominates, the equivalent circuit for the composite
discontinuity may be approximated 'by a single shunt element for many applications.

If in Fig. C2, port 1 represents the waveguide of the test facility while port 2 represents the
waveguide under test, the complex parameter may be measured directly by terminating the WUT
with its characteristic impedance. This latter condition may be approximated by inserting tapered resis-
tive film in the plane of maximum electric field inside the WUT to absorb the microwave energy with
minimum reflection. Since this technique does not provide a perfect matched load to the WUT, there
will be a small amount of ripple in both magnitude and phase of measured s as a function of fre-
quency. However, if the assumption is made that S is not varying rapidly with frequency, S may be
determined by constructing a smooth curve through frequency plots of measured 1s ll and 11. The
desirability of having an equivalent circuit with only a shunt reactive term to represent the discontinuity
is apparent, even if the quantitative value is unknown. With s determined experimentally, 22 may be
calculated using Eqs. (C6), then (C3) and (C4) used to find 12 and S21*

The only element of the scattering matrix that can be obtained directly by measurement of a sin-
gle WUT is s. For those applications where the approximation of the discontinuity equivalent circuit.
as a single reactive element is not applicable, and the equivalent circuit is that of Fig. Cl, only the rela-
tionships between S-parameters based upon the lossless and reciprocal properties of the circuit may be
used:

Is11= 15221

S12 = S21

Is,, 12 + 152112 = 1

51122 - 12S21 = e 22 .

For some calculations, it may be necessary to consider the loss factor in the WUT. For
waveguides with loss, the scattering matrix to represent the waveguide discontinuity is no longer uni-
tary. However, if the WUT has reasonably low loss (little attenuation) the effect on the scattering
matrix is small and will be neglected. The loss factor will be used only to determine attenuation of sig-
nals traversing the length of the sample, and the scattering matrix of waveguide discontinuities will be
assumed unitary.

III



Appendix D

EFFECTS OF STANDING WAVE PATTERNS
ON SAMPLE MEASUREMENTS

Microwave measurements of any component will be affected by the standing wave pattern result-
ing from the interaction of two or more mismatches caused by discontinuities within the measurement
system [40,45,75,77]. For the measurements to be made in this investigation, the only applicable
mismatches to be considered are at the junctions between the standard waveguide used in the measure-
ment facility and each end of the sample waveguide section to be measured; any mismatches in the
remaining portions of the measurement system are corrected for in the calibration procedure when
using a computer-aided automatic network analyzer [71-73].

Properties of the dominant mode scattering matrix for the discontinuity formed by the junction of
different waveguides are derived in Appendix C. The relevant transmission line circuit to be analyzed
to determine the effects of standing waves within the waveguide under test (WUT), and to correct for
these effects, is shown in Fig. DI. The initial analysis will consider the discontinuities, and therefore
the representative scattering matrices, at either end of the WUT to be different. Each scattering matrix
will use the port designation indicated within the box representing the equivalent circuit for the discon-
tinuity, as shown in Fig. DI. Each of the different traveling waves indicated will be normalized to the
square root of the characteristic impedance of the transmission line which the wave is traveling; i.e., the
power carried by a given wave is one half the square of the absolute value of the amplitude coefficient.
This wave normalization and the use of normalized S-parameters is a conventional procedure
[1,8,16,45,76]. The wave a+) is the wave in the standard waveguide (SWG) traveling in the + x
direction and incident on the front face, or port 1, of the' WUT. The wave a-) is the wave in the
SWG traveling in the -x direction from port 1 of the WUT. Both a(+) and a) will use port 1 as the
reference position. Using port 2, or the back face, of the WUT as a reference position, a(+) is the
wave transmitted through the WUT and traveling in SWG in the + x direction. The SWG on the back
side of the WUT may be considered to be terminated in a matched load; thus there is no incident wave
on the back face. Within the WUT, b(+) is the wave traveling in the + x direction and will be refer-
enced to port 1 of the WUT, while b(-) is the wave traveling in the -x direction and will be referenced
to port 2 of the WUT. At any point within the WUT, the total wave will be the sum of the two travel-
ing waves

b = b(+) exp (-yx) + b(-) exp y(x - L) (DI)

where L is the physical length of the WUT and y is the complex propagation constant, y = a + j/3,
with a being the attenuation factor and 3 being the phase factor. The time dependence exp (Qcot) is
implicit.

Port 1 Port 2

1on
_ 0 1_ SA 2 Z02 . L 2 5 1 _ 0 1_

a_ b+) b " at,+)

I x=0 x=L

Fig. DI - Equivalent transmission line circuit for
analysis of standing wave effects in WUT
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In Fig. Dl the transmission line with characteristic impedance Z0 1 represents the SWG, while the
transmission line with characteristic impedance Z0 2 represents the WUT. The equivalent circuits
representing the waveguide discontinuities at either end of the WUT are composed of lumped elements
and thus have no associated lengths. For this analysis, the following assumptions are made: (1) the
SWG and the WUT will each support only a single (dominant) propagating mode, (2) the WUT is of
sufficient length such that there is negligible coupling between the discontinuities at either end via
higher order evanescent modes generated by the discontinuities, and (3) the equivalent circuit for each
discontinuity is lossless; i.e., the corresponding normalized scattering matrix is unitary [Appendix C].

At port 2 in Fig. DI, the wave traveling in the + x direction will be

b(+)L L = b(+) exp (-yL).

Since there is no incident wave on port 2 in the -x direction,

b(-)= 5SBb(+) exp (-yL). (D2)

At port 1 the wave traveling in the -x direction is

b l = = b) }exp (-yL)

thus

b(+)= S$A al+) + s 2b(-) exp (-yL).

Substituting for b(-) from Eq. (D2) gives

b( ) = sal+) + s2AS22b(+) exp (-27 L)= 2 1 a 22 22L

or

b(+)= sA al(+)/ [1 - 5252B exp (-2yL)]. (D3)

The wave a-) is given by

a ) = sa +) + s 2b(-) exp (-yL).

Substitution from Eqs. (D2) and (D3) then yields

SASA B ex -y)
ad-- SA a +) _+ S12 21 22 exp (-2L (4)

221-225 exp (-2yL)
The wave a(+) is given by

a4+) = SB b(+) exp (-yL)

which becomes, upon substitution from Eq. (D3),
SA 

4+ 21_ 12 exp (-yL)a~
21 - 5222 exp (-2yL) (DS)

Measurements made on the network analyzer will have results expressed in terms of the normal-
ized scattering matrix for the complete WUT. This scattering matrix will be designated as T with ele-
ments tk. For transmission measurements, the SWG will be the same at each end of the WUT; thus,
the waveguide interface discontinuities are identical, and with the S matrix port designations indicated
SA = SB. From symmetry considerations, t = t22 and t12 = t, with tI = a)/al(+) and
t2 = a2(+)la(+). For transmission measurements, only t21 is of importance. Letting S = 5 A, Eq. (DS)
becomes

t2l= - S2S21 exp (-yL) (16)

12222 exp (-2yL)
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If the elements of the scattering matrix S were known, it would be a simple exercise in algebra to cal-
culate y from the measured complex transmission term t 2 1. Since quantitative knowledge of the
discontinuity equivalent circuit is not generally available, the elements of S may not be obtained
directly from theory. With certain approximations, measured sIl may be used to calculate the three
remaining terms of S, as discussed in Appendix C. Before this latter approach is considered, it is
instructive to examine closely the quantitative effects of the discontinuity mismatches on the measured
transmission term t 2 1 -

All four elements of the scattering matrix S are determined uniquely at any given frequency by
the discontinuity at the waveguide interface and are independent of the length of the WUT. If the
denominator term in Eq. (D6) could be ignored, measurements on two different lengths of the sample
waveguide could be used to eliminate the quantity 12521 and easily calculate y. Unfortunately, the
denominator term cannot be ignored for short lengths of the WUT. Expressing the various scattering
matrix parameters in terms of magnitude and phase,

sik = IsikI exp (fr k)

tik = tikI exp (jik) |i, k = 1, 2,

shows that

021 = (k12 + 4 21 - /3L - P

where 'P is the phase of the denominator

I -S2212 exp (-2caL) sin 2(0 22 - /L)

tan[ 1 -IS 2
212 exp (-2aL) cos 2(0 2 2 - AL)

The measured phase 021 is seen to be basically linear with length but with a periodic perturbation. The
period of the phase perturbation is L = r/: while the peak phase deviation from the linear case is
easily shown by inspection of a phasor diagram to be

A'Pmax = ±sin-'[s 2 212 exp (-2aL)].

If the small variations with frequency of the elements of S are ignored, the same phase ripple in 021
will occur for a fixed length WUT with changing frequency. For a waveguide discontinuity with a 5:1
VSWR, and assuming zero loss in the WUT (a = 0), the phase error caused by the standing wave set
up between the ends of the WUT could be as much as +26.4°, or 7.3% in a sample one wavelength
long. If the attenuation of the WUT is small, the phase error will be reduced only slightly.

The standing wave pattern will also affect the loss measurement. From Eq. (D6)

I t = 12 - ISI2S211 exp (-aL)

s11-1S22 exp (-2aeL) exp j2(4 2 2 -/L) I

The measured loss also has a periodic component, with period L = r/. The extremes of t211 occur
when

+22 - L = ± nI/ 2 .

Since S12S211 = 1 - 2212 for a unitary scattering matrix 5, the extremes of It211 are given by

(I - IS2212) exp (-aL) (D7a)
It~lmax- 1- 122 12 exp (-2aL)

and

(I-1 22 12) exp (-aL) (D7b)
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For 1 S221 > 0 and a > 0

(1 - 1S2212) <
I -12212 exp (-2aL)

thus even the minimum measured loss, It211max. will be greater (in dB) than the actual loss in the
WUT, exp (-aL). For a sample waveguide with a loss of 0.2 dB and a 5:1 VSWR mismatch at each
face, the measured extremes in loss, also expressed in dB, will be t2max = 0.51 dB loss and
It21 min = 8.38 dB loss. These large variations in loss may be viewed as a cavity effect [2,40-421 where
the WUT forms the cavity.

Errors in the transmission measurement t 21 caused by the standing wave pattern within the WUT
will decrease rapidly as the match between the WUT and the SWG is improved. For a perfect match
(S22 = 0), the standing wave will vanish as will the measurement errors for both phase and magnitude.
A perfect match is impossible to achieve other than at a single frequency, and fabrication of matching
structures may be impractical, especially for measurements covering a large frequency bandwidth and
involving a number of different geometries for the WUT, because of the very low mismatch required
before the standing wave effects on the transmission measurements may be neglected. However, there
are a number of approaches that may be utilized to correct for the standing wave effects, even when the
mismatches at the waveguide interfaces are large.

In the approach that will be referred to as Method 1, the exact equivalent circuit for the
waveguide discontinuity is used to calculate the elements of the dominant mode scattering matrix S.
The complex propagation constant y for a particular sample waveguide is then found from Eq. (D6)
using the measured transmission coefficient t 21 for a single length of the WUT. If only the general
form of the equivalent circuit is known for the waveguide discontinuity, this method is not applicable.

In Method 2, the equivalent circuit to represent the waveguide discontinuity is assumed to consist
only of a shunt element with unknown numerical value. With this assumption, the scattering matrix
elements 512, 521, and 22 are found from the measured value of s11 as described in Appendix C. Then,
Eq. (D6) may be used to calculate y directly from the measured transmission coefficient t 2 l of a single
length sample.

Other methods for obtaining the propagation constant of the waveguide from measured data were
investigated, including those which assumed the WUT to be lossless (a = 0) with the phase term / the
desired quantity. None offered any real advantage over the approach which will be referred to as
Method 3. This method requires the measurement of the complex transmission coefficient t21 from
three different lengths of sample waveguide, each with the same cross-sectional geometry. The advan-
tage of this method is that it requires no knowledge, either measured or theoretical, of the waveguide
discontinuity equivalent circuit or the associated S matrix. For the WUT with length L, let the
corresponding measured transmission coefficient 21 be represented by

t2 jL = L,) = Tj, i = 1,2,3.

Then Eq. (D6) may be written as
yLi -L 2

r e - T1ie j22 = 5221.

Since the quantity S12S21 is independent of the length of the WUT,
yLi -yIL, 2 = yLk -yLk 2

Tie i- e S22 = Tke - Tke S22

for any combination of lengths i, k = 1,2,3. This last equation may be rearranged to yield

Tie yTke 52 Lk
r~e - Ike ~ 22 (D8)

Te-yL 1 T e-yLk _= 
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Since s22 is also independent of the length of the WUT, Eq. (D8) is valid for any combination of ik,
thus

T3e yL3- Te _ i r2e yL2- TleL
-yL 3 T e-yL e--yL2 -- -yL1

from which
(L3T - L2 ) -y(L - L3) - y(L2- LI) 2

T372e -37je - 1l72e + T?
-y(L 3 - L2) _ y(LI-LL) _ (L2 -LI) +T2

T3T~e / T3T~e - T1T2e TI

Expressing the length differences as

L- Lk = Aik, i,k= 1,2,3

then
T3T2 sinh (A 3 2 ) + T2T1 sinh (A 2 1) + i-1r 3 sinh (A13) = 0 . (D9)

Thus, the unknown elements of S have been eliminated by utilizing the measured complex transmis-
sion term t21 of three different lengths of the WUT. Of course, Eq. (D9) must be solved at each fre-
quency for which y is sought using the corresponding measured data.

The left-hand side of Eq. (D9) is a complex function of a complex variable,

F(y) = F(a + j)

and for the value o = a 0 + j/3o at which the function is zero, its real and imaginary parts may be
equated to zero separately:

R (o,o) = 0 (D Oa)

I(ao,o) = 0 (D Ob)

where R (a,) = Re [F(a + j/)] and I(a,3) = Im [F(a + j/)]. Use of the mathematical identity

sinh (x + jy) = sinh x cos y + j cosh x sin y

will show that

R (a,3) = X32P32 - Y32Q32 + X21P21 - Y21Q21 + X13P 13 - Y 3Q13

I(C,) = X32Q32 + Y32P32 + X2IQ21 + Y21P21 + X13Q 3 + Y 3PI3

where

Xk= Re [TiTk]

Yk= Im[TTk]

Pik = sinh (aAik) cos (Aik)

Qik = cosh (aAik) sin (Aik)

for the index pair ik = 32,21,13. Newton's method in two dimensions [64] may be used to find a solu-
tion to Eq. (D1O). With yi = a1 + j/i used as an initial estimate for yo,

R(al,/3) = 

I(a1 ,3) = ll.

With ao = a 1 + Aa and go = I + AP3,

R(aI + Aa,pI + AP) = 0

I(a I + A aP I + AB) = 0.
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Approximating each of the functions R (a,3) and I,) by a first order Taylor series [51,78] then
gives

R + OR Aa + OR Ap = 

ea 018 , I

I + a Aa + a3i = 0
oa in mari for

or in matrix form

[aR/16a R/6/3 rAa1
a0Iaa a/a/ j, a,3 LApJ

Since the function F(y) is an entire function, i.e., OF/Oy exists at all
advantage may be taken from the Cauchy-Ricmann condition [78], with

aR/aa = 0a 10
aR/a, = -I/aa

to show that

Aa= - RR,

= a
AP3=- f R

0/3

points in the complex y plane,

R I / OR 12 OR 2

0/3 6O6 a + 0/32
a ,

+ aI

(D1 a)

(D11b)
/ 0R~ + OR2

/ I .I L~~~~ a J 1 0 / 3 2 1 ~ C a 
The derivatives are given by

R/6a A32 (X3 2 U3 2 - Y32 V32 )+ A 21 (X2 1 U21 - Y21 V21I + A143 1 3 U13 - Y1 3 V13

aR/0/3 = -A 3 2 IX3 2 V3 2 + Y3 2 U 3 2j - 2 1 (X2 1 V 2 1 + Y 2 1U 2 1 -A 13k 13 V1 3 + Y 13 U13J

where

Uk= cosh (aAik) COS (/Aik)

Vik= sinh (aAik) sin (/3Aik)

for the index pair ik = 32,21,13.

The function F(y) is a relatively simple function possessing no poles or singularities, and
Newton's method, via repeated iterations of Eq. (DlI), will quickly converge on the root y0 . The com-
puter program CROOT3 utilizes this approach (Method 3) to solve for the complex propagation
constant y when provided with the measured complex transmission coefficient t21 of three different
lengths of the WUT. A FORTRAN listing for this program is given in Appendix E3.

The loss term a of the complex propagation constant may be found independently of the phase
term 8 at frequencies where the measured transmission loss of the WUT is minimum. This may be
accomplished by measuring sl, as described in Appendix C, at the frequencies where It21 I is max-
imum. Since 1 S22 1 = Is 1I, then from Eq. (D7a)

(t (1-s1112) exp (-aL)
t2l Ix =1- Is, 1 2 exp (-2aL)
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This last equation is quadradic in exp (-aL) and is easily solved. With X = exp (-aL) and
T t2l I max

X = [(1 + 15,,12)2 + 4T2 sll 1 2 ]1/2 + is1,I2_l}/(2TIs1 2) (D12a)

a = - In X/L. (D12b)

This technique for obtaining the loss term a of a given WUT will be referred to as Method 4. The
number of points at which I t2 1I will be maximum will depend on the length of the WUT and on the
frequency band for the measurements. As with the other methods, this technique is valid only if a sin-
gle mode propagates in the WUT.

A similar development to find a at frequencies where It21 I is minimum is possible; however, this
procedure is not recommended for the following reasons. First, the measured value of It21 I will have a
minimum that is much less sharply defined than is the maximum as can be seen by examination of Eq.
(D6) or as can be shown by experiment. A second and more important reason is that the sensitivity of
calculated a to measurement errors in both Is11 and It21 1 is much greater when It21 I is minimum than
when It21 1 is maximum. Thus, Method 4 will ignore the minima of It21! and calculate ax only at fre-
quencies where the transmission magnitude is maximum, or equivalently, where the transmission loss
is minimum.

Up to this point, the effects of the standing wave within the WUT on the reflected signal have
been ignored since the emphasis has been on the measured transmission t2 1 through the effective two-
port network, with little or no additional knowledge of y to be found from the measured reflection
coefficient t. If one port of the WUT is terminated, the effective circuit becomes a one-port network
and reflection is the only measurement possible. In particular, if port 2 of the WUT is terminated with
a short circuit, then in Fig. D s =-1. From Eq. (D3), with SA = S.

b(+) = s2 1a(+)/[1 + 22 exp (-2yL).

The power contained in the wave traveling in the +x direction within the WUT is given by

P(+lx~o= Pi 11 + 22 exp (-2yL)I 2 (D13)

where Pi is the power incident on the front face, or port 1, of the WUT. Like b(+), the power P(+) is
referenced to port I of the WUT, but will drop off as exp (-2cx). If the attenuation of the WUT is
small, and if the length L is only a few wavelengths, exp (-2caL) may be approximated as unity
(equivalent to assuming a = 0) for calculations to determine the peak voltage within the WUT. With
this approximation, from Eq. (D2)

b(= - b(+) exp (-j/L).

Then, from Eq. (DI) the total voltage at any point within the WUT is

b(x) = b(+)[exp (-j/3x) - exp ( j3x-j2L)]

or

Ib(x)I = 21b(+) sin [(L - x)]I.

The total voltage will be maximum

I b W Imax = 2 b(+)I

when sin [ (L - x)] = ± 1, or equivalently, when

L - x = (2n + 1)Xg/4, n = 0,1,2, . ..

where the guide wavelength X is given by

Xg = 2X/A.

118



NRL REPORT 8917

Since power is proportional to the square of the voltage magnitude, the voltage maximum is the same
that would be produced by a single wave, traveling in either direction, with a power four times that of
either wave forming the standing wave pattern. This power will be referred to as the maximum voltage
equivalent power, or PMVE. Thus, from Eq. (D13)

PMVE = 4Pi ~ ~~~I 21 1 2
PMVE 4P'i 1+ 22 exp (-j23L)1 2

Since Is21
2

= 1-1S2212

4(1 - Is2 2 12 )P1 (D4a)

~MVE =i+ 5S221 + 215S22! COS 

where

= 022- 2/L. (D 14b)

Peak power breakdown in a waveguide occurs when the electric field intensity at any point
exceeds the electric breakdown strength of the dielectric medium at that point, thus causing arcing to
occur. With a WUT terminated at one end with a short circuit, points of maximum E field thus will be
located at odd multiples of quarter wavelengths from the short. The equivalent unidirectional power
PMVE at breakdown may be calculated in terms of the power incident on the WUT from Eq. (D14).
Even if the phase term /3 is known, the phase and magnitude of 22 must be found for accurate calcula-
tion of PMVE. As in the case for determination of the propagation constant y from measured transmis-
sion through the WUT, quantitative knowledge of the discontinuity equivalent circuit will not be avail-
able for most geometries of the WUT, thus Method 1 is not applicable for finding S22. Assumption of
an equivalent circuit containing only a shunt element to calculate 22 from measured sl (Method 2)
may be applicable for some geometries of the WUT, but in general will give rise to some error in the
calculated phase (22) of 22. As the calculation of PMVE from Eq. (D14) may be very sensitive to
errors in 022 a more reliable method to determine 022 is indicated.

A method analogous to Method 3 is possible to determine peak power breakdown. This method
would require testing three sample waveguides, each with the same cross-sectional geometry but with
different lengths, to their respective breakdown levels of incident power. Using Eq. (D14) together
with the three measured power levels, 22 could be eliminated as an unknown and PMVE calculated.
This approach was rejected because of two major practical deficiencies: (1) the actual peak power break-
down levels of the three different length samples could vary significantly because of slight differences
in construction, and (2) the length of the WUT must be such that the standing wave pattern produces a
electric field null at the interface of the WUT and the SWG. The latter condition is required to prevent
arcing at the interface and is discussed in greater detail in the section on peak power measurements in
Section 3.

The technique that was chosen to calculate PMVE from measured incident peak power at break-
down will be referred to as Method 5. The phase factor }e will be assumed known as a function of fre-
quency (either from theory or from measurement). For a single WUT with length L, the measured
reflection, t - a /a from the front face, with the back face shorted, from Eq. (D4) is

_lS12S21 exp (-2yL)
tl = 511- 1 + 22 exp (-2yL)

or

l= S + (IS22 - 12521) exp (-2yL)
+ 22 exp (-2 yL)
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From Appendix C

thus

SlIS22 - 12S21 = e(0Il+022)

jo= IS111 + e2aLe(022- 2PL)

lit = e 1 + I S2 2 1 e-2.L eA(22 - 2PL)

Letting

1S221 = Is1ll = G

e-2aL = X

022 - 2L =

then

ItI=|G + X.'l lIi = ; + 
and

ItI 112 = G2 + X2 + 2GX cos f
1 + G2X2 + 2GX cos 

If the WUT is lossless, then a = 0, K= 1, and It11 = 1. However,
have a pronounced. effect on the magnitude of the reflected signal.
occur when It,,I 2/ ( = 0. From Eq. (D15)

A It,1
2 = 2GX(G 2 + X 2 - GX 2

- 1)
&~~ (1 + G 2X 2 +2GX cos ) 2 sn

Since

G2 + x2 - G2 X2 - (G2 - 1) (1 - X 2) 0

the extremes of It 1 12 occur when sin ( = 0 or, equivalently, cos e =
minimum (It 1!2 maximum ) for cos e = 1, or

(D15)

even a small amount of loss will
The extremes in reflection will

+ 1. Return loss will be

= 2n-7r, n = 0, 1, 2, ...

and return loss will be maximum (It,11
2 minimum) for coS e = -1, or

at= O2n + 1)7r, n = O. 1, 2, ...

as may be shown either from (1) calculating 2t, 11 2/0f2 as negative or positive, respectively, for
sin f = 0, or (2) direct inspection of Eq. (DI5) for cos ( = 1.

When measured on a swept frequency basis, It,11
2 will display a broad maximum but a very sharp

minimum. If the peak power breakdown test is to be run at a frequency fo, then the frequencies of the
first minima on either side of fo, f < fo and f2 > fo, may be accurately measured. The phase of S22
may then be calculated at each of these frequencies

(A221f = (2n + )I + iL, i = 1,2 (D16)

since , = 8(fj) is known. The ambiguity of n in Eq. (D16) is easily resolved since - r 22 < T.
A linear interpolation is then used to find 22 at the desired frequency fo:

022Ifo = 022IfI + (fo - fi) f2 - f (D17)
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The accuracy of the linear interpolation will depend on (1) the dependence of the phase 22 on fre-
quency, and (2) the spacing of the frequency points fl and f2. The latter factor is dependent on the
length of the WUT, with a greater length yielding closer spacing, hence greater accuracy in the calcula-
tion of k22 at f. If the difference in phase between the two measurement frequency points is less than
a few degrees, the error in the calculated value of 022 at fo due to linear interpolation will be negligible.
The magnitude of 22 at fo is found by measurement of s as described in Appendix C, with
IS221 = I 111.

All measurements to determine the phase and magnitude of 22 may be accomplished at low
power levels since the WUT is a linear device. However, these low-power measurements must be done
prior to the actual high-power breakdown test since any arcing may leave conducting paths of carbon
build-up which could affect subsequent low-power measurements. Once 22 at the frequency of the
high-power test is determined, the WUT (with a short circuit on the back face) may be subjected to
increasing levels of peak power until breakdown, i.e., arcing within the WUT is detected. The final step
of Method 5 is then to calculate from Eq. (D14) the effective, or undirectional, peak power breakdown
level using the known phase term ,/ and the measured incident power at which breakdown occurred.
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Appendix E

COMPUTER PROGRAMS

El PROGRAM TRMWG
E2 PROGRAM DLDRWG
E3 PROGRAM CROOT3
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PROGRAM TRMWG

001 00 C THIS IS PROGRAM TRMIAfG.FOR - CIY -OCT 80
00200 C THIS PROGRAM USES TRANSVERSE RESONANCE METHOD TO

00300 C SOLVE FOR SOLUTIONS OF SYMMETRICAL DIELECTRIC LOADED

00400 C DOUBLE RIDGED bIAVEGUIDE. ItIAVEGUIDE MODES ARE PRESUllED
00500 C TO BE TE(M.0> MODES.
00600 INTEGER PIK
00700 PI=3. 1415927
00800 C=2. 997925E+08
00900 R1=39.37008
01000 R2=2.0*R1
01100 RRMDI=180. 0/ (PI*R1)
01-200 C 1 = (2. OE+ 09P I'C) ++2
01300 NEWRUN=O
01400 TYPE 100
01500 100 FORMAT ('$' PROGRAM TRMUjG'CtY'OCT 80')
01600 105 TYPE 110
01700 110 FORMAT<(/"' WAVEGUIDE DIMENSIONtS IN INCHES - A,,DS: fl)

01800 READ(5,*)ABDsS
01900 115 TYPE 120
02000 120 FORMAT C' RELATIVE DIELECTRIC CONSTANT OF CENTER

02100 1 LOADING: '$)
02200 READ (5 *) EPSR
02300 TYPE 125
02400 125 FORMAT ' WIDTH IN INCHES OF CENTER LOADING: '$)
02500 READ(5*)T
02600 128 TYPE 10
02700 130 FORMATC' IdAVEGUIDE ODE - TEC1 0) (13 OR TE(2' 0) (23 -

o2oO 1 1 OR 2? $)
02900 ACCEPT 133,ITEI2
03000 133 FORMAT (I 1)
03100 IFCITE12.iE.l.AtiD.ITE12.NE.2)GO TO 128
0 200 IFTGS1=O
03300 FCT.GT.S)IFTGS=1
03400 140 T YPE 1 45
035.00 145 FORMAT C"' DRU.'DL PARAMETERS ------- DIMENSIONS IN

03600 1 INCHES'8)' A'9'B' 9X'D'9X'S'l2X'T'6X4HEPS')
03700 TYPE 150,!,iABs, DSiT.EPSR
03800 150 FORMAT (4Fl0.4.F13.4FlO.3>
03900 R=D,'B
04000 RS=R..2
04100 IFR=O
04200 IF (AES (R-. 0) .LT. 1. OE-06) IFR=
04300 l!=(1-IFTGS)4 (A-S5P2+IFTGS*A-T)'R2
04400 1.2=(1-IFTGS)* ST)'R2+IFTS (T-S)'P2
04500 1.13= (I-IFTGSI) *TzR2+IFTGS*SRP2
04600 ATRY=1 . 5+.A (1 . 0+ 1 . 0,'R+ CEPSR- 1 . 0) +T'A)
04700 F (ITE12.EQ. 2) ATPY=2. 5+A
04800 C THE ABOVE QUANTITIES ARE TO BE USED FOR CALCULATING

04900 C APPROXIMATE STARTING VALUES OF CLTOFF FREQUENCIES

05000 IBC=1
05100 FRE=CRI (ATP)*2. OE+09)
05200 XXD)EL=1.5+FREQ
05300 BY =0. 0
05400 GO TO 215
05500 160 IF(NElRUI.LT.2)GO TO 165
05600 IF(FSTART.GT.FCGHZ)GO TO 180
05700 165 CONTINUE
05800 IFCITE12.EQ.2)GO TO 480
05900 TYPE 167
06000 167 FORMATC' WISH TEC1,0) PROPAGATION CONSTANTS- fl)
06100 ACCEPT 133 IEETA
06200 IF(IBETA.NE.1)G0 TO 480
06300 1S9 TYPE 170
06-400 1.7 0 FORMAT C'" FREQUENCIES IN GH: - STRTiSTOP' INCREMENT: ')

06500 READ (5y*) FSTARTY FSTOPi DELF
06600 175 FORMAT (F.3.1X F..1I'F9.3)
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0670 0 180 IF(FSTART.LT.1.OE-1GO TO 480
06800S IF FSTAPT.GT.FCGH -G' TO 190
06900 TYPE 1l5'
07000 185 FORMAT (' FREQUENCY UST BE GREATER THAI CUTOFF')
07100 GO TO 165
07200 IF (FSTOP. LT. 1. OE-13) FSTOP=FSTRT-1. 0
07300 190 TYPE 195
07400 195 FORMAT (4X4HFRE8X4HEETRA9X3HGWlIL7X5HRATInO8X5HC>RIR'
07500 1 SX3HGHZ6X6-DEGIN6X6HIICHES4X8HGWL'FSWL7X6HR OR I/)
07600 FREQ=FSTART
07700 BY=0.1
07800 C THIS IS A FIRST TRY FOR BETA
07900 XXEL=10. 0FREQ
08000 210 CONTINUE
080100 215 CONT I NUE
08200 IBTRY=O
08300 I RST=2
08400 220 CIF=CI1FREn+*2
08500 C1FEP=C1F.EPSR
08600 225 IBTRY=IBTRY+1
08700 IF(IBTRY.LT.26)GO TO 235
08800 TYPE 230
08900 230 FOR1AT ' MORE THAN 25 TRIES AT ROOT')
09000 GO TO 420
09100 235 BYSQ=BY+*2
09200 GX3SQ=ClFEP-BYS0
09300 GX 1SQ=CF-PYSQ
09400 GX3=SQRT (AlS (GX3 SW))
09500 GX1=SQRT (AS (GXISC))
09600 IF (G'X3SQ)240250Q250
09700 240 CHS3=SI NH GX3?t.1)
09800 CHC3=COSH (GX3*..3)
09900 I RG'>3= 1
10000 GO TO 260
1 Q1 00 250 CHN3=S I N (GX3.U,3)
10o00 CNC3=COS (GX3b,13)
10300 IRGX3=-1
10400 2 0 CONTINUE
10500 IF (GXISO) 270, 280s, 20
1 06(0 270 0 CHS1=SIIH (CGX1 .tdl)
10700 CHC1=CSHCGXll.1)
1080) G%.AIR=G'1
10900 RIK=1HR
11000 IRGXl=l
11100 GO TO 2805
11200 20 C:HI1=S'IN (GXI.Ut+Wl)
11300 CHCI=COS' (GXIAl )
11400 IFGXl=-l
11500 GXA I F=G. 1 *PRMID I
11600 RIK=1HI
11700 285 CONTINUE
11800 IF(IFTGS.EQ.1)GO TO 290
11900 IRGX2=(IRGX1+1)/2
12000 GX2=GX1
12100 GO TO 300
12200 290 I RGX2= (I RGX3+ 1) 2
12300 G2=GXS
12400 300 CHS2=IRGX2*SINH (GX2*L12) + <1-IRGX2) SIN GX2*W2)
12500 CHC2=IRGX2*COSH (GX2* 12) + C1-IRGX2) .COS (GX2+.lU2)
12600 310 BOY=0.0
12700 IF(IFR.EQ.1)GO TO 320
12800 IF(IRGX2.EQ.1)GO TO 320
12900 C CALCULATE Y TERM
13000 P= (1+R)x CI-R)
13100 GL=2. O+P IGX2
13200 P2ARG=1. O- (B/ (R1.GL) >.*2
13300 PSAPG=1. 0- CD (R1*GL) *2
13400 IF (P2ARG. LE. . ) PEARG= 0. 0
13500 IF (P3ARG. LE. 0. 0) P3RRGtO. 0
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P2=SQRT (P2ARG)
P3=SQRT (P3ARG>
PA=P*+ (. O*R) * . Q+p2) . . 0-p2)-<1. +3. OF'S / (. O-PSN
Pi;F=P- (2.0/F:). (1 .*0+P3) -(1. 0-PS) . +PS)'(I. -p)
PC= t (4 . ('*F N / 0. 0-PF % % **2
PT1 =RLOG ((1. QR-S)/(4 Q*R)P** O. 5*(F+1. O))>
PT2=2.0.(PA+PAPP+2.0*PC)?(PA.PAP-PC..2)
PT3= (B' (R 1*4. 0*rL>)>).2*(1. O'/P>. +(4. 0.R) ( 5. . FS

1 -1.0>)(1.O-RS)+4.0.RS.PC'-(3.0.PA))+2
DBY=2. 0B-(PT1+PT2+PT3)>/'(R1.GL)

320 CONTINUE
C CALCULATE F(BETA)

IF(ITE12.EO.2)GO TO 324
FR3N=CHS3
FR3D=CHC3
GO TO 326

324 FR3N=CHC3
FR3D=CHS3

326 CONTINUE
ONEPM=IRGX3
IF(ITE12.EQ.2)DNEPM=1. 0
IF(IFTGS.EQ.1)GO TO 330
FBETR=P (-POY*CHSI+CHCI) (GX2.FR3D.CHC2

1 +OtiEPM.6X3.FR3N.CHS2)+CHS1*(IRGX1 6X2.FR3I'.CHS2
2 ONEPMI.GX3*FR3N*CHC2)

60 TO 340
330 FBETA=FR3D (IRG'X3+GX2*CHS14CHS2+GX1.CHC1.CHC2)

1 + (OHEPMFR3NR-BODYFR3D))*(GX2*CHS1*CHC_+GX1-CHC1-CHS2)
340 IF (I EC. EQ. 1) XX=FRE0

IF (BrC. EQ. 2)XX=BY
C ROOT SEARCH ROUT INE

IF(IETRY.GT.1)GD TO 350
345 XXNEb'=XX+XXDEL

GO TO 390
350 KROS=1

IF FBETR+FOLD. LT. 0. 0) KPOS=-1
IF(IRST.EQ.1)GO TO 355
IF(KROS.GT.0)GO TO 345
IPRST=1
xxu=XX
XXL=XXOLD
6O TO 380

355 IF (ABS (F ETA) . LT. 1. OE-04. A ND. ABS (XX-XXOLrD) LT.
1 0.0001)0 TO 420

360 IF(FKPROC.LT.O)GO TO 365
IF(XX'X.GT.X X"<OLI0)GO TO 370
GO TO 375

365 IFXX.GT.X:;OLD)GO TO 375
370 XXL=XX

60 TO -80
375 XXU=XX
380 XXNEI.l=XX-FBETA (x-XXOLri) (FBETA-FI:OLD)

I F (XXI ! . GT . XXL. RHD . XXUEt... LT. XXII) GO TO 3290
XXNEtI= . '* ' < L+NXLI)

390 FBOLD=FBETA
XXOLD=XX
XX=XXNEI'I
IF(IBC.EC.1)bO TO 395
EY=XX
GO TO 225

395 FREQ=XX
GO TO 220

C ROOT NOI41 KNOWIN
420 IF(IBC.EQ.2)GO TO 450

FCGHZ=FREQ
TYPE 430w ITE12,FCGH, BOY

430 FORMAT(' TE('I1'v0) ODE CUTOFF FREQUENCY IN
1 EXY = F7. 3)

GHZ = 'F7.4'

125

13600
13700

£ soo
14 coo
141 (r0
14200
14300
144 00
14500
14600
14700
14800
14900
15000
15100
15200
15300
15400
15500
15600
15700
15800
15900
16000
16100
16200
16300
16400
16500
16600
16700
16800
16900
17000'
17100
17200
173100
174 0 0
17500
17600
17-700
17800
1 qno
18000
18100
18200
18300
18400
180 0
1E600
18700
1880 0
18900
19000
19100
1 92 00
19300
194 00
19500
19600
19700
19800
119900
20000
20100
20200
20300
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20400 IBC=2
20500 GO TO 160
20600 440 CONT I UE
20700 450 BYDI=FY.PRMDI
20800 6WlL=S6O. r'BYDI
20900 FSWL=RI*C' (FREC' I. OE+09)
21 000 RGLFS=Gb.'L/FSWL
21100 460 TYPE 470FREQYDIGItJLRGLFSG\RIPRIK
212 0 471-0 FOPMRAT CI.AF . SN.F?.2,SN,;P4. 4NFS.4,'32;FC.I. !)
21300 IF(FREQ.GE.FSTOP)GO TO 480
21400 C SET FIRST TRY BETA FOR NEW FREQUENCY
21500 FNIEkL.=FREQ+DELF
21600 BY=0.5*BY.SQRT ( (FNEI...2-FCGH_--2)s (FREQJ..2-FCGHZ..2))
21700 XXIDEL=BY
21800 FREO=FNEW
21900 GO TO 210
22000 480 TYPE 490
22100 490 FORMAT C//' WISH NEW1 PARAMETERS? NONE=0, ALL=I 
22200 1 CENTER LOADING=2v FEQ=3v MDE=4: ')
22300 ACCEPT 1339 NEWRUN
22400 GO TO(500, 105S15 169, 128480)tiEJRUN+I
22500 500 CONTINUE
22600 END

PROGRAM DLDRWG

001 00 C THIS IS PROGRAM DLDRUG.FO - C. Ill. YOUNG JR. - SEPT 1983
00200 C THIS PROGRAM USES A SERIES MODAL EXPANSION FOR THE
00300 C FIELDS*ALONG WITH APPROPRIATE BOUNDARY CONDITIONS, TO
00400 C CALCULATE CUTOFF FREQUENCIES AND PROPAGATION VALUES AT
00500 C FREQUENCIES ABOVE CUTOFF FOR DIFFERENT JRVEGUIDE MODES
00600 C IN DOUBLY SYMMETRIC DIELECTRIC SLAB LOADED RIDGED
00700 C WAVEGUIDE (LOSSLESS APPROXIMATION). IF DESIRED, POWER
00800 C BREAKDOWN LEVELS AND ATTENUATION FACTORS MAY BE
00900 C CALCULATED FOR THE OLSE(1.O) MODE.

100
110

121
124
125

128e
129

DIMENSION GY1 (16) GY1SQ(16) SYS(16) ,GY3SO(16) P1 16)
DIMENSION PlSC)<l6) P2(16) P2SQ<16) ,P3s16) ,P3SQC16)
DIMENSION GNXISQ C16), GNX3SQ C16) HC1 (16), HC2 (16) 9 HE31 C6)
DIMENSION HSP1 16) , HSP2 (16) 'HH3 (16) ,TMATX (32,322)
DIMENSION Z11 C16),1 Z2 (16), Z222(16n TZj1 16 ,16)
DIMENS ION TZ12(16, 16) T21 (16 16) TZ22 (16, 16)
DIMENSION XXA<16) ,XXVC16) ,QLAM<16) ,QAP<16)
DIMENlSlON SMEYC16 16 ,SMEZC16, 16) SMHY (16 ,16)
DIMENSION SMHZ<16i 16) ,vCAMC32 32) QDM<16) ,QDP<16)
DIMENSION JKAREA (70), VVEC (32)
DIM1ENSION A1 (16) B1 ( ),C1 C16) D1 C16) F1 ) G1 C16)
DI MENSION A2P(16) A2MR(16) >,B2P<16) , 2MC1EI6)
DlMENSION C2P (1 6) !C2M CI6), D12P (16) D2M (16)
D I MENS I ON F2P 16) F2M 16) 2P 1 6) G2M (1 6)
DIMENSION A3<16) B3(16) C3(16) 6>,13(16) F3(16) ,G3(1C)
DIMENSION EXAD I (16) ,EYADI (16) ,EZAD I (16) ,HNAD I (16)
DIMENSION HYAD I (16) sH:ArII (16) ,A3R (16) iB3R(16)
DIMENSION C3R (16) iD3R (16)> F3R (16) ,G3R (16)
DIMENSION PXN1C16)ilPXN2C16)iPXN3C16>
TYPE 100
F.ORMAT C/"' PROGRAM DLrlRl.IG.FOR - NOV 19833')
NRERUN= 0
TYPE 121
FORMAT(C"' ALL DIMENSIONS ARE IN INCHES'/)
TYPE 125
FORMAT(' "A" DIMENSION = 'if)
READ C5 p) ADI M
IF(NiRERUN.EQ.2)GO TO 144
TYPE 129
FORMATC' 1" DIMENSION = S)
REAlD (5.)*>BIIM
IF(NlRERUN.EQ.3)GO TO 144

126

01 000
011 00
01200
01300
01400
01500
01600
01700
01o800
01900
02000
021 00
02200
02300
024 00
02500
02600
02700
02800
02900
03000
031 00
03200
03300
034 00
035 0 0
03600
0370 0
0::r 0
0390 0 :
04 000
041 00
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04200 132 TYP E 133
04300 133 FORMAT(' "D DIMENSION = ')
04400 READ(5 ,*)DDPIt
04500 IF(NRERUN.EQ.4)GO TO 144
04600 136 TYPE 137
04700 137 FORIIAT(' S- DIMENSION = 'S)
04800 READ (5 *) SDI 
04900 IF(NRERUN.EQ.5)GO TO 144
05000 140 TYPE 141
05100 141 FORMAT<' "T" DIMENSION = 'S.)
052 00 READ (5 ,.) T I M
05:300 144 DBR=DDItVBDIIM
05400 SAR=SDIM'.RDIM
055.00 IF(DBR.GT.1.QE-6.ANID.IDBR.LE.1.0)GO TO 146
056.00 TYPE 162
05 700 GO TO 10
05O0 146 IF(SAR.GE.Q.O.AND.SAR.LT.1. )O TO 152
05900 TYPE 167
06000 150 TYPE 151
06100 151 FORMAT(' RESUBMIT DIMENSIONS')
06200 GO TO (124e 124,1249128, 132i136)NRERL'N+1
06300 152 IF(NRERUN.NE.0)60 TO 203
06400 GO TO 175
06500 162 FORMAT(' DB RATIO MUST BE POSITIVE AND UNITY O LESS')
0660 0 167 FOPPAT(' SA RATIO MUST E POSITIVE AND LESS THAN OE 1)
0600 175 TYPE 176
o68o 176 FDRMAT(' RELATIVE DIELECTRIC CONSTANT '.'
06900 READ (5' 4) RDC
07000 19o TYPE 191
07100 191 FORMRT(' DESIRED IJIAVEGLIIDE MODE -- LS(E OR 1),M1l: ')
07200 ACCEPT 192, EMMODE, IIMODE, HMODE
07300 192 FORMAT(Ai,211)
07400 IF(EMMODE.NE. E.AND.EtMMODE.NE. 'M')GO TO 195
07500 1F(EMMODE.EQ. 'E')MEH=1
07600 IF(EMMODE.EQ. 'M)MEH=2
07700 IF (MEH. EQ. 1.AND. MMOrIE. GE. 1. AND. MMODE. LE. 2. AtD. NMODE
07800 1 .GE.O.AND.NMODE.LE.3)GO TO 197
07900 IF (MEH. EQ. 2. AND. MMODE. GE. 0. ND. IrMODE. LE. 1. AND. NMODE
08000 1 .GE.1.AND.NMIODE.LE.4)G0 TO 197
08100 195 TYPE 196
08200 196 FORMAT (' ALLOIED MODES ARE QLSE (1, O THRU 2,3) AND
08300 1 QLSM(091 THRU 14)')
08400 GO TO 190
08500 197 NEO= (-1) ++NIODE
08600 MEO= (-1) +.MMODE
08700 IF (NRERUN.EQ.9)GO TO 230
08800 200 TYPE 201
08900 201 FORMAT(' NUMBER OF HIGHER ORDER MODES TO BE USED IN
09000 1 ANALYSIS? '$)
09100 READ(5*.)NHOtt
09200 IF (NHOM-. GE. O.AlD.NHOM.LE. 15) GO TO 203
09300 TYPE 202
09400 202 FORMPT< NUMBER OF HIGHER ORDER MODES MUST BE POSITIVE
09500 1 AND IS LIMITED TO 15')
09600 GO TO 200
09700 203 TYPE 204
098 O0 204 FORMAT(' ISH TO CHANGE ANY PARAMETERS? NO=09 YES=1
09900 1 ?:$s)
100IO ACCEPT 210,IFCP
I 1 00 210 FORMATCI1)
10200 IF(IFCP.E0. 1)GO TO 110
1 030 0 NTERMS=NHDM+1
10400 HR=DrDIM.BDIM
1 0500 HRI=1.OxHR
106 00 JTTYPE=1
1 0700 IF(TbIMl.LE.SDIM)JTTYPE=-1
1 08 00 IF(JTTYPE.GT.0)GO TO 220
1 0900 A'-1=0. . (ADIM-SD IP)
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AX2=0.5. (SDIFM-TDI M)
AXS= .5'* TD I 
O TO 230

220 AX1=O. + ADI M-TD I M)
AV2= 0. 5. (TD I M-SD I M)
A>S=O. 5SD I M

C SET FPEJ:-lUENCY INDEPENDENT TERMS
a23o DO 240 I=19-NTERM1S1

I AFiG=2. (I-1) +NMODE
GY ( =( I ARG*3. I4I593PDI M
GY3 (I)=GY1 (I)sHR
GY 1SO (I) =GYI (I) **2
GY3sl (I) =GY3( CI) *+2

235 DO 240 J=1p NTERMS*1
JARG=2* (J- 1) +NP1ODE
SMEZ (I J) =HR*SINC (-NEO-09 JARG? IAFH, HR)
SMEY (I J) =HR*S I NC(NED 2, JARG I APG6 HR)
SMHY( I iJ) =SI NC (-NEO ,0, IARGJA sRG- HR)

240 SMHZ (I .j _t=SINC (NEO 1 IRG JRG HR
C SOLVE FIRST FOR CUTOFF FREQUENCY
245 IFFC=O

TYPE 249
249 FORMAT;s' WISH CUTOFF FREQ SEARCH(O) OR FIX(1)? S)

ACCEPT 1 RSF
IFCMRSF.EQ.1)GO TO 255
TYPE 251

251 FORMAT<' CUTOFF FPEO (GHZ) - - STARTSTOP INCREMENT: ''
READ (5 ' .) .N%, 1 X ^;eX2 XDEL
FREO=XX I
GO TO 20

255 TYPE 2.
256 FORPMAT<' SET LIMITS FOR FIXING CUTOFF FREQ(GHZ)-,--

I LOWER, UPPER: '$.)
READ (5 , .) XLL, XUL
FREQ=XLL

260 BDG=0.0
BDGSQ=0. 0

265 COiT I NUE
IF MRSF. E. 1 GO TO 275
TYPE 270

270 FORMAT(5X'FREQ'5X'BETA'1OX'DET I3'5X'P3SO(1> >
1 5X'P2SQ(1)'6X'HH3(1)')

275 NCOUNT=O
KFC=O
IF(NMODE.EQ. O.AND. IFFC.EO. 0)KFC=I

C START FREQUENCY LOOP
290 OMEGA=6.283185E+09*FREQ

WEFS=2. 249005E-1 3+.MEGR
WER=WEFS*RDC
WU=3. 191I864E-08+OMlEGA
GDSSQ=bJER.WU
GFSSQ=WEFS*WU

295 BETR=BDG'57. 29578
C START BETA LOOP

BETASQ=BETA*BETA
BDLS=SQRT <GFSSQ.RDC)
ZDLS=376. 73sSQRT (RDC)
NCOUNT=NCOUNT+ 1
IF (NCOUNT. LT. 20 G TO 310 
TYPE 301

301 FORIIAT(s' MORE THAN 25 TRIES AT ROOT')
GO TO 245

310 CONTINUE
C SET MATRIX VLUES FOR K P HCs HSPs RO
320 DO 530 J=1!NTERilSq1

GNX SQ (J) =BETAS'+GY () +.2
GNX3SQ (3) =BETASQ+GY3 (3) ++2
PlSQ (J) ='NXI SO (J) -GFSSQ

128

I 1 00 0
11 100

112 00

11500
1 16 00
1 1700
11800
11900
12000
121 00
12200
12300
124 00
12500
1260 0
12700
12800
12900
13000
13100
13200
13300
13400
13500
13600
13700
13300
13900
14000
141 00
142 00
14300
14400
14500
14600
14700
14800
14900
15000
15100
15200
15300
15400
15500
15600
15700
15800
1590 0
16000
1610 0
16200
16300
16400
16500
16600
1670 0
168.00
169 00
17000
17100
17200
17300
174 00
17500
17600
17700
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178 0 0 P2SQ (J) =GNX 1SC! (J) -GDSSQ
17900 IF (JTTYPE. LT. 0) P2SQ t(J) =GN-GSSQ3Q (J) -GFSSQ
1800 P3SQ (J) =GN,>3S ) -GDO
18100 P1(J)=SQPTABS (PISQ(J )
18200 P2(J) =SQPT (ABS (P2SQ (J))
18300 P3 J.) = SQRT CABS (P 3 (J))
18400 ARG=P1 (J)*AX1
18500 IF (P I SQ (J) ) 3 4 43 46,34 
18Q600 344 HC1 (J) =COS (ARFC)
18700 HSP1 (J =SN (G) /P1 (J)
180 0 PXN1< J)=1. 0
18900 GO TO 50
19000 346 HC1(J)=1.0
19100 HI-P1 (J)= =A
19200 PXN1 (J)=1. 0
19300 GO TO 350
19400 348 PXN1 (J) =O.5+EXP(APG)
19500 HC1 (J)=COH:iRG)
19600 HSP1 (J) =SINH (RG) Pl (J)
197 00 350 ARG=P2(J).AlX2
19800 IF(P2SQ<J)) 354i,356,358
19900 354 HC2(J)=COS(ARG)
20000 HSP2 (J) =SI ti (fiRC) sP2 (J)
20100 PXN2(J)=1.0
2 020 60 TO 360
20300 356 HC2(J)=1.0
20400 HSP2<(J)=AX2
20500 PXN2(J)=1.0
20600 60 TO 360
20700 358 PXN2 (J) =0. 5-EXP (ARG)
20800 HC2 (J) =COSH (ARC)
20900 HSP2(J)=SINH(ARC)P2C()
21000 360 ARG=P3J)*AX3
21100 IF(PSQ(jf>362.t364 366
21200 362 HC3=cOs (ARG
21 0 HSP3=-' I N (ARCF) P.3 (J)
21400 PXN3(JQ)=1. 0
21500 60 TO 368.
21600 364 HC3=1.0
21700 HSP3=-AX3
21800 PXN3 (J) =1. 0
21900 GO TO 368
22000 366 PXN3 <J) =0. 5-EXP (ARG)
22100 HC3=COSH (ARG)
22200 HSP3=-S I NH (ARG) P3 (J)
22300 368 CONTINUE
22400 IF(MEO.GT.D)GO TO 435
22500 HE3(J)=HC3
22600 HH3(J)=HSP3
22700 XXA(J)=1.O
22800 XXV (J) =P3S(J)
22900 GO TO 440
23000 435 HE3(J)=HSP3
23100 HH3(J)=HC3
23200 XXA (J) =P3sQ (J)
23300 XXV(J)=1.O
23400 440 CONTINUE
23500 IF(P2SQ(J).GT.0.0)GO TO 445
23600 TX2P=HC2(J)
23700 TX2M=HSP2 (J)
23800 GO TO 450
23900 445 EP2X2=EXP-2. 0*P2(J).AX2)
24000 TX2P=1. 0+EP2X2
24100 TX2M= C1. 0-EP2X2) sP2 (J)
24200 450 CONTINUE
24300 IF(JTTYPE.LT.0)GO TO 465
24400 IF(PISQ(J).GT. 0. 0)60 TO 455
2450 TX1H=HC1 (J)
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246 0 TXIE=HS'Pl (-I)
247`0 0 GO TO 460
24800 4 55 EP 1 X 1 =EXP (-2. OP1 CJ) AX 1)
2490o TX1H=.O+EP1Xl
25000 TX1E= (1. Cl-EPXI)'lP1 (<)
25100 460 QP (J) =RDCPPlSQ (J) +TXlE*TX2P+P2S0c WJ) *TXIH.TXMl
25200 QM(_1J) =RDCP 1 SQ (J) *TX1 E+TX2M+TX 1 HTX2P
255300 QDP(J)=TXIH.TX2P+P2SQ (J>*TX1E.TX2t1
25400 Dt (J) =TX1E*TX2P+TXIH*TX2M
25500 GO TO 500
25600 465 CONTINUE
25700 IF P3:S SQ) . GT. O. 0) GO TO 470
25800 HC;,N=HCS
25900 HSP3N=HSP3
26000 GO TO 475
261 00 470 EP3SX3=EXP (-2. OP3 (J) *AX3)
26200 HC3N=1. Q+EP3X3
26300 HSP3N=- (1. O-EP3X3) ' P3 J)
26400 475 CONTINUE
26500 IF(MEO.GT.0)GO TO 480
266-:;00 TXSE=HC3N
26700 TX3H=HSP3N
26800 60 TO 490
26900 480 TX3E=HSP3N
27000 TX3H=HC3N
27100 490 QAP(J)=TXSE.TX2P.XXR(J)-RDC.P2SQ (J)*TX3H.TX2M
27200 QAMJ)=RDC.TX3H*TX2P-TX3ETX2P.XXA(J)
273 00 QDP (J) =TX3H.TX2P.XXV (J) -TXSE*TX2Ml.P2SQ (J)
27400 0DM (J) =TX3E-TX2P-TX3HTX211+XXV C!)
27500 500 CONTINUE
27600 KDI=O
27700 IF( KFC. EQ. 1. AND. J. EQ. 1) KDl'l
27800 BS1=EETA+KD1
27900 SlSQ=BS1-2
28000 IF (JTTPE. LT. 0) 6O TO 510
2 1 Z 0 ZR=-XNA (J) 'tIER
28200 ZS=WlU.l /NV( (J)
283100 GY'KGY= (J)
234 ) GY'KSYI:=''3'S 0 C J)
2500 DlENOMZ=GNX3S0 (J) +KD1
28600 60 TO 520
28700 510 ZR=-WEFS/P1S0(J>
28800 ZS=1.0'WU
28900 GYK=GY1(J)
29000 GYKSQ=GYlSQ (J)
29100 DENOMZ=GNX1SQ <J) +KD1
29200 520 Zl 1 (J> = (PS! SQ*ZR+GYKSQ+ZS) 'IDENOMZ

29300 Z12(J)=NEO.G'K*BS1*(-ZR+ZS)DENOMZ
29400 Z22 (J) = (GYKSQ*ZR+BS I SOZS) 'DENOMZ
29500 530 CONTINUE
29600 P3AVG=¢ORT <P3(1) *P3 (NTERIMS))
29700 IF(PSAVG.LT. 1. 0)P3AVG=1. 0
29800 C MATRIX VALUES FIXED
29900 540 DO 550 J=1priTERMSP1
30000 DO 550 I=1,NTERMS91
30100 TZ11(IJ)=0.0
30200 TZ12 (I, J)=O.0Q
30300 TZ21 IJ)=0. 0
30400 TZ22(IgJ)=0.0
30500 DO 550 K=1,NTERMS,1
30600 IF<JTTYPE.LT.0)GO TO 545
30700 RHEHH=HE3 (K) /HH3 (K)
30800 TZ11(I , J) =TZ1 1 (I, J> +SMEZ (I, *K) RHEHHZ11 (K) SMHY (Kg J)
30900 TZ12 (I, J) =TZ12 (I, J) +5MEZ < I K> RHEHH*Z12 (K) S1H_ (Kg J)
31000 TZ21 (I J)=T.21 (I, J) +StlEN'<I K) *RHEHH4 Z12 (K) *StMHY( K, J)
31100 T222 (I v J) =TZ22 (I , J) +SMEY (I I K) *RHEHH+Z22 <K) *SMHZ (Kp J)
31200 60 TO 550
31300 545 RHHHE=HC1 (K)/HSP1 (K)
31400 TZ11 (I 9 J) =TZ11 (I J) +SMHY (I, K) *RHHHE*211 (K) SMEZ <Kg J)
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31500 T212 (I,J)=T-12 (I,J) +St'HY I K) RHHHE+.12<K) Sf'MEY(K J)
31600 TZ21 (IJ)=T221 (IJ)+SMH2(I K)*RHHHE.Z12(K).SME-(KJ)
31700 T222 (I, J)=T222 (I, J) +SMH2 (I, K) +RHHHE+C22 (K) *SMEY (Kg J)
31800 550 CONTINUE
31900 MCAMP=0
32000 560 DO 585 I=1,NTERMS!-1
32100 BSI=BETA
32200 IF KFC. EQ. 1. AND. I. EQ. 1) SI= 1. 
32300 GKI=NEO+GY <I)
32400 IF (JTTYPE. LT. 0) GKI=NEO*6Y3 (I)
32500 DO 585 =1iNTERMS,1
32600 BSJ=BETA
32700 IF<KFC.EQ.1.A iD.J.EQ. 1)ESIJ=1.0
32800 KDIJ=O
32900 IF(I.EQ.J)K DIJ=1
33000 O1 1=TZ 11 (I, 9J)
33100 012=TZ12 (I, J)
33200 Q21=TZ21(IqJ)
33300 Q,2=TZ22 (I , J)
33400 GKJ=NEO*GYI ()
33500 IF (JTTYPE.LT. 0)GKJ=NEO.GY3 (J)
33600 PSI=GNXISO(J)
33700 IF <JTTYPE. LT. 0) PSI=GNXSQ (Q3)
33800 IF (KFC. EQ. 1. AND. J. EQ. 1) PS I= 1. 
33900 TO 1 =BSI *01 1BSJ-ESI+012.GKJ-GKI*Q21BSJ+GL I 022.GKJ
34000 T012=-ESI*Q11*GKJ-BSI*012.BSJ+GKI.21.GKJ+GFZI*22ESJ
34100 TO21P-GKIQlIES2J+GKIKQ12JKJ-JSIQ21.Sj+Bsz.Q22Gj
34200 TQ22=GKI* 1 GKJ+GFKIQ 12-ESJ+tBS I*21+GK+.S I 022.BSJ
34300 IF(JTTYPE.LT.0)GO TO 580
34400 TMATX (I, J) = (QRM (I) *TO1 *ttsEF:PSI+KDIJ.QAP (J) (20+FREO)
34500 TMATX (I, J+NTERMS) =QAM (I) *TQ12' (PSISQORT (IJU'IJER) 2 0FREQ)
34600 TMRTX (I+NTERMS. J) =QDP (I) .T0 21 +LWEFPSI
34700 TMRTX (I+NTERMS, J+NTERMS) = (DP (I) .TO22sPSI-KM JbIU
34800 1 QDM (J)) 'SORT (WJUsWER)
34900 GO TO 585
35000 580 TMRTX(I,.J)=QAP(I).TQ11oPSI+KDIJQAM(I)v.UIEFS
35100 TMATX (I J+NTERMS) =-lU-QRP (I) .TQ12ZPSI
35200 TMATX(I+NTEPMS,J)=QtDM(I)*TQ215PSI
35300 TMATX(I+NTERMSPJ+NTERMS)=-WU.LQ-IM(I)TO25P5I
35400 1 KDIJ*QD)PP(I)
35500 C MATRIX FOP CONDITION OF TDIM LESS THAN SDIM IS OT
35600 C NRMALIZED. IF A LARGE NUNtBER F MODAL TERMIS IS FEOQLIPED
35700 C THIS MATRIX SHOULD BE NORMALIZED BY A POSITIVE
35800 C DEFINITE MATRIX TO AVOID NUMERICAL INSTABILITIES.
35900 585 CONTINUE
36000 IF(MCAMP.EQ.1)GO TO 600
36100 DO 590 I=1,NTERMS'1
36200 DO 590 J=l1NTERMS,1
36300 TN111. 0'P3AVG
36400 TN12=P3<J)sP3AVG
36500 TN21=P3 (NTERMS-I+1) P3RVG
36600 TNi22=P3(NTERMS-I+1)'P3(J) 'P3AVG
36700 TMRTX( I, J) =TMATX (I, J) TN11
36800 TMATX ( J+NTERMS) =TMATX (I , J+NTERMS) 'TN 12
36900 TMATX <I +NTERMS J) =TMATX (II+NTERMS J) 'TN2I
37000 590 TMATX (I+NTERMS, J+NTERMS)=TMATX<I+NTERMS, J+NTERMS) TN22
37100 C DETERMINANT OF TMATX ZERO FOR SOLUTION
37200 600 IFCIFFC.GT.0)GO TO 625
37300 MXSIZE=NTERMS
37400 IF(MEH.EQ.2)GO TO 650
37500 KMlFC=1
37600 IF (NMlDE. NE. 0) KMFC=NTERMS
37700 610 DO 620 I=19MXSIZE;1
37800 DO 620 J=1 MXSIZE91
37900 620 TMTX (I J)=TMATX (I+KMFC J+KMFC)
38000 60 TO 650
38100 625 IF(NMODE.NE.0)GO TO 640
38200 MXSIZE=NTERMS+NHOM
38300 -DO 630 I=iMXSIZE91
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38400 DO 630 J=1vMXSIZEq1
381500 630 TNIATX (I, J=TMATX (I+ 1 J+1)
386E00 GO TO 650
38700 640 I1XSIZE=Z'NTERMIS
38800 650 I F (CAMP. NE. 1 GO TO 8 0 0
38900 MVSIZE=PMXSIZE-1
39000 A2P()0o.0
39100 A2PM 1) =0. 0
34200 DO 665 =1,NHOP191
39300 V V E I >EC () =TMATX I MITEPM S)
39400 VVEC I +NHOM) =TPIATX (I+NTERPSSNTERMS)
3950L0 DO 665 J=iiHOI,1
39600 CAM (I J) =TMRTX (I, 1)
39700 IF(IFFC.EQ.0)GO TO 665
39800 CAt CI, J+NHOM-) =TMATX (I, J+NTERMS)
399 00 CAM (I+NHOIt-IJ)=TMATX(I+NTERMS J)
40000 CRM(Ii+NHOtlI.J+NHOM) =TMATXCI +NTERMSIJ+NTERMS)
40100 665 CONTINUE
40200 DD1=1.0
40300 CALL LINV'!3F(CAtM!,VVECs,tlVIZE,32,DD11,D2WKAREAvIER)
40400 D2NORM= 1. OsQORT (LIUsUER)
40500 D2M 1 ) =-rD2HOPM
40o00 DP 1) =D2M( 1) *QDPI (1) ,QrDP 1)
40700 DO 675 I=2qNTERMS 1
40800 A2P I)Y =VEC Cl-1)
40900 A2M CI) =QAP (I) 'A2P CI) CAM (I)
41000 IFCIFFC.EO.0)GO TO 670
41100 D2PM(I)=D2NP'FlVVYECCI-1+NHOM)
41200 D2P(I)=ft1(I)D2PM(I)sQDP<I)
41300 60 TO 675
41400 670 DP (I)=. 
41500 D2M < I) =. 
41600 675 CONTINLIE
41700 680 DO 6S5 I=1PNTERMSP1
41SOO _ONE=O. 0
41900 IF(KFC.EQ.1.AND.I.E.1)ZONE=1.0
42000 PHI=BETR+ZONE
42100 PSI=GNX1SQ(I)+ZONE
42200 6Y2=NEO#GYI (I)
42300 C2P (I) = (-PHI'A2M I)-WIU1'GY2+D2P C I )OPS I
42400 B2P I = (GY2+A2M I > -t-ILI+PH I D2P I ) ),PS I
42500 F2P I = (PHI ltEP* A2P I) -GY22M CI) ) PSI
42600 GEP<I)==(-tER.GY2'A2P(1)-PHI.D2M<T))/PSI
42700 C2PMI = -PHI.P2SQ I) *A2P I) -.td+GY2.+DaM I) ,,PSI
42800 BSM (I) = CG2+'P250 (I) 'A2P <I) -I.ULIPHI D21r (I /P I
42900 F2MCI)-(JEP*+PHI +A2t1(I)-GY2+P2SoI1)+D 2 P(I))sPeI
43000 G2P1I)== (-IERGY2*A2m1I) -PHI as2Q CI) +2P (z) ) PsI
43100 Al (I)=RDCA2P(I)s(QAM<I)'PXII (I)'PXN2>)
43200 D1 ) =D2M1I) s (QDP (I> PX1 I) PXN2 (I) >
43300 EXADI (I)=AI (I)+HC1 (I>
43400 HXADI (I) =D1 I) HSP1 (I)
43500 B (I) GY2'P1S (I) .A1 I)-WU+PHI+D1 (I) ) PS I
43600 C1 <I) C(-PHI.P1SQ I) A1 I)-tU'GY2.D1 (I) ) PSI
43700 F! CI) (WEFS#PHI*A! (I)-GY2*1i1 () )oPSI
43800 G ()-(-WEFS+GY2A1 (I)-PHI+D1 (I))'PSI
43900 EYADI I)=B1 I>'HSP1 (I)
44000 EZADI (I)=C1 (l) HSP (I)
44100 HYADI (I)=F1 (I)*HC1 (I)
44200 685 HZADI I)=G1 'HCI CI)
44300 DO 690 I1, NTERMS,1
44400 F3R<I)O.O
44500 G3R=I)0.0
44600 DO 690 J=1,NTERMSP1
44700 F3R I) =F3R I + SMHY (I, ) *F2P J))
44800 690 G3R(I)=G3R(I)+(SMHZ<IJ) G2PcJ))
44900 DO 699 I=1,NTERMS,1
45000 20flE=0.0
45100 IFCIFFC. E. . ND. NPIGIE. E. O.ND. I-E. > 20NE=. 
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452 0 0 PSI=GNX3SO (I) +ZONE
45300 PHI=EETA+Z2NE
45400 bD=P3SO (I)
45500 WA=1. 0
45600 IF(MED.LT.0)GO TO 695
45700 b!D=1.0
45300 Al:: P3SfI, I)
45900 695. PMK 3=HEO*GY3 CI )
46000 F3 (I) =F3R (I) HH3 I)
46100 G3(I)=G3P (I)HH3(I)
46200 A3 I = (PHI*F3 (I)-PlK3.G3 (I ))WER
463 0 0 Dl2 < I) = (-PMK'3.F3 (I -F I G3 (I ) W!D
46400 CS (I) = -PHII-.AA3 CI) -UPtMK3. D3 (I) ,PS I
46500 B3 (I ) = (PMK3* 1lAA3 (I) -kIUPH I D3 > ) xPS I
46 60 CS0 A3R( I) =A3 (I) *HH3 (I)
46700 B3OQP F:(I)= . (I) HE3( I)
46800 C3R (I )=C3 C1) +HE3 (I)
4 900 699 D3R () =D3 ( ) HE3C 1)
47000 MICAMrP=r
47 100 C ***+ PRINT OUT MODAL COMPONENT COEFFICIENTS IF EOUESTED
47200 IF(IFrICAP.NE.1)0 TO 733
473 00 TYPE 703
47400 703 FOFMAT<s' N'4X'EXADI(N)V'4X'EYAD)I(N)3;.WEZADI<N)I
47500 1 X'HNADI (N) '3X'HYADI (N) 'SX'HZADI (N)?
47600 D1o 705 I=lNTERMS11
47700 705 TYPE 29,IEXADI(I) EYADI(I) 'EZfADI(I),-HXRDI(CI),
47800 1 HYADI(I),HZlICI)
47900 TYPE 706
48000 706 FORMAT Cf ' N'6-A3R (N) '6XB3R (N) '5X'C3R (N) -
48100 1 X'D3 '(N) '5X'FFR (N) 'GX'3R (N)'>
48200 DO 710 I=1NTERMS,1
48300 710 TYPE .29sI}A3R(I),B3R(I),C3RCI),D3RCI),F3PCI),G3R.I)
48400 TYPE 711
48500 711 FORMAT ' N'7X' Al (N) 7X'BI (N) '6X'Cl,CN) '6X'DI (N)'
48600 1 6X'FZ(N'6X'G1(N)')
48700 DO 715 I,NTERMS91
48800 715 TYPE 729, hsl CI) ,E£ (I) .C1 CI) ,D1 (I) ,F1 (I) .G1 (I)
43900 TYPE 716
49000 716 FORMAT (/' N'X'ASM (N) 6X'B2M (N) SX'C2M 1 'N)
49100 1 SX'DEM (N) '5X'FEM (N) 'SX'G2 <N)')
49200 DO 720 I=19NTERMSP1
49300 720 TYPE 729,IA2M(I) E2M(I),C2MI),D2MCI),F2M(I)G2tICI)
49400 TYPE 721
49500 721 FORMAT(' N'6X'A2P(N)'6X'D2P(N)'5X'C2PCN!'
49600 1 5X'DP (N) '5SX 'FP (N) SX'G2P (N)')
49700 DO 725 =1,NTERMS,1
49S00 725 TYPE .
49900 TYPE 726
50000 726 FOP:AT r '7A.- )3 ( X'XB3. (NX! 0' )'E S 6-*
50100 3 6X'F3 (N '6X''G3 (N) ')
50200 DO 728 1=1, NTEPMS,1
50300 728 TYPE 729,IA3(I),BS(I),C3C1),D3C1),F3C1),G3(I)
50400 729 FORMAT(I3,2E12.4,4E11.3)
50500 TYPE 731
50600 731 FORMhATW N'5X'PISO (N) 'SX'P2SO (N) '5X'P3SQ (N)'>
50700 DO 735 1,1NTERMS,1
50800 735 TYPE 736IPlSQCI),P2SQ(l)pP3SQ(I)
50900 736 FORMAT (I3, 3E12. 4)
51000 738 CONTINUE
51100 IF(IFPR.NE.1)GO TO 790
51200 SURFRS=SORT (FREQsb6CNCU) *8. 25E-03
51300 WL1O=. 
51400 WL2=0.0
51500 WJL3=0.0
51600 WL4=0. 0
51700 t.L50=. 
51800 tLD2=O. 0
51900 WLDS3O=.0
52000 PWRtl=O. 0
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52100 PWlRN2=0. 
52200 PJRN3=0. 0
52300 DO 754 N=INTERMS,1
52400 F12N1=1.O
52500 IF (N. EQ. 1) F12t1=2. 0
526 00 FO1NI=2. 0-FIEN1
52700 WLl=WLI+BDIM' FO1N IFl CN) *2+F12NI*Gl I(N *2)
52300 DO 754 =I1,NTERMS 1
52900 IF<M.NE.MtDO TO 750
53 't 0 740 PSS 1 = 0.5+ CHSPI (N) HCI (N) -AX 1) P 1<Q CN)
53100 PCC1O.5*(HSP1N)*HClCN)+AX1)
53200 PCS2= (I. 0-(HC2 Ct ) 2) (2. OP2SQ (N))
53300 PSC2=PCS2
534 0 AR'=6.283185*HR. (N-1)
53500 IFCN.GT.1)GO TO 743
53600 2. ss=0.0
53700 CC2=0. * (BDIM-DDIM)
5:3800 60 TO 745
5 9 0 O 743 ss.2= 0.25 (r11 I l-DD I +Dr IN I (ARS) ARS)
54000 CC2=0. 25 (D I M-DI -ID I M* S I N CARS) sAP )
541 01 745 PSS3=0. 5. (-HHS (N) *HE3 (N) -AXC') sP3C (N)
54200 PCC3=0. 5. <-HH3 (N) *HES (N) +AX3)
54300 PC:SA=HC1 (N) HSP2 (N) / (OAM N) PN 1 (N) +PXN2 N))
54400 RSSOSA=RCSOAHSPl (ti'HCI (N)
54500 RCSOD=HC I (N) *HSP2 <N) / (QDP (N) +PXvN1 (N) *PXN2 (N))
54600 RSSQD=RCSQD*HSP1(N)sHCl(N)
54700 SEXtN=O. 5F 01 Ni* (AX. <REP (N) *+2- C (N ) 4.2) 'PESO @0) +
54300 1 RCSQA.A2P (N) .2+RIC.PI SO (N) *RSSQRRA2P (N).
54900 2 A2C N) sP2SQ N)
55000 SEYN=0. 5+F12N1. (AX2* (EP (N) *-2-<B2N (N) +.2) s
551 00 1 P2SO (N))+ (GY1 (N) .A2P (N)* CRDC.PlSO< (N) *RSSQRE2P (N)
55200 2 +RCSQAB2M (N) -WU.l:ETA.D2 <ti) (P RSSQD.BEP (N)
55300 3 +RCSQD.B2N (N) 'PESO (N ) ) sXSO (N)
55400 SEZN=0.5-FOlN1+(AX2-(C2P(N)*-2-(C2NI(N).*2)s/
55500 1 P2S2.0(N))- (BETRAA2P(N)*(RDC.P1SQ(Ni)*RSSOQAC2P(N)
55600 2 +RCSO AC2M (N)) +WU*Yl (N) D EM (N) * (RSSOQDCEP (N)
55700 3 +RCSOD-C2M (N) 'P2SO (N) >)GNN1SQ (N))
55800 WtLDSEN=SEXN+SEYN+SEZN
55900 UJLDS3N=FO1NI *(PSS3.A3 (N) .*.EPCC3.C3 (N) *2)
56000 1 +F1EN1PCC3BP3(N)>*2
561 UJLDS2=lJLDS2+I..LDS2N
56200 WLDS3=btLDS3+IlLDS3N
56300 PL'IPITN=O.5#BDIM+ (FOINIAl (N)+FI (N) *PCC1
56400 1 -F12N1BI(N)*Dl(N).PSS1)
56500 PURN 1 =PlkRN 1 +PlR 1 TN
56600 PL,!R2AF= 0. 5.FO1N1*(RX2 (A2P (N) *F2P (N)-R2M (N)
56700 1 +F2M (N) P2SO (N)) +A2P (N) * (RCSOA-F2P <N) +RDC*PlSQ <N)
56800 2 *RSSQ.FcP M(N)s P2SO (N) > )
56900 PdR2BD=0. 5+Fl2Ni* (AX2s (B2P (N) *D2P (N) -BEM <N)
57000 1 *DEN (N) 'PESO (N)) +D2M (N) * RSSQD*BEP <N) +RCSQD
571 10 2 .I 1 (N) P2SO (N) > >
5 720i0 PIPŽTN= 0 * 5.BD INl (PtU'REAF-PLJR2-D)
57.300 PUlPt2=PlJWN2+PW.JR2TN
57400 748. PIJF:TN=0.5.DDI M (FOXN.fA3(N)*F 3N>PSs3
57500 1 -F E 2I *B3 (N) D3 (N) *PCC3)
57600 PIPlN3=PblRN3+PlWR3TN
57700 HZZ0=0. 5*AX2 (2P (N) .2- (G21 (N) .'2) 'P2Q (N))
57800 H221 =-0.562P (N) (GYS (N).IJEP.RCSQA.A2P(N)
57900 1 +PETA.RCSQDD2M (N)) 'GNXl1SQ (N)
58000 HZ2=-0.5-G2M(N)*(GY1(N)*. ERRDC.PISQ(N)*RSSOR
58100 1 *A2P (N) 'P2SQ (N) +BETARRSSQD.D2M (N)) /GNXI SQ (N)
58200 HZZNI1=HZZ O+HZZ +HZZ2
58300 HXXO=0. 5.AX2* (D2P (N) *2- (DEM (N) ..2) 'PESO (N)
58400 HXXl = 0. 5+D21 (N) * (SSOD.D2P (N) +F:CSOD*D2M N) P2SQ (N) >
55 00 HXXNfl=HXX O+H X 1
58600 60 TO 752
58700 750 PSS1=(HCI (N)+HSP1 (M) -HP1 (N) .HC ())
58800 1 /(P1SO(N)-PISO(M))
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58900 PCCl= P1SO N) *HSP1 (N) *HC1 (M)-P1Q <M
59000 1 HC1(N*HSP1 (M))/(P1SQ(N)-P1SQO(11))
59100 QNN=1. 0/ PXN1 (N)' PXNE (N))
59200 RCQAN=HC1 (N) *ANNO, AM (N)
59300 RSQAN=HSPI (N) 'ONNQOAN (N)
59400 RCODN=HC1 (N) 'QNN'QDP (N)
59500 RSQDN=HSP1 (N) +QNNsQDP (N)
59600 ONtl=1. 0/ (PXN1 (M) 'PXNE (N))
59700 RCQAM=HCI (M) +ONIOAM (M)
59800 RSOAMl=HSP 1 M) ON O/AM f-i)
59900 RCQDM=HCI (M) *ONM/QDP (N)
60000 RS0DM=HSPl () ONlesODP (N)
60100 TDENOM= 1. 0/ (GNXI SO (N) 'GNXISO () * (PESO (N)
60200 1 -P250(M)))
60300 H::o= (GEM (N 'SEP (N) -SEP (N) +EMr1) ) s (PESO (N)
60400 1 -P2sO cm)
6 50 0Q H--1 =A P (N) 2P (M) l'lEP'llER'SYl (N) "371 (N) FTC' (P120 (N)
60600 1 RCOHN'fHNEt1-PlSO (N *RSORN'RCOAI) 'TDENtOM
60700 H-2 =Dr- PI N) DNM (N) *BETASO' (P2SO () 'FCODN+RSOIDM
608:0 1 -L C(N' *FSODN+FCQDN) *TDENON
60900 H: 3=H P (N' 'DEN (N) *BETA*I'ER'GY1 <N) + (.PESO 0M)
61 00 1 'ROiRNI C-PcODMRDCPS20(N)'PSOAt*'RCO'DNl)*TUENOt
61100 H: 4=AiiP (M? 'DEM (N) *IETA-lIEF+GYI CM) * PDC'P 1 (P ()
61200 1 *RCLarNPCOt-PE- SO (N) *RSOL-DN'PCOAt 'TDENiOMt
6 1300 H::NM=H:: -0+HZ :-1 + H:_2+H::3S+H::4
61400 HNNO= (rM (N) 'DEP (P) -DSP (N) DE () 5 (PESO (N) -PEC2'l (l)
61500 HXXI=DEMI (N) DEN Q1) * (SOIDN.-RCODM-RCODri+F'C!SODN) s (PE- i)
61600 1 -P2S ( )
61700 HXXNtiM=HXXO+HNX1
61800 ARGP=3. 141593'HP'< N+N-2)
61900 ARGIN=3. 141 593*HR-. (N-N)
62000 S2.5=- . 5'DDiI NI' (S IN (APGM) sARG-S IN (RGP) sAPGP)
621 00t CCE=- 0. 25+'DDIN' (S IN (ARGN) sARGNl+S I N CFiRGP) 'APP)
62200 PCC3=- (P3S.0N *HH3 (N) HES3CM) -P3S0 (M)
62300 1 *HE3 (N) *HH3 (N) /<(P3SCi) -P3SQ(M))
62400 PSS3=- (HE3 (N) *HH3 (N) -HH3 (N) *HES (PI))
6250L0 1 s/(P3SO(N)-P3SQ(M))
62600 2 ONEPM= -1. 0) - (N+N)
62700 ILE2=jL2+4. 0'ONEPN (Dl N)*D1 c(M)'PSS1
62800 1 +1 N)*G1(>*PCC1)
62900 WL3=WL3+4. 0'-NEP' (HXXNN+H-:N)
63000 WtlL4=b.IL4+4. 0' (F2P (N) *F2P CM) *SS2+iEP (N) 'SEP CM) *CCE)
63100 WtL5=h'L5+4. 0'OtOEPM* (D3 (N) 'DS (M) 'PCC3+S (N) G3 (M) 'P'.53)
63200 754 CONTINUE
63300 PWtPtiI=Pl.RNl .PtIRN2+PUIRN3
63400 TYPE 756*PtIRN
63500 756 FORMAT(/" NORMIALLIZEI' POWER = 'E12.4/)
63600 ECLN=0.0
63700 DO 760 I=1PNTERMSP1
63800 760 ECLH=ECLN+ABS(BS(I))
63Q900 EMEDI=0.0
64000 DO 773 I=193391
64100 EXNADI=O. 
64200 EYMADI=O. 0
64300 DO 764 J=1'NTERMS.1
64400 RS(I-1)'GYI (J''I'DIM 64.0
64500 EXMDRI=EXMADI+EXADI (J)*SIN(ARG)
.64600 764 EYMlRDI=EYMADI+EYAlI (J>'COS (ARG)
64700 EM2I=EXMAI'l"#2+EYMADI..2
64800 C *"' SKIP PRINTOUT FOP MOST APPLICATIONS
64900 GO TO 770
65000 I32THS=1-1
65100 TYPE 766*EM2I.I32THS
65200 766 FORMAT(4XW(ETRANS)**E AT AI 'E12.4' FOR Y 'I2' 32THS
65300 1 OF D'')
65400 770 CONTINUE
65500 IF(EM2I.GT.EM2ADI)EMEADI=EMEI
65600 773 CONTINUE
65700 PBDADI=5. 8064E+06PWRNEM2ADI
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65800 PPDCL=0. 001.PbIPN (76200+BDSD/ECLN) +.2
65900 TYPE 776,PPDADIPPDCL
66000 776 FORMAT(.' POWER CAPACITY (AIR BREAKDOWN) ='F10.3'
66100 1 KILOATTS" POWER CAPACITY (DIELECTRIC REAKDOWN) =
66200 2 F10.3' KILOWATTS')
66300 kILC= (WL 1 +WlL2+]kL3+.lIL4+ItJL5) +SURFRS* O. 5
66400 ALMC=tLC' (2. O*PtkIRN)
66500 ALCDEL=8. 68589+.RLMC-.IGWL
66600 ALCDBF=ALCDBL*12. 0ltGttlL
66700 TYPE 779,LIGCNCU
66800 779 FORMAT(' CONDUCTIVITY (ORMALL-1ZED TO COPPER) OF
66900 1 LIAVEGLIIDE WALLS = 'F4.2)
67000 TYPE 781, ALrlCq ALCDBF! ALCDBL
67100 781 FORMAT<' TTENUATION FROM CONDUCTOR LOSSES -- ALPHA =
67200 1 E1l.4'16X'='F7.5' DFOOT OR F7.5 DtWJAVELENGTH')
67300 FLDF=WER+DLT' (4. 0+PWRN)
67400 ALD2=tlLDS2+BD PIMFLDF
67500 RLD3=WLDS3.DD I M FLDF
67600 ALDL=ALD2+ALD3
67700 ALDDBF=8.6859+.ALDL12.0
67800 ALDI'BL=tbJlGblLALDDF12. 0
67900 TYPE 785,DLT
68000 785 FORPIAT(" DIELECTRIC LOSS TANGENT = 'E9.3)
68100 TYPE 786, ALDL ALDBF ALDDBL
68200 786 FORMAT(' ATTENUATION FROM DIELECTRIC LOSSES -- ALPHA =
68:300 1 E11..5/6X'='F7.5 DFOOT OR F7.5 DI.AELENGTH')
68400 790 CONT I NUE
685 t0 I F (I FFC. E.0) GO TO 840 
68600 795 TYPE 796
E.8700 796 FORMAT(' WISH NEW FREQUENCY? '$)
.8800 ACCEPT 210ilIFFREO

6.8900 O I F(IFFREQ.EQ.1)GO TO 875
69000O GO TO 960
69100 800 DD1=.O
69200 CALL LINV3F (TMRT)<l0MYy,4iSIE932tID1 DD2,
69300 1 WKAREAIER)
69400 DET=DDI*2. 0**DD2
6950 0t XX=FREQ
69600 IF<IFFC.E0.1)XX=FDG
69700 IF(MRSF.NE.1)60 TO 820
69800 IF(NCOUNT.NE.1)GO TO 810
69900 FN1=DET
70000 XXNEW=XUL
70100 GO TO 818
70200 810 DRX=. 0001
70300 IF(IFFC. EQ. 1)DRX=0. 01
70400 IF (AS(XX-XXOLD) .GT.DRX.OR.Ar.S (DET'FN1) .GT. 0. Q1)GO
,0500 1 TO 81.3
70oo GO TO 831
7000 813 XXNEW=XX-FOLD. (XXOLD-XX) (FOLD-DET)
70800 IF(DET*FOLD.LT.O.0)GO TO 815
70900 IF(XX.GT.XXOLD)XLL=XX
71000 I F (XX. LT. XXOLD) XUL=XX
71100 GO TO 817
71200 815 IF (XX. GT .XNOLD) UL=XX
.1300 IF(XX.LT . XNOLD)XLL=XX
71400 817 IF (XXNElW. GT. XUL. OR. XXNEW. LT. XLL). XXNEtl=. 5 (XUL+XLL)
'1500 81S FOLD=DET

71600 XXOLD=XX
71700 GO TO 825
71800 820 TYPE 821,FPEc',BDGDETIERP3SQ(1),P2SQ(1),HH3(1)
71900 821 FORT(2F9.3,E13.3,14,E12.3)
72000 IF(XX.GE.XY2>GO TO 829
72100 XXNEW=XX+XDEL
72200 825 CONTINUE
72300 IF(IFFC.EQ.1)GO TO 828
72400 FREQ=XIXEkI
72500 GO TO 290
72600 828 BDG=XXNEW
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72700 GO TO 295
72800 829 TYPE 830
72900 830 FORMAT (" WISH NEW TRYS AT ROOT? S)
73000 ACCEPT 210wINEIXdXX
73100 IF(INEIJXX.EQ.O)GO TO 980
73200 IFCIFFC.EO.0)GO TO 245
73300 GO TO 88
73400 831 IFROOT=1
-300. I C *" RT NOW! KrIOWJN

731600 833 IF(IFFC.EQ.1)GO TO 890
73700 FCGHZ=FREQ
73800 835 TYPE 836, FCGHZ
73900 836 FORMAT C." CUTOFF FREO IN HZ ='F8.4)
74000 IFMCAP=O
74100 IF(MNrODE.NE. 1.[R.tNMODE.NE.O.OR.JTTYPE.NE.1)GO TO 840
74200 C MODAL COMPONENT AMPLITUDES ARE CALCULATED ONLY FOR
74:300 C QLSE(1,0) MODES WITH TDIM GREATER THAN SDIM.
74400 TYPE 838
745100 833 FOPMAT(" WISH MODAL COMPONENT AMPLITUDES? 'S)
746.00 ACCEPT 210IFlCAP
74700 IF(IFMCAP.iE.1)CO TO 840
. 48 0 IFPAA=O
74900 M lCAMP= 1
75000 60 TO 5.60
75100 840 TYPE 41
75200 841 FOPMAT C' 1O YOU ISH CALCULATIONS FOP FREOUENCIES
7530 1 REOVE CUTOFF- o=0, N YES=1 7'S)
75400 ACCEPT 10!-IFFPE0
755 10 IF(IFFPE0.EO. 1)O TO 843

, 56 00 IF(IFFREO.EO.0GO TO 960
757,00 G0 TO 840

5 .$0 843 IFFC=1
51 1,1 0 (I IFPRA=O

7 0 o 0 IFm(MltOIDE.IE. 1. R.titODE. E. 0. OR. ITTYPE. NE. 1)G0 TO 85
ct. 1 00O TYPE 646
762 n 846 FORMAT' WISH POllER FEAfDOtN FND ATTENUATION? ')
7 6 3 0 0 ACCEPT 210 QsIFPA
76400 IFCIFPRA.NE.1)SO TO 870
765 0 0 8 51.0 TYPE 851
76600, Q 5 1 FORMATC' BREAKDOWN STRENGTH (RELATIVE TO THAT OF

70 I Q 1 DRY AIR) OF DIELECTRIC: ')
76800 READ , CS.'BDSD
.69 t.<n 0IF(BDSDr.GE.1.0)GO TO 58
, 000 QfiQTYPE 856
.100 856 FORtAT<' ELATIVE REAKDOWN STRENGTH OF DIELECTRIC
72 00 1 SHOULD BE UNITY OR GREATER')

77300Q GO TO 850
77400 853 TYPE 861
77500 86 1 FORMAT ' CONDUCTIVITY (RELATIVE TO COPPER) OF WAEGUIDE
77600 1 WALLS: ')
77700 READ (5 ')WGCICULI
77800C 865 TYPE e66
779 0 0 866 FODPATC' LOSS TNGENT OF DIELECTRIC: ')
78000 READ (5. +) DLT
781 0 0 870 T YPE 8 71
78E-00 871 FORPIATI' WISH NODAL COMPONENT AMPLITUDES (YES=1) ?'S)
7200 ACCEPT 210PIFMCRP
8400 87 S5 TYPE 8-7`6

,8500 S76 FORMAT (' DESIRED FFEQUENCY IN HZ: '$)
18600 ScREAD('*)FREO1
, <,7 fl IF (FFEO.GT.FCGI-'GO TO 8 78
, 3!.IO TYPE 77
78900 877 FORMAT (a FREOUENCY MUCT BE GREATER THAN CUTOFF FREOUENCY')
79000 G TO 875
79100 878 TYPE 879
79200 879 FOPMATC"' WISH BETA SEARCHCO) OR FIX(1)'? ')
79300 ACCEPT 209MRSF
79400 IF<RSF.EQ.0)GO TO 880

137



CHARLES W. YOUNG, JR.

79500 IFCNRSF.EO.1)GO TO 885
79600 GO TO 878
79700 880 TYPE 881
79800 881 FORMATC' BETR (DEG'IN) - - STARTySTOPP INCREMENT: 'S)
79900 READ 5, ) XX1 XX2 vXDEL
80000 B DG=XX 1
80100 GO TO 265
80200 885 TYPE 886
80300 886 FORMAT(' SET LOLIER UPPER LIMITS ON BETA (DEG-IN): ')
80400 READC5p-)XLL*XUL
80500 EDG=XLL
80600 XDiEL= 0. 5 <XUL-XLL)
80700 GO TO 265
80800 890 BDGRDG=P
80900 WGWL=360. 0BDGR
81000 TYPE 894 FREOEDGR
81100 894 FORNIAT(6X'FREQ' 1X'EETA"'FlO.3.F1S.3)
81200 MCAMP=O
81300 IF(IFPAR.NE.1.ANrD.IFNICAP.NE.1)GO TO 795
81400 lMCAI1P=1
81500 GO TO 560
81600 960 TYPE 962
81700 962 FORMAT('/s/' URlAVEGUIDE PARAMETERS -- DIrlENS_,IONSl IN
81800 1 INCHES'/9X'fA'9X'B'9X'D'9X'S'9X'T'7Xs"'RDC')
81900 TYPE 963hADIM*BDIN DDIMSDIrTD}rlSIT , RDC
82000 963 FORMAT 7F 1 0. 4)
802100 TYPE 965' EMMODEs lN1ODE, NMODE FCGH:, NHOr
82E0 . 965 FOFMAT"/ WAEGUIDE MODE IS LS'A1'Il',Il1l'5X
82300 1 'CLITOFF FREQUENCY IN 'HK: ='F9.4 ' NUMBER OF HIGHER ORDER
82400 2 MODE- VSED, IN ANALYSIS = '12'I)
82500 IFCIFFPEQ.EO.0)GO TO 980
82600 980 TYPE 981
82700 981 FORMAT C-"" DO YOLI WISH A RERUN? '.)
82800 READ C5p ')NRERUN
829 00 GO TO(99984,1241E8,13E,136,140,1*5,200.1901I0
830 00 1 980)NRERUIN+1
83100 984 TYPE 985
83200 985 FORMAT( TO CHANGE: =2 B=:33, rl=4v S=59 T=6. EPCP=7,
83-300 1 NUMBER OF ODES IN ANALYSIS=8',"' DESIREl PODE=9,STARPT
83400 1 FROM SCRATCH=1 0')
83500 GO TO 980
83600 999 END
83700 FUNCTION SINCCiKSINC, NlFS12,KINT.KHRHRATIO)
83800 SCXP=1. 570796' CKINT+KHR'HRATIO)
83900 SCXM= 1.570796+ (K I NT-KHR+HRAT I0)
84000 IF(K:INT.NE..Ali.KHF.N.E.CO)G TO 1120
841 L0 IFCKINT.EQ.O.NDI.KHR. NE.0)GO TO 1110
84200 IF(KINT.NE.0.FAND.KHR.EQ.0)GO TO 1100
84300 SINC-I. 0
84400 IFCMFS12.EO. O)SINC=O. 0
84500 GO TO 1130
84600 1100 SINCO=.0
84700 GO TO 1130
84800 1110 SINC=MFS12-SINCSCXP) SCXP
84900 GO TO 1130
85000 1120 lF<ABS(SCXDM).GT.1.OE-05)GO TO 1125
85100 SINC=F"SINC'SIN(SCXP)/'SCXP+1. 0
85200 GO TO 1130
85300 1125 SINC=KSINC'SIN(SCXP) 'SCXP+SIN(SCXM)',SCXt
85400 1130 CONTINUE
85500 RETURN
85600 END

PROGRAM CROOT3

001 00 C POGRM CODT3. FOP
0 o 0 DIMENS ION XL(3) 9TDB(3 ) ,TANtGDl (3) *CA(3), CBD (3)
003I00 COMPLEX CT1iCT2 CT3.CG12CG31,CG23,pPG
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00400 COMPLEX CFPPGACGSQ,TC1,TC2
00500 TYPE 20
00600 20 FOFMAT<' PROGRAM CROOTf CALCULATES THE COMPLEX
00700 1 PROPAGATION CONSTANT OF A GIVEN' TRANSMISSION LINE
00100 2 BY USING THE MEASURED TRANSMISSION COEFFICIENTS
00900 3 '/' OF THREE DIFFERENT LENGTH SAMPLES TO
01000 4 CORRECT FOR MISNATCH EFFECT"W)
01100 TYPE 21
01200 21 FORMAT<' WISH PRINTOUT A POOT IS SOUGHT?s)
01300 ACCEPT 215,IFRSPO
01400 24 TYPE 25
01500 25 FORMAT C' LENGTHS AE IN INCHES')
01600 Do 28 I=lp3:I
01700 TYPE 27,2
01800 27 FORMAT(' LENGTH OF SAMPLE :q': '$)
01900 READ(5-')*XL(I)
02000 28 CONTINUE
02100 TYPE 30
0200 30 FORMAT (' MEASURED TRANSMISSION DATA IS TO E ENTERED
0 03 1 AS LOS'S IN DB, PHASE IN DEGREES)
02400 31 TYPE 32
02500 32 FDRMATC' FREOUENCY IN GHZ: 'S)
0o 00 READ (5, *) FFEO
0200 DO 35 I=1,9S1
02 00 TYPE 33-XL (I)
02900 33 FORMAT(' LOSS, PHASE F'F6.3' INCH SAMPLE: '$)
03 000 READ (, ' *) TIE < ) TANGD <I)
031 00 35 CONTINUE
03200 TYPE 40
0:300 40 FORMAT (/' ENTER FIRST TRY VALUES FOR ALPHAP BETA (DEGvIN): 'S)
03400 READ (5 .) A 1,ED I 1
03500 T1MAG=1 0.0" (-TBC1)/20. 0)
03600~l T2M'[AG=1 0l.0.' (-TDBI 2)'20~. 0)
0C3 7 0 0 T3MAFG= 1 0. 0"* (-TDB (3) 2 0. 0)
0 3 -01L TIA N G=TA N GD 17 /5 . 295. 7795
03900 0 T2AriGP=TANGD 2) /57. 2957795.
04000 T3ANGR=TANGD 3) '57.2957795
04100 TR2I=T2MAG TIAG'COS (T2ANGP+T1ItIGP)
04200 TI21=T2MAG'T 1 MAG-SIN (T2ricGP+T1IAN'3P)
04:300 TR 13=T 1 NAG T3lAG'COS T 1 iAHGR+T3ANGP)
044 TI 13=T 1 NMAGT3NAG'SIN (T1ANGR+T3ANGR)
04500 TR32=T3PlAG.T2TlAGCos C(T3ANGR+T2ANGR)
04600 TI 32=TS-AlFiG'T2fMAG.SIN (TIANGR+T2ANGR)
04700 IIL123=XL (1)-XL )
04800 IIL-2=XL <S) -XL (2)
04900 DL21=XL<2)-XL(1)
05.1000 ITRY=1
05.I00 ALPHA=A1
0'520 BETA=BDI 1'5 .2957795
05300 50 HCA1S=COSH(ALPHADL.13>
05400 HSA13=SINH (ALPHA'DLI13)
05500 HCR21 =COSH (ALPHA'DLEI)
05600 HSA21 =S I NH (ALPHA'DL2 1)
05,7 0 HCA'^2=COSH (ALPHA'DL32)
05800 HSA32=S INH ALPHA.DL32)
05900 CBI3=COS (BETA*DL13)
06000 SB13=SlN<BETA'DL13)
06100 CB21=COS(BETA'DL21)
06200 SE21=SI N <BETA+DL21)
06300 CS2=COS (BETA'DL32)
06400 SB32=SIN(BETA'DL32)
06500 HSS13=HSAI3-SB13
06600 HSC13=HSA1 S.CI3
06700 HC13=HCAIs.sB13
06800 HCcl3=HCAI*'CrI3
06900 HSS2I=HSA21+SP21
07000 HSC21=HSA21*CB21
07100 HCS21-HCA21*SB21
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07200 HCC2 1 HCA2 1 Cs21
07300 HSS32=HSA32*SB32
07400 HSC32HS- A32'CB32
07500 HCS32=HCA32SB32
07600 HCC32=HCA324CE32
07700 FR=TR32*HSC32-TI32*HCS32+TR21*HSC21-TI21.HCS21
07800 1 +TRl3.HSCl3-T13-HCS13
07900 Fl=TR32.HCS32+TI32*HSC32+TR21*HCS21+TI21*HSC21
08000 1 +TR13.HCS13+TI13*HSC13
08100 FMAG=S0RT (FR*FR+FI-FI)
08200 IF(IFRSPO.NE.l)G T 60
08300 TYPE 5ALPHApBETAFRFFMAG
03400 58 FORMAT (2F 1 0. 5, -E1 0. 3)
08500 60 CO1TINUE
03600 IF(FMAG.LT.1.OE-07)GO TO 80
08700 IF(ITRY.LT.11)6O TO 70
08800 TYPE 65
08900 65 FORMAT<` MORE THAfI 10 TRYS T ROOT')

09000 60 TD 80
09100 70 PFRR=L3- 2*(TR32.HCC32-TI32HSS32)+L21* (TR21.HCC21
09200 1 -TI21HS21>+DL13-(TR13-HCC13-TI13-HSS13)
09300 PFRP=-DL32* (TR32+HSS32+TI3c2+HCC32) -- 'L21 * (TR2I *HSS21
09400 1+TI21+HCC21)-'L13*<TR13.HS'S13+TI13*HCC13)
09500 DET=PFRA.PFRA+PFRB+PFRB
09600 'DELA=-(PFRA.FR-PFRr.FI)DET
09700 DELP.=-(PFRF*FR+PFRA+FI)oDET
090 0 ALPHA=ALPHR+DELA
099cc' VETA=F:ETR+DELP
100(00 ITRY=ITRY+1
10100 GO TO 50
1 020 0 so kDI ='7.2957795+BETA
103,00 TYPE 90
10400 90CO FORMAT<(" MERS ::'3X'LENiGTH(IN) 3X'TAGI'P. LOSS)
1 '.050 1 TANG (DEG) ')
1 06 tO 0 DO '95 I=1,v31
1 n, c0 TYPE '94,IXL(I),TDBE<I)!.TANrG1<I)
1 010300 94 FOPr1RT(17,F13.4pF16.3,F12.2)
1 90 0 95 COriT I NUE
110 00 TYPE 100 ,FREQALPHREII
11100 100 FOIRMAT(/' FREOUENCY(GHZ) =F7.3,5XALPHR 'F6.4,44X'
11200 1 ETA(DEG'INCH) =F8.2)
11300 2t0 TYPE 210
114(10 210 FORMAT (// WISH EW FREQUENCY DATA? $)
1 -150 0 ACCEPT 215,NRERUN
11600 215 FORtRT (I 1)
1I_0o GO TO(225,31,225NRERUN+1
11800 225 END
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