NRIL Report 8734

Interface Specifications for the
SCR (A-7E) Application Data Types Module

S. R. FAULK, AND D. L. PARNAS*

, 8 e

!

Computer Science and Systems Branch
Information Technology Division

*4lso at University of Victoria
Victoria, B.C.

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for pubiic release; distribution unlimited.

SECURITY CLASSIFICATION OF THIS PAGE (Fhon Data Enfered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REP2RT NUMBER 2. GOVY ACCESSION NO.[3. RECIPIENT'S CATALQG NUMBER
NRL Report 8734
4. TITLE fand Subtitle)} 5 TYPE OF REPORT & PERIGD COVERED

Interim report on a continuing

INTERFACE SPECIFICATIONS FOR THE SCR (A-7E) NRL problem

6. PERFCRMING ORG, REPORT NUMBER

APPLICATION DATA TYPES MODULE

AUTHOR(2) & COWN

i

P.C. Clements, 5.R. Faulk, and D.L. Parnas*

. Al A 10. PROGRAM ELEMENT, PROJECT TASK
9. PERFORMING CRGANIZATION NAME AMD ADDRESS PEEy T R T
‘I;a"a‘, Rese“r]‘;h L‘;%‘;‘;;‘”y 62721N; XF21242101;
ashlngton, C 75“0 1 06'0‘3
1. CONTYROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

August 23, 1983

14. MONITORING AGENCY NAME & ADDRESS(I{ difterent Irom Controlling Office) 18, SECURITY CLASS. (of this report)
UNCLASSIFIED

154, DECLASSIFICATION/ DOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT (af this Repari}

17. OISTRIBUTION STATEMENT (of the abatract entered in Block 20, If diffsrent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on roverse alde if neceesary and fdentily by block number)

Abstract data types Modular decomposition Software maintenance
Abstract interfaces Modules Software specifications
Avionics software Real-time systems

Information hiding Software engineering

20. ABSTRACT (Continue on reverae side If necessary and identily by block number)

This report describes the programmer interface to a set of
41y LUl utaw T1Io0s L

the &
types implemented in software. The Application Data Types module is part of NRL’s Software
Cost Reduction (SCR) project, to demonsirate the feasibility of applying advanced software
engineering techniques to complex real-time systems to simplify maintenance. The Application
Data Types module allows operations on data independent of the representation. In the case of

mtad alaotpant A
oAU aUallawl Uy

{Continued)

DD ,"35"%, 1473 eoiTion oF 1 Nov 65 15 OBSOLETE
S/N 0102-014~ 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntsred)

SECURITY CLASHFICATION bF THIS PAGE (Whan Daia Entered)

20. ABSTRACT (Contlnued)

numeric abstract types, which represent physical quantities such as speed or distance, arithmetic
operations may be performed independent of the units of physical measure. This allows the rest
of the appiication sofiware to remain unchanged even when representation decisions change

about these data.

This report contains the abstract interface specifications for all of the facilities provided to
users by this module. It serves as development and maintenance documentation for the SCR
software design, and it is also intended as a modei for other people interested in applying the
abstract interface approach on other software projects.

SECURITY CLASSIFICATION DOF THIS PAGE{When Date Enlersd)

CONTENTS

AT.INTRO—=INTRODUCTIONccooiimiiiniiiricnninniinenisiessne s snasseeseennas i
AT NUM—NUMERIC ABSTRACT DATA TYPES AND OPERATIONS 3
AT STE—-STATE TRANSITION EVENT TYPE CLASS ..o 12
AT.INDEX—INDICES TO THE DOCUMENTccovvvrvii i, 19
ACKNOWLEDGMENTS ...t 22
REFERENCTES ..ot bbb 22
APPENDIX 1—Interface Design ISSUESccccoiivieeiiiniiieniiirinneeseins s ssesseessneenas 23
APPENDIX 2—Implementation NOLESc.ccccvvvrimmeeemreeceecesaninieeses s nessssnnnsens 26
APPENDIX 3 —Basic ASSUMPLIONS .vvvvceeiieieiiiiiiiiiiiessincnniisiirnin s sssssssesseessessnes 27
APPENDIX 4—Unimplemented Application Data Type Facilitiesccceeunns 29
APPENDIX 5—Data Representation (Version) Catalofccceevvvvrvvereeeererveesinnenns 30

iii

INTERFACE SPECIFICATIONS FOR THE SCR (A-7E)
APPLICATION DATA TYPES MODULE

INTRODUCTION

This report specifies the abstract interfaces for a software module that forms part of the Qpera-
tional Flight Program for the Navy’s A-7E aircraft. As the demonstration vehicle for the Naval
Research Laboratory’s Software Cost Reduction (SCR) project, the program is being designed and
implemented in accordance with modern software engineering principles such as information-hiding,
cooperating sequential processes, and abstract data typing.

The basic computing environment for the application software is provided by the Extended Com-
puter module, specified in reference [EC]. The Extended Computer interface provides all the facilities
necessary for handling data, as well as input/output {i/0), sequence, and process control.

Overview

The application Data Types (ADT) module provides facilities for handling those data types which
(a) are useful to the application at hand (in this case, an embedded real-time avionics program); and
(b) can be implemented independently of the host computer, i.e., are not provided by the Extended
Computer Module.

Although the type classes provided by the module are fixed, operations are available to specify
specific types within a type class, and to create and manipulate data objects of each type. The module
comprises two submodules:

(1) Numeric Type Classes. This submodule provides those numeric data type classes that are
considered to be generally useful to avionics applications; these type classes are used to represent physi-
cal quantities: acceleration (both scalar and vector), angle, angular rate, density, displacement, distance,
pressure, speed, and velocity. Facilities are provided that allow manipulation of such quantities without
regard to the units of measurement.

(2) State Transition Event (STE) Type Class. This submodule allows programs to create and
operate on data types described as finite state machines. The domain of an STE variable is 2 set of
states. The changing of a variable’s state is an event that can be signaled and awaited.

Reader Prerequisites

This report is a companion to Chapter EC.DATA of [EC], and it is assumed that the reader is
familiar with that chapter, particularly the notion of type classes, specific types, and other terminology
used therein. The ADT interfaces are modeled after that submodule of the Extended Computer. To
present as concise a document as possible, we frequently refer to that chapter rather that duplicate
information that appears there. '

This report follows the standard organization presented in [SOI, as modified in the Introduction to
[EC], and readers should also be familiar with that.

Manuscript approved April 19, 1983.

CLEMENTS, FAULK, AND PARNAS

Referring to the Extended Computer

When a reference is made to Chapter EC.DATA of {ECI, the following rules apply:

i1y
AES

(2)

T #lan nnfa M A
If the reference is made to an EC.DATA access program, then t

access program that is being specified, as well as the parameters, parameter meanings,
parameter requirements, undesired events, undesired event dictionary definitions, and
program effects will be the same as those given for the access program in EC.DATA,

except as noted.

Any information about registers given in a referenced section of EC.DATA should be
ignored, This moduie does not provide registers.

NRL REPORT 8734

AT.NUM NUMERIC ABSTRACT DATA TYPES AND OPERATIONS

AT.NUM.1 Introduction

AT.NUM. 1.1 Overview

The type classes provided by this submodule give a means to represent and operate on physical
guantities (such as a speed or ap angle) without stating or assuming particular units of measurement.
Conversion programs are provided to convert the entity to its real equivalent, given the unit of meas-

urement desired.

The notion of type classes and specific types is explaned in EC.DATA.L.2. The types provided by
this module, as well as the available units of measurement for each, are listed in Table AT.NUM .a.

Table AT.NUM.a — Types Classes and Associated Units

Type Class Unit Unit Meanings

accel fpss Feet per second per second

p Normal gravity acceleration
accel-vec a
angle deg Degrees

cir Circles

rad Radians

Angles may also be converted to a
sinefcosine representation

angrate deghour Degrees per hour

radsec Radians per second
density slcuft Slugs per cubic foot
displacement b
distance ft Feet

nmi Nautical miles
pressure inhg Inches of mercury
speed fps Feeat per second

fpm Feet per minute

knot Nautical miles per hour
velocity ¢

Faccel-vee is a three-dimensional vector that may be converted into components of type

accel.

bDisplacemenl is a three-dirnensional vector that may be converted into components of

type distance.

“Velocity is a three-dimensional vector that may be converted into components of type

speed.

L

CLEMENTS, FAULK, AND PARNAS

Specific types in this module are characterized only by the range and resolution of all entities of
that type. Specific types are created via declarations. Each variable and constant must belong to a
specific type.

AT.NUM.1.2 Literals

A value for a scalar type provided by this module can be specififed by using a real literal and one
of the conversion programs that convert real values to numeric scalar abstract types. The syntax is:

< program-name, real-literal >

The syntax for real-literal is given in EC.DATA.1.3. The value thus specified is that which would be
returned by the program were the real given as the input parameter.

A value for a vector type can be specified similarly, by naming a program that produces a vector
from constituent scalars, which are specified as shown above. The syntax is:

ram-name, scalar-literal, scalar-literal, scalar !stera! >

AT.NUM.2 Interface Overview
AT.NUM.2.1 Declaration of Specific Types

The form is that of the ++DCL_TYPE+ + program described in EC.DATA 2.1, with

pl as described there;

p2 a typeclass as described in AT. NUM 4,
p3 an attribute as described in AT.NUM.4;
p4 as described there; and

p5 a version as described in AT.NUM.4,

AT.NUM 2.2
AT.NUM.2.2.1 Declaration of Variables and Constanis

The form is that of the +-+DCL_ENTITY+ + program described in EC.DATA.2.2.1, with

pl and p2? as described there;
p3, if supplied, an attribute as described in AT.NUM.4; and
p4 and p5 as described there.

L mTETR -

AT.NUDM.1.2.Z Deciaration of Arrays
The form is that of the + +DCL_ARRAY -+ + program described in EC.DATA.2.2.2, with

pl and p2 as described there;
p3, if supplied, an attribute as described in AT.NUM.4; and
pd, p5, and p6 as described there.

AT.NUM. 2.3 Access Speed Ranking of Data

The ADT module can implement a "not-slower-than” relation between any two variables, con-
stants, or arrays. The form is that of the + +RANK DATA+ + program described in EC.DATA.2.3.

NRL REPORT 8734

AT.NUM.2.4 Operand Descriptions

All information in EC.DATA.2.4 applies, except for information concerning registers.

AT.NUM.2.5 Transfer Operations

The form is that of the +SET+ program described in EC.DATA.2.5; pl and p2 must both
belong to the same iype class.

AT.NUM.2.6 Numeric Operations

AT.NUM.2.

6.1 Numeric Comparison Operations

All programs listed in EC.DATA.2.6.1 apply. Parameters pl, p2, and p4 (if given) must all
belong to the same type class. For operands of vector type classes, the following program effects apply:

+GT+
+GEQ+
+LT+

+LEQ+

>
=
z

UM.2.6.2 Numeri

p3 = (pl — p2) is positive and NOT (pl = p2)*
p3 = (pl = p2)* OR (pl — p2) is positive
p3 = (pl — p2) is negative and NOT (pl = p2)*

(pl = p2)* OR (pl — p2) is negative

o
[¥S]
It

Calculations

Lr]

Parameters
+ADD+ all operands belong to the same AT-provided type class
+ABSV+
+COMPLE+
+5UB+
+MUL+ one of pl or p2 real, the other iwo operands belong to the same
AT-provided type class; or,
p3 speed; one of pl and p2 timeint, the other accel; or
p3 distance; one of pi and p2 timeint, the other speed; or
p3 angle;, one of pl and p2 timeint, the other angrate; or
p3 displacement; one of pl and p2 timeint, the other velodity; or
p3 velocity; one of pl and p2 timeint, the other accel-vec.
+DIV+ pl and p2 belong to same AT scalar type class and p3 real; or,

*Equality is defined in

pl and p3 belong to same AT-provided type class and p2 real; or,

pl speed, - p2 timeint, p3 accel; or,
pl distance, p2 timeint, p3 speed; or,
pl angle, p2 timeint, p3 angrate; or,
pl speed, p2 accel, p3 timeint; or,
pl distance, p2 speed, p3 timeint; or,
pl angle, p2 angrate, p3 timeint; or,
pl displacement, p? timeint, p3 velocity; or,
pl velocity, p2 timeint, p3d accel-veg;

p4 (if qnnnhprﬂ same type as p3

P aa g

pS Gf supphed) same type as p3

EC.DATA.2.6.1. 5

CLEMENTS, FAULK, AND PARNAS

Program Effects

Any result of type angle is taken modulo 360 degrees.

+MUL+

+DIV+

For muitiplying a velocity (accel-vec) by a timeint: p3 = a displacement (velocity} vector
with the same direction as the velocity (accel-vec), whose magnitude is equal to the
timeint multiplied by the magnitude of the velocity (accel-vec).

For dividing a dispiacement {velocity) by a timeint: p3 = a velocity {accel-vec) vector with
the same direction as the displacement, whose magnitude is equal to the magnitude of the
displacement (velocity) divided by the timeint.

Program effects for all other cases are defined in EC.DATA.2.6.2.

AT.NUM.2.6.3 Operations Converting from AT-Provided Scalar Types to Reals

Program name Parm type Parm info Undesired events
+R_ACCEL FPSS+ pl:accel;l source Y%range excesded%
+R _ACCEL G+ p2:reat;O destination
+R_ANGLE DEG+ pl:angie;I source
+R_ANGLE CiR+ pZrreal;0 destination
+R_ANGLE RAD+
+R_ANGLE SIN+
+R_ANGLE_COS+
+R_ANGRATE DEGHOUR+ pl:angrate;l source
+R_ANGRATE_RADSEC+ pZ:real;O destination
+R DENSITY SLCUFT+ pl:density;I source

p2real;O destination
+R_DISTANCE _FT+ pl:distance;l source
+R_DISTANCE_NMI+ p2:reai;O destination
+R_PRESSURE_INHG+ pl:pressure;l source %range exceeded%
p2:real;O destination
+R_SPEED FPS+ pl:speed;I source
+R_SPEED FPM+ p2:real;0 destination

+R_SPEED_KNOT+

Each program provides a real value in p2 giving the physical gquantity of pl in the units abbreviated in

Program Effects

the name of the program. The unit abbreviations are define in Table AT NUM.a.

NRL REPORT 8734

AT.NUM.2.6.4 Operations Converting from Reals to AT-Provided Scalar Types

Program name Parm type Parm info Undesired events
+ACCEL_R _FPSS+ pl:real;l source %range excecded%
+ACCEL R G+ p2:accel;O destination
+ANGLE R DEG+ plireal;l source
+ANGLE_R_CIR+ p2:angle;O destination
+ANGLE R RAD+
+ANGLE R _SIN+ pl:real;l source Y%billegal sin
+ANGLE R COS+ p2:angle;O destination or cos given%
+ANGLE_R_SINCOS+ plireakI sine of angle Y%range exceeded%

p2:real;l cosine of angle

p3:angle;O destination
+ANGRATE_R_DEGHOUR + pl:real;l source
+ANGR E R RADSEC+ p2:angrate; O destination
+DENSITY R SLCUFT+ plireal:] source

p2:density;O destination
+DISTANCE_R FT+ plireal;l source

+DISTANCE_R_NMI+
+PRESSURE_R_INHG +
+SPEED R_FPS+

+SPEED_R_FPM+
+SPEED_R_KNOT+

p2:distance;O

pl:reai;]

p2:pressure;0

pl:real;l
p2:speed;O

destination

source
destination

source
destination

Program Effects

+ANGLE_R _SINCOS+ Produces in p3 the angle whose sine and cosine are

equivalent to pl and p2, respectively.

+ A N(“T E R COS+ Drn Ancac in n? tha anola hatwaan) daaraag and
AR ASER AR AL by DiUGULEs I P2 T algit oCiwolll v QCgIreds ana
180 degrees, inclusive, whose cosine is pl.

+ANGLE R SIN+ Produces in p2 the angle between —90 degrees and

+90 degrees, inclusive, whose sine is pl.

All other programs produce an AT-type value in p2 equivalent to pl, assuming that pl represents a
physical quantity in the units abbreviated in the program name. The unit abbreviations are defined in
Table AT.NUM.a. Results of type angle are given modulo 360 degrees.

CLEMENTS, FAULK, AND PARNAS

AT.NUM.2.6.5 Operations Converting from Vecter Types

Program name
+XYZ VECTOR+

+SPHER_VECTOR +

+CYL VECTOR+

+XYZ VECTOR+

+SPHER_VECTOR +

Parm type
pl: I
p2: ;0
p3: ;0
pd: ;0
pl: ;I
p2: __ ;0
pl:angle;O
pd:angle;Q
pl: I
pl: 0
p3:angle;0
pd: .0

Parm info Undesired evenis
i+ vecior+1 Y%range exceeded¥
14X component+1
'+Y component+!

I+Z component+!

4+vector+!

!+ magnitude +!
{+theta+!
I+phi+!

'+ vector+!

{4 radius+1
i+theta+1

147 component+!

Parameier Requiremenis

pl velocity, and p2, p3, p4 speed; or,
pl displacement, and p2, p3, p4 distance; or,
pl a}ccei-vec; and p2, p3, p4 accel

pl velocity, and p2 speed; or,
pl displacement, and p2 distance; or,
pl accel-vec, and p2 accel

-1 =
pl velocity, and p2 and p4 speed; or,

- S Py

pl displacement, and p2 and p4 dxstance, or,
pl accel-vec, and p2 and p4 accel

Domawnme TfFantc
Piogram £Hects

All programs produce component equivalents from the given vector. No coordinate system frame of
reference is assumed by this module; the frame of reference that users employed to initialize the vector
will be the one to which the components correspond.

+XYZ VECTOR +

+SPHER_VECTOR +

+CYL_VECTOR +

p2, p3, and p4 are set to the x, y, and z Cariesian
components {respectively) of the vector given by pl.

p2, p3, and p4 are set to the spherical coordinate
componenis of the vector given by pl.

p3, and p4 are set to the cylindrical coordinate

3
onm I’\ﬁﬂﬂ
AFIN T

1ts of the vector given by pl.

NRL REPORT 8734

AT.NUM.2.6.6 Operations Converting to Vector Types

Program name Parm type Parm info Undesired events
+VECTOR_XYZ+ pl: A '4+X component +! Yorange exceeded%
p2: i | '+Y component+!
p3: A '4+Z component+!
pd: ;0 !+vector+!
+VECTOR_SPHER+ pl: | !+ magnitude +!
p2:angle;l !+theta+!
p3:angle;l !+phi-+!
pd: :0 I+ vector +!
+VECTOR_CYL+ pl: 1 '+radius+!
p2:angle;l I +theta+!
p3: d '4+Z component+!
p4: ;0 I+vector+!
Parameter requirements
+VECTOR_XYZ+ pl, p2, p3 speed and p4 velocity; or,

pl, p2, p3 distance and p4 displacement; or,
pl, p2, p3 accel and p4 accel-vec

+VECTOR_SPHER + pl speed and p4 velocity; or,
pl distance and p4 displacement; or,
pl accel and p4 accel-vec

+VECTCR_CYL+ pl and p3 speed, and p4 velocity; or,
pl and p3 distance, and p4 displacement; or,
pl and p3 accel, and p4 accel-vec

Program Effects

+VECTOR_XYZ+ p4 = the vector equivalent of pl, p2, and p3,
assuming a Cartesian coordinate system.

+VECTOR_SPHER + p4 = the vector eguivalent of pl, p2, and p3,

+VECTOR_CYL+ p4 = the vector equivalent of pl, p2, and p3,
assuming a cylindrical coordinate system.

AT.NUM.3 Undesired Event Assumptions

See EC.DATA.3. All Undesired Event assumptions there apply, except for those that explicitly

mention bitstrings, registers, or time intervals.. In addition:

[. User programs will not provide a real with magnitude greater than 1 to represent a sine or

a cosine of an angle.

CLEMENTS, FAULK, AND PARNAS

AT.NUM.4 Local Type Definitions

Local types used in the deséription of programs specified in EC.DATA are defined in Section
EC.DATA.4, except for the following:

attribute An ordered triple of numeric entities specifying
lower bound, upper bound, and resolution.

type class Enumerated: accel, accel-vec, angle, angrate,
density, displacement, distance, pressure, speed, of
velocity.

version A version name applicable to the given type class.
Version names and characteristics are listed in
Appendix 5.

AT.NUM.5 Dictionary

Dictionary terms used to described programs specified in ECDATA are defined in Section
EC.DATA.S5. The following terms are introduced by this module:

'+ magnitude+! The scalar magnitude of the vector; the distance
between the end of the vector and the origin of the
coordinate system.

t+phit! In spherical coordinates, the angle between the
vector and positive z axis; sign of the angle is the
sign of the vector’s z component,

{+radius+! The distance from the origin to the end of the
' projection inio the x-y plane of the vector.

I-+theta+! The angle from the positive x axis to the projection
of the vector into the x-y plane; the angle is

maaenrad connterciockwice ag sean looking into the
measureg counlerc:oCXwIsSe as seen 100Xing Into e

x-y plane in the negative z direction.

I+ vector+! The vector type class equivaient of the given
components,

'+X component+! The x component of the given vector.

!4+Y component+! The y component of the given vector.

147 component +! The zcomponent of the given vector.

AT.NUM.6 Undesired Event Dictionary

Undesired events described in programs specified in EC.DATA.2 are defined in Section
EC.DATA 6. In addition:

10

NRL REPORT 8734

%range exceeded% Defined in EC.DATA.6

%illegal sin or cos given% User has supplied a sine or cosine with
magnitude greater than 1,

AT.NUM.7 System Generation Parameters
None
AT.NUM.8 Information Hidden
1. The representation of numeric objects.
2. How range and resolution information are used to determine representation.
3. The procedures for performing numeric operations.

Conversions required, if two objects of the same type or type class are not represented in
the same way.

11

CLEMENTS, FAULK, AND PARNAS

AT.STE STATE TRANSITION EVENT TYPE CLASS
AT.STE.1 Introduction
AT.STE 1.1 Overview

This module implements State Transition Event (STE) types. Users may define specific types of
this type class and declare entities of those types.

Each STE type is a class of equivalent finite state machines. The value of an STE variable is its
state. Fach STE type is characterized by a set of staies, named subsets of that set, named relations on
that sef, and state transition events. It is intended that this module be used only when the number of
states is small enough that the attributes of ths type can be described by enumeration.

The relations may be used either to specify conditions relating two entities of the same STE type
or to describe state transitions.

This moduie provides facilities that allow a process to awail specified conditions and transitions.
Awaiting a state transition event suspends the process uniil the event occurs. Awaiting a condition
suspends the process until the condition hoids.

AT.STE.1.2 Literals

Literals are state names and must begin and end with the character "3,
AT.STE.2 Interface Overview
AT.STE.2.1 Declaration of Specific Types

STE types are declared by use of the form of ++DCL_TYPE++ (see EC.DATA.2.1). The
forms of the parameters for STE type declarations are given below.

Parameter Type Comments
pl name any unused name
p2 type class "STE"
p3 attributes see AT.STE.4
p4 binding all STE attributes must be fixed
p3 implementation omitted

Program Effects

In addition to defining a type, the STE ++DCL_TYPE+ + operation causes a number of access
progtams to be defined on elements of the type being declared. The syntax and semantics of these pro-
grams are discussed in AT.STE.2.5.

The following additional undesired events can occur in the declaration of STE types:

th%duplicate set mermberi%
Y%%malformed attribute%%
Y%%missing state attribute%%
%%to0 many state attributes%%
%%type inconsistency%%
%%undeclared spectype%
Wlbunknown state%%

12

NRL REPORT 8734

AT STE.2.2 Declaration of Variables and Constants

STE variables and constants are defined by using the form of ++DCL ENTITY++ (see
2 A 3

P can nttrilaatal io nm.u.—.,l for Q"I"E 1

MATYATA N er (= o)
LLLAAL A aldlicicl pJ \lllll.lal alriouie, is Omiea 101 L LYy pv

ey
I3
S

AT.STE.2.3 Declaration of Arrays

Arrays of STE type entities are defined by using the form of ++DCL_ARRAY++ (see
EC.DATA.2.3). Parameter p3 (initial attribute) is omitted for STE type variables.

AT.STE.2.4 Operand Descriptions

Wy v s P A M

See description in EC.DATA.2.4. Those portions of the description in EC.DATA.2.4 pertaining
to variables with varying attributes, and to registers, do not apply to this module.

The following additional undesired event can occur when operands are specified.

Y%Y%inappropriate parameters%%
AT.STE.2.5 Access Programs

e daclaration of an STE tvne defines a nmiymber o
11 Qeclaration of an Sl ype qenr mog

-"a
'J
2
P
]
3
=
-]
G
9
3
w
—
5
D
-y
3
7
=
=
'D
e
jom]
]
"3
=y
::-

Q T
aCCess PiuUpidGiil

that type. For each attribute identifier that appears in a "conversion", relatmn", o1 set attrnbute
declaration, an access program is defined having that identifier as its name. In addition, several addi-
tional access programs are defined whose names are systematically derived from the attribute identifiers.
For a given STE type declaration, the names of the access progams that are defined by that declaration
may be found by systematically replacing the strings 'set’, ‘relation’, ‘conversionl’, and ‘conversion2’
with the respective identifier of each set, relation, or conversion declaration of that type.

The following additional undesired event can occur when an STE access program is invoked.

%%unknown STE program%%
AT.STE.2.5.1 Operations on the STE Entities

Program name Parm type Parm info Undesired events

+'set’-+ pl:STEtype;l

p2:boolean;Q

entity to test
destination

+IS_'relation’+ pl,p2:STEtype;l
p4:(parms);I_OPT

p3:boolean;O0

pair to test %%unequal lists%%
n-tuple

destination

+'relation’+ pl:STEtype;O0

p2:(parms);1 OPT

%%unequal lists%%
%out of domain%

domain elements
n-tuple

+'conversionl’+ pl:STEtype;]

p2:convtype;0O
+'conversion2' -+ pl:convtype;l
p2:STEtype;O

value to convert
destination

value to convert
destination

13

+'set’+

+I8_'relation’+

+’relation’ -+

+‘conversion2’+

CLEMENTS, FAULK, AND PARNAS

Program Effects

p2 := {pl is an element of the set attribute whose
identifier is 'set’)

p3 1= {{p4,p1),p2) is an element of the relation
attribute whose identifier is relation’. If p4 is
omitted, then p3 := {pl,p2) is an element of relation’.

pl changes state to s2 such that si is the value of pl
before the call, v1, ..., vn is the value of p2 {if
given), and the ordered pair (({v1, ...
(s1,52) where p2 is omitted) is an element of the
relation attribute whose identifier is relation’.

, va},s1},52) (or

‘Where there is more than one ordered pair with the same

first element, any may be chosen.

£

relation, and 'conversionl’ is the first of the ordere
pair of identifiers associated with that conversion
definition.

p2 := x such that {x,p1) is an element of a conversion
relation, and ‘conversion?’ is the second of the ordered
pair of identifiers associated with that conversion
definition.

AT.STE.2.5.2 Await Operations

In this section

"AWAIT.T/F.string™ stands for two names,

"AWAIT.T 'string"

and

"AWAIT.F.string". Similarly, in the effects section, alternate phrasing for each member of the pair is

separated by "/".

+AWAIT@ ="relation’+

+AWAIT.T/F.'set’+

+AWAIT.T/F relation’+

+AWAIT@ relation’+

Parm type

=1 QP e T
piorniypen

p2:{parms);[_OPT

pl:STEtype;l
p2:(parms);I_ OPT

variable to watch
n-tuple

pi:3TEtype;l candidate member

pl,p2:STEtype;1
p3:(parms);I_OPT

candidate pair
n-tuple

Program Effects

Undesired events

Let p2’ be the value of parameter(s) p2. Then, all

action in the calling process is suspended until pl
undergoes a state change from sl to s2 such that the

ordered pair {{p2',s1),52) (or {s1,52) if p2 is

omitted) is an element of the relation attribute whose

identifiar ic 'ralatinn’
wgennller 1s reation.,

14

NRL REPORT 8734

+ AWAIT@ = relation’+ If p2 is omitted, then all action in the calling
process is suspended until the access program
+’relation’+ (pl) is executed. Otherwise, let p2' be
the value of p2. Then all action in the calling
process is suspended until the access program
+'relation’+ (p1,p2) is executed with p2=p2".

+AWAIT. T/F.'set’ + If the value of pl is/ (is not) a member of the set
a[[rlDutc WﬂUbe lﬂemlucr lb bt'al N lﬂc Ldll I'l&S o
effect. Otherwise, all action in the calling process
is suspended until the value of pl is/(is not) a
member of 'set’.

+ AWAIT T/F."relation'+ Let p3’ be the value of parameter(s) p3. Then, all
action in the calling process is suspended until the
ordered pair of values given by ((p3’,p1),p2) (or
(pl,p2) if p3 is omitted) is/(is not) a member of the

alatinn attrihiita whaos idantifiar ic I‘nluflnﬂ IF
AUI.“L‘U.[I CLLLIL ML YLV OW ULl i ix

the ordered pair of values is/(is not) already a
member of ‘relation’, the call has no effect.

AT.STE.3 Undesired Event Assumptions

1. Users will not supply an argument to a conversion outside of the domain of the defining
relation.

AT.STE.4 Local Type Definitions

Local types that are used in the description of programs specified in EC.DATA and are not
described here are defined in Section EC.DATA.4. In the following definitions, where the syntax is
given in modified BNF, alphabetic strings contained in quotation marks (e.g., "state”) are terminal sym-
bols. Ellipses {e.g., state, . .., state) denote a list of two or more elements separated by commas.

attribute The atiributes of an STE type characterize the type.
The syntax of an STE type attribute is,

("state" {atale list)

or ("relation" (relation_defn))

or ("set" (set_defn))

or ("conversion" (conversion_defn))

An STE type declaration must have exactly one "state"
attribute. There may be any number of the remaining

attributes.

attributes = attribute or attribute, attributeg

convtype An entity of the specific type specified in the
conversion_defn.

conversion_defn A 1:1 mapping between a subset of the states of an STE
type and a set of literals of another type. The
syntax is,

15

CLEMENTS, FAULK, AND PARNAS

= (ID,ID}, type ID (s1,t1}
or (ID,ID), type_ID ((s1,t1), . . ., (sn,tn))

where type 1D is the identifier of a specific type.

sarh nf tha ciiheaniiant nrdsrad na
WL Vi Wil JRUdwiaieiit v:u\nvu

form:
(STE literal, x) or ((STE literal, . . . , STE literal}, x)

where x is a literal or constant of type _1D. The
ordered pair (ID,ID) identifies the conversion
programs from the STE type and to the STE type,

m"ﬁ t ha nf t
LY

ot
¢
%
o
?
@
ot

respectively.
D An identifier associated with an STE atiribute.
parms A list of entities separated by commas. The number of

entities and their types must match those of the
n-tuple "P" in the corresponding relation_defn.

relation_defn A set of ordered pairs of the form ((P,D),R) where
{P,D) is an element of the domain of the relation
heing defined and R is an element of the range. D and
R must be m-tuples of elements of the state set. P
may be an n-tuple of literals of any type. P may be
omitted in which case, the ordered pairs are written
(D,R). The syntax is,

= ID (ordered pairs)}

ordered_pairs ;1= {domain, state_list)
or (domain, state_list), . .., (domain, state_list)

domain 1= state list

literals ::= literal
or (literal, . . ., literal)

The relation "EQ" is automatically defined for all STE
types. It is defined as the set of ordered pairs

{s,s) where s is an n-tuple of elements of the state
set.

The relation "SET" is automatically defined for all
STE types. It is defined as the set of all ordered
pair {{s2,s1),s2) where si and s2 are iists of
elements of the state set.

defined or a subset of th er s the set of
states, The syntax is,

= 1D, state list
or ID (state list, ..., , state_list).

A subset of the set of states gn_" the STE type being
set of

siaie An STE literal {(i.e., state name).

16

NRL REPORT 8734

state_list ;1= state or (state, . . ., state)

STE type An entity of the STE type for which the operation is
defined or a list of such entiiies enclosed in
parentheses and separated by commas.

AT.STE.5 Dictionary

None.

AT.STE.6 Undesired Event Dictionary

%dhduplicate set memberdd

%%inappropriate parameters%%

%%malformed attribute%%

%%missing state attribute%%

%out of domain%

%%too many state attributes%%

Y%%type inconsistency%%

%%undeclared spectype%%

%%unequal lists%%

%%unknown state%%

%%unknown STE program%%

A user program has specified a set with
duplicate elements.

A user program has called an access program
with parameters that do not correspond in
specific type to the declaration.

The user has supplied an attribute
declaration with a syntax inconsistent with
that specified in AT.STE.4.

A user program has declared an STE type with
no "state" attribute.

A user program has supplied an input
parameter that is not in the domain of the
relation.

A user program has declared an STE type with
more than one "state" attribute.

A user program has specified a specific type
that has not been defined.

A user program has supplied a list parameter
that does not match the specified length.

A user program has provided a state value
that has not been declared in the "siaie"
attribute.

A user program has specified an STE program
that does not correspond to any attribute
identifier that has been defined for the

type.

17

CLEMENTS, FAULK, AND PARNAS

AT.STE.7 System Generation Parameters
None.
AT.STE.8 Information Hidden
1. Internal representation of states, sets, and relations.
2. Algorithms used in the programs corresponding to AT attributes.

3. How processes await a state transition event and how they are restarted.

i8

NRL REPORT 8734

AT.INDEX INDICES TO THE DOCUMENT
This section provides the following indices to the facilities described in this document:
Access Programs
Local Type Definitions
Dictionary Terms

Undesired Events

Faciiities specified in [EC] are not inciuded in this index.

Access Programs

Program name Where defined
+ACCEL_R_FPSS+ AT.NUM
+ACCEL_R_G+ AT.NUM
+ANGLE R CIR+ AT.NUM
+ANGLE R COS+ AT NUM
+ANGLE R_DEG+ AT.NUM
+ANGLE_R_RAD+ AT.NUM
+ANGLE R SIN+ AT.NUM
+ANGLE_R_SINCOS+ AT.NUM
+ANGRATE_R_DEGHOUR + AT NUM
+ANGRATE_R_RADSEC+ AT .NUM
+CYL _VECTOR+ AT.NUM
+DENSITY_R SLCUFT+ AT NUM
+DISTANCE R FT+ AT.NUM
+DISTANCE_R_NMI+ AT NUM
+ PRESSURE_R_INHG + AT.NUM
+R_ACCEL FPSS+ ATNUM
+R_ACCEL G+ AT.NUM
+R_ANGLE_CIR+ AT.NUM
+R_ANGLE_COS+ AT NUM
+R_ANGLE_DEG+ AT.NUM
+R_ANGLE_RAD+ AT NUM
+R_ANGLE_SIN+ AT.NUM
+R ANGRATE DEGHOUR + AT NUM
+R_ANGRATE RADSEC+ AT.NUM
+R_DENSITY SLCUFT+ AT .NUM
+R_DISTANCE_FT+ AT.NUM
+R_DISTANCE_NMI+ AT.NUM
+R_PRESSURE INHG + AT.NUM
+R_SPEED _FPM+ AT.NUM
+R SPEED FPS+ AT.NUM
+R_SPEED_KNOT+ AT NUM
+SPEED_R_FPM + AT NUM

+SPEED_R_FPS+ AT.NUM

[
D

CLEMENTS, FAULK, AND PARNAS

+SPEED_R_KNOT+ AT.NUM
+SPHER_VECTOR + AT.NUM
+VECTOR_CYL+ AT.NUM
+VECTOR_SPHER + AT.NUM
+VECTOR_XYZ+ AT.NUM
+XYZ VECTOR + AT.NUM

In addition, AT.STE allows the user to define access programs of the following form:

+AWAIT@relation+

+ AWAIT@ =relation+
+AWAIT. T/Fsel+
+AWAIT.T/F.relation+
+conversion] +
+conversion2 +
+relation+ (4 parameters)
+relation+ (2 parameters)
+set+-

Local Type Definitions

Type name Where defined
acceld AT NUM
accel-vec AT NUM
angle AT NUM
angrate AT NUM
attribute AT.NUM, AT.STE
attributes ATSTE
conviype AT.STE
conversion_defn ATSTE
density AT NUM
displacement AT.NUM
distance ATNUM
parms AT.STE
pressure AT NUM
relation_defn ATSTE
set_defn ATSTE
speed AT NUM
state_set ATSTE
STEtype ATSTE
STEtype list AT STE
typeclass AT.NUM
velocity AT.NUM
version AT NUM

Dictionary Terms

Term Where defined
1+ magnitude +! AT NUM
1+ phi+! AT NUM
!+ radius+! AT.NUM
f+theta+1 AT.NUM

20

I+vector+! AT.NUM
'+ X component-t! AT .NUM
'+Y component+! AT NUM
'+Z component+! AT.NUM

Undesired Events

UE name

%%duplicated set member%%
%illegal sin or cos given%
%%inappropriate parameters%%
%%malformed attribute%%
%%missing state attribute%%
Y%out of domain%
Y%range exceeded%
%%too many state attributes%%
%%type inconsistency%%
%%undeclared spectype%%
%%unequal tists%%
%%unimplemented binding%%
%%unimplemented attribute
via variables%%
%%unknown state%%
%%unknown STE program%%

NRL REPORT 8734

Where defined

AT.STE
AT.NUM
AT.STE
AT.STE
AT.STE
AT.STE
AT.NUM
AT.STE
AT.STE
AT.STE
AT.STE
Appendix 4

Appendix 4

AT.STE
AT.STE

21

CLEMENTS, FAULK, AND PARNAS
ACKNOWLEDGMENTS

The authors gratefully acknowiedge the following people who reviewed this document for con-
sistency, clarity, and correctness:

Ms. Dawn Janney Naval Weapons Center, China Lake, CA
Ms. Jo Miiier

Dr. Don Utter Bell Laboratories, Columbus, OH

Mr. Glenn Cooper Vought Corporation, Daitas, TX

Prof. Michael Levy Department of Computer Science

University of Victoria
Victoria, British Columbia

REFERENCES

[Dil Parker, Heninger, Parnas, and Shore, Abstract Interface Specifications for the A-7E Device Interface
Module; NRL Memorandum Report 4385; November 1980,

[EC] Britton, Clements, Parnas, and Weiss; Interface Specifications for the SCR (A-7E) Extended Com-
puter Module; NRL Memorandum Report 4843; May 1982.

(o T VO . [N , I [NPS SN, ; JE. PRI [FYSpE SO B g P ey ho

Software Cost Reduction Project; A Standard Organization for Abstract Interface Specifications; NRL
Memorandum Report in progress. Until publication, readers are referred to the "Standard Organi-
zation," chapter of {DI] instead.

| ¥alaY]
wul s

22

Appendix 1
INTERFACE DESIGN ISSUES

AT.NUM

1.

Although AT and EC designers are critically concerned with which facilities are machine-
dependent and which are not, we felt that users of the resulting modules would not be as con-
cerned. Therefore, we tried to design this module so that users could regard it as an extension to
the Extended Computer; the AT and EC in conjunction provide the basic programming environ-
ment for the rest of the system. We tried to make the design as parallel to EC.DATA as possible,
in order to present in effect a single kind of interface to programmers interested in manipulating
data of any type.

We thought that registers for abstract data types would not be useful. If they turn out to be desir-
able, however, the facility would be a straightforward extension, based on the EC architecture.

Any design issue in EC.DATA concerning facilities or designs copied by this module naturally
also applies to this module.

We could have allowed a sine/cosine pair for an angle literal. However, to keep the interface sim-
ple and consistent, we do not allow literals to be given in this two-part manner.

We used to have an abstract data type called "mach", using it to represent a speed relative to the
speed of sound. But it produced so many hard questions (e.g., When you divide a speed by a
speed, do you get a real or a mach? How can you check at compile-time? If the speed you com-
pare with is the speed of sound at some other altitude/pressure/temperature, is the result a mach
or not?) that we decided it was not really an abstract data type like the others.

AT.STE

1.

Originally, the AT module inciuded only the synchronization operations +SIGNAL+ for signal-
ing the occurrence of events and +AWAIT+ for allowing processes to wait for the occurrence of
events. These operations were chosen because they support thé notion of events in the OFP
specifications.

These operations originally were part of the EC interface. They were moved to the AT module
because (a) they can be constructed by using the +UP+, +DOWN+, and +PASS-+ operations
provided by the EC; (b) the EC synchronization operations would not be made simpler by using
+AWAIT+ and +SIGNAL+; (¢) we could think of useful systems that did not need
+AWAIT+ and +SIGNAL+; and (d} it made the EC interface simpler.

it was noted that, in some cases, processes needed to wait if the system was not in a particuiar
state but did not need to wait if the the system was already in the desired state. (Here and in the
following paragraphs, "state of the system” is used to mean a particular system state or a class of
such states.) Simple event variables could not be used in this case since the event associated with
the system- entering a state would not be signaled until the state had been left and entered again.
To solve this problem, we added an additional event variable to the interface called an "event

23

CLEMENTS, FAULK, AND PARNAS

boolean” and an additional await operator. Processes could wait on the event of a state change in
an event boolean using the +AWAIT+ operator. The new operator, +AWAITC+ ({(await on
condition), caused the process to wait only if the event boolean was not in the specified siate. If
the event boolean was already in the specified state, the calling procese continued without inter-
ruption. This allowed processes to respond to an event that occurred while the process was active.
This facility was later superceded (see 4).

The specifications require that processes be able to wait on the occurrence of compiex events, for
instance, the disjunction of two or more events or the occurrence of an event while the system is
in a particular state {i.e., @ T{event) WHEN {(condition AND condition AND . ..)). Complex
synchronization conditions couid not be impiement directly with even booleans, so we attempted
to provide a syntax for expressing complex events and & syachronization mechanism for interpret-
ing that syntax. Users of the synchronization module would express the complex event for which
they wanted to wait in the syntax provided by this module. The module would interpret the
requests, translate them into more primitive synchronization operators, and signal the appropriate
‘BVENts.

This scheme proved inadequate for several reasons. The synchronization module proved to be
large and compjicated. The interpretation mechanism was complex and difficult to implement.
The proposed mechanism still did not solve aii of the problems associated with waiting for com-
plex events: ’

a. If user processes were awaiting a disjunction of events, they could not distinguish which
event had been signaled. Processes could not perform conditional actions based on the
awakening cvent without checking the values of extra variables. Even with very short
deadlines, these values could change before they were checked.

b. Processes waiting on evenis with WHEN clauses frequently needed to know if the condi-
tions expressed in the WHEN clause still held by the time they began running. These
processes would have to recheck the condition values after they began running.

c. Since the events that processes awaiied did not necessarily reflect the state of the system
by the time they began running, the order in which these events had occurred could not
necessarity be determined. Processes that needed to run in a particular order depending
on the order of events were not able to do so.

By using ‘even variables and eveni booleans, these problems could be solved only by providing
great numbers of smail short-deadline processes that recorded the occurrences of events in local
variables. "

STE variables were proposed as a replacement for event variabies and event booleans. Users can
define event variables with more than two states and can wait on state change events or transitions
between states. This mechanism allows us to solve those problems listed in 3, where the class of
states is small enough to describe by enumeration and the transition time between states is large
enough that the changes can be recorded by the event detection mechanism; for instance:

a. Event booleans are unnecessary since they can be implemented with STEs.

1 LQTRg mrrwids o sinogla ;mrankasliome fae oloamall +
v, MDD PLUVIML d DILEIC THIVUILALITDILL AV Bigliallllg b

discrete states.

24

NRL REPORT 8734

c. A syntax for expressing awaits on complex events i{s unnecessary. A state of an STE vari-
able can be associated with the occurrence of a complex event, and the user process need
only wait on the transition to that state.

d. User processes can wait on a disjunction of events and determine which event caused the
signal by examining the value of an STE variable.

e. STEs can record the "history” of events in their transitions. In those cases where the his-
tory can be represented by an enumerated set of states and transitions, STEs allow the
user processes to respond to events in the order of their occurrence and to events that
have occurred while they were running. Additional processes need not be created to per-
form these tasks.

f. Processes can signal different events to different users by causing a transition in a single
STE variable.

Originally, the STE module provided comparison operators for STE values and set membership
operators and conversion operators. We found that users of the module frequently only needed a
small subset of the operations provided. By allowing the creator of the STE type to define the
operations needed, the required subset of operations can be selected without incurring overhead
for unneeded ones.

Originally the STE module provided for one explicit ordering on a given STE domain. The com-

parison operators provided referred to that ordering. We decided that such an ordering was
unnecessary as it can be implemented as a special case of a relation.

25

Appendix 2
IMPLEMENTATION NOTES

AT.NUM
None.
AT.STE

None.

26

AT.

Appendix 3
BASIC ASSUMPTIONS

NUM

All basic assumptions in EC.DATA.3.1 apply, except those that explicitly mention bitstrings,

registers, or time intervals. Where an EC.DATA assumption mentions the Extended Computer or EC,
readers of this module should substitute "Application Data Types module” or "AT," respectively. In
addition, the following assumptions apply to this module:

1.

For each scalar type class provided, there is a fixed set of units of measurement into which values
of that class may be converted. The units for each type class are listed in Table AT.NUM.a,
Values of wvector type classes may be converted into component scalar values, or a
direction/magnitude equivalent,.

User programs may not make assumptions about the representation of numeric values. Even
though literals are expressed in particular units, there is no implication that the value is stored in
those units.

The only operations needed for calculating new numeric values are: addition, multiplication, divi-
sion, subtraction, absclute value, and complement. In addition, we need to convert scalars

to/ from reais, and vectors to/from component scalars.

We need arrays of numeric data types in which the attributes of an element can change indepen-
dently of the attributes of other elements.

The range and resolution of each numeric variable can be determined at the time the system is
generated.

Arithmetic operations involving operands of different type classes may or may not have a useful

physical meaning. Those that do are: speed = distartce/time, distance = speed*time, time =
distance/speed, angrate = angle/time, angle = angrate*time, time = angle/angrate, accel =
speed/time, speed = accel*time, time = speed/accel, velocity = displ/time, displ =

velocity*time, time = displ/velocity, accel-vec = velocity/time, velocity = accel-vec*time, and
time = velocity/accel-vec.

Further, if a value of any type class is multiplied or divided by a real, the result has the same type
class.

AT CTER
Fo W Y. F @)

L.

2.

State transitions may be considered to be instantaneous.

When processes need to wait for particular states to occur, they do not need to proceed while
waiting. The states for which the process is waiting can be determined before the process begins
to wait.

27

CLEMENTS, FAULK, AND PARNAS

If a process is awaiting a state change, it need not proceed unt! the change occurs. The transi-
tions for which the process is waiting can be determined before the process begins 1o wait,

There is no need for 2 mechanism that aliows a process to be staried before the state or transition
that has been specified in an AWAIT operation has occurred.

28

Appendix 4
UNIMPLEMENTED APPLICATION DATA TYPE FACILITIES

Not all of the capabilities described in this report have been provided in the current version of the
implementation. A few facilities, which are not currently needed by the application program, have not
been implemented. An attempt to use an absent facility will result in an undesired event in the
development version. The unimplemented features are described below.

) o <
FCALUre.

Where Described:
Undesired Event:

Current Use:

e -
LdiUlc,

Where Described:

Undesired Event:
Current Use:

Specific iypes with attribuies that can vary at

run-time

AT.NUM.

%%unimplemented binding%%.

In the + +DCL_TYPE+ + program, users may not declare the
binding of bitstring or timeint specific types to be

VARY. In the ++DCL_ENTITY++ and ++DCL_ARRAY ++
programs, users may not provide an initial attribute.

type, or of a variable or array with varying attributes.
AT .NUM.

%%unimplemented attribute via variables%?%.

To specify an attribute (as defined in AT.NUM.4),
literals or constants must be used.

29

Appendix 5
DATA REPRESENTATION (VERSION) CATALOG

For some numeric data types, the Application Data Types module can provide more than one
kind of representation. The version has no effect on the outcome of an operation, but some versions
allow some operations to be performed more quickly than other versions.

The version catéiog lists the provided version names for each AT data type which has more than
one version. When declaring a specific type, users may request a particular version by using these
names.

Users referred to the version catalog in Appendii 6 of {EC}; Versions of real types named there
are available from this module as well. '

30

