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COMPUTING THE GRAZING ANGLE OF SPECULAR REFLECTION

INTRODUCTION

In this report we give three methods for computing the grazing angle of specular reflection. The
first was developed by Fishback [1,21 in 1943 and refined somewhat by Blake [3] in 1980, and it gives
an approximation to the grazing angle. The second is an iterative method, whose derivation is easy and
provides for the computation of the grazing angle to any degree of accuracy specified. The third
method shows that there is a closed form explicit expression for the grazing angle. This in turn also
allows for a computation to an arbitrary degree of accuracy. A FORTRAN program of the second
method is included in Appendix B.

GENERAL REMARKS

The geometry of the spherical-earth problem and definitions of various angles and distances are
given in Fig. 1.

The problem of computing the grazing angle of specular reflection is that of computing t in Fig.
1, i.e., finding , an angle between the tangent line, I, to the circle and AR where tA is also the angle
between land TR.
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Fig. 1 - Geometry of spherical-earth specular reflection

Manuscript submitted May 20, 1982.
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MILLER AND VEGH

We assume that 6 = (01 + 02); hi, h2, and r, are given. Define kI, = i =1, 2.
re + hi

METHOD ONE

In method one. let

s = re4, (1)

p2= re(hi + h2 ) + 1 s2 (2)

and

q sin-l l2p3 re s (h2 -h 1). (3)

Then when h1 and h2 are very much less than re, Fishback approximates X1 by

1 - P sin(27J (4)

Finally, the grazing angle q is given by

0 = tan1I(cot 0 1 - k, csc X,). (5)

The error in the approximation for <b1 (and consequently for l) is not generally known. How-
ever, if hi = h2, then 41 = 1/241 and Eq. (5) provides the exact result for the grazing angle.

METHOD TWO

Method two uses an iterative procedure for computing the grazing angle to any degree of accu-
racy.

First, applying the law of sines to triangles OAR and ORT, we obtain

X1 + q = cos-' (k, cos 4') (6)

and

02 + i = cos 1 (k2 cos q). (7)

Adding the equations (and recalling that ¢ = 01 + 02) we have,

= g(o) (8)

where,

g(q) = 2 [cos- ((k cos t) + cos- t (k2 cos p)- ]. (9)

If we choose tp0 arbitrarily and define

i+l = g(p,), i =0, 1, 2, (10)

then by the results of Appendix A,

lim biy (11)

exists and is the unique solution of Eq. (8), i.e., (11) is the grazing angle.
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Approximations to the grazing angle are given by the terms of the sequence I10, /, I, ... , with suc-
cessive terms providing more accurate approximations. In practice, when the relative difference of suc-
cessive terms of this sequence differ in absolute value by no more than a predetermined constant, we
obtain the grazing angle to our required degree of accuracy. A FORTRAN program implementing
method two is given in Appendix B.

To obtain a rapid convergence for method two, we might use method one to obtain the initial
value, I/o. In addition, method two may be useful in real-time computation of the grazing angle, since
an angle once computed may be used as the initial value for an update computation.

METHOD THREE

The third method produces, in principle, an explicit expression for the grazing angle.

Let U = exp(i41) and Z = exp(2i).

Then replacing U and Z in Eq. (8), we obtain the following quartic (see Appendix C for deriva-
tion):

aZ4 +/,Z 3 + CZ2 + 1Z + a= 0, (12)
where,

A = U- klk 2,
a = UA,

,6 = kI2 + k2I - 2 kl k2U,

and

C= 2ReV,]- UAi.

Since Eq. (12) is a quartic, the roots can be exhibited explicitly using the classical method of Fer-
rari and Cardan [4]. At least one of these roots lies on the unit circle. Let Z. designate any of those
roots on the unit circle. Then

I* cos-1 (Re (Z.)), (13)
2

and that unique value of 4'. that satisfies Eq. (8) is the grazing angle.

Rather than use the method of Ferrari and Cardan to find the four roots of Eq. (12), it is easier
and more efficient to solve the quartic numerically on a computer using a polynomial root finder rou-
tine.

CONCLUSION

Three methods for computing the grazing angle of specular reflection are given. The first pro-
vides an approximation where the error is not known. Methods two and three will provide computa-
tions good to any degree of accuracy. Method two, an iterative procedure, may be especially useful in
real time computation.
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Appendix A

PROOF OF CONVERGENCE TO THE GRAZING ANGLE

Let X be an arbitrary set, d a metric on X, and f a contraction mapping of X to itself. (f is called
a contraction mapping if there is a positive constant k < 1 such that

d ((x), f (y)) < k d (xy) for all x, y in X).

The following result may be found in [All.

THEOREM: Every contraction mapping, f on a complete metric space has a unique fixed point,
i.e., there is a unique x in X such that f(x) = x. Furthermore, for an arbitrary x0 in X, the sequence
given by x,,+4 = f(x"), n = 0, 1, 2 ... converges to x.

As a special case, let X be the reals and for xy in X let d (xy) = x- y |. Then (X,d) is a com-
plete metric space.

Now let f be a differentiable function defined on X and suppose furthermore that there is a con-
stant k, 0 < k < 1 such that If'(x) I < k for all x in X. Then f is a contraction mapping. This may be
seen as follows. Let x and y be real numbers, x < y. By the mean value theorem there is a number e,
x <( <y such that

f (x) - f (y) = (x - y)f'(f) -
Hence,

If (x) - f(y)I = Ix - yIIf'(f)I < k Ix - yI.
These results may be summarized in the following.

COROLLARY: Let R be the reals, k a constant 0 < k < 1, and f a differentiable function on R
such that If'(x) I < k for all x in R. Then there is a unique real number a such that

a = f (a).

Moreover, if x0 is an arbitrary real number and x 1+, = f(x"), n = 0, 1, 2, ... , then

lim x"= a.
n-.0

With respect to Method 2, we have given the differentiable function

g(x) = 2 1cos1(kIl cos x) + cos-1(k2 cos x)- 4].
Differentiating, we have

1k, sin x Ik2 sin x

=±IIV kl2 ~c~oos2 X 22 coso X= f -kiw k 
5
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Recalling that

ki = re < 1,
r, + hi

I - Cos2 x
12g'(x) I < k, 1-Ic cos 2 X

1 - cos2 x+ k2 1-I2 cos2 x

< ki1+ k2 < 2,

or

Ig'(x)I < l, + k 2 < 1.

Hence, by the Corollary, there is a unique number a such that

a = g(a).
Moreover, if x0 is arbitrary and x,+, = g(x,), n = 0, 1, 2, ... , then

lim x,, = a.
nfl0

REFERENCE

Al. G. Bachman and L. Narici, Functional Analysis, Academic Press, N.Y., 1966.
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Appendix B

A FORTRAN PROGRAM OF METHOD TWO

SOURCE LISTING

STATFUENT

ASC FAST FORTRAN COMPILER

CP OPTIONS = (%,X)

RELEASE FTFYO529.P294/9C

DATE = 05106/82f8?.126)

SIIRROJUTINE GRAIE(H1942,THETAoREPHI)
r
C THIS ROUTINE COMPUTES THE f.RAZING ANGLE PHI
C F4QTH SPECULAR RFFLECTTIN.
C
C 41*= ANTENNA HEIGHT.
C H2= TARGET HEIGHT.
C QE= FARTH EFFECTTVF RADIUS OR EARTH RADTIUS.
C THFTA IS CENTRAL ANGLE IN RADIANS.
C
C PHI MUST BE INITIALIZED tN CALLING ROUTINE;
C DHT= GRAZING ANGLE OUTPUT TN RADIANS.
C RELATIVE ERROR IN PHI TS 10**-R, RUT CAN BE
C VALUE OF T"L IN DATA STATEMENT,
C
C TNPUTS AND "11TPUTS ARF IN REAL*8!REAL*4 CAN
C IMPLICIT STATEMENT AND ADJUSTING TOL.
C
C 41, 142, RE. THETA ARE INPUTS. UNITS FOR "I,
C CMNSTSTENT.
C
C

FOR SPHERICAL

PHI *NF. 0.

nECRFASFn AY CHANGING

RE USED AY RFMTVTNG

H2, RE MUST RE

IMPLICIT RFAL*8(A-H,'9-1)
C

DATA TML/1.0-81
C

PK1=REF(H1+RE)
QK 2=RE eZ 4 RE H)

C
A=0AQCnS(RKll+9ARCOS(Rv2)-THFTA
IF( A .GE. 0.00 .AND. a .LE. 1.0-15 ) GOTO It

C
20 G=0.SD0*(DARCOS(RKt*nCOS(P'l) )+nARCOS(RK2*DCE¶S(PHT))-THETA)

C
RTST=(r.-PHI)IPHI
QTST=OABS(RTST)

C
IF(RTST.LE. TOL ) GOTO 10

C
PHT=G

C
GOTO 20

C
10 PHT=G

C
RETURN

C
lt P#4T=O.no

RETUON
END
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Appendix C

DERIVATION OF THE QUARTIC

Beginning with Eq. (8), we have

cos (24 + 0) = kIk 2 cos2 q- 21-Ic? cos2 q 1- 2I cos2 q,

Squaring, we obtain

(1-kIc cos2 )(1-kIc cos2 p) - [kII 2 cos2 - cos(2qi + 0)]2,

or

1 -(k2 + kI2) cos2 t - cos2(2p + +)-2IcI 2 cos2 u cos(2qi + k). (Cl)

Let U= exp (io) and Z = exp (i2qp),

so that

cos2uk= 4 (Z+Z+2), (C2)

and

cos (2 + )= 2[UZ + Uz]. (C3)
2

Multiplying both sides of Eq. (Cl) by 4U2 Z2 and substituting Eq. (C2) and Eq. (C3) into Eq.
(C ) we have

4U2 Z2- U2(kI2 + k2)(Z 3+ 2Z2 + Z)

= (U4 Z4 + 2U2Z2 + 1) - Ukc1k2(Z 2 + 2Z + 1)(U2Z2 + 1).

Then grouping the terms in powers of Z gives

U3AZ4 + U2,8Z3 + U2(2Re ( - UA)) Z2 + U2/Z + UA = 0.

Now dividing by U2 gives Eq. (12).
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