
NRL Report 8815

A Standard Organization for
Specifying Abstract Interfaces

PAUL C. CLEMENTS, R. ALAN PARKER,
DAVID L. PARNAS,* AND JOHN SHORE

Computer Sciences and Systems Branch
Information Technology Division

'Also at University of Victoria,
Victoria, B.C.

KATHRYN H. BRITTON

IBM
Research Triangle Park, North Carolina

June 14, 1984

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.

/[CUHI I Y CLASSIF [CATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1l REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified N/A
2a. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution unlimited.
2b DECLASSIFICATION'ODOWNGRADING SCHEOULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(SI

NRL Report 8815
6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

' If applicable I

Naval Research Laboratory Code 7590
6c ADDRESS ,(,t. Stale nd 1P Cod,-, 7b. ADDRESS (City. State and ZIP Code,

Washington, DC 20375

Ba. NAME OF FUNDING/SPONSORING Bb OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable}

(See Page ii)

Bc ADDRESS Cty. State and ZIP Codel 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. ND. NO.

Washington, DC 20360

11 TITLE In-Iode Seo.,yic Claaif-catn 62721N SF21243601 DN 980087
(See Page ii)

12. PERSONAL AUTHOR(SI

Clements, Paul C.; Parker, R. Alan; Parnas, David L.*; Shore, John E.; and Britton, Kathryn H.t
13.. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Y,.. Mo., Day) 15 PAGE COUNT

Interim IF ROM N/A TO 1984 June 14 19
16. SUPPLEMENTARY NOTATION

*Also at University of Victoria, Victoria, B.C.
t IBM, Research Triangle Park, North Carolina

17 COSATI CODES 18. SUBJECT TERMS ICon tine on -e-ece if neesary and identify by block numbe,)
FIELD GROUP SUB. GR. Software specifications Abstract interfaces

Software engineering Software documentation

19 ABSTRACT (Con.tne on eceene if ne ce,.a-y and identify by block numberI

NRL's Software Cost Reduction project is demonstrating the feasibility of applying advanced
software engineering techniques to complex real-time systems to simplify maintenance. To demonstrate
the principles, the onboard software for the Navy's A-7E aircraft is being redesigned and reimplemented.
The project is producing a set of model procedures and documents that can be followed by designers and
producers of other software systems.

This document describes the format to be followed in documenting the interfaces of the software
modules.

(Continued)

20 DISTRIBUTIONAVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIFDOUNLIMITED EX SAME AS RPT L OTIC USERS E Unclassified

22. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL
include ,-ca C,,de,

Paul C. Clements 202-767-3477 1 Code 7595

DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE

i

r I

I-...IrZ

I

SECURITY CLASSIFICATION OF THIS PAGE

8a. NAME OF FUNDING/SPONSORING ORGANIZATION

Naval Electronics Systems Command

11. TITLE (Include Security Classification) (Continued)

A Standard Organization for Specifying Abstract Interfaces

19. ABSTRACT (Continued)

An abstract interface is a software module interface that remains constant, even when details of the
software implementation change. Specifying such interfaces is a key to designing software systems for

change. The format described in this report is designed to serve the author who designs a module, the
coder who implements it, designers of other modules that must make use of it, and reviewers who must
approve its design. It organizes the specification into a small number of concise, well-defined sections,

allowing readers who are searching for a particular kind of information to look in a particular section. All
module interface descriptions of NRL's Software Cost Reduction project use this format.

SECURITY CLASSIFICATION OF THIS PAGE

ii

CONTENTS

1. INTRODUCTION ... 1

2. DESCRIPTION OF THE STANDARD ORGANIZATION 2

2.1 Introduction ... 2
2.2 Interface Overview ... 3

2.2.1 Access Program Table 3
2.2.2 Events .. 6
2.2.3 Effects .. 6

2.3 Local Data Types .. 6
2.4 Dictionary .. 6
2.5 Undesired Event Dictionary ... 7
2.6 System Generation Parameters 7
2.7 Facilities Index ... 7
2.8 Interface Design Issues .. 7
2.9 Implementation Notes ... 8
2.10 Assumptions Lists ... 8

2.10.1 Basic Assumptions .. 8
2.10.2 Assumptions About Undesired Events ... 8

3. NOTATION CONVENTIONS 8

4. EXAMPLE ... 9

REFERENCES... 14

iii

A STANDARD ORGANIZATION FOR
SPECIFYING ABSTRACT INTERFACES

1. INTRODUCTION

There are three major tasks in designing a software system. The first is partitioning the system
into work assignments (modules). The second is designing the interface of each module, i.e., decide
what facilities the module will provide. The third is producing the specification for each interface so
that (a) the implementers have enough information to write the software; (b) writers of other modules
have enough information to use the module; and (c) information that constrains or discloses details of
the implementation is not revealed.

NRL's Software Cost Reduction (SCR) project is a program that is investigating new approaches
to these and other software engineering problems by testing the feasibility of applying modern software
engineering techniques (such as information-hiding modules) to demanding software environments,
such as an embedded real-time avionics system. Information-hiding is the approach taken in the first
two tasks; this document explains the approach taken to solve the third.

Information-hiding [11 is a method of designing software to minimize the impact (and hence, the
cost) of making software changes. The method involves dividing the software into modules according
to likely changes; each module is responsible for encapsulating or "hiding" the effects of a change from
the rest of the system. The key is to design the interface of each module so that it consists only of
information about that particular module that is not likely to change. In that way, when changes that
affect a module are required, only the implementation of that module is likely to require a change. The
interface and all other modules that use the interface are not likely to change at all.

This interface is called an abstract interface, because it represents an abstraction of the entire
module, in the same way that a road map of the world is an abstraction of the world. There are many
things about the world that could change (e.g., the location and number of all the buildings, trees, peo-
ple, etc.), but a user of a road map is not concerned with these things; hence, the map does not neces-
sarily change.

The A-7E Software Module Guide [2] documents the decomposition into modules of the SCR
software and explains how the information-hiding principle was applied to achieve the modularization
and the resulting interface designs.

To meet the goals for module interface specifications set forth in the first paragraph, the
specification of an abstract interface should have the following properties:

* It must not disclose any of the changeable aspects ("secrets") of the module;

* It must present a concise description of the facilities available from the module, in terms
of effects that are observable to the user;

Manuscript approved January 13, 1984.

1

CLEMENTS, PARKER, PARNAS, SHORE, AND BRITTON

* It should be divided into sections and formatted so that a reader unfamiliar with the
module is able to find a piece of information without having to study the entire interface
specification; i.e., it should serve the quick-reference reader as well as the first-time
reader;

* It should not provide duplication of information, which would make using and maintain-
ing the document more difficult.

The organization chosen to achieve these properties consists of the following sections:

Introduction

Interface Overview

Local Type Definitions

Dictionary

Undesired Event Dictionary

System Generation Parameters

Facilities Index

Design Issues

Implementation Notes

Assumptions Lists

A brief prose overview of the module's facilities to help
the reader determine if this is the module he is
interested in;

A table of programs on the module's interface, showing
the parameters and parameter types and stating the
effects of each;

Definitions of the data types available to users from the
module;

Definitions of any specialized terms used throughout
the specification;

Definitions of any possible incorrect uses (errors) of
the module's facilities;

A list of those quantitative characteristics of the
module that are not bound until just before run-time
(e.g., the size of a data structure);

A quick look-up reference of all programs and terms
defined in the specification;

A prose section explaining why certain design decisions
were made to aid people who might make future
changes to the design;

A prose section to capture information that might have
come to the designer's attention that would be of use to
the implementors;

A prose section documenting the assumptions that the
users of the module are allowed to make about it.

Complete descriptions of each section follow.

2. DESCRIPTION OF THE STANDARD ORGANIZATION

The format for specifying an abstract interface consists of the following sections:

2.1 Introduction

This section introduces, in informal prose, the features provided by the module. It may define
basic concepts that are used in the rest of the specification.

2

NRL REPORT 8815

2.2 Interface Overview

The interface overview section includes tables that provide an overview of facilities provided by
the module. Facilities generally fall into two categories-access programs that users may call, and
events that the module reports and that users may await. Readers familiar with the module interface
can use these tables to refresh their memories about particular facts without having to reread the longer
explanations in later sections. The interface overview may contain any of the following subsections:

2.2.1 Access Program Table

Figure 1 shows the form for the access program table. This table lists all access programs pro-
vided by the module, as well as the number, data type, and semantics of the parameters. Access pro-
grams can change or retrieve information that is stored in a module's internal storage. Access program
names begin and end with brackets that show when they can be used: + + brackets indicate programs
that may be invoked only at system-generation time; + brackets enclose programs that are executable
at run time. The access program table contains an entry for each access program provided by the
module; each entry includes the program name, parameter data, and undesired events (discussed more
fully later) associated with the program.

There are three types of access programs. Each type is characterized by the facilities offered to
user programs, the effects on other access programs provided by the module, the information required
to specify them, and the naming conventions.

Value Programs-These programs deliver values to user programs via output parameters. A call to
a value program has no effect on subsequent calls to that program or on any other program of the same
module. Semantics of value programs are given in the dictionary definition(s) of the term(s) used to
denote the output parameter(s). Value program names usually begin with G_ for Get value.

fffect Programs-These programs enable user programs to affect the future operation of the
module by passing it information or giving it commands. Effect programs may affect the values
returned by subsequent calls to value programs, may change the values shown by display devices, or
may affect the current operating state of the module. These programs do not return values themselves.
The parameter-information column in the access program table can be left blank for these programs
whenever the program effects section adequately defines the parameter meanings. The names of effect
programs usually begin with S_ for Set value.

Hybrid Programs-These programs have characteristics of both value and effect programs: they
return values and affect the future operation of the module. These programs will usually be described
both by parameter-information entries in the access program table and descriptions in the effects sec-
tion.

Matching Value/Effect Program Pairs-In some cases, value and effect programs are matched so
that the value program always returns the most recent value set by the effect program. For the sake of
clarity and brevity, these programs are described together. Matching program pairs always share the
same name, except that the value program starts with G_ and the effect program starts with S_. These
programs are defined in a single line in the access program table, with the program names given
together as +G/S_. For instance, +G/SADCLPROBE+ actually refers to two programs:
+GADCLPROBE+ and +S_ADCLPROBE+.

In the SCR software environment, the exact syntax for invoking an access program is given in Ch.
EC. PGM of Ref. 3.

3

CLEMENTS, PARKER, PARNAS, SHORE, AND BRITTON

Program Name

++programl++ or +programl+

Parm type

pl:typelIK
p2:type2IK

pN :typeNlIK

Parm info

info1
info2

infoNl

Undesired Events

%%namel%% or %namel%
%%name2%% or %name2%

%%nameM%% or %nameM%

++program2++ or +program2+ pl:typelIK
p2:type2lK

.N2_typeN2)K

++programG++ or +programG+ p I type1IK
p2:type2jK

pN2:typeNGjK

Fig. 1 - Access program I

infol
info2

infoN2

infol
info2

infoNG

table format

4

NRL REPORT 8815

Legend for Fig. 1

Underscored symbols are required but without the underscores. Other names and letters are
defined as follows:

G number of programs in the group, where group is defined as a set of pro-
grams with the same entries in the undesired events column; different
groups are separated by a horizontal line in the table.

programJ name of the Jth program in the group, where J = 1,... ,G. If the name
contains ++ brackets, that program may only be invoked at system-
generation time; that is, that program will exist only in the support software
prior to the time the software is loaded onto the target machine. A name
with + brackets may be invoked at run-time; that is, that program will be
available for invocation on the target machine.

NJ number of parameters for the Jth program. If zero, the parameter columns
are empty for the program.

pL the Lth parameter of a program, where L = 1,... NJ

typeL type of parameter pL: the name of a data type provided either by this
module or another. If provided by this module, it will be defined in the
Local Types section of the specification.

K I, 0, 10 for input, output, and input-output parameter. Programs receive
the values of input parameters and deliver the values of output parameters.
Input-output parameters serve both purposes. Parameters are separated by
commas in the call statement.

infoL definition of the meaning of parameter pL; may be an entry in the
specification's dictionary (!+entry L+!) or an expression involving other
parameters, such as pl + p2; infoL may be omitted for any parameter
whose meaning is given in the effects section, or it may be an informal
description summarizing the program effect description.

M number of UE dictionary entries defined for the group

nameE Entry E in the specification's UE dictionary, where E = 1,2,.... M; the dic-
tionary entry defines the circumstances that cause a program call to be ille-
gal. If the name contains %% brackets, the UE will be detected by the
module before run-time, and the user may not provide a run-time program
to handle the UE. If the name has % brackets, the UE may not be detected
until run-time, and the user is obligated to provide a run-time UE-handling
program for it. Naturally, system-generation-time programs can only have
system-generation-time UEs associated with them.

5

CLEMENTS, PARKER, PARNAS, SHORE, AND BRITON

2.2.2 Events

This section is a table that contains a list of all of the events reported by the module. Events are
reported via access programs that do not return until the specified conditions hold. There are four
varieties of event-reporting programs:

*Tcondition This program will return when condition next changes from false to true.

@Fcondition This program will return when condition next changes from true to false.

-Tcondition This program will return when condition is true, as soon as the applicable process syn-
chronization rules permit (in the SCR software, these are documented in Ch. EC.PAR
of Ref. 3).

-Fcondition This program will return when condition is false, as soon as the applicable process syn-
chronization rules permit (in the SCR software, these are documented in Ch. EC.PAR
of Ref. 3).

Condition is an entry in the module specification's dictionary (see Section 2.4). Event meanings are
thus defined by the associated dictionary entries.

Because one condition may correspond to four event programs with similar semantics, a shorthand
has been adopted that combines the names of the possible programs. For example, let x be a condition.
Then the string @T/@F/=T/=Fx names four programs: @Tx, @Fx, =Tx, and =Fx, each with
semantics for condition x as described above.

2.2.3 .Fffects

This section specifies the effects (semantics) of invoking a hybrid or effect access program. The
effects are specified completely in terms of changes or results that are completely observable by using
software or a human observer. It is basic to the information-hiding methodology that no information
about the implementation or other hidden aspects of a module be divulged in this section. Effects may
be given by specifying changes in the values that will subsequently be returned by access programs, or
in terms of events that will occur at a later time. An example of a human-observable effect is the posi-
tioning of a symbol on a display. If any run-time undesired events are enabled or disabled as a result of
invoking the program, that is also described here.

2.3 Local Data Types

For every program parameter, a type is specified in the interface overview. This section of the
specification defines the data types that are used in communicating with the module. All such data
types are described in this section except those that are defined in another module interface
specification, in which case a reference to that specification is to be given. Some data types are called
"enumerated types"; these are described by a list of strings or a syntax that defines the list of strings eli-
gible to be passed to the program.

2.4 Dictionary

This section of the specification defines terms that appear using the !+term+! and !!term!! nota-
tion in other sections of the specification.

An item of the form !+term+! is used in the access program table to name an output parameter
of a program. The dictionary definition of such a !+term+!, then defines the value returned by the

6

NRL REPORT 8815

access program via the output parameter. This gives the semantics of the program. As in program :
effects, the definition is given only in terms that can be tested by the software or a human user. A
!+term+! may also be imbedded in the name of an event-reporting program, and the definition of the
term thus defines the semantics of the event that is reported by the program.

A !!term!! may be used anywhere in the specification (except to describe an output parameter of a
program) to take the place of a specialized technical definition that would otherwise have to be
repeated.

The definitions are prose, given in alphabetical order by term.

2.5 Undesired Event Dictionary

An undesired event (UE) occurs when an assumption about an undesired events is violated, usu-
ally when an access program is called with an incorrect parameter or in a state in which it cannot be
executed successfully. This section defines the conditions that correspond to each undesired event
reported by the module.

A UE is considered enabled when the UE may occur and inhibited when it cannot occur. Some
UEs are always enabled. Some UEs are inhibited or enabled by access programs (user-controlled state
UEs). Some UEs are inhibited or enabled by changes detected within the module (internal state UEs),
and their status is available via access programs.

This section defines the %term% or %%term%% entries in the access program table by stating the
violation that each one represents. A UE of the form %%term%% will be detected at system generation
time. A UE of the form %term% may not be detected until run time. The specification describes
user-controlled state UEs in terms of the commands that inhibit or enable them and internal state UEs
in terms of the value programs that reveal whether the UE is currently inhibited or enabled.

2.6 System Generation Parameters

This section describes those externally visible characteristics of the module that can be changed by
assigning values to parameters at system generation time. Each parameter is named, its data type is
given, and its meaning is described. These parameters are denoted by #term#, and may be used as
symbolic constants by users of the module.

2.7 Facilities Index

After all the submodules in the document have been specified using the foregoing scheme, an
index is provided that shows where in the document a particular name is defined. The index includes a
list of access programs, instructions, local data types, dictionary items, undesired event names, and sys-
tem generation parameters. The system generation parameter list includes a range of expected values
for each parameter.

2.8 Interface Design Issues

This prose section describes any alternative designs that were considered and records the reason
for their rejection. The section serves as a history of design decisions, so that issues are not considered
repeatedly. It serves as a design rationale providing guidance to maintenance programmers revising the
program.

7

CLEMENTS, PARKER, PARNAS, SHORE, AND BRITTON

2.9 Implementation Notes

This prose section contains implementation notes. During the design of the module interface,
certain facts or ideas may come to the designer's attention, ideas that would be necessary or useful to
future implementers, and these are noted in this section. As the module is implemented, the section
may be deleted, moving the information into the module implementation documentation.

2.10 Assumptions Lists

The information in the assumptions lists is redundant. It is implied by the description of the facil-
ities specified in the rest of the section. The purpose of the assumption list is to serve as an explicit
medium for review by nonprogrammers.

This section comprises two prose subsections.

2.10.1 Basic Assumptions

These assumptions contain information that users of the module may assume will never change.
In the case of hardware-hiding modules [21, it consists of information that will remain true about the
interface even if the hidden hardware is replaced or modified. In the case of requirements-hiding
modules, it consists of information that will remain true even if the hidden requirements are changed.
In the case of software decision-hiding modules, it consists of information that will remain true even if
the hidden software decisions are changed.

The assumptions relate to the normal use and operation of the module. A basic assumption will
fall into one of two categories: implementability (an assumption that the module's facilities can be
implemented efficiently), and sufficiency (an assumption that the given facilities are all the user will
ever need). Specifically, they may concern: (a) information available from the module; (b) informa-
tion that must be supplied to the module; (c) events that can be reported by the module; (d) tasks that
can be performed by the module; (e) operating states of the module and how they affect the informa-
tion available and the information required; or (e) failure states of the module and how they affect the
information available.

2.10.2 Assumptions About Undesired Events

This section lists assumptions describing incorrect usage of the module at run-time. Violation of
each assumption is associated with a run-time undesired event. The development version of the system
will be designed to report the undesired event whenever a violation occurs. In the production version
of the system, the undesired event-handling code will be removed, and violations of the assumptions in
this section will result in unpredictable behavior.

3. NOTATION CONVENTIONS

The following table lists the notational brackets used and indicates what section(s) of an interface
specification gives relevant information.

8

NRL REPORT 8815

Notation
+ +name+ +

+name+

+G name+ or
+ +G name+ +

+S name+ or
+ +S_name+ +

%%name%%

%name%

!+name+!

!!name!!

@Tname
@Fname
=Tname
=Fname

#name#

MeaninaA module access program that may only~~~~~
A module access program that may only
be invoked at system generation time

A module access program that may be
invoked at run-time

A value access program; does not change
the state of the module, but returns a
value described in the dictionary

An effect access program; changes the
module state as described in Section 2.
Usually returns no value.

An undesired event that will be detected
at system-generation time

An undesired event that may not be
detected until run-time

Either the name of a value produced by
a module's access program, or the name of
a condition associated with an event; its
definition is given in the specification's
dictionary section.

Used to denote a term with a specialized
definition that appears frequently in the
specification; its definition is given in
the specification's dictionary section.

The name of an access program that will
not return until the associated condition
is satisfied or the associated event occurs

The name of a system-generation time
parameter

Where to Look It Up
Section 2

Section 2

Sections 2,5

Section 2

Sections 2,5

Sections 2,5

Sections 2,4

Section 4

Section 2

Section 6

4. EXAMPLE

The following is an example to illustrate the form of the first six sections of a specification of an
abstract interface. (The remaining sections of the specification, composed of an index and prose para-
graphs, are not shown.) This abbreviated example is drawn from Ref. 3; the submodule specified pro-
vides data declaration and manipulation facilities for an abstract computer.

EC.DATA
DATA MANIPULATION FACILITIES

EC.DATA. 1 INTRODUCTION

The Extended Computer Data module provides literals, constants, and variables. We refer to
these as entities. Literals are values appearing in programs. Constants have names and values; run-time
programs can read the values but not change them. Variables have names and values; the values can be
read or written by run-time programs.

9

CLEMENTS, PARKER, PARNAS, SHORE, AND BRITTON

Types are classes of entities. This module provides the real and bitstring type classes. Specific real
types are characterized by !!range!! and !!resolution!!. Specific bitstring types are characterized by
length. There may exist any number of specific types. The attributes of a type may not be changed
once declared.

EC.DATA.2 INTERFACE OVERVIEW

EC.DATA.2.1 ACCESS PROGRAM TABLE - DECLARING SPECIFIC TYPES AND ENTITIES

Program name Parm type Parm info Undesired events

+ +DCLTYPE+ + pl :name;I
p2:typeclass;I
p3 :attribute;I

Name of new type
Containing type class
Attributes of type

%%name in use%%
%%inappropriate

attributes%%
%%length too great%%
%%range too great%%
%%res too fine%%

Program Effects

A specific type that is a member of type class p2 is declared to have identifier pl. All entities of
this specific type will have the attributes given by p3. The identifier can be used as the spectype (p2)
parameter in calls on + +DCLENTITY+ + in programs that follow the declaration.

Program name Parm type Parm info Undesired events

+ +DCLENTITY+ + pl :name;I
p2:spectype;I
p3:convar;I
p4:constant or

literal whose
value is in
domain of type
named by p2 ;I

Entity name
Specific type of entity
When writable
Initial value

%%name is use%%
%%undeclared

spectype%%
%%unknown initial

value%%
%%wrong init

value type%%
%%value too big%%

Program Effects

An entity with identifier pl, spectype p2, and initial value p4 is declared. If p3 =VAR, the entity
may be used as a !!destination!! in a subsequent operation. The entities that have been declared may
be used as operands in the programs that follow.

EC.DATA.2.5 ACCESS PROGRAM TABLE - OPERATIONS ON REAL ENTITIES

Program name Parm type Parm info Undesired events

pl :real;I
p2:real;I
p3:boolean;O
p4:real;I

!source!!
!source!!
!+ destination +!
!user threshold!!

%%constant destination%%

10

+EQ+
+NEQ+
+GT+
+GEQ+
+LT+
+LEQ+

NRL REPORT 8815

Program name Parm type Parm info Undesired events

+ADD+ pl:real;I !!source!! %%constant destination%%
+MUL+ p2:real;I !!source!! %range exceeded%
+SUB + p3:real;O ! + destination +!

+SET+ pl:real;I !!source!!
+ +SET+ + p2:real;O ! +destination+!

+DIV+ pl:real;I !!source!! %range exceeded%
p2:real;I ! !source!! %divide by zero%
p3:real;I ! +destination+! %%constant destination%%

Program Effects

+ADD+ p3 = pl + p2

+EQ+ p3 = (pl = p2)*
+GEQ+ p3 = (pl = p2)* OR (p1 - p2 is positive)
+GT+ p3 = pl - p2 is positive and NOT (p1 = p2)*
+LEQ+ p3 = (pl = p2)* OR (p1 - p2 is negative)
+LT+ p3 = p1 - p2 is negative and NOT (p1 = p2)*
+MUL+ p3 = pl * p2
+NEQ+ p3 = NOT (pl = p2)*
+SET+ p2 = the value of pl before the operation
+ +SET+ + p2 = the value of p1 before the operation
+SUB+ p3 = pl - p2
+DIV+ p3 = pl/p2 This is the slowest divide program available on the EC.

*Definition of equality (=):

absv(pl - p2) is less than or equal to threshold, where threshold is MAX(p4, 1/2 *

MAX(!!resolution!!(pl), !!resolution!!(p2))).

EC.DATA.2.7 ACCESS PROGRAM TABLE - OPERATIONS ON BITSTRING ENTITIES

Program name Parm type Parm info Undesired events

pl :bitstring;I
p2 :bitstring;I
p3 :bitstring;O

pl :bitstring;I
p2:bitstring;O

pl :bitstring;I
p2:integer;I
p3 :bitstring;O

!!source!!
!!source!!
!+ destination +!

!!source!!
! + destination +!

!!source!!
shift length
!+destination +!

%inconsistent lengths%
%%constant destination%%

Program Effects

p3 = pl AND p2
p2 = NOT pl
p3 = pl OR p2
p3 = shift of pl by p2 positions to the right (or -p2 positions to the left). The vacated
bits are set to O:B.
p3 = (pl AND (NOT p2)) OR (p2 AND (NOT pl))

11

+AND+
+OR+
+XOR+

+NOT+

+SHIFT +

+AND+
+NOT+
+OR+
+SHIFT+

+XOR+

CLEMENTS, PARKER, PARNAS, SHORE, AND BRITTON

EC.DATA.3 LOCAL TYPE DEFINITIONS

attribute An attribute for a bitstring is a positive integer specifying length.
A real attribute is a parenthesized list:

(lower bound, upper bound, !!resolution!!)
The lower bound and upper bound are often collectively called range (see
!!range!!).

bitstring An ordered list of values, each value represented by 0 or 1. The number of such
values is called the length of the bitstring. Bits in all bitstring types are numbered
from 0 upward. We refer to bit 0 as the leftmost bit and a shift of information
from higher numbered bits to lower numbered bits as a left shift. A bitstring literal
is written as a string of Os and Is suffixed by :B, e.g.,

O:B bitstring of length 1
1011:B bitstring of length 4

boolean Bitstring of length 1. Where convenient, $true$ may denote 1:B, $false$ may
denote O:B.

convar Either ASCON (meaning constant that will not change without a reassembly) or
LOADCON (meaning constant that may be changed by a memory-loading device
while the program is not running) or VAR (meaning variable).

integer Real with !!resolution!! = 1.

name An identifier for an object created. A name must consist only of alphanumerics or
one of the following: +#%@/$()_

real An approximation to conventional real numbers. Real literals are denoted in the
standard decimal notation format, e.g., 112.345, .000234, 127

spectype An identifier that has been previously declared as a type in a + +DCLTYPE+ +
operation, or the identifier BOOLEAN, representing the built-in spectype boolean.

typeclass Either BITS (meaning bitstring) or REAL.

EC.DATA.4 DICTIONARY

Term Definition

!+destination+! A variable that will contain results of operation.

!destination!! An 0 or IO actual parameter to an EC access program or a user-defined EC
program.

!range!! The set of values between (and including) the lower bound and upper bound of
a real-data type.

!resolution!! The maximum difference between any two consecutive representatives of the
values of a real data type.

!source!! An I or 10 actual parameter to an EC access program.

!user threshold!! A difference that user programs specify for a comparison operation; i.e., two
numbers whose difference is less than this are considered equal.

12

NRL REPORT 8815

EC.DATA.5 UNDESIRED EVENT DICTIONARY

%%constant destination%% A user program attempted to use a constant entity as a
!destination!!.

%divide by zero% A user program attempted to divide by zero.

%%inappropriate attributes%% The attributes given are not valid for the type class at
hand.

%inconsistent lengths% The length of the result of a bitstring operation differs
from the length of the destination variable.

%%length too great%% The length of a bitstring type exceeds the maximum
allowed.

%%name in use%% An attempt has been made to redefine a name of one
of the following: an EC access program, an EC UE,
and EC system generation parameter, or a user-defined
spectype, entity.

%range exceeded% The value being stored into a variable is outside the
!range!! of the variable.

%%range too great%% The magnitude of the declared !!range!! exceeds the
maximum allowed for that typeclass, as given by a sys-
tem generation parameter.

%%res too fine%% Declared resolution (or implied resolution of a literal)
was less than the minumum allowed for that typeclass,
as given by a system generation parameter.

%%undeclared spectype%% The user has supplied an undeclared spectype in an
entity declaration.

%%unknown initial value%% A variable has been used as an initial value of a
declared entity.

%%value too big%% The value of a real entity is greater in magnitude than
that allowed, as given by a system generation parame-
ter.

%%wrong init value type%% A constant or literal used as an initial value is not in
the domain of the type of the entity being initialized.

EC.DATA.6 SYSTEM GENERATION PARAMETERS

Parameter Type Definition
#max bits length# integer The maximum number of bits allowed for a bitstring.

#max real size# real Maximum allowable magnitude for a real ascon or
literal.

#max real range# real Maximum allowable magnitude for the absv
(upper bound - lower bound) for a real type.

#min real resolution# real Minimum allowable resolution for a real entity.

13

CLEMENTS, PARKER, PARNAS, SHORE, AND BRITTON

REFERENCES

1. D.L. Parnas, "On the Criteria To Be Used in Decomposing Systems into Modules," Comm. ACM,
15 (12), 1053-1058 (1972).

2. K.H. Britton and D.L. Parnas, "A-7E Software Module Guide," NRL Memorandum Report 4702,
Dec. 1981.

3. K.H. Britton, P.C. Clements, D.L. Parnas, and D.M. Weiss, "Interface Specifications for the
(SCR) A-7E Extended Computer Module," NRL Report 4843, May 1982.

14

