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ON A RELATION BETWEEN MAXIMUM-LIKELIHOOD CLASSIFICATION
AND MINIMUM-CROSS-ENTROPY CLASSIFICATION

INTRODUCTION

Maximum likelihood (ML) and related classification methods are often used to choose from a set
of hypotheses based on known data. The theoretical justification for these methods depends on the
assumption that one of the hypotheses is true, but they are used even when it is known that this
assumption is false. This practice can be justified on the practical grounds that it works, but there is no
compelling theoretical justification. In minimum-cross-entropy (MCE) classification, one classifies data
in terms of estimated underlying probability densities using a nearest-neighbor rule and an
information-theoretic distortion measure [1]. Speech coding by vector quantization [2,3] can be
derived as a special case of MCE classification [1].

In this report I consider the relation between ML classification and MCE classification of samples
from an unknown probability density when the hypotheses comprise an exponential family. I show that
ML and MCE lead to the same classification rule, but that MCE applies in the general case when one
cannot assume that one of the hypotheses is true and thereby provides a theoretical foundation for the
technically incorrect use of ML. I illustrate the results in terms of a recently developed method of
estimating covariance matrices [4].

STATEMENT OF THE CLASSIFICATION PROBLEM

Let {as(x) :sEA be a finite or infinite set of probability densities on some vector space. Let qt(x)
be the probability density for vector-valued samples from some unknown process, and let
X = X1, X2, ... , XM be a sequence of Mvector-valued samples from qt. Let {Hs:sEA} be the set of
mutually exclusive hypotheses

HsI=_X is a sequence of independent samples from , (1)

The problem is to classify X by choosing one of the densities as. There are really two problems here,
depending on whether or not one can assume a priori that one of the Hs is true. If so, then our prob-
lem is to find t such that qt (x ) = t, (x ). If not, then the problem is to find t such that q (x ) is "closest
to" qt(x) in some well-defined, acceptable sense. Most of the time, the latter case applies-one cannot
assume that qt = at for any t. Speech-processing applications are good examples-speech is dealt with
in terms of Gaussian models even though it is well known that speech is not Gaussian. We restrict con-
sideration to classification densities as that comprise an exponential family,

M(x) = P(x)exp[(S) - A S, P)f (2)

where p (x) and fk(x) are fixed functions and A(s) and h(s) are constants. A set of Gaussian densities
is one example of such an exponential family. We place no restrictions on the unknown process qt.

Exponential families can always be expressed as the result of a minimum cross-entropy problem
[5-71. In particular, the as satisfy

HG%5,p) = minnH(q',p), (3)
qM
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where H is the cross-entropy (discrimination information, directed divergence, I-divergence, Kullback-
Liebler number, etc.),

H(q,p) = Y q(x)log| q(x) |dx, (4)

and where q' varies over the set of densities that satisfy the constraints

f 4S(x)fk(x)dx = NS) (5)

for known numbers ks). In the solution (2) the constants N3s) and A(s) are Lagrangian multipliers
chosen to satisfy the constraints (5) and

f aS(x) dx = 1
In the notation of Refs. 7 and 8, one can express (3) as aS = p o is, where is represents the informa-
tion given by the constraints (5). The density p is called the prior, and the densities Q, are called poste-
riors.

REVIEW OF THE TWO CLASSIFICATION METHODS

Maximum-Likelihood Classification

In the maximum-likelihood (ML) approach one classifies X by

max p(X I Hs), (6)
S

where p(X 1H1) is the probability that X is the result of n independent samples from 4W(x). Bayes's
law yields

p(H1IX) = p(X IH) p(X)

so that ML classification is equivalent to maximum-a-posteriori (MAP) classification,

max p(Hs IX),
S

when the hypotheses Hs have equal prior probabilities. ML classification is used in a variety of applica-
tions, even when clearly one cannot assume a priori that one of the hypotheses is true. This practice
can be justified on practical grounds-it works-but it has not been justified on compelling theoretical
grounds.

Minimum-Cross-Entropy Classification

Minimum-cross-entropy (MCE) classification of information from the unknown process qt
proceeds from knowledge of the expectations

f qt(X)fk(x) dx = Fk, (7)

that is, expectations of the same constraint functions fk(x) as in (2). The quantity F _F 1, * F,* is
called a feature vector-its elements are the data to be classified. Let I represent the constraints (7), and
let the density p in (2) be considered as a prior estimate of qt* Then a method of classifying F using
MCE consists of the following two-step procedure [1]:

1. Compute q = p o I, the minimum-cross-entropy estimate of qt based on the information
(7).
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2. Choose one of the classification densities by the MCE rule

min H(q,4 5 ). (8)
sEA

In Ref. 1 it is shown that

HWqt,,) = H(qt,q) + H(q,45) (9)

holds. Now, the MCE estimate q = p ° I minimizes the term H(qt,q) in the following sense: Of all
densities having the general form (2), q is the closest possible density to qt. (This property is known
as expectation-value matching [71.) Since the second term on the right-hand side of (9) is minimized
by (8), it follows that MCE classification is optimal in the sense of minimizing the total distortion
H(qt,4 5 ). An alternative MCE method of classifying F is to use the rule

min HQ, ° 14). (10)
sEA

In words, each of the classification densities as is in turn considered as a prior estimate of qt; when the
information F is taken into account, the resulting posterior estimate of qt is aS ° L The rule (10)
chooses the classification density as that, when considered as a prior estimate of qt, is changed the least
by taking F into account.

Both of the MCE rules (8) and (10) have compelling intuitive and information-theoretic
justifications. Fortunately one does not have to choose between them. Because the constraints (5) and
(7) involve the same constraint functions fk(x), it follows [7, Property 141 that

q oI= (p oi ) oI=p o= q (11)
holds, which in turn means that (8) and (10) are equivalent.

Computationally, it turns out that one need not compute q = p ° l = I I, as the rules (8) and
(10) are equivalent to

min i(s) + k f'Fk (12)
sEA I k= I (12

where the A(s) and p s) are the Lagrangian multipliers from the classification densities (2) [1].

For the application being considered here, the expectations Fk are estimated from X by
I M

Fk A M£k(Xi~ (13)

COMPARISON OF THE CLASSIFICATION METHODS

I begin the comparison by computing the consequences of the ML rule (6) given the form (2) for
the classification densities. One has

M
p(X IHs) @(xi)

1=1

= exp[-MX(s) - I=1 fk(xi)J [p(xi), (14)

bearing in mind that this is valid only if one knows that X came from one of the 4 (x).

The ML rule (6) is equivalent to the rule

min {-log p(X IHs)1.
S
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Substitution of (14) yields

min {MX(S) + M fSfk(xS ) - log p(x i. (15)
s I iI k-1 -

The last sum in (15) involves terms independent of s and can therefore be dropped. Also, dividing by
the constant Mhas no effect. Hence (15) is equivalent to

min 1A) + (S) Ik- zS i)l

Substitution of (13) yields

min |(s) + 
S k-I

which is the same as the MCE rule (12).

I have just shown that ML classification is equivalent to MCE classification when one can assume
that X comes from one of the classification densities 4S. This fact was shown previously by Kupperman
[9] and Kullback [5], although the derivation here is carried out more directly and in terms of the com-
putational MCE classification rule (12) that was derived in Ref. 1. Recently, Csiszdr and Tusnddy have
considered the connection between ML and MCE when X results from a mapping of samples from one
of the a, [10].

What about the case when one cannot assume that X comes from one of the classification densi-
ties as? In this case it is common to use the ML rule (6) anyway, without good theoretical justification.
But the case is covered by MCE classification, because rule (12) was derived out in Ref. 1 without
assuming that the feature vector F is the same as any of the F (s) that determine the classification den-
sities by (3), (4), and (5) or that estimates of F are obtained by sampling one of the 4,. It was
assumed only that the goal is to find the F (5) that "best resembles" F and that the MCE criterion (8) is
reasonable. When X cannot be assumed to come from one of the 4s, it turns out that those who apply
ML anyway are doing MCE classification.

DISCUSSION

MCE classification provides a general method for taking a sequence of independent vector-valued
samples x i from an unknown process qt and classifying that sequence by identifying a member of a set
of exponential-class densities ({,(x):sEA). The classification rule (12) combines the results of a two-
step procedure: The first step obtains from X a minimum-cross-entropy estimate q of qt. The second
step identifies the density 4a that is closest to q in the cross-entropy sense. With the assumption that
the x i come from one of the 42, MCE classification reduces to ML classification. Without this assump-
tion MCE classification applies anyway and thereby provides a theoretical justification for the technically
incorrect use of ML.

Furthermore, the a, may themselves be approximations if the constraints F (s) in (5) are approxi-
mations based on training data in the same sense as (13). That is, the a, may be approximations based
on samples from "true densities" ast. Then, even if one can assume that the classification-data vector X
comes from one of the 4.t, one cannot assume that X comes from one of the classification densities as;
again, ML cannot be applied in principle.

AN EXAMPLE-ESTIMATION OF STRUCTURED COVARIANCE MATRICES

Recently, Burg, Luenberger, and Wenger [4] have generalized the popular Burg technique [111 for
estimating the autocorrelation function of a random process from time-domain samples. The new
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method estimates covariance matrix of specified structure from vector-valued samples of a random pro-
cess. Written in terms of the notation here, Burg et al. consider the set of classification densities

45(x) = (27r)-'NJR, -/" exp(-½/2 xt.Rlx). (16)

This is Eq. (1) in Ref. 4. The superscript t indicates a transpose, the raised dot (l) indicates a vector or
matrix product, and tRS:sEA} is a finite or infinite set of feasible covariance matrices. Given a data
vector X consisting of Mvector-valued samples from an unknown density qf(x), the sample covari-
ance matrix R is defined as

R = M AXx (17)

Burg et al. assume that X came from one of the a, (that is, qf = as holds for some s), and they classify
X by the ML rule (6). The result is the classification rule

max{-log RsI - Tr (R -'R)1, (18)

where Tr indicates a trace operation. This is Eq. (4) in Ref. 4, except that R and S are replaced
respectively by R S and R.

Since (16) belongs to the class of generalized exponentials, the results of the section beginning on
page 2 apply-(18) must be equivalent to MCE classification, and (18) must also apply in the more
realistic case where one cannot assume that X comes from one of the as. For completeness, one can
demonstrate the connection explicitely by showing that (18) is a special case of the MCE rule (12).

One needs to express (16) as minimum-cross-entropy posteriors as = ° Ip . That is, one needs
to express (16) in the form (2). As a prior, one can use

p(x) = (2 7r)-½ Nexp(-'/2 xt.I x), (19)

where I is the identity matrix. Using (19), one rewrites (16) as

4s(x) = p(x) IRSI-'h exp(-1/2 xt-(R l - I).x). (20)

Defining

A(s) =-log IR ls h (21)

and

~ls,,) =1/2 (R 5- - I } jj (22)

permits one to rewrite (20) as

4S(x) = p(x)expi-(s) - JS) XXi (23)

which is just the desired form (2). The constraint functions in this case are f4(x) = xixj. The expec-
tations (5) are just the covariances

I 4s(x)xjxjdx = (RS}ij.

Given the data vector X, elements {R }, of the sample covariance matrix (17) are just estimates
of the expectations fdxqf(x)xix 1 . Hence, using (17), (21), and (22), one can write the MCE
classification rule (12) as
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min| l/2 log I RI + %/ J R 5-l- I) i R I ij. (24)

The term involving the identity matrix I does not depend on s. It follows that (24) is equivalent to

min. log JRI + R {R71},{R},j (25)
S I Ii I

where the factor 1/2 has also been dropped. Since R is symmetric, as can be seen from (17), then

J{RS'},V{R}j = Tr(R -1 R).

Eq. (25) then becomes

min logIRSI + Tr (R 4.R)J

which is equivalent to (16).
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