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ALGORITHMS FOR SINGLE-SIGNAL AND MULTISIGNAL
MINIMUM-CROSS-ENTROPY SPECTRUM ANALYSIS

INTRODUCTION

Multisignal minimum-cross-entropy spectral analysis (multisignal MCESA) is a method for
estimating the power spectrum of one or more independent signals when a prior estimate for each is
available and new information is obtained in the form of values of the autocorrelation function of their
sum [1]. This method is a generalization of MCESA [2] and reduces to it when there is only one sig-
nal. One application of multisignal MCESA is to noise reduction [3]. If one obtains autocorrelation
measurements for a signal with independent additive interference, and if one has some prior
knowledge, expressible as spectral estimates, concerning the signal and the noise, the method yields
new signal- and noise-spectrum estimates that take both the prior estimates and the autocorrelation
information into account.

We here present two algorithms that implement multisignal MCESA. One is slow, but general;
the other is considerably faster and applies to an important special case.

The first algorithm accepts as inputs prior estimates of the power spectra of one or several
independent signals and measured autocorrelation values for the sum of the signals, and it produces as
outputs posterior spectrum estimates that are consistent with the autocorrelation estimates. The spectra
are represented by discrete-frequency approximations-lists of spectral powers at specified frequencies.
The algorithm implements the methods of Refs. 1 and 2 in full generality: the discrete frequencies may
be arbitrarily spaced, and the autocorrelations may be given at arbitrarily spaced lags. The algorithm is
iterative; at each iteration, it computes frequency-domain quantities (spectra) and time-domain quanti-
ties (autocorrelations and Lagrange multipliers) that are related to each other by procedures equivalent
in complexity to the naive (slow) algorithm for the discrete Fourier transform.

The second algorithm applies to the special case in which the prior spectral estimates are of the
all-pole form that results from maximum-entropy spectral analysis (MESA) [4,5] or linear-predictive
coding (LPC) [6]. Such spectra may be represented in various ways by finite families of parameters
that determine them uniquely-for example by a gain and inverse filter coefficients or by a gain and
reflection coefficients. In particular, the spectra may be represented by a finite number of autocorrela-
tion values. This algorithm accepts prior autocorrelation estimates for the individual signals in place of
prior spectral estimates. The prior autocorrelation estimates for the individual signals and the measured
autocorrelations of the sum of the signals are given at equispaced lags beginning at zero. The posterior
spectral estimates that result from data of this form are all-pole spectra like the prior estimates, though
not necessarily of the same order. The outputs from the algorithm may be posterior autocorrelation
estimates or, alternatively, any of various equivalent families of LPC parameters.

The next section gives enough background for a statement of the problem to be solved; for a
fuller discussion, see Refs. 1 and 2. The third section presents the first algorithm; the fourth section
presents the second algorithm. The fifth section contains a general discussion.

Manuscript approved November 2, 1982.
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RODNEY W. JOHNSON

THE PROBLEM

Consider a number p of unknown real, independent, band-limited, discrete-spectrum signals with
no dc component; let their spectra be Sh, h = 1, . . . ,p, with spectral powers Shk at frequencies ±fk,
where fk > 0 for k = 1, .. . , n. Let Phk be a prior estimate for Shk. Now suppose we are given values
R'tOI of the autocorrelation function of the sum of the signals for lags tr, r = 0. . . , m. Under the
assumption that the processes are independent, we write Rrtot as a sum of individual autocorrelations,

p
Rrtot= F Rhr,

h=1

where

n
Rhr = £2 Shk cos 2 7rfktr.

k=1

We wish to use the autocorrelation information to obtain improved, posterior estimates Qh of the Sh.
The multisignal minimum-cross-entropy estimate, given by Eq. (18) of Ref. 1, is

Qhk = Qhk(P) = Qhk(P, I...... Pm) (1)
1

1 m 
+ PrCrk

Phk r=O

where

Crk = 2 cos 2 7rfktr. (2)

The parameters Pr, r = 1. m, are Lagrange multipliers associated with a constrained minimization
problem: the cross entropy of a pair of probability distributions related to the Ph and the Qh is minim-
ized subject to constraints

p n
Rrt0' = I: Qhk(P)Crk (3)

h=1 k=1

[cf Ref. 1, Eq. (21)] that require the posterior estimates Qh to be consistent with the given values of
the summed autocorrelations. The Pr are to be chosen so that Eq. (3) is satisfied. The first algorithm
applies in this case, accepting the quantities tr, Rr,~t, Jr, and Phk as inputs and computing the Qhk as
outputs.

In the case to which the second algorithm applies, we take the spacing between autocorrelation
lags as a unit of time and its reciprocal as a unit of frequency. We thus write tr = r, r = 0, . . ., m. In
place of a discrete-frequency approximation, we write spectra as functions of a continuous variable fin
the interval -1/2 K f < 1/2. Thus we have prior estimates Ph (f) of the spectral power densities Sh).
Corresponding to Eq. (1) we have

Qh(f) = 1 (4)
Ph (f ) + 2 IPr cos 2iTfr

and the constraints to be satisfied are

Rrtot = 2 1 Qh (f) cos 2ir fr df.
h=1

The second algorithm avoids direct computation with spectra Ph and Qh- that is, it avoids the
use of discrete-frequency approximations to Ph and Qh and numerical integration over frequency. This
is possible since, as we will see, all the spectra that occur are of the all-pole (MESA or LPC) form [5,6]
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Qh () = Eh (5)

Za,ef

where the ah, are inverse filter coefficients and Eh is a gain. This is equivalent to

Qh () = M (6)
2 Xht cos 2i-ft

t=o

where the Lagrange multipliers Xht are related to Eh and the aht by

I M2
XhO = 2Eh =oahs

and (7)

Xh, = Mahsahs+t, t = 1.. M.
Eh s=0

The prior spectra Ph have the all-pole form by assumption; we express them in the form

Ph(f) M
2Z XAh cos 2rft

We may assume that the prior spectra are of order M > m, for we can extend the sequences
XhO, Xhl, . . . with zeros if necessary. To see that the posterior spectra must have the same form, we
substitute this expression for Ph in Eq. (4). We find that Qh is given by Eq. (6) with

hot +,lPt, 0 < t < m,
Xht 10t m < t o M. (8)1 ht, ~ (

The autocorrelations Rht of Qh are related to the Xht by

Rht = fo 2 Qh(f) cos 27rft df (9)

= M cos 27rft d>

i, Xhu cos 27rfu
U=0

and the constraints can be expressed as

Dire = Rrtot, r = 0, . . .,m. (10)
h

Either family of parameters, Rh = (Rho, Rhl, . . .,Rhm) or Ah = (Xho, Xhl, . . . ,XhM), is sufficient to
determine Qh, and there are algorithms to compute either family from the other without numerical
integration of the right side of Eq. (9). Thus we can work in terms of Rh and Ah rather than Qh.

The second algorithm begins with the summed autocorrelations R tot and the autocorrelations

R °,= 2f Ph(f) cos 27rft dt

of the prior spectral estimates Ph. It computes the autocorrelations Rht of the posterior spectral esti-
mates Qh; the Lagrange multipliers Xh, of Eqs. (6) and (9) are also available as outputs.

3



RODNEY W. JOHNSON

THE FIRST ALGORITHM

Derivation of the First Algorithm

When Eq. (1) holds, the right-hand side of Eq. (3) for each r is a function of the Lagrange multi-
pliers:

Fr I m Crk; (11)
h=I k= _+ if3sCSk

hk s=O

we need to solve

Fr(p) = Rrtot, r = 1, . . ., m, (12)

for P. The Newton-Raphson method for approximating solutions to such systems of equations starts
with an initial guess P(°) at the solution, iteratively computes approximations P(I), p( 2), . . ., by

PG) = P0-1)+ APg(i), (13)

where 4t(i) satisfies

Fm d(P(i- )) + a (P(i-1) f = R t' t, (14)

and stops when the 8(i) have satisfied some convergence criterion. In matrix notation, for fixed i the
solution AP(') of Eq. (14) is given by

,&P = M-Wv, (15)

where v is the vector with components

vr= R t t- Fr (p-'') (16)

and M is the matrix with elements

= aFr (pl(i-))

Differentiating Eq. (11), we obtain

M =~~I 

Phk t=oI

= k C AC F Qhk(PB )2 -
k=l h=I

It follows that M is given by

M =-NN', (17)

where the prime denotes transposition and

Nrk = Crk Qhk (I ) 21e (18)
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From Eqs. (11), (1), and (18) we obtain

Y, Qhk (P2 ))
Fr ( ))= hNrk h 1 (19)

k=1 I dQhk (p0-1) )

h

We may therefore express the vector v defined in Eq. (16) by

v = -Nw, (20)

where

-Xk + 7Qhk(PjB 1)

Wk |= Q (S~i-1))|h (21)

and the xk are any solution of

Nrk Xk R tot
kr

k [ Qhk (f3 (i 1) |

By Eq. (18), this is equivalent to

I CrkXk = Rrtot
k

or, in matrix notation,

CX = Rtot. (99A

Substituting Eqs. (17) and (20) in Eq. (15), we obtain

AP(i) = (NN')-YNw.

The quantity (NN')-'N (when NN' is nonsingular) equals the Moore-Penrose generalized inverse [7]
N't of N'. Thus,

AP(i) = N'tw. (23)

(This algorithm was first coded in the programming language APL. Equation (23) is in a convenient
form for translation into APL, since there is an APL primitive function [8] that will yield the general-
ized inverse of a matrix.) We can express the solution of Eq. (22) in terms of the generalized inverse.
We assume that Eq. (3) provides m independent conditions on the Qh; thus the rows of C are linearly
independent. This implies that the generalized inverse is a right inverse; then CCt is an identity ma-
trix. It therefore suffices to set

X = C fR tot (24)

for a solution of Eq. (22). The essential ingredients of the algorithm are now at hand. We choose an
arbitrary starting value for p(O), compute the Qh(P8(°)) by Eq. (1), and define x by Eq. (24). We then
enter a loop in which, on the ith iteration, we first compute p(i) by Eqs. (13), (18), (21), and (23) and
then compute Qh(P8(i)) by Eq. (1). The loop terminates when the Qh(P8(i)) have converged by some
appropriate criterion. In practice, some modifications of the procedure are necessary to prevent the
Newton-Raphson algorithm from behaving badly in case the arbitrary starting point is not near enough
to a solution. These are incorporated in the following step-by-step outline of the algorithm as the
adjustment to AP in Step 6.

5



RODNEY W. JOHNSON

Summary of First Algorithm

In what follows we will use a left arrow to denote assignment to a variable of a new value, possi-
bly computed in terms of the current value. Thus, corresponding to Eq. (13) we write P '- p + AP
(without superscripts) in Step 7. The inputs to the first algorithm are three vectors, t, Rtot, and f, and
a matrix P, listing respectively the lags, autocorrelations, frequencies, and prior spectral estimates, tr,
Rrtlt, Ik, and Phk, r=1, . . ., m; k=1, . n; h=1, . p. The output is a matrix Q listing the poste-
rior spectral estimates Qhk.

The steps of the algorithm are as follows:

Step 1. Compute the matrix C by Eq. (2) and compute the vector x by Eq. (24).

Step 2. Assign initial values to variables

PA- (0 , 0)

Q -P.

Step 3. (Begin main loop.) Save the current value of Q for later comparison with the new
value:

Q 0 -Q.

Step 4. Compute a tentative value of AP by Eqs. (18), (21), and (23).

Step 5. Compute tentative values Thk for l/Qhk by

Thk I- + Yr + APr) Ck
Phk r

[cf Eq. (1)].

Step 6. If Thk > 0 for all h and k, proceed to Step 7. Otherwise, adjust AP by the replace-
ments

0.9Af~r

'1' 1 - min Qhk Thk
hk

and recompute the Thk by Step 5 before going on to Step 7. (The denominator on the
right side was chosen to make the recomputed values of Thk nonnegative. The factor
0.9 is included to assure strict positivity. The value 0.9 is rather arbitrary; in principle
it could be any positive number less than 1.)

Step 7. Assign new values to variables

p P + AP

and

Qhk I/ Thk.

Step 8. If the new value of Q equals the previous value (saved as Q0) to within a specified
relative tolerance, terminate the algorithm and return Q as the result. Otherwise go
back to Step 3 and repeat from there.

6
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THE SECOND ALGORITHM

In this subsection we sketch a multisignal MCESA algorithm that works in terms of autocorrela-
tions and Lagrange multipliers. The next three subsections discuss useful standard subroutines and
derive in detail the major steps of the algorithm. The final subsection presents the algorithm in its
entirety.

The algorithm begins with the measured autocorrelations Rr0t" of the summed signals and auto-
correlations R 0 of the prior spectral estimates Ph. It is assumed that the R `t are given at equispaced
lags r = 0, 1, . . ., m; the Ph are all-pole spectra; and the R , are given at equispaced lags
t = 0, 1, . . ., M*, where Mh is at least as great as the order of the all-pole spectrum Ph. There is no
loss of generality in assuming that R 0 is given out to lag M > m for all h, since there are standard
LPC methods for extrapolating autocorrelation sequences-see the following subsection and the sub-
section "Summary of Second Algorithm." From the families R i of prior autocorrelations R ,, one can
obtain the corresponding Lagrange multipliers X 0 ; these satisfy

Rh° = V2 cos 27rfu df
ht Jo M d

h u cos 2Trrfu
U=0

[cf Eq. (9)]. Initial trial values are given to the posterior autocorrelations Rht, the corresponding
Lagrange multipliers A*,, and the parameters Gfr, (Initial value assignments Rh- R2, kh- ho,

p - (0. . . ,0) are reasonable and appear to work well in practice.) These values are then adjusted
iteratively with the aim of simultaneously establishing Eqs. (8), (9), and (10). At each iteration, the
Ah are recomputed from the current values of Rh; Eq. (9), which determines the functional depen-
dence between Rh and Xh, is thus maintained. Adjustments ARh, aimed at establishing Eq. (8), and
AP, aimed at establishing Eq. (10), are computed by a linear approximation involving the partial deriva-
tives &Rht/Xhu. The replacements Rh4-Rh+ARh , p-p+AP are made, the Xh are recomputed,
and the process is repeated with the new trial values of Rh, Akh, and P. The repetition continues until
the values of Rh are in sufficiently good agreement on two successive iterations.

Some LPC Algorithms
Certain standard LPC signal-processing procedures can be used as subroutines at several points in

the algorithm. FORTRAN implementations of all of them are incorporated in the subroutine LPTRN
in Section 4.3 of Ref. 9.

To obtain Lagrange multipliers from autocorrelations, we can start with the Levinson recursion
[10]. This yields inverse filter coefficients ahO = 1, ahl , . . ., ahM and a gain Eh such that

Rh, = /2 2Eh cos 27t df (25)
,ahe27ris2

s=O

[cf Eqs. (9) and (5)]. Then the discrete convolution of Eq. (7) yields the Lagrange multipliers Xht,

t = 0, ... , M (The Levinson recursion also yields reflection coefficients k, X -- . khM. The condi-
tion that I kht I < 1 for all t = 1, . . ., M is a useful criterion for checking that Rh is a valid family of
autocorrelations-i.e., that it admits an extension of positive type.)

There are inverted versions of the Levinson recursion that allow Rh to be computed from the
family ah = (aho, ahl . ,ahm) of inverse filter coefficients, either directly or via the reflection
coefficients. These will also be of use.

Finally, to compute autocorrelation from the Lagrange multipliers, we could use the algorithms
above together with an algorithm for computing inverse filter coefficients from the Lagrange multi-
pliers. There are two procedures for this-one based on Cholesky factorization of a Toeplitz matrix
[11] and one based on Newton's method [12,13]. We mention these although, as it turns out, we do
not actually need to compute autocorrelations from Lagrange multipliers.

7



RODNEY W. JOHNSON

Partial Derivative Calculations

The computation of ARh and AP requires the Jacobian matrices ORA/3kh with elements
MhAsh (tU = 0. M). Differentiation of Eq. (9) yields

ah 'A - cos 2-rft cos 2r fu df

EX& u 0 cos 27rfv

Since the numerator of the integrand is equal to - 1/2 cos 2irf (t + u) - 1/2 cos 27rf t-U - , we may
write

Rh, =Sh t+u Sh, It-ul, (26)
ahu (6

where

Shv = 'A2Jh cos 27rfv df,

EX&, cos 2rrft
t=o

v = 0. ... , 2M We express this in terms of the inverse filter coefficients ah, and gain Eh correspond-
ing to the Lagrange multipliers XhA. Equation (7) [cf Eqs. (5) and (6)] implies that

1 2Eh
M M
AXht cos 27rft h

t=o t=0

It follows that
Sev = j h cos 24f df.

0 
pah e27r if t

Regarding the aht (t = 0. . M. , M) as coefficients of a polynomial A (z) = 1 + ah1z + *+ ah^zM
we compute the coefficients bhv of the polynomial A (Z)2 = 1 + bhlz + * + h 2MZ2M

bhv = yahtav-, (27)

v =0 ... ,2M. (The sum runs from t = 0 to v when v < M and from t = v-M to M when
v > M.) Then

Sh 1 / 2E 2 cos 2rfv d

| bhWe2irifwS
=0

Comparing this with Eq. (25), we see that the vector Sh depends on Eh, and the vector bh in the same
way that the vector Rh of autocorrelations depends on Eh and ah. Thus, any algorithm designed to
compute autocorrelations from gain and inverse filter coefficients may also be used to compute the Shv
from the squared gain and the coefficients bh,.

Here, then, is the procedure for computing ORhI/OAh Start with Eh and the vector ah of inverse
filter coefficients; these will be available as a result of their use in the computation of Ah from Rh.
Obtain the elements of th by Eq. (27). Compute Sh from Eh2 and bh as just described. Finally, use Eq.
(26) to obtain ORh/OAh

8



NRL REPORT 8667

Calculation of ARRh and AP

We next show how to calculate ARh and AP from the Jacobian matrices 6Rh&/)Xh. We define the
abbreviation Jh for the Jacobians by

Jhtu = 6Rhtlakhu,

t,u = 0. M. We will also use a rectangular matrix D defined by

D 1, r=t,
Dr, = lo, r X t,

r = 0 . m; t = 0. M. In terms of D and its transpose D', we can express quantities such as
DRh, the result of truncating the vector R to its first m + 1 elements; D'p, the result of extending the
vector p to length M + 1 by appending zeros; and DJhD', the (m + 1) x (m + 1) submatrix in the
upper left corner of Jh,, We can thus rewrite Eqs. (8) and (10) as

A, = )LI + D'P
and

D IRh = R tot.
h

After replacement of p and the Rh by p + AP and Rh + ARh, with corresponding replacement of
Ah, we wish Eqs. (8) and (10) to hold, at least to a better approximation than before. Although Ah and
Rh are nonlinearly related by Eq. (9), the replacement value for Ah, for small changes, is given by
Ah + AXh, where AAXh approximately satisfies

JhAAXh = ARh,* (28)

(That is, m-O(OR,,t/&,hu)Ahu,= ARRh,, t = 0, ... , M.) To establish Eqs. (8) and (10) through the
replacement, we wish

Ah + AAXh = kO + D'(P + AP) (29)

and
DI,(Rh + ARh) = R'0 ' (30)

h

to hold. By Eqs. (28) and (29), ARh should (approximately) satisfy

ARh = Jh(Xho + D'P - AXh) + JhD'AP. (31)

Using this equation to eliminate ARh from Eq. (30), we obtain

DYRh + DlJh(kh + D'p -h) + jDJhD'AP =Rt;
h h h

hence AP may be computed by

A = (Y.DJhD']l{Rtot - D,[Rh + Jh(AXh + D'P -A)]}. (32)
h h

The procedure for computing AP and ARRh, in summary, is first to compute the quantities
Jh,(kh + D'P -A,,), then obtain AP from Eq. (32), and finally obtain the ARh from Eq. (31).

Summary of Second Algorithm

We have discussed various parts of the algorithm; here is how they fit together. Inputs are the
prior autocorrelation estimates for the individual signal components h and the measured autocorrela-
tions for their sum:

9



RODNEY W. JOHNSON

Ro= (RO, Ro, , RhMh)

and

Rtot = (R ot, R itot R tot).

No initial assumptions are made about the orders Mh of the prior estimates.

The steps of the second algorithm are as follows:

Step 1. Define

M = maxim, Ml, ... M, M}.

Step 2. By the Levinson recursion, compute families of inverse filter coefficients
(ahO^=1, ah,,, . .. ,ahMh) and reflection coefficients (kh *1 . * .khMh) and a gain Eh

corresponding to RO? for each h. (The conditions Ikh,i < 1 may be tested as a validity
check for the inputs.) Define ah, = kh,= 0 when Mh < t < M. The results are two
vectors ah = (ah0 =1l, al, a,,M) and kh = (khl, . . . , khM) and a gain Eh for each
h.

Step 3. Compute the families of Lagrange multipliers

h* =~ Xh^o, hl, . .. sh0M

corresponding to Rh2 from ah and Eh for each h by Eq. (7) (with X 0 in place of Ah).

Step 4. (Initialize variables.) By a standard LPC algorithm, determine a family
(Rho, Rhl , *. - , Rhm) of autocorrelations corresponding to the gain and reflection
coefficients Eh and kh for each h; use these as initial values for the variables Rh.
(This results in

Rh, = Roht

for 0 < t < MA; hence computing Rh from Eh and kh is actually unnecessary unless
Mh < M.) Also, set

Ah h

and

0, |O t= 0, 1, ... m

Step 5. (Beginning of main loop.) Compute coefficients

bh = (bhO= I, bh, -, bh,2M)

from ah for each h by Eq. (27).

Step 6. Compute the quantities

Sh = (Sh,0, Sh I, . S, 2M)

for each h by an algorithm for computing autocorrelations from inverse filter
coefficients and gains. As inputs, let the family bh of coefficients from Step 5 play the
role of inverse filter coefficients and the squared power Eh2 play the role of gain. The
family Sh comprises the resulting "autocorrelations." Define the Jacobian matrices Jh

in terms of Sh by Eq. (26).

10
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Step 7. Compute the quantities Jh(4L + D'ft - kh). Define AP by Eq. (32), and replace ,
by a new value,

Obtain a tentative value for ARh for each h from Eq. (31). (At this point the con-
straint equation [Eq. (30)] should be satisfied.)

Step 8. Check that the sums Rh + ARh are valid families of autocorrelations. We can do this
by using the Levinson recursion to compute reflection coefficients and checking 'that
these are less than 1 in magnitude; it is also necessary to check that each RhO is posi-
tive. If Rh + ARh fails the test for any h, then reduce the ARh for all h by a constant
factor. Repeat the testing and reduction until the Rh + ARh pass the test. Then
replace the Rh by new values

Rh - Rh + ARRh

for each h.

Step 9. Decide whether to continue. If the new value of Rh (computed in Step 8) is not
equal to the previous value for each h to within a specified relative tolerance, the
main loop will have to be repeated from Step 5. Even if the new Rh are close enough
to the previous values, the main loop should be repeated if Rh had to be reduced in
Step 8. If the loop is to be repeated, continue with Step 10 before going back to Step
5. If results from Step 10 are required for output, do Step 10 before exiting. Other-
wise terminate the algorithm now.

Step 10. At this point new values for the Rh from Step 8 are available. Corresponding new
values for the quantities ah, Eh, and Ah will be needed if there is to be another itera-
tion of the main loop. They may also be desired as outputs from the algorithm.
Nothing further need be done, however, if there is not to be another iteration, and if
the only outputs desired are the posterior autocorrelation estimates. Values for ah

and Eh may already be available as results of the use of the Levinson recursion in
Step 8; if not, they should be computed now. To obtain Ah from ah and Eh, use Eq.
(7). Then either go back to Step 5 or terminate the algorithm, whichever is called
for.

DISCUSSION

Both algorithms have been implemented in APL and in FORTRAN. The APL implementations
were written first for ease of programming and debugging. The APL functions were then converted to
FORTRAN for incorporation in a commercial signal-processing package that we use for experimental
work with speech. Both versions of the algorithms are available from the author.

The second algorithm is so much faster than the first, that the first can be recommended only for
applications that really demand the generality of unequally spaced lags, unequally spaced frequencies, or
completely arbitrary prior spectral shapes. The FORTRAN version of the first algorithm, running on a
VAX 11/750* with floating-point accelerator, uses about 18.5 s of cpu (central-processing-unit) time
per frame of speech in a typical speech-processing application-a two-signal analysis with prior spectral
estimates given at 128 equispaced frequencies and autocorrelation constraints given at 13 lags:
0,1, ... , 12. The FORTRAN version of the second algorithm, running on the same machine, uses

*Trademark of Digital Equipment Corporation.
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about 2.0 s per frame on the same problem, where the prior spectral estimates are 12th-order all-pole
spectra specified by autocorrelation values at lags 0, 1, ... , 12.

The second algorithm also uses less space than the first. In terms of the number p of signals, the
number n of discrete frequencies, and the order m of the autocorrelation constraints, the FORTRAN
implementation of the first algorithm uses array storage of 3(m + 1)n + (m + 1)2 + 3pn +
3 n + 4(m + 1) floating-point (or double-precision) locations, 2 (m + 1) integer locations, and an addi-
tional amount independent of the dimensions of the inputs. For most applications, the dominant term
is 3(m + 1)n, which corresponds to storage for the matrices C, N, and N't of Eqs. (2), (18), and (23).
In terms of p, m, and the order M of the all-pole posterior spectra, the second algorithm uses
10(MA+ l)p + (M+ 1)2 + 7(MA+ 1) + 5(m + 1) floating-point locations, 2 (m + 1) integer locations,
and a fixed additional amount. Typical values of the size parameters are p = 2, n = 128, and
m = M= 12. With these values, the first algorithm uses 6365 floating-point locations, as compared with
585 for the second. Of the 6365 locations, nearly 80% are occupied by the three matrices that account
for the dominant term 3 (m + 1) n.

We do not claim to have produced optimally efficient multisignal MCESA algorithms; there may
exist algorithms much superior to the two presented here in their respective domains. The efficiency of
these algorithms should not, therefore, be taken as a measure of the intrinsic efficiency of multisignal
MCESA. The second algorithm, however, is adequate to permit considerable experimentation with
speech noise reduction, and it interfaces well with conventional LPC analysis/synthesis software. It has
been possible to process entire sentences of speech corrupted with real or synthetic additive noise, to
synthesize speech from the posterior speech autocorrelation estimates, and to listen to the results.
Effective noise suppression has been demonstrated in experiments with a variety of methods for choos-
ing prior speech and noise estimates and estimating autocorrelations from the sum of the speech and
the noise signals [3].
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Appendix A

APL PROGRAM FOR FIRST ALGORITHM

The argument P of the APL function MCESP2P below corresponds to f and P in the conven-
tional notation. The argument R corresponds to t and Rt'ot, and the result Q corresponds to f and Q. P
is a matrix with frequencies fk in row 1; each additional row contains prior spectral estimates Phk for
one signal component h. R is a two-rowed matrix with lags tr in row 1 and autocorrelations Rrtot in row
2. Q is a matrix with the same shape and format as P' the frequencies fk in row 1 and posterior spec-
tral estimates Qhk in the remaining rows.

MCESP2PW is a version of the program that implements a generalization of multisignal MCESA
that is described elsewhere [Al]. The argument P has an additional first column containing "relative
weights." The first element of the column is ignored. Each other element of the first column is a
weighting factor associated with the prior spectral estimate in the rest of the same row. The format is

* Af ... Jn

WI Pli ... Pin

wp Pp I .. Ppn

The argument R and the result Q are as for MCESP2P, Q has no additional first column.

REFERENCE

Al. R.W. Johnson and J.E. Shore, "Multisignal Minimum-Cross-Entropy Spectrum Analysis with
Weighted Priors," NRL Report 8731, in publication; submitted to IEEE Trans. Acoust., Speech,
Signal Process.
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V Q-P MCESP2P R;C;F;X;L;QO;AL
[1] C-2x2o(R[l;]xo2)-.xF-P[1;]
[2] R-R[2;]
[3] P- 1 0 +P
[ 4] X-R+ . xMC
[5] L+-(pR)p0
[6] P+.-LQ-+ P
[7] A:QO*Q
[8] R-(+IQ*2)*0.5
[9] AL-(((+JQ)-X)fR)91Cx(pC)pR
[10] B:Q-4-P+(pP)p(L+AL)+.xC
[111 ] +( A/ Q>0)IC
[12] AL-ALxO.9*1-L/.Qo-*Q
[13] -NB
[14] C:f-L+AL
[15] .+(v/,Q7±Qo)/A
[16] Q-F,[1] Q

V

V Q-P MCESP2PW R;W;F;C;X;L;QO;AL
[1] W-+L+PE ;1]
[2] F-1+P[1;]
[3] C+-2x2O(R[1;]xo2)o.xF
[4] R-R[2;]
[51 P- 1 1 +P
[6] X-R+.xfC
[7] L-(pR)pO
[8] P-MQ*-P
[9] A:QO-Q
[10] R-(W+.xQ*2)*0. 5
[ 11 ] AL-(((+tQ)-X).LR)MO~Cx(pC) pR
[12] B:Q4-mP+Wo.x(L+AL)+.xC
[13] -+(A/,Q>0)/C
[14] AL-ALx0.9*1-L/,Q0-Q
[15] I-B
[16] C:L-L+AL
[17i (v/ Q-Q0) IA
[18] Q-F,[l] Q

V
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Appendix B

FORTRAN PROGRAM FOR FIRST ALGORITHM

The following FORTRAN subroutine DOMC2 implements a two-signal version of the first algo-
rithm. It will handle autocorrelations of order up to 29 and up to 513 discrete frequencies. The array C
should be initialized in the calling program by

DO 1 I=1,M
DO 1 K=1,N

1 C(I,K) = 2 * COS(2 * PI * T(I) * F(K))

before the first call on DOMC2. It need not be reinitialized for subsequent calls as long as the same
sets of frequencies F(K) and lags T(I) are to be used. The input argument WT ("relative weights") is
concerned with a generalization of multisignal MCESA that is described elsewhere [B1]; if WT(1) and
WT(2) are made equal and positive (say both equal to 1.0), the algorithm will behave as here
described.

DOMC2 requires a function DISTD and a subroutine MPD, both shown below. DISTD defines
the stopping criterion.

MPD defines its argument INV as the Moore-Penrose generalized inverse of the transpose of its
argument C, provided that the rows of C are linearly independent. Lawson and Hanson [B2] give
general-inverse routines that are numerically superior, though more complex. MPD uses a matrix
inversion subroutine MINVD, not shown. The form of the call is CALL MINVD(A,N,D,L,M), where
A is an N-by-N double-precision matrix, and L and M are integer scratch vectors of length N. (A
determinant may be returned through D but is ignored in MPD.) A contains the input matrix, which is
destroyed and replaced by the inverse.

REFERENCES

B1. W. Johnson and J. E. Shore, "Multisignal Minimum-Cross-Entropy Spectrum Analysis with
ighted Priors," NRL Report 8731, in publication; submitted to IEEE Trans. Acoust., Speech,

Signal Process.

B2. C.L. Lawson and R.J. Hanson, Solving Least-Squares Problems, Prentice-Hall, Englewood Cliffs,
N.J., 1974.
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SUBROUTINE DOMC2(C,R,P,M,N,WT,B,Q,INV,N1,IERR,LUN)
REAL*8 R(30),B(30),DB(30),P(513,2),Q(513,2),W(513),X(513)
REAL*8 C(M,N),INV(M,N),N1(M,N),TMP(30,30),QO(513,2),WT(2)
REAL*8 AVG,D,QSUM,QSUMSQ,RMI513,SCALE
INTEGER Kl(30),K2(30)
LOGICAL FLAG

C SUBROUTINE TO PERFORM MINIMUM CROSS-ENTROPY SPECTRAL ANALYSIS
C ON MULTIPLE SPECTRA
C DOUBLE PRECISION VERSION
C

C NAVAL RESEARCH LABORATORY
C J. T. BUCK

C ADAPTED FROM APL VERSION BY R. JOHNSON
C

C INPUT ARGUMENTS:
C C - ARRAY OF COSINE TERMS - 2*COS(2*PI*T(I)*F(K))
C - FOR TIME AND FREQUENCY POINTS
C R - AUTOCORRELATIONS

C P - PRIOR SPECTRAL ESTIMATE
C FOR EACH OF 2 SPECTRA

C M - NUMBER OF TIME POINTS
C N - NUMBER OF FREQUENCY POINTS
C WT- RELATIVE WEIGHTS OF PRIOR SPECTRA
C LUN IF > 0, LUN FOR STATUS MESSAGES
C OUTPUT ARGUMENTS:
C B - LAGRANGE MULTIPLIERS USED IN SOLUTION
C Q - MINIMUM CROSS-ENTROPY SPECTRAL ESTIMATES FOR EACH SPECTRUM
C IERR - ERROR FLAG - 0 IF OK, NONZERO OTHERWISE
C

C SCRATCH ARGUMENTS:
C Ni - WORK MATRIX
C INV - GETS GENERALIZED INVERSE OF WORK MATRIX
C W,X - WORK VECTORS
C QO - SAVES PREVIOUS VALUE OF Q
C DB - INCREMENT FOR CALCULATING NEXT B
C TMP,K1,K2 - TEMPORARIES REQUIRED FOR MPD ROUTINE
C

C SUBROUTINES REQUIRED
C MPD - CALCULATES GENERALIZED INVERSE
C DISTD - DISTANCE MEASURE
C MINVD - INVERTS A MATRIX (CALLED BY MPD)
C

IERR=0

C GET AVG VALUE OF PRIORS (FOR CONVERGENCE CHECK)
AVG=0.0
DO I=1,N

DO J=1,2

AVG=AVG+P(I,J)
ENDDO

ENDDO
AVG=AVG/(N*2)

C INITIALIZE B,C,AND X
DO J=1,M
B(J)=0.0

ENDDO
17
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CALL MPD(C,INV,M,N,TMP,K1,K2)
DO K=1,N
DO L=1,2
Q(K,L)=P(K,L)
P(K,L)=1.0/P(K,L)

ENDDO
X(K)=0.0
DO J=1,M
X(K)=X(K)+INV(JK)ER(J)

ENDDO
ENDDO
NPASS=0
NRSOJ=0

C MAIN LOOP STARTS HERE
30 NPASS=NPASS+1

IF(NPASS.GT.100)THEN
C Convergence failure - type message, return error

D=DISTD(Q,Q0,N*2)/AVG
TYPE 31,D

31 FORMAT(' Convergence failed after 100 passes - D= ',1PE13.6)
IERR=1
RETURN

ENDIF
C

DO K=1,N
C COPY OLD VALUE OF Q, CALC AVG, MEAN SQUARE VALUES

QSUM=0.0
QSUMSQ=0.0
DO L=1,2
QO(K,L)=Q(K,L)
QSUM=QSUM+Q(K,L)
QSUMSQ=QSUMSQ+Q(K,L)**2/WT(L)

ENDDO
QSUMSQ=SQRT(QSUMSQ)
W(K)=(QSUM-X(K))/QSUMSQ
DO J=1,M
Ni(J,K)=C(J,K)*QSUMSQ

ENDDO
ENDDO

C GET INVERSE OF WORK MATRIX
CALL MPD(N1,INV,M,N,TMP,K1,K2)

C CALCULATE INCREMENT FOR LAGRANGE MULTIPLIERS
DO J=1,M
DB(J)=0.0
DO K=1,N
DB(J)=DB(J)+INV(J,K)*W(K)

ENDDO
ENDDO

C Calculate new Q. Check for overshoot. Loop until no overshoot occurs.

FLAG=*.TRUE.

DO WHILE(FLAG)
FLAG=-.FALSE.

C Calculate new Q's from P's and B's. If any are negative, set FLAG
DO K=1,N
DO L=1,2

18
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Q(K,L)=P(K,L)
DO J=1,M

Q(K,L)=Q(K,L)+(B(J)+DB(J))*C(J,K)/WT(L)
ENDDO
Q(K,L)=1.0/Q(K,L)
IF(Q(K,L).LT.0.0)FLAG=.TRUE.

ENDDO
ENDDO

C If overshoot occured (resulting in negative sprectral power)
IF (FLAG) THEN

C Then scale the increment and repeat
RMIN=1.E37
DO K=-1,N
DO L=1,2
IF(Q0(K,L)/Q(K,L).LT.RMIN)RMIN=Q0(K,L)/Q(K,L)

ENDDO
ENDDO
SCALE=0.9/(1.0-RMIN)
NRSOJ=NRSOJ+1
DO J=1,M
DB(J)=DB(J)*SCALE

ENDDO
ENDIF

ENDDO
C Calculate new b value,test for termination

DO J=1,M
B(J)=B(J)+DB(J)

ENDDO
IF(DISTD(Q,Q0,N*2).LT.1.E-10*AVG)THEN
IF(LUN.NE.0)WRITE(LUN,100)NPASS,NRSOJ
RETURN

ENDIF
100 FORMAT(12X,'Passes:',I3,' Overshoots:',I3)

GOTO 30

END

FUNCTION DISTD(A,B,N)
REAL*8 A(N),B(N),DISTD

C

C J. T. BUCK

C NAVAL RESEARCH LABORATORY
C

C THIS ROUTINE CALCULATES A DISTANCE MEASURE BETWEEN THE VECTORS
C A AND B, WHICH IS SIMPLY THE MAXIMUM ABSOLUTE VALUE DIFFERENCE
C OF THE COMPONENTS.

DISTD=-1.E37
DO 10 I=1,N
IF(ABS(A(I)-B(I)).GT.DISTD)DISTD=ABS(A(I)-B(I))

10 CONTINUE

RETURN
END
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SUBROUTINE MPD(C,INV,M,N,TMP,K1,K2)
C

C MPD: EMULATES APL DOMINO OPERATOR (GENERALIZED INVERSE)
C DOUBLE PRECISION VERSION
C

C J. T. BUCK

C NAVAL RESEARCH LABORATORY
C

C INPUT ARGUMENTS:
C

C C - M BY N MATRIX TO INVERT
C M, N - MATRIX DIMENSIONS
C

C OUTPUT ARGUMENTS:
C

C INV - M BY N RESULT
C

C SCRATCH ARGUMENTS:
C

C TMP - M BY M REAL MATRIX
C K1,K2 - INTEGER INDEX VECTORS, LENGTH M
C

C SUBROUTINES REQUIRED:
C

C MINVD - INVERTS A MATRIX
C

REAL*8 C(M,N),INV(M,N),TMP(M,M),D
INTEGER K1(M),K2(M)

C

C THIS ROUTINE CALCULATES THE GENERALIZED INVERSE OF THE TRANSPOSE
C OF C AND RETURNS THE RESULT IN INV. THE ARGUMENTS TMP,K1,AND K2
C ARE USED BY MINVD, WHICH INVERTS A MATRIX.

C

C INV=INVERSE(C TIMES C-TRANSPOSE) TIMES C
C

C CALCULATE TMP=C TIMES C-TRANSPOSE
DO 10 I=1,M

DO 10 J=1,M
TMP(I,J)=0.0
DO 10 K=1,N
TMP(I,J)=TMP(I,J)+C(I,K)*C(J,K)

10 CONTINUE

C GET THE INVERSE OF TMP
CALL MINVD(TMP,M,D,K1,K2)

C CALCULATE INV= TMP TIMES C
DO 20 I=1,M

DO 20 J=1,N
INV(I,J)=0.0
DO 20 K=1,M

INV(I,J)=INV(I,J)+TMP(I,K)*C(K,J)
20 CONTINUE

RETURN
END
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Appendix C

APL PROGRAM FOR SECOND ALGORITHM

The arguments RO and RTOT and the result R of the APL function MCEAUTW below
correspond to the R2, Rtot, and the Rh in conventional notation. RO is a matrix with one row for each
signal component h and one column for each autocorrelation lag from 0 through Mh (which is indepen-
dent of h; the APL version requires all the priors to be of the same order). In addition, column 1 con-
tains "relative weights," which are concerned with a generalization of multisignal MCESA that is
described elsewhere [C1]. Thus the prior autocorrelation information occupies columns 2 through
Mh + 2 of R 0. The user who is not concerned with relative weights may simply set all elements of the
first column of R0 equal to 1. RTOT is a vector of length m + 1. R is returned as a matrix with the
same number of rows as R 0 and one column for each lag from 0 through M (but no column of
weights). MCEA UTW uses several other functions for discrete convolution and various LPC parameter
conversions.

If the arguments Xand Yof CVR are vectors of length Mand length N, respectively, the result is
their discrete convolution, a vector of length M+N-1. If X and Y are matrices with the same number
of rows, the result is a matrix, also with the same number of rows; each row of the result contains the
discrete convolution of the corresponding row of X with the corresponding row of Y CVR similarly
extends row by row to arrays with any number of dimensions. Thus CVR applied to a 2x3x4 array and
a 2x3x5 array yields a 2x3x8 result.

The functions for LPC parameter conversions likewise extend systematically to higher-
dimensional arguments, although we describe only their application to arguments of the lowest dimen-
sion. Thus A UTA PAR is said to apply to a vector K and a scalar R 0 to yield a vector result R. How-
ever, it is then to be understood that A UTA PAR may also apply to a matrix K and a vector R 0 with
one element for each row of K to yield a matrix result R with one row for each row of K.

The argument to PREAPAR is a vector K containing parcor coefficients, or negative reflection
coefficients, -kI, . . . ,-km. The result PREAPAR K is a vector A containing inverse filter
coefficients. The coefficient ao is absent, and the sign convention is the opposite of that used in the
FORTRAN programs and the main body of this report. Thus the contents of A are -a,, . . .,-aM.

The function PAR APRE is an inverse to PREAPAR. The argument is a vector A of inverse filter
coefficients (with reversed sign), and the result PREAPAR A is a vector K of negative reflection
coefficients.

The function LAGAPRE takes as arguments a vector A of inverse filter coefficients (with reversed
sign) and a scalar gain E. The result E LAGAPRE A is computed by Eq. (7), but without the factor of
1/2 in X0 (and we have suppressed the subscript h). The result is thus a vector B containing
2XOI,l . . . m.

The arguments to AUTAPAR are a vector K containing negative reflection coefficients and a
scalar R 0 containing a total power R0 . The result R 0 A UTAPAR K is a vector R containing autocorre-
lation values R0, R,, * *, RM.

PARAAUT, an inverse function to AUTAPAR, takes R as its argument and returns K as its result
PARAAUT R.

21



RODNEY W. JOHNSON

GAIAPAR yields a scalar result, the ratio of LPC gain to total power, or E/RO in the notation of
Eq. (25) (with subscripts h suppressed). This result is computed as a function of negative reflection
coefficients K

REFERENCE

C1. R.W. Johnson and J.E. Shore, "Multisignal Minimum-Cross-Entropy Spectrum Analysis with
Weighted Priors," NRL Report 8731, in publication; submitted to IEEE Trans. Acoust., Speech,
Signal Process.
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V R-RO MCEAUTW RTOT;W;K;D;MU;M;F;Il;I2;A;E;LO;L;B;S;T;AR;J;AB;SCALEDlZ
[1] W-.-RO[;1] .
[2] RO- 0 1 +RO --

[31 K-PARAAUT RO
[4] ÷(1v.!S|(,K),PARAAUT RTOT)/O
[51 D+(pRO)[11
[6] MU+ l+pRTOT
[7] M-MUK 1+(pRO)[23
[8] F-(DM+1 )p0. 5Mpl
[9] I1+-0,lMU
[10] I2-(Il+M+l)o.-I1
[11] Il+(Il+M+l)-.+Il
[12] A-PREAPAR K
[131 E-RO[;1]xGAIAPAR K
[141 LO-Fx(D,M+1)+E LAGAPRE A
[15] A+(D,M)+A
[16] L+LO
[17] B-(M+1)pO
[18] R-RO
[19] -((pRO)[2]ŽM+1)/A
[201 R-RO[;1] AUTAPAR(DM)tK
[21] A:K-PARAPRE 0 1 +-(C1,A) CVR 1,A
[22] S-((E*2)-GAIAPAR K) AUTAPAR K
[23] S-(d? 0 1 +(o,-m)+s),S
[24] T-(O,M)+(O,-M)+S CVRO(LO+Wo.xB)-L
[25] AR--(4(O,-M)+T)+(O,M)+T
[26] J--W+.xS
[27] AB-(RTOT-(MU+l)t+tR+AR)'J[Il]+J[I2]
[28] B-B+(M+1)+AB
[29] T-(O,MU)+(O,-M)+S CVR Wo.x4AB
[30] AR-AR-(4(O ,-M)+T) +( o,M) +T
[31] SCALED-0
[32] RO-R
[33] -(([/IRTOT-+iRO+AR)<RTOT[l]xlEs5)/B
[34] 'CONSTRAINTS VIOLATED'
[351 -0

[36] B:R-RO+AR
[37] K-PARAAUT R
[38] -*( (OA.<R[ ;1])A1A.> I K)C
[39] AR-ARx0.75
[40] SCALED-1
[41] -B
[42] C:-(SCALED)/D
[43] -(A/I,R=RO)/O
[44] D:A-PREAPAR K
[45] E-R[;llxGAIAPAR K
[46] L-FxE LAGAPRE A
[47] -A

V
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V Z-Y CVR X;M;N;R
[1] M+- l+pX
[2] N-- l+pY
[3] R-ppX
[4]j Z-++[R]( (pX) pl-M)( ( PX) ,M+N-1 )t(( (R+1),iR)O(NbpX)pX)x

(R,(iR-1) ,R+1)0?(M,pY)pY
V

V A-PREAPAR K;D;M;N;I
[1] D-plIK
[2] M-xl11+D
[3] N l-+D
[4] K-(M,N)pK
[5] A--/K
[6] -(N<I+1)IB
[7] A:A+-(A-K[;(I-l)pI]x4A),K[;I]
[8] -'-(N2I-+-I+1)/A
[9] B:A--DpA

V

V K-PARAPRE A;D;M;N;L
[1] D-pl/A
[2] M-x/ 1+D
[3] N- l+D
[4] K-(M,N)pA
[5] A:-(02N-N-1)/B
[6] L+-K[;N+1l
[7] K[;tN]+(K[;iN]+K[;OiN]xO(N,M)pL)+O(N,M)pl-L*2
[8] -'A
[9] B:K-DpK

V

V B-E LAGAPRE A;N;M
[1] A-- 1,A
[2] N-Dl+pA
[3] M+ l+pA
[4] B-(M,O)pO
[5] A:B-B,+/((M,N)tA)x(M,-N)+A
[6] -(O<N-N-1)/A
[7] B-B.(OpA)p4E

V
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V R-RO AUTAPAR K;D;M;N;A;EK;I
[1] D-pl/K
[2] M-xl l+D
[3] N--ltD
[4] EK-(M,N)pKxx\((-pD)thl)+RO,1-K*2
[5] K+-(M,N)pK
[6] R-A-(M,O)pO
[7] -(N<I+1)IB
[8] A:R-R,EK[;I]++/Ax4R
[9] A-(A-K[;(I-1)pI]x4'A),K[;I]
[10] -(NŽI-I+1)/A
[ 11 ] B:R+RO,DpR

V

V K-PARAAUT R;E;B;KK
[1] R-(--R
[2] K-O0R
[3] +(121tPR)IC
[4] E+(1+pR)pR
[5] B+-0,[0.5](pE)pl
[6] -'B
[7] A:E-Exl-KK*2
[8] B*O,[1] B-(eB)x(pB)pKK
[9] B:KK-(+iBx(pB)+R)*E
[10] K-K,[1] KK
[11] -((1+pB)<l+pR)/A
[121 C:K+OK

V

V G-GAIAPAR K
[1] G-x/l-K*2

V
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Appendix D

FORTRAN PROGRAM FOR SECOND ALGORITHM

The following FORTRAN subroutine MCLPC implements a one- or two-signal version of the
second algorithm and will handle autocorrelations of order 29 or less. The input argument W (relative
weights) is concerned with a generalization of multisignal MCESA that is described elsewhere [DI]; if
W(1) and W(2) are made equal and positive (say both equal to 1.0), the algorithm will behave as here
described.

MCLPC requires a matrix-inversion subroutine MINVD and subroutines DLEVIN, DA2L,
DRC2AU, and DA2RC for conversions among various sets of LPC parameters.

The form of a call for MINVD is CALL MINVD (A,N,D,L,M), where A is an N-by-N double-
precision matrix and L and M are integer scratch vectors of length N. (A determinant may be returned
through D but is ignored in MCLPC.) A contains the input matrix, which is destroyed and replaced by
the inverse.

DLEVIN implements the standard Levinson recursion. A call for DLEVIN has the form CALL
DLEVIN (MP,R,A,ALPHA,RC), where R, A, and RC are double-precision vectors, ALPHA is a
double-precision scalar, and MP is an integer. The inputs are MP, which is the order plus one, and R,
which contains MP autocorrelation values from lag 0 to lag M=MP- 1. The outputs are MP inverse
filter coefficients in A, M reflection coefficients in RC, and the gain (excitation power) in ALPHA.
A(1) contains ao= 1. The subroutine body is adapted from Markel and Gray's subroutine AUTO [D2,
p. 51] with the following changes: convert to double precision; redimension local arrays to 60 (the sub-
routines must handle twice the order of the input autocorrelations); change MP=M+1 to M=MP-1;
remove the initial nested DO loops that compute R from signal samples.

DA2L, shown below, computes Lagrange multipliers. The inputs are MP1, the order plus 1; an
array A of inverse filter coefficients; and a gain (excitation power) EIN. The output XL contains MP1
Lagrange multipliers computed by Eq. (7) except for the factor of 1/2 in XhO = XL(1).

DRC2AU, shown below, computes autocorrelations from reflection coefficients and the square
root of the gain. DRC2AU uses a subroutine DRC2E for computing the total power E from reflection
coefficients and the square root of the gain.

DA2RC computes reflection coefficients from inverse filter coefficients. A call has the form
CALL DA2RC(A,RC,M,IERR), where A and RC are double-precision vectors, and M and IERR are
integers. The inputs are the order M and M+1 inverse filter coefficients in A. The outputs are M
reflection coefficients in RC and an error indication in IERR; a nonzero value for IERR indicates that a
computed magnitude for a reflection coefficient was not less than 1. The subroutine body is adapted
from Markel and Gray's subroutine STEPDN [D2, p. 961 with the following changes: convert to dou-
ble precision and redimension local arrays as for DLEVIN, and return the error indication through
IERR instead of printing a message.
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SUBROUTINE MCLPC(RIN,R,W,MDP1,NS,MPR,A,RC,E,L,JAC,IERR)
C...
C... Multiple signal minimum cross-entropy spectral analysis
C... with LPC priors
C...
C... J. Buck
C... Based on APL program by R. Johnson
C...
C... Double precision version
C... Includes degree of belief parameters
C..- Allows different model orders for priors, input
C...

C... RIN - Input autocorrelations for total signal
C... R - Set of prior autocorrelations - destroyed and replaced
C... by posterior autocorrelations
C... W - Relative weights for each prior estimate (degree of belief)
C... MDP1 - Total number of input autocorrelations (MD+1)
C... NS - Number of signals
C... MPR - LPC model order for each prior (vector, length NS)
C... A - Autoregressive coefficients for posterior signals
C... RC - Reflection coefficients for posterior signals
C... E - LPC error powers for posterior signals
C... L - Lagrange multipliers for posterior signals
C... JAC - Scratch array - MDP1 by MDP1
C... IERR - error flag - nonzero if input autos bad
C

INTEGER K1(30),K2(30),MPR(2)
REAL*8 RO(30,2),R(30,2),DR(30,2),A(30,2),L(30,2),LO(30,2)
REAL*8 RC(29,2),W(2)
REAL*8 B(30),DB(30),RD(30),DL(30),RTOT(30),RIN(30)
REAL*8 JAC(MDP1,MDP1),E(2),SS(60),ASQ(60),RC2(60)
REAL*8 S(60,2),SCLU,SCLD,D,DIFF
LOGICAL SCALED

C

C Initialization

C

IERR=0

SCLU=RIN(1)
SCLD=1./SCLU

C

C Get maximum model order M
C

MD=MDP1-1
M=MD
DO N=1,NS
M=MAX(MD,MPR(N))

ENDDO
MP1=M+1

C

DO I=1,MP1

RTOT(I)=RIN(I)*SCLD
DO N=1,NS

R(I,N)=R(I,N)*SCLD
ENDDO

ENDDO
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IPASS=0
C

C Get A coefficients, reflection coefficients, lagrange multipliers
C for each prior.
C

DO N=1,NS
CALL DLEVIN(MPR(N)+1,R(1,N),A(1,N),E(N),RC(1,N))
DO I=1,MPR(N)

IF(ABS(RC(I,N)).GE.1.0)THEN
TYPE *,'ILLEGAL PRIOR AUTOCORRELATIONS'
IERR=1
RETURN

ENDIF
ENDDO

C Extend priors to order M
IF(MPR(N).LT.M) THEN

DO I=MPR(N)+1,M
RC(I,N)=0.
A(I+1,N)=0.

ENDDO
CALL DRC2AU(SQRT(E(N)),RC(1,N),M,R(1,N))

ENDIF
CALL DA2L(A(1,N),L(1,N),MP1,E(N))
L(1,N)=0.5*L(1,N)

ENDDO
C Zero work vectors

DO I=1,MP1
B(I)=0.0
DO N=1,NS

RO(I,N)=R(I,N)
LO(I,N)=L(I,N)

ENDDO
ENDDO

C

C Main loop
C

20 CONTINUE

IPASS=IPASS+1
IF(IPASS.GT.100) THEN

TYPE *,'Convergence failed after 100 passes'
RETURN

ENDIF
C DO N=1,NS

DO I=1,MP1
ASQ(I)=0.
IM=2*MP1-I
ASQ(IM)=0.
DO K=1,I

ASQ(I)=ASQ(I)+A(K,N)*A(I-K+1,N)
IF(I.LT.MP1)ASQ(IM)=ASQ(IM)+A(MP1-K+1,N)*A(MP1-I+K,N)

ENDDO
ENDDO
CALL DA2RC(ASQ,RC2,2*M,IERR)
CALL DRC2AU(E(N),RC2,2*M,S(1,N))
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DO K=1,MP1
DL(K)=LO(K,N)+B(K)/W(N)-L(K,N)

ENDDO
DO J=1,MP1

DR(J,N)=0.
DO K=1,MP1

DR(J,N)=DR(J,N)-(S(J+K-1,N)+S(ABS(J-K)+1,N))*DL(K)
ENDDO

ENDDO
ENDDO
DO I=1,MP1+M

SS(I)=0.

DO N=1,NS
SS(I)=SS(I)-S(I,N)/W(N)

ENDDO
ENDDO
DO J=1,MDP1

DO K=1,MDP1
JAC(J,K)=SS(J+K-1)+SS(ABS(J-K)+1)

ENDDO
ENDDO

C
C Invert Jacobian in place
C

CALL MINVD(JAC,MDP1,D,K1,K2)
SCALED = .FALSE.

DO I=1,MDP1
RD(I)=RTOT(I)
DO N=1,NS

RD(I)=RD(I)-R(I,N)-DR(I,N)
ENDDO

ENDDO
DO I=1,MDP1

DB(I)=0.
DO J=1,MDP1

DB(I)=DB(I)+RD(J)*JAC(J,I)
ENDDO
B(I)=B(I)+DB(I)

ENDDO
C

C Compute delta-R
C

DO N=1,NS
DO J=1,MP1

DO K=1,MP1
DR(J,N)=DR(J,N)-(S(J+K-1,N)+S(ABS(J-K)+1,N))*DB(K)/W(N)

ENDDO
ENDDO

ENDDO
C

C Check constraints
C

D = 0.0

DO I=1,MDP1
DIFF = RTOT(I)
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DO N=1,NS
DIFF = DIFF - R(I,N) - DR(I,N)

ENDDO
D = MAX(D,ABS(DIFF))

ENDDO
IF (D.GE.1.OE-5) THEN

TYPE 70, IPASS, D
70 FORMAT(' Constraints violated on pass',I4,

+ '. Rel. discrepancy',1PE13.6,'.')
RETURN

ENDIF
C

C Save old value of R

C

DO I=1,MP1
DO N=1,NS

RO(I,N)=R(I,N)
ENDDO

ENDDO
C

C Calculate new R's, test for legality
C

120 DO I=1,MP1
DO N=1,NS

R(I,N)=RO(I,N)+DR(I,N)
ENDDO

ENDDO
DO N=1,NS

IF(R(1,N).LE.0.0)GOTO 150

CALL DLEVIN(MP1,R(1,N),A(1,N),E(N),RC(1,N))
DO I=1,M

IF(ABS(RC(I,N)).GE.1.0)GOTO 150

ENDDO
ENDDO
GOTO 160

C

C New autocorrelations not feasible; reduce size of jump
C

150 DO I=1,MP1
DO N=1,NS

DR(I,N)=0.75*DR(IN)
ENDDO

ENDDO
SCALED = .TRUE.
GOTO 120

C

C Get new Lagrange multipliers
C

160 DO N=1,NS
CALL DA2L(A(1,N),L(1,N),MP1,E(N))
L(1,N)=0.5*L(1,N)

ENDDO
C

C Convergence check
C
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IF (SCALED) GOTO 20
DO I=1,MP1

DO N=1,NS
IF(RO(I,N).EQ.0.)GOTO 20
IF(ABS(DR(I,N)/RO(I,N)).GT.1.E-5)GOTO 20

ENDDO

ENDDO
DO N=1,NS

E(N)=E(N)*SCLU
DO I=1,MP1

R(I,N)=R(I,N)*SCLU
ENDDO

ENDDO
IERR-=0
RETURN
END

SUBROUTINE DA2L(A,XL,MP1,EIN)
REAL*8 A(MP1),XL(MP1),EIN,EO
EO=1./EIN
DO 10 J=1,MP1
XL(J)=0.0
DO 5 I=1,MP1-J+1
XL(J)=XL(J)+A(I)*A(I+J-1)

5 CONTINUE

XL(J)=XL(J)*EO
10 CONTINUE

RETURN
END
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SUBROUTINE DRC2AU(RMSS,RC,N,R)
C...

C... CONVERT GAIN AND REFLECTION COEFFICIENTS TO AUTOCORRELATIONS
C... DOUBLE PRECISION VERSION
C...

C... INPUTS:

C...
C... RMSS - SQRT OF LPC GAIN
C... RC - REFLECTION COEFFICIENT ARRAY
C... N - NUMBER OF REFLECTION COEFFICIENTS
C...
C... OUTPUTS:
C...

C... R - ARRAY OF N+1 AUTOCORRELATIONS

C...

REAL*8 RC(1),R(1),A(60),A1(60),RMSS,E
CALL DRC2E(RC,N,RMSS,R(1))
E=R(1)
DO 50 M=1,N
R(M+1)=-E*RC(M)
E=E*(1-RC(M)**2)
Al(M)=-RC(M)
IF(M.EQ.1)GOTO 20

DO 10 J=1,M-1
R(M+1)=R(M+1)+A(J)*R(M-J+1)

10 A1(J)=A(J)+RC(M)*A(M-J)

20 DO 40 J=1,M
40 A(J)=A1(J)
50 CONTINUE

RETURN
END

SUBROUTINE DRC2E(RC,M,RMSS,E)
REAL*8 RC(30),RMSS,E,CF
CF=1.
IF(M.EQ.0)GOTO 20

DO 10 I=1,M
10 CF=CF*(l.-RC(I)**2)
20 E=RMSS**2/CF

RETURN
END
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