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GENERALIZED LIST DETECTION FOR CODED MFSK/FH SIGNALING ON
FADING AND JAMMING CHANNELS

INTRODUCTION

Modern digital communication systems are frequently required to operate in severe interference
environments. These disturbances include a variety of fading and jamming phenomena arising from
natural and man-made sources. Usually, when the interference type is well understood, adequate per-
formance can be achieved by using the right combination of modulation, error control coding, and
spread spectrum techniques. This was demonstrated in 1975 by Viterbi and Jacobs [11, who showed
that coding can lead to considerable improvement in the performance of multiple frequency shift keying
(MFSK) frequency hopped (FH) systems on Rayleigh fading and worst-case partial band Gaussian
interference channels.

In the presence of intelligent jamming there are special difficulties which must be addressed. Of
particular concern is the fact that pure soft-decision decoding* does not work effectively in an intelli-
gent jamming environment unless the communication receiver has side-information concerning the
state of the jamming signalt [2,31. This is true because a pure soft-decision receiver without side-
information is vulnerable to a jamming strategy where high jamming power can be concentrated on a
single element of a coded transmission sequence and lead to a large number of decoding errors.
Whereas pure soft-decision decoding usually outperforms hard-decision decoding in nonintelligent
interference environments, the opposite is true against intelligent jamming when the receiver does not
possess jamming state information.

One approach to alleviating the problem of soft-decision decoding in the absence of side-
information is to quantize the demodulator outputs with a finite number of threshold levels. The
difficulty with threshold quantization detection is that optimum threshold setting requires perfect
automatic gain control (AGC), which is difficult to maintain in jamming or fading.

An alternative approach called list-metric detection is presented in this report. With this tech-
nique, demodulator outputs are ranked in magnitude from the highest to the lowest, and decoder
metrics are assigned to these outputs according to their position in the ranking rather than their magni-
tude. The process of rank-ordering is equivalent to partitioning the M-dimensional observation space of
the M demodulator outputs into several regions corresponding to the different ordered lists. In this
sense, listing is another form of soft-decision quantization because it creates a discrete memoryless
channel (DMC) with more outputs than inputs as seen by the encoder/decoder. Note that this form of
quantization does not depend upon thresholds which are difficult to maintain during jamming.

Previous work [5-71 has considered list-of-L detection, which is a special case of list-metric detec-
tion. It has been shown [5,61 that list-of-L detection with optimum metrics is inferior to threshold
quantization detection for additive white Gaussian (AWGN) channels. The results of these previous
list-detection studies are generalized in this report by introducing greater flexibility in the choice of
metrics. Also, analysis of the optimum metric results is extended to include fading and jamming chan-
nels.

Manuscript approved March 2, 1983.
*Pure soft-decision decoding refers to the situation where the actual analog demodulator outputs are provided to the decoder.
tThe assumption that the receiver has jamming state side-information is made in [1].
tViterbi [4] has proposed a related approach using a simple-to-implement ratio-threshold technique. This has been shown to be
particularly effective against tone jamming.
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The second section of this report is devoted to a background discussion of the methodology for
evaluation of communication system performance with an arbitrary choice of metrics. A general
expression of the performance figure of merit, the cutoff rate parameter Ro, is derived for list-metric
detection in the third section of this report. In the fourth sectio, the optimal metric choice for list-
metric detection is presented. Performance is evaluated in the fifth and sixth sections of this report for
two severe communication channels, a highly idealized worst-case tone jamming channel and the Ray-
leigh fading channel. Conclusions are drawn and a recommendation is made for future investigation in
the last section.

METHODOLOGY FOR ANALYZING PERFORMANCE
OF CODED COMMUNICATION SYSTEMS

In this section we present a methodology [21 for analyzing a general communication system such
as that shown in Fig. 1. Included in this system are a channel encoder, signal modulator, and frequency
hopper, along with their inverse operations. Also shown is a processor which acts as an interface
between the demodulator and decoder.

CODING CHANNEL

--7-
INFORMATION

BITS

'- -LI

L - - - - - - - - - - - - - - 1

Fig. 1 - A general communication system

The ultimate quantity of interest is the probability of bit error, and to derive a bound on this
quantity, it is useful to decouple the coding aspects of the communication system from the remaining
parts. The coding channel, that is, all but the channel encoder/decoder, can be characterized by the
cutoff rate parameter Ro which represents the practically achievable data rate [8]. For any specific code
and for most modulations of interest, it is possible to bound the decoded bit error probability by a func-
tion purely of Ro; that is,

(1)Pb < B (Ro).
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The cutoff rate parameter Ro depends solely on EC/NO, the ratio of channel bit energy to one-sided
noise power spectral density, that is, we may write

R f | E-J| (2)

Furthermore, we have

E, Eb-=R - (3)
No No'

where Eb is the energy per information bit and R is the code rate (channel bits per information bit).
Thus, from Eqs. (1-3), Pb can be bounded by a function of Eb/No, for the coded system.

Since the function B(RO) is unique for each code, and the parameter Ro is independent of the
code, it is possible to decouple the coder/decoder from the coding channel. Various modulation sys-
tems can be compared by using the cutoff rate parameter Ro and specific codes can be evaluated
separately.

The coding channel is shown in Fig. 2. For convenience it is separated into two parts: a memory-
less* channel which includes all of the modulation/demodulation functions and a processor which pro-
vides metrics to the decoder. For the memoryless channel, a modulator input x is transformed into a
demodulator output y according to a forward conditional probability density function p(ylx). (For
MFSK the output y is actually an M-dimensional vector y whose components are the M matched filter
outputs Yl, Y2, ... , YM. The vector notation is deleted here to avoid confusion with output sequence
vectors.) For each demodulator output y, the processor generates a set of M metrics m (y, x), one for
each of the input hypotheses x. Throughout this report we assume that decisions are made according to
the highest metric.

PROCESSOR:
x MEMORYLESS Y GENERATES m(y, x)

CHANNEL METRICS
p(yIx) m(y, x)

Fig. 2 - Coding channel

Consider two input sequences (vectors) of length N, x and x', and the pairwise error probability
of the receiver choosing x' when x is transmitted assuming that these are the only two possible
transmitted sequences. This probability is denoted by Prfx - x'). Using the Chernoff bound [81 with
free parameter X > 0, we obtain

Pr{x-*x}=Pr{n m(yn, xn) < x
n~~~l ~n-I

=Pr ( m (Ynw Xn') -m (es Xn) I > 01x

N
A.z[m (Y"-Xn)- m (y,,X,)]

< E{e n-I Ix}, (4)

where E is the expectation operator, and the subscript n refers to position in the sequence.

*The memoryless property zar be achieved either by interleaving or by frequency hopping. Successive channel inputs are treated
in a statistically independent manner.

3
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Since the channel is memoryless, we write Eq. (4) as

Pr {x - x'} < [I E~e(m(5)'x") m(Yx xn). lx
n=l

Defining

D(x, x'; A) = E{exlm(YX')-m(Yx)lx}, (6)

we see that Eq. (5) becomes
N

Pr (x - x'} <N [I (x, xn; A)- (7)
n=1

The cutoff parameter RO is defined [9] by

RO= max max RO[p(); X], (8)

where p () is the input probability density function and RO[p (); X] is derived from the relationship

2- RO[p(-);A]= E{D(x, x'; A)}

= X, Sp(x)p(x')D(x, x'; X). (9)
x x

For orthogonal MFSK signaling the coding channel is symmetrical and the maximization over p(-)
occurs with equally likely input signals, i.e., p( ) = 1/M for all M inputs. Furthermore, because of the
symmetry of the orthogonal MFSK signal set, we recognize that

D (x, X'; A) =I IDA X = X;. (10)

With this simplification we may write the right-hand side of Eq. (9) as

I X p (x)p (X') D (X, X'; A) =1 + (M -1) D (X)
x x'

and the cutoff rate parameter becomes

RO = lg 2 M -log 2 [1 + (M - 1)DI, (12)

where

D = min D(A). (13)
X>0

In Eq. (12) we see that for orthogonal signaling there is a simple one-to-one correspondence between D
and RO.

In the next section we shall use these results to evaluate RO for the list-metric coding channel.

LIST-METRIC DETECTION AND ITS Ro EXPRESSION

Consider a coded MFSK/FH receiver as shown in Fig. 3. The demodulator consists of a bank of
M-matched filter-envelope detectors whose outputs are Y1, Y2, YM. These M numbers are
presented to a nonlinear processor which produces a metric vector N = [NI, N2 , ... , NM].

A list metric is obtained by ranking the matched-filter outputs and by giving the Ith largest output
a metric value N1. The list metric can be written as m (y, x) = Nix.

4
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Fig. 3 - General receiver configuration

From Eqs. (6) and (10) we may write

D(X = Eje'x'',.,,Nx Ix}
M ?JN, -N 1 1

= Ete x xIx I= k)Prlx= k x)
k=l

M I M X[N -N]

M I eijk Prtlx = klx). (14)

It follows that

1 M fM 1[i-k
D = min__ I - 11 qk, (15)

where qk = Pr{1x= klxl is the probability that the sent signal appears in kth position on the ordered
list.

The channel is usually characterized by the forward conditional probability density functions po(a)
and pl(a) for each matched-filter output a, where pl(a) is the output density when the input is signal
plus noise, and po(a) is the output density when the input is noise only. Then, for M-ary orthogonal
signaling the position probabilities qk are given by

qk = (M - J|0 [ J0 Po(a)da [1 - J0 po(a)daJ plQ3)d/3, (16)

which satisfy the conditions

qk > 0 , k= 1, 2, M

and
M

q = 1.
k-_1

Thus the vector q = [ql, q2 , qm] is an equivalent characterization of the channel.

In Eq. (15), we may define the array sum S(X, N) by

S(x, N)) = I I qke(Ni N) (17)
k-I i-l

The minimum of this expression with respect to X > 0 we designate by S, that is,

S = min S(X, N). (18)
X >O

5
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From this it follows that

D= [-1+ S. (19)

Then from Eq. (12) we see that

Ro= log2 M - log2 S

= 1092 M - M092 min M qke (Ni-N) (20)
XOk-i i-I

This is the general expression for R0 for list-metric detection, and it is applicable for any choice of list-
metric vector N. In the next section we derive an expression for the particular vector N which maxim-
izes Ro for list-metric detection.

OPTIMAL CHOICE OF N FOR LIST METRIC DETECTION

The choice of metric vector N which maximizes Ro in Eq. (20) can be found by minimizing the
right hand side of Eq. (17) with respect to X and N [10]. That is, we determine the quantity

= min min S (X, N). (21)
XA0 N

To perform this minimization we first differentiate S(X, N) with respect to X and equate to zero,

OS (X, N) mm NNk=
aA = £ S qk(Ni - Nk)e(i k =0. (22)k-I i-I

This double summation has all zeros on the diagonal and the remaining portion can be written in two
parts, one for each side of the diagonal.

aS(k, N) M k-i ( )
E qk(N - Nk)eX( Nk)=

k-2 /-I + Y, Y, qk (Ni -Nk) e I k 0. ~(23)
E-2 k-i

From the symmetry of the terms in Eq. (23), we may write

X , N) M-(N- Nk) [qke qje ] = 0. (24)
k-2 1-1

Next, we minimize S(X, N) with respect to N. This is accomplished by differentiating with respect to
Nj for j = 1, 2, ... , Mand equating all derivatives to zero.

8S(k, N) _a [I NS N k-Nk a | M AxNl M AN (25)
aN) ~ ~ 'lk~ kJ~I k01 (25)

or

as(X, N) Mk qei(NjNk) qj Nj= 0, j=1, 2, .M. (26)

J k-1 i-i
In Eq. (26) the summations are carried out independently so we may arbitrarily replace the index i by k
in the second sum.

Wk N) AM qEke jNk)-A qj e-x(Nk-,Nj) = =1, 2,. M (27)
I k-i k-i

6
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Also, in Eq. (27), we may use the subscript i in place of j.

as(X, N) = M [qke (Ni-k) - qjeX(NjiNk) ]=O i= 1, 2, (28)

In Eqs. (24) and (28), we have the identical expression in brackets. Thus for X and N to maxim-
ize R 0, it is sufficient that

X(N - Nk) = In \/ifor all pairs 1 < i, k, SM. (29)

A particular solution of Eq. (29) gives the optimal choice

A 2' (30)

and

Ni = In q1i* (31)

The results of Eq. (29) may be used in the optimal Ro expression

Ro = lg 2 M - lg 2 [min min M M xke (N, k (32)
k-l i-1 

to yield

Ro = log2 M -log 2 -qk - - /J

= log2 M - 10g2 | j i
k=l i=l ki

M
= 10g2 M -2 log2 A A (33)

j= I

In some circumstances it is desirable to use a list of demodulator outputs which has been shor-
tened to a length L (for L < M). In doing so, the lowest M-L outputs are treated indistinguishably as
a single off-list group. This can be accounted for by using a position probability vector

q = [q, 2, **, qL, q0, q0, . q0] (34)

where
M

ql

q0 M-L

It follows from Eq. (31) that the list-metric vector becomes

N= [lnq 1, inq 2 . lnqL, lnq 0 l, Inq 0]. (35)

*The logarithms used in this metric may be taken to any base and have an arbitrary common bias as in the case of the Fano

metric used in sequential decoding [9].

7
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The optimal Ro corresponding to Eq. (33) for the shortened list-of-L is seen to be

L M

R0 =o =g 2 M-2 1og2 z4+Sq

= 10g2 M - 2 10g2 M- La + ; Sj (36)

This result is the same as that for list-of-L detection as presented in [5-7].

To obtain the optimal Ro of Eq. (36) for list-of-L detection, the list-metric vector N given by Eq.
(35) must be provided to the decoder. This metric information is based upon perfect knowledge of the
channel statistics (that is, perfect knowledge of the first L components of q). Consequently, the degree
to which the optimal list-metric detection performance can be realized depends upon how well these
channel parameters can be measured or estimated by the receiver. In the next two sections of this
report, we assume that this perfect channel knowledge is available in determining the optimal Ro for
both tone jamming and Rayleigh fading channels.

PARTIAL BAND TONE-JAMMING CHANNELS

The performance of uncoded orthogonal MFSK/FH signaling against worst-case partial band tone
jamming was found by Houston [11]. In this section we consider the performance of list-metric detec-
tion on this tone-jamming channel.

The MFSK/FH signaling format is shown in Fig. 4. A total hopping bandwidth W is divided into
b subbands with each tone symbol being transmitted on a different frequency hop. Within a hopping
subband, one of M tones carrying k = log2 M bits is sent with signal power S. Candidate tones are

orthogonally spaced with a frequency spacing A = = R. where T, is the symbol duration and R, is
TS

the symbol rate.

HOPPING SUBBAND
WITH M CANDIDATE TONES

MRS !

W = bMRS up

Fig. 4 - MFSK/FH signaling format

In the worst-case jamming strategy, the jammer places tones in as many hopping subbands as pos-
sible, with a maximum of one tone per subband. The jamming tone power is taken to slightly exceed
the signal power, but for purposes of analytical convenience they are taken to be equal. In this tone
jamming strategy, it is assumed (perhaps unrealistically) that the jammer has perfect knowledge of the
communicator's signal power level and frequency slots.

8
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For a total jamming power J, the jammer will attempt to force incorrect symbol decisions in n sub-
bands by placing in them tones with power Jin = S. A jamming tone will successfully cause a symbol
error if it hits one of the M - 1 nontransmitted tone slots in the transmission subband. Thus, the pro-
bability of symbol error is

pS n M-1 (37)
"S b M'

where n/b < 1 is the fraction of the subbands which are jammed. For orthogonal signals, it follows
that the probability of bit error is

M/2 I1n n
Pb= M- P,= 2(1. (38)

Since the number of the subbands jammed is
J
SJ n 7 b, (39)

and the total number of subbands is

b = (40)
MR S

where MR, is the bandwidth of one subband, it follows that Eq. (38) may be written as

1 J MRs SW
2 S W JR, M

Pb=1 SW < (41)
2 JR, M

However, since SIR, is the symbol energy and J1 W is the equivalent noise power spectral density No,
(W/Hz) we may write

1E M
2 Es/N 0 No

Pb = 1 2 ' N ME (42)

2 No

or

1M 1 Eb M
2 k Eb/NO No k

Pb =1 Eb M

2 No k

Furthermore, the optimal jamming fraction may be determined as

M 1 Eb > M
k Eb/No No k

- = 2 Pb =(44)
b 1Eb KM

No k

Over the usual range of interest (Eb/NO > Mik), the dependence of Pb on Eb/NO is inverse linear,
with the probability of bit error increasing by a factor M/log2 M as M increases.

9
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With this background, we now consider the performance of a coded MFSK/FH system with list-
metric detection. For the worst-case tone-jamming channel with a maximum of one jamming tone per
subband, the position probability vector q may be written as

q= [ql, q2, 0, * , 0] (45)
where q2 is the probability of symbol error, given by

E 1
I E1N° NO M

q2 = M-1 E5 (46)
M s N < MlM No

and q1 is the probability of correct symbol decision (1 - q 2 ) given by

I, E5 /NO NO

q1 | 1 EN > M.

The optimal list-metric for this channel is N = In q.

From Eq. (36), the cutoff rate parameter for list-of-2 detection on a worst-case tone-jamming
channel is

RO = 10g2 M- 2 log2 [If/ + L2]. (48)
The list-of-2 curves for Ro vs Es/NO are plotted in Fig. 5. These curves exhibit an unusual behavior.
For large Es/NO, Ro approaches log2 M As Es/No decreases, Ro decreases to a minimum value of
10g2 M - 1 when ql = q2 = 1/2. (In a sense, the missing bit per channel use corresponds to the total
uncertainty which exists as to whether the sent signal appears first or second in the ranking.) The con-

dition q1 = q2 = 1/2 occurs when M-2 of the subbands contain a jamming tone. In each subbandM-1I
which has a jamming tone, there is probability (M-1)/M that the jamming tone will hit a slot other than
that occupied by the sent signal, thereby causing a symbol error.

As Es/No further decreases, Ro increases because q2 > qi and the metrics In qi and In q2 become
reverse weighted. That is, the second ranked output will receive a higher metric than the first if there
is a higher probability that the sent signal will appear second on the list. The improvement in Ro con-
tinues as qJql increases until the full band is jammed with one tone per subband. When this occurs
the ranking probabilities are

- (49)

and M 1

'12 M (50)
The limiting cutoff rate parameter becomes

12R M (51)

for all values of Es/No ( M. Here, the jamming cannot be made more effective (as long as there is
only one jamming tone per subband) because there is always a probability 1/M that the jamming tone
will coincide with the sent signal.

10
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4.0

3.0

M =2.L =2 ~
- M = 4.L = 2

C X M - 16-L 2 

2.0

1.0

I 0

0 .0 . . . . . . . . . . . ..I.
O 1 0 20 ;0

Es/No (dB)

Fig. 5 -Ro vs Es/No for optimal tone-jamming channel

Figure 6 shows the list-of-I (hard-decision) results for M = 2, 4, ... , 32. These were deter-
mined from the Ro expression of Eq. (46) with L = 1,

R0 = log2 M-2 1og2 [L/EI + V(M -- q2] (52)

For comparison, the list-of-I and the list-of-2 results are plotted together for M = 2, 4 .. , 32
in Figs. 7 through 11. These show the improvement of list-of-2 detection over hard-decision detection.
The poor performance of hard-decision detection at low signal-to-noise ratios is due to the fact that the
hard-decision metric vector

Mq12 M-2 q2 1
N =fln q, In M 2 I, In M 2 I In M - 1 (53)

does not contain information that the sent signal has high probability of appearing second on the list of
demodulator outputs.

In a companion set of curves Eb/NO vs code rate R is plotted in Figs. 12 through 18. Here the
code rate is taken to be equal to the cutoff rate parameter (normalized to channel bits instead of chan-
nel symbols). Since there are 10g2 M channel bits-per-channel symbol, the code rate at cutoff is defined
as

R= - RoM (54)
log2 M'

and it follows that 4 1 1F

No R log 2 M No Ro No'

11
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Fig. 10 - vs Es/No for optimal
tone-jamming channel
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Fig. 14 - Eb/NO vs code rate at R = R0log 2 M
for optimal tone-jamming channel
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Fig. 16 - Eb/NO vs code rate at R = R0 /log2 M
for optimal tone-jamming channel
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20

LUJ

C t1 32. L= 1
1 M 32. L 2

10

.* I . I 
0.0 0.2 . 4 0.6 0.6 1.0

Code Rate

Fig. 18 - Eb/No vs code rate at R - R01og 2 M
for optimal tone-jamming channel

The L = 1 (hard decision) curves in Fig. 13 exhibit the usual concave characteristic for non-
coherent systems, with the minimum Eb/No occurring at low code rates. At very low code rates, Eb/No
increases due to combining losses which occur in coded noncoherent systems. In Figs. 14 through 18,
we again see the improvement of list-of-2 detection over hard decision detection.

Note that the channel model assumed here is idealized and somewhat unrealistic because the jam-
mer is constrained to a maximum of one jamming tone per subband. Clearly, if more jamming tones
are used, the performance of list-of-2 detection would deteriorate and a higher list-of-L detection
scheme would be required. The purpose of the present study is merely to show the potential improve-
ment available from using list-metric detection in a jamming environment. More complicated jamming
models and larger list sizes are considered in a separate study on list metric detection [10].

RAYLEIGH FADING CHANNELS

In this section we consider the performance of coded MFSK signaling with list metric detection on
a Rayleigh fading channel. For this channel the received signal is

r(t) = ro/J's cos (27rfit + 0) + n(t), 0 6 t < Ts (56)

where n (t) is an AWGN process with two-sided power spectral density No/2, 0 is a uniformly distri-
buted random phase variable, and r is a Rayleigh amplitude random variable with normalized probabil-
ity density function

18
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p(r) = 2re- r, r > 0. (57)

With this normalization, r2 E, is the received energy random variable with average value Es = Es The
amplitude and phase random variables are assumed to be constant over the duration of the symbol, but
independent from one symbol to the next because of the memoryless property of the channel.

The optimal (maximum likelihood) receiver for M ary orthogonal signals on a noncoherent Ray-
leigh fading channel consists of a bank of M envelope detectors, one matched to each possible signal.
The outputs of these envelope detectors are M independent Rayleigh random variables [91. For the
M - 1 envelope detectors with no signal present (noise only) the output density is

652

PN(a)= - e °, a > 0, (58)
No

and for the envelope detector with signal plus noise present the output density is

2 ~~ a2

A+N~Na +E5=e a > 0. (59)

The probability that the sent signal appears th on the ordered list of demodulator outputs is given by
this expression comes about because the cumulative probability distribution of

AM- 11 IX 11 ~~No| No

= (M~~1j j C( d

2a -+ e No+Es da, I = 1, 2, .. , M. (60)

This is the probability that a Rayleigh random variable with variance parameter (No + EN)/2 will be less
than I - 1 Rayleigh random variables with variance parameter No/2 but greater than M - I others.
The simplicity of this expression comes about because the cumulative probability distribution of a Ray-
leigh random variable is given by

___ a
2

J 0o r2 e 2d 2ar (61)

To evaluate q, in Eq. (60), we make the substitutions

2 =a 2

and N0 '

Es 

No b

It follows that

q- 2 b(2 -_b f ) u [1 - eU2]M11[eu2]1le- e2du, 1 1, 2, M. (62)

Using the binomial expansion we have

[1 - e 2]Ml I: (M 1 (1)nenU, (63)

and Eq. (62) becomes

q, 2b [M( -I1 f ' ue-(l-1)U2 e-bu2 M (M- (-1)ne`u 2du
n(0

-2b (M -I') M- ( (-1)nf ue-(b+n+1-1)u2du, I - 1, 2,..M. (64)
n-0
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Since

X ue- (n+l+b-l)u2 du = 1f en+ob)udu 2(n + I + b - 1)
we may simplify Eq. (64) to become

q1= b (I -1 1 z ( - I (-1)" +I +b-1 I= 1, 2, ..., M

where

b = 1
1 + EN

No

(65)

(66)

From Eq. (66) we are able to express the ranking probability vector q as a function of Es/No.
With this it is possible to determine the cutoff rate parameter Ro as a function of Es/No. This can be
done for list-of-L detection using the expression

Ro = 10g2 M -210g2 | r-/ + M-L q, 4 (67)

The plots of Ro vs Es/No are given in Figs. 19 through 23. For convenience all of the L = 1 (hard
decision) curves are collected in Fig. 24.

I .00

I O' so

Es/No (dB)

Fig. 19 - vs Es/No for Rayleigh
fading channels
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Fig. 20 - Ro vs Es/No for Rayleigh
fading channels
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Fig. 21 -Ro vs Es/No for Rayleigh
fading channels
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Fig. 23 - vs Es/No for Rayleigh
fading channels

Fig. 22 - vs Es/No for Rayleigh
fading channels
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0 0 10 20 30

Es/No (dB)

Fig. 24 - Ro vs Es/N 0 for Rayleigh
fading channels

In Figs. 25 through 29 are plotted the minimum required Eb/No vs code rate R (information bits
per channel bit), assuming that the encoder is operating at the cutoff rate. For this condition the code
rate and Eb/No are given respectively by Eqs. (54) and (55). Again, the L = 1 curves are gathered in
Fig. 30. In Figs. 25 through 29 we see that it is possible to operate in the vicinity of Eb/NO = 10 dB
provided that the code rate is kept in the low-rate range, that is, approximately R = 1/4 or less. From
hard-decision detection to larger list sizes, there is a modest improvement (approximately 1 dB). This
improvement mainly exists for small list sizes (L = 2 and 4), and further improvement is negligible for
L > 4. Thus, for Rayleigh fading channels, there is some improvement in using list-of-L detection
over hard-decision detection, but large list sizes offer little advantage.

CONCLUSIONS AND RECOMMENDATIONS

This report contains the results of an introductory study on list-metric detection. This investiga-
tion was motiviated by the need for more effective detection schemes to operate in fading and jamming
environments. With list-metric detection, it is possible to achieve a performance improvement over
hard-decision detection while avoiding the difficulties of pure soft-decision detection (without jammer
state information) on intelligent interference channels.

List-metric detection is a general technique and includes list-of-L detection as a special case. In
this report, list-of-L detection results are derived for MFSK/FH signaling on a Rayleigh fading channel
and on an idealized worst-case partial band tone-jamming channel. Results show that the improvement
(over hard-decision detection) for Rayleigh fading is modest but for the tone-jamming channel the
advantage is considerable.
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Fig. 25 - Eb/No vs code rate at R = R0log 2M
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Fig. 26 - Eb/NO vs code rate at R = RO/log2 M

for Rayleigh fading channels
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Fig. 27 -Eb/NO vs code rate at R = R0log 2 M
for Rayleigh fading channels
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Fig. 28 - Eb/NO vs code rate at R = R0log 2 M
for Rayleigh fading channels
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Fig. 29 - Eb/NO vs code rate at R = R0log 2 M
for Rayleigh fading channels
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In a companion study on list-metric detection [10], several aspects of the present investigation are
extended and amplified. These extensions include:

* Analysis of list-metric detection on partial band Gaussian noise channels and partial band
tone jamming channels with multiple tones per subband.

* Comparison of list-metric detection with and without jammer state information.

* Consideration of performance for suboptimal fixed assignment list metrics.

Refer to Ref. 10 for a detailed analysis of these issues. In general, their conclusions are that list-metric
detection is effective (compared to soft-decision energy-metric detection) when no jammer state infor-
mation is available and performs within 2 dB of soft-decision energy-metric detection when jammer
state information is available. Furthermore, fixed metrics can be effective only over limited ranges of
signal-to-noise ratio.

A key issue concerning the use of list-metric detection is the ability of the receiver to generate
optimum (log-likelihood) list metrics. To do this, the receiver must estimate (at least imperfectly) the
probability of the sent signal appearing at each position on the ordered list of outputs. In general, this
can be a formidable problem for fading or jamming channels but, if accomplished, it can lead to an
appreciable performance improvement r fixed assignment metrics.

Future studies in this research area should be concentrated on the problem of channel estimation
for the purpose of adaptively generating optimal-list metrics.
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