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LOAD NUMBERS, SOLID EARTH TIDES,
AND LIQUID CORE DYNAMICS

INTRODUCTION

In NRL Report 8410 [1] we expressed the deformations of an elastic Earth due to static surface
loads as infinite series of spherical harmonics. The coefficients of these harmonics were called the load
numbers and were obtained by integrating the Navier-Stokes equation throughout the interior of a lay-
ered Earth with boundary conditions that had to be satisfied at both the center of the configuration and
the loaded upper surface. To numerically evaluate these infinite series, one must: (a) be able to ascer-
tain the load numbers of arbitrarily high order without having to solve each time a boundary problem
(this is tantamount to establishing an asymptotic expansion for the sequence of load numbers) and (b)
develop practical and efficient ways for numerically summing those series of spherical harmonics once
the load numbers are known.

We discuss in this report a question that was left unanswered in our previous publication, that is>

why the stress function was assumed to be discontinuous at the core-mantle interface when numerically
evaluating the load numbers as a boundary value problem.

This report presents in a systematic and rigorous way procedures suitable for the numerical
evaluation of the Earth’s spheroidal deformations, which most commonly are called the Earth’s tides.
For this purpose, we: (a) study the Boussinesq theory for the elastic deformations of a flat plate and
show how by applying the Boussinesq solution to the tangent plane at/a loading point of the spheroidal
Earth we can establish the asymptotic behavior of the load numbers [2]; (b) elaborate on certain
numerical procedures which seem to be best suited for the summation of series once the asymptotic
behavior of their coefficients has been ascertained; (c) provide in tabular form the closed form expres-
sions of those infinite series of spherical harmonics which are essential for the numerical evaluation of
the Earth’s tides; and (d) examine the dynamics of a liquid core for a nonrotating Earth to mathemati-
cally prove the existence of a boundary layer at the top of the liquid core. This layer provides a
justification for the discontinuous behavior of some of the integration variables at the liquid core/solid
mantle interface, and furnishes the proper number of free parameters for satisfying the boundary condi-
tions at the loaded surface.

A more detailed discussion of these ideas can be found in a forthcoming publication by Lanzano
[3]. In reaching our main results, we want to acknowledge the fact that we have greatly benefited from
two older publications by Farrell [4] and Pekeris and Accad [5].
ASYMPTOTIC VALUES OF THE LOAD NUMBERS

The strategy we follow in order to ascertain the asymptotic values of the load numbers can be
summarized in the following steps:

(1) One should compare the infinite series expansions which represent the spheroidal defor-
mations and which contain the load numbers as the coefficients of the various harmonics

Manuscript submitted on May 18, 1982.
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PAOLO LANZANO

with appropriate closed form solutions for the same type of deformations which are valid
within a limited region of the spheroid. This is the case in the neighborhood of a loading
point where the Boussinesq theory of the flat plate applies and gives rise to a closed form
solution.

(2) One should refer both solutions in the region where they overlap to a common reference
frame. It is convenient to make use of the cylindrical coordinate system with the loading
line as its symmetry axis and the tangent plane to the spheroid at the loading point as the
auxiliary plane.

(3) Because the limit of the Legendre polynomials P, for large values of # is the Bessel func-
tion Jo (of order zero) [6], and similarly the same limit for the derivative dP,/d# is pro-
portional to J;, one should solve the Boussinesq problem by means of the Hankel
transforms of order zero and order one because these functional transforms use those
Bessel functions as their kernels.

(4) As a consequence, it follows that the asymptotic values of the three load numbers must
be proportional to the Hankel transforms of the two components of the displacement and
of the perturbed potential in the Boussinesq problem.

We shall next elaborate statements 1 through 4. To begin with,l]it is clear that for small angular
separations from the loading line, the displacements and the perturbed potential of a layered spheroid
must agree with the corresponding quantities referring to the tangent plane at the loading point. In the
neighborhood of a loading point, and for the values of density and elastic parameters commonly
accepted in the most recent Earth models, the elastic forces dominate the gravitational forces. We can,
therefore, not only assume that the density and Lamé parameters remain constant in the neighborhood
of a loading point, but also neglect the coupling between the gravitational and elastic forces; this situa-
tion enables us to study and separately solve one elastic problem and one gravitational problem.

In the absence of the gravity field g, of the reference state and of the perturbed gravity g; due to
deformation, assuming also: (1) elastic equilibrium, and (2) constancy of the Lamé parameters, the
Navier-Stokes equation, which was developed in our previous work, Egs. (14) and (15) of NRL Report
8410 [1], will simply reduce to

O +2WV(V - %) =uV XV X T, 1)

where 7 is here the displacement vector. The above equation should be solved for the material half-
space simulating the tangent plane, under the assumption that there is only one normal load concentrat-
ed at a given location in the uppermost surface. By the same token, the perturbations in the gravita-
tional potential can be represented by the Poisson equation

Vi = —4wGpo(V - U), (2)
with constant density pg, along the material half-space, and by the Laplace equation ‘
Vi =0,

in empty space.

Consider a spheroidal Earth bounded by an equipotential surface r=a with a vertical load applied
at one of its points Q. We introduce the spherical reference frame (OQ, r, 8) with origin O at the cen-
troid of the Earth and polar axis along the line OQ; we shall measure the colatitude 6 from this axis and
assume that the configuration be symmetrical with respect to the line OQ. This line of application of
the load can be taken as the zaxis of a cylindrical reference with origin at the loading point Q, and the
tangent plane to the spheroid at Q can be taken as the auxiliary plane upon which the other two vari-
ables (r and ) will be measured. This cylindrical system shall be denoted by (@, r, y). It is clear that

2
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if we take a point T in the neighborhood of Q, the arc (QT) along the equipotential, which is
represented by a6, must be the radial distance in the cylindrical reference system; also that the unit
vectors ¢, and ¢, of the cylindrical frame must be the limiting positions of the unit vectors &, and &,
respectively, of the associated spherical frame.

We shall solve both Egs. (1) and (2) where the displacement vector 7 will have the following
representation in cylindrical coordinates:

d=ulzr)e, +v(zr)e,. 3)

The spheroidal deformations of a layered spheroid along an equipotential surface r = a due to an
applied vertical load of mass my acting at a point , and when expressed in spherical coordinates in
terms of the load numbers #', I, can be written as follows:

7(0,0) = 222 3 12, 1y (a) P, (cos ) + 2 (a) dP, (cos 6)/db]. o)
n=0

Here m is the mass of the spheroid within the equipotential surface r = a.

Similarly, the potential due to the deformation of the spheroid can be expressed in terms of the
third load number k', also in spherical coordinates, as follows:

$(@6) ==L yy(a) T ki(a) P, (cos 0). )
n=0

Here yq(a) is the gravitational attraction since we are neglecting the rotational effects.

B

It is now appropriate to recall that the limit of the Legendre polynomials for large values of the
parameter n can be established in terms of the Bessel functions. More specifically, see Ref. 6, p. 155

lim P,[cos (6/n)] = Jo(6). (6)

By differentiation, and if use is made of elementary properties of Bessel functions,

.1 dPylcos (9/n)]

Because of these properties it is convenient to solve Egs. (1) and (2) by means of the Hankel
transforms.

The Hankel transform of order # of a function f(z, r) of two variables with respect to one of its
variables is represented by the corresponding capital letter and is defined as

Fa &)= [ fG ni,Enrarn, )
where J, is the Bessel function of order n. We can verify that the inversion of Eq. (8) will provide
£ )= [ FG oJ,Eneae. ©

Note that the product £r of these two variables must be a nondimensional quantity. From Egs.
(8) and (9), it is clear that the dimensions of a set of Hankel transforms (f;F) will differ by the square
of the dimension of the ¢ or r-variable.

We now revert to Eq. (1) and write the components of the stress as

_ - du A 8 (.
T, =Ae, + € +€,,) + 2ue,, = (A + 2u) 52 + p ar(rv),
du | 9v
Ty, = 2UE, = U or + ozl (10)

El
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PAOLO LANZANO

Here u, v are the components of the displacement vector 7 given by Eq. (3); the notation we use is the
one by Sokolnikoff [7].

Consider the system formed by Eqs. (1) and (10); and apply the Hankel transform of order zero
to the v and 7, variables, the H transform of order one to the v and 7, variables. Denote the H
transforms of these four variables by the corresponding capital letters. Then assume that both v and v
and their partial derivatives vanish at infinity with 1/r. Consider the system of equations in the
material region of the linear space, which we assume to be the z < 0 half space.

We reach the linear differential system ‘
X' = A%, (11)

where the primes denote derivatives with respect to the z-variable and where we have set
X = Column (U, ¥V, T,, T,). (12)

The matrix A4 is

0 —A\fo 1o O

N R R 1
A=ly - (13)

0 4dunt¥o Al O
with constant values foro = A +2puandn =\ + u.

"The general solution of Eq. (11) is obtainable by elementary procedures in terms of the eigen-
values B8 of the 4 matrix, i.e., in terms of the roots of the characteristic equation

Det (4 — BI) = 0, (14)

where I here stands for the (4 x 4) identity matrix. The four roots of Eq. (14) are 8; = B, = £ and
B3 = B4=—¢.

The eigenvectors or solutions to Eq. (11) can be expressed according to the infinite relationship
2
X=-exp (£éz) exp [(4 FEDZIY =exp (£ F + z(AF DY + %(A FENT+...1 (15

One can obtain two independent solutions,

exp (££&2)7, (16)
by solving the linear system, ‘
4F Dy, =0. an
Two additional independent solutions are
exp (££2)[7, + z(4 F €D, - (18)
obtainable by choosing solutions of
(4 FEDY,=0, (19)

which are not common to Eq. (17). In both cases, the infinite expansion appearing in Eq. (15) will ter-
minate.
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By following the preceding procedure, we reach the set of four linearly independent solutions:

1
F1
+2u¢| €XP (x¢2);
—2ué
(20)
Féz + pu/n
¢z £ o/n
—2u €2z
+2ué2z + ué

exp (x£z).

Let us now take into account the boundary conditions. The vanishing of the four original variables at
z = —oo, means that the transformed variables U, V, T,,, T,, must vanish at minus infinity. If we
choose henceforth ¢ > 0, then the solutions containing exp (—£2z) cannot be taken into consideration.
To combine the remaining two solutions, we suppose: (a) the transversal component of the stress van-
ishes at z = 0: 7,,(0, r) = 0; and (2) the unit normal load is applied on a spherical cap of radius r =
a, ie.,

7,0, r)==1/ma? forr < «,

7,0, r)=0 forr > a.
It follows then that

T,(0,¢) =0,
and
_ 1 ® 1 24a)
0.8 === [ J(e)r dr =~ —
whose limit for a shrinking « is = —1/2%. Using the previous relations, we finally have
Uz ¢) =— 1 Lgz + Ll exp (£2);
4 M
Qn
V(z,€) =— - — ez + E|exp (¢2).
drué m

We next consider the gravitational problem by solVing the Poisson equation within the material tangent
plane (z < 0) and the Laplace equation in empty space (z > 0).

We introduce the Hankel transform of order zero for the perturbed potential ¢ and denote it by
®. The Poisson equation then becomes

[i_§2

922

®(z,¢) = 2Gpo

exp (£2), 22)

AITITCLYIOND
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PAOLO LANZANO
after use has been made of Eq. (21) to express the components U and V of the displacement. The
characteristic exponents of Eq. (22) are +&. The solution of the Laplace equation valid for empty
space (z > 0) must vanish at z = +oo and must therefore be in the form

®,(z,¢) = 4 exp (—¢2). (23)
The solution of Eq. (22), valid within the elastic medium, can be seen to be:
G
®,(z¢) = |B + n’;" z] exp (£z). (24)

However, ® must be continuous at the interface z = 0; this leads to 4 = B. By rewriting the Poisson
equation as the divergence of the vector

V¢ + 47 Gpoﬁ,

we realize that the normal component of such vector must be continuous at z = 0. In terms of the H
transforms, we reach the condition:

[99,/82],_o = [8®,/82),- + 47 GpoU; (0, £); (25)

this is so because of the vanishing of U,(z¢). Use of Eq. (25) is instrumental in determining the
value of 4. We get

G
®,(z¢) = p(; exp (—¢z) for z 2 0, and
2ué
(26)
G
®,(z¢) = > ’;02 1+ 2z exp (¢€z) for z £ 0.
m

We are now in the position of comparing two solutions which are both valid in the neighborhood of a
loading point and of determining the limit of the three load numbers as the order of the harmonic
tends to infinity.

First, by expressing the solutions given by Eqs. (4) and (5) in cylindrical coordinates and by mak-
ing use of Eqgs. (6) and (7), the displacement vector and the perturbed potential for large values of n,
may be written:

E—Zi (e, h,(a)Jo(n6) — &.nl,(a)J,(n8)]; — —"—,';19 vola)k,(a)Jy(no). @n

We next represent the Boussinesq solution for z = 0 and for small values of the radial distance r = a6
as integrals of the H transforms according to the following relationships:

— A % n n A oo n n .
(0,a0) = ¢ fo UIO,';]JO(HO)? dn + &, fo !{O,;]Jl(nf))? dn;
oo n n
$0,a0)= [ @ [o,;] 1o(n6) %5 dn. (28)

Note that the integration variable £ has been relabeled € = n/a, a legitimate replacement since £ has
the dimension of an inverse length.
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Each integral appearing in Eq. (28) can be visualized as an infinite summation; their terms per-
taining to large values of »n must coincide with the corresponding terms appearing in Eq. (27). Since
the Boussinesq solution was written in terms of a unit force whereas the applied load here is mgyy(a),

we reach the following relationships:
amg ' n
- h,(a) = ? U[O

n
,— | mgyo(a);
p ovola)

amy n
- nl,(a) = - {O p, myyol(a); 29)
am
0 ‘yo(a)k (@) =—-— cI>[0 mgyo(a).
By using Egs. (21) for Uand V, and Eqs. (26) for ®,, we finally arrive at the asymptotic representation,
h* m —a/u
Pl 1| (30)
¥ TN |=3pn/2up

Here o = A + 2u, n = A + u, p is the mean density, m is the total mass of the spheroid, and A% /¥ k*
are the limits of h,, nl,, nk, as n approaches infinity. All quantities appearing in Eq. (30) must be
evaluated at the outermost surface, r = a.

For the 1066A Earth model, these limits can be calculated and are

* = —11.35767,
= 3.43096, €}
k* = —4.70473.

NUMERICAL EVALUATION OF THE GEOPHYSICAL PARAMETERS

Once the asymptotic behavior of the three load numbers has been ascertained, one can numeri-
cally evaluate the elements of geophysical interest; these are: (a) the elastic deformations of the sur-
face; (b) the variation of the gravity field in direction and intensity; and (c) the strain tensor induced
by the deformations. All these quantities are represented by infinite series of Legendre polynomials,
the angular distance @ being measured from the loading line.

Because we know the asymptotic limits h* k* I* of h,, nk,, nl,, we can take advantage of the
Kummer method for the summation of an infinite series of functions. {8,9]. This method consists of
subtracting frorq the given series an appropriately chosen series of known sum whose elements are
asymptotically proportional to the series in question. The result can then be expressed as the sum of
two infinite series of Legendre polynomials: (a) the first one is multiplied by the known asymptotic
value of the load number and its sum can be represented in closed form; (b) the second infinite series
has coefficients asymptotically tending to zero, so that it can ultimately be evaluated as a finite sum; the
number N of its terms must be so chosen that for values of the subscript # larger than N, the difference
between the corresponding load number and its asymptotic value can be considered negligible according
to the degree of approximation we plan to achieve.

Let us further examine these ideas. Consider the components u, v of the displacement vector
7% (a,8). For the normal component, we get

oo

«(@o) =L 3 H@P,= "0 e 3 7, +3 (- kP, (32)

n=0 n=0
the value of N depending on the accuracy to be attained.
7

4
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In a similar manner, the tangential component v of the displacement can be evaluated according

to the scheme:
amy dP, 1 dP,

oo N
Vo) =0y~ S 3 - S (33)
n=1

This is so because /* is the limit of nl, as n goes to infinity. Both infinite series, P, and
(1/n) (dP,/d#), that appear in Eqgs. (32) and (33) can be summed in closed form; their expressions are
given in Table 1.

Table 1 — Closed Form Sum of Certain Harmonic
Series of Geophysical Interest
6)) i P, (cos 9) = 1 cosec | &
n=0 8 2 2

o0

(2) ¥, nP,(cos 0) = —% cosec [%]

n=0
* dP, 1 ] . |0
(3) "ZI,) Pl cosl2]cosec [2
& |1 4P| . |6
() n; iy ] = ,cos()+sm 2” cosecl

= |1 4*P, .. |6
5 — = 1 — 3 |Y 20
) n; Pl ] [ sin [2]] cosec

2 |1 e 9
(6) "gl " P,(cos 0)] = ln[sm 5|1+ sin 2]]

Next, consider the variation in the gravity field. The potential at a point Q(a + v, ) of the
deformed surface, located at a height u from the point P(a,8) on the equipotential r = g, can be writ-
ten:

V(Q) = Vo(P) + uVy (P) + Vi (P) + V,(P).

Here, primes denote derivatives with respect to the normal distance, Vj is the potential of the original
configuration, V7 is the potential due to the redistribution of mass, and ¥, is the potential of the
applied load.

A gravimeter located at Q measures the following acceleration:

V'(Q) = Vo (P) + uVy (P) + (V) (P) + V,(P). (34)
We now expand both V7 and V, into spherical harmonics and note that ¥y (P) = —yo(a), where
a
yola) = 47720 fo polr)riar. (35)
a

By differentiation, we easily establish that

yola) = —-‘2; vola) + 4w Gpyla). (36)
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If we neglect the contribution due to the density at P, Eq. (34) can be rewritten as

—(0) = =3P + L uyo(P) - 2L i 2y + L v, (p),
which leads to
Y (P,0) = vo(P) = 7(0) = 22 55(P) T ;@) = (n + Dk; (@) + nlP, 37
n=0

Finally, the tilt or deviation of the vertical direction can be expressed as the angle between the normal
to equipotential surface, ¥, + V| = constant and the geometrical normal to the deformed surface. For
simplicity, we shall limit our considerations to the component of the tilt upon the meridian of the
spheroid which we denote by ¢; (a,0).

The normal line to the equipotential surface is represented by
(1 + k,)(dP,/d6),

whereas the normal to the deformed surface depends on

(1/a)(9r/00),
which is proportional to
h,(dP,/d8).
We can then write
- my & ’ ' dP,, .
= — 1 - . §
t; (a,0) p” EO 1+ k,(a) — h,(a)] 1 (38)

The numerical evaluation of Eqs. (37) and (38) requires the sum of three additional infinite series:
nP,; (1/n)P,; dP,/d8. Their sums are also available from Table 1.

We now come to the evaluation of the components of the strain tensor. We use the fundamental
Navier-Stokes equation which was expressed as Eq. (39) in Ref. 1 to write:

e (@) = u'(a,0) = T Uj(@)P, =
n=0

E,(a)

-y |-2@ Uy +nn+1) Ma)
o(a)

a ,;0 ac (a) ao(a)

As usual, primes denote derivatives with respect to the radial distance and o = A + 2u. U, Vand E
denote the expansions into spherical harmonics of the components u, v, of the displacement vector and
of the component 7,, of the stress tensor. We know that E,(a) is a delta-function with its peak at § =
0, so that it will give a zero contribution anywhere else. If we take these facts into account and
represent the v component of the displacement vector in terms of the load numbers, we can rewrite the
previous equation as

V,(a) +

P, (cos 8).

en(a,0) = =2l )+ 20 Ma) S (41 (@) P, (cos 6). (39)
o(a) m o(a) =
We can next verify that
_1 3 vawl|- L M3 gy L
€00 = — u(a,8) + 20 vi(a9)| = - u(a,6) + - ’;0 I,(a) et (40)
Also 1 .
€4s(a,0) = - [u(a,8) + v(a,0) cot 0]. 41)

3TITCSVIONG
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The other components of the strain tensor can be shown to vanish when evaluated at the surface r = a.
The numerical computation of these infinite series which represent the components of the strain tensor
necessitates the knowledge of the sum of the series (1/#n) (dzP,,/ d9?); this is also given in Table 1.

Table 1 provides the closed form sum of all those series which are required for the numerical
evaluation of the geophysical parameters. A detailed derivation of the sum of these series appears in
Ref. 3; for some partial results see Ref. 10.

From a computational point of view, few remarks are in order before bringing this section to a
close.

(1) The second infinite series that was introduced through the Kummer transformation turns out to
be slowly convergent; various numerical algorithms must be used in order to accelerate its conver-
gence; in this regard, the Euler transformation was found to be a useful tool [8,9].

(2) For large values of the order n of the harmonic and for small values of the angle § measured from
the loading line, one can achieve computational economy by approximating P, (cos 8) and dP,/dé
by means of J, and J1, as has been described in the previous section.

(3) The functions appearing in Table 1 are not finite at 8 = 0 and should not be used in the immedi-
ate neighborhood of the loading position. We have remedied to this situation by employing the
Boussinesq approximation extended to a suitable neighborhood of the loading point. We resume
therefore our considerations on the Boussinesq solution which had reached the representation
given by Eq. (21) and try to express it in terms of cylindrical coordinates at the loading point. In
other words, we shall invert the Hankel transformation. For this purpose, we use the following
integral appearing in Ref, 6:

S, exp(az) J,(62)dz = (C/b)*(a? + B2,
which is valid for v > 0, @ # 0, b # 0 and where C = (a2 +6)V2 — a4 > 0.

Differentiation of the above expression with respect to the parameter g yields
fo exp (—az)J,(bz2)z dz = [wb(C/b)*"! + a(l — »)(C/b)*1(a® + bD)~¥2,

The preceding two integral relations for v = 0, 1 are all that is required to obtain the Boussinesq
approximation in terms of cylindrical coordinates (z, r):

_ myla) [¢ | 2
ulz r) = 47muR | m * R2J)
42)
2
VG ) == Movela) |z mrz|
damr R uR?

Here we have set
R2=r24+z% n=X+pu and o =\ + 2u.

LIQUID CORE/SOLID MANTLE DYNAMICS

To justify certain assumptions that were made in carrying out the numerical integration of the
Navier-Stokes equations, it is appropriate to examine the physical conditions that might be expected at
the interface between liquid core and solid mantle. We shall therefore revert to the linearized version
of the Navier-Stokes equations which was obtained in our previous work [1] and establish some funda-
mental properties of its solutions.

10
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For the scope of a first-order approximation, we can safely ignore the influence of the Earth’s
rotation; however, we want to study those solutions of the Navier-Stokes equations that represent har-
monic oscillations depending on the time factor exp (iot). We believe that a deeper understanding can
be obtained of the conditions existing at the subject interface if we consider the Earth’s permanent
deformations as the limit of spheroidal oscillations of the harmonic type when their frequency o tends
to zero.

We use here the same notation adopted in the previous report; in particular, recall that the three
sets of functions U, ¥, and R represent the coefficients of the spherical harmonic developments for the
components u, v of the displacement vector, and for the potential due to deformation.

Within the liquid core where u = 0 and if we ignore the effects due to rotation, the equations
governing the spheroidal oscillations of constant frequency o can be obtained from Egs. (39) of our
previous report [1] in a greatly simplified form to be written as follows:

alporV + pogR — yepoU + A X = 0; (43)
O'ZpOU+p0R'+'yop0X—p0('yoU)'+ ()\X)’=O; (44)
2R"+2rR'— n(n + DR = 4w Gri(pgU + poX). (45)

For typographical convenience, we have omitted the subscript » referring to the order of the harmonic
because our considerations henceforth will apply to any given value of ».

In the preceding equations, primes denote derivatives with respect to the radial distance r, we
have also set

X=rU+2U—nn+ 1)V (46)

to represent the dilatation of the material. If we differentiate Eq. (43) with respect to r, subtract from
it Eq. (44) and simplify the ensuing result by means of the original Eq. (43), we reach the following:

Apo .
vo + —’—)22] X=XV +rVv-"0). 47

PO
In the limit, as o approaches zero while both U, ¥ remain finite, we either reach the adiabatic condition

ro!
Yo+ on =9, “8)
)

also known as the Adams-Williamson condition, or we must have X = 0. This means that the dilata-
tion must vanish.

Pekeris and Accad have discussed the constitution of the liquid core by means of a nondimen-
sional stratification function 8(r) defined as: '

’

A
yo+ — = yoB(). (49)
Po
(See Ref. 5). This in turn, is related to the Brunt-Vaisala frequency N2, according to
p=—-2_m | (50)
PoYo

Excluding the existence of neutral stratification throughout the whole liquid core, i.e., B8 = 0 every-
where, we realize that, as o approaches zero X must also tend to zero. Solving then Egs. (43), (46)
and (45) under these specific conditions, we find the particular solution

11
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U* = R*/yq, V* (r(U*)' + 2U*];

= n(n+D)
rP(RM" + 2r(R*)' = [n(n+1) + 4w Gpor¥/yolR* = 0.

We must choose that expression for R* that remains finite at the origin, r = 0; this will give rise to
only one arbitrary parameter. Furthermore, if we allow that the variable V* be discontinuous at the
core-mantle interface, we will have available only two parameters for the purpose of satisfying the three
boundary conditions that are valid at the loading surface, r = a.

One plausible physical condition that can justify the use of an extra free parameter is the existence
of an infinitesimal boundary layer at the top of the liquid core, because within such layer the dilatation
X can switch from zero to a finite value X* This arbitrary jump in value can play the role of the addi-
tional free parameter.

We shall prove in a rigorous way that such a condition really exists at the core-mantle boundary;
we shall accomplish this by considering the asymptotic expansion of the equations of motion with
respect to the inverse frequency of oscillation. We shall limit our discussion to a simple physical model
consisting of a uniform liquid core surrounded by a uniform solid mantle so that the analytical develop-
ments can be simplified without detracting any essential characteristic feature from the phenomenon.

Let us write the fundamental equations of motion for the case of a uniform liquid core, that is
when pg and A are constant and . = 0. It is convenient to introduce the constant,

4
A=§7er0,

which is related to the gravitational acceleration according to
‘}'0(" ) = Ar,

and use it to define a new nondimensional constant,
a=c?/A,

and a new variable Q = R/A4, which has the dimension of a squared length. In this notation, Egs. (43)
and (45) become:

ﬁX=r(U—aV)—Q, (51)
Q" +2rQ'~ n(n +1)Q = 3r2X. (52)

Equations (46) and (47) can be combined into a three-term relation:
X=a(V+rV-U)=rU+2U~-nn+1DV. (53)

We must solve Egs. (51), (52), and (53) for U, ¥, and Q. Let us begin with Eq. (53) and equate its
second and third member; after some algebraic manipulations, we can write

r(U—aV)+Q+a)(U~aV)=I[nln+1)—ala+ DIV.

It is easy to realize that r1*™@ is an integrating factor for the above equation; this will ultimately lead to
its solution in the form

U—-aV=[nh+1)—ala+ D), (54)
where
P = [ ey () (55)

12
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We next express the rX appearing in the right-hand side of Eq. (52) by means of the second member of
Eq. (53), and eliminate the U through Eq. (54). The right-hand side of Eq. (52) can then be written as

3ar{irV'+ (0 —-—a)V=1Inn+1) —ala + DII}.
The preceding expression is instrumental in establishing the fact that
3arl(r)
is a solution to Eq. (52). This can be verified by the use of the following relations,
rD'=Vv-»aA+a)I, _
r(iD"'=V'—AQ+a)V+A+a)2+a)l; (56)
which are obtainable by differentiating Eq. (55) defining the integra! I(r).

The geneéral solution of Eq. (52) can be written as
O = Br"+ 3arl(r), 57

where B is the only arbitrary constant appearing in our formulation because Q must remain finite at
r = 0. We shall use Eqs. (54) and (57) to eliminate the integral /(r) between them and express the
dilatation X, as given by Eq. (51), in terms of Q alone. This can be used to rewrite Eq. (52) as an
equation containing only the unknown function Q. If we adopt the nondimensional independent vari-
able

s=r/a,
the equation governing the variation of Q becomes

poda’

d*Q dQ
2
s m + 2s . nin+1)0 +

Here L denotes the expression

[ala +4) — n(n + 1)]1s?Q = Ls"*2, (58)

poAa’

fn(n +1) — ala + 1)]1Ba",

which depends on the arbitrary constant B. Equation (58) can be shown to have the particular solution
Ds", where

_nr+1)—ale+1)

T onn+ 1) —ala+4) Ba’.

Its general solution is of the form
Q=Ds"+T,

where T is the general solution of the equation obtainable from Eq. (58) by deleting its right-hand side.
The latter equation can be rearranged into

2
%(m —[C(s) +42(sT) = 0, (59)
where
A 2
Cls) = 2D _ 4 gy PO
s A
and
Aa? A’q?
v2=p0a n(n+1)=p0 2a nn+1) > 0. (60)
Ao Ao

13
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When the frequency o, and consequently the parameter «, decrease to zero and for s # 0, the values
of the function C(s) will become and remain negligible as compared with the constant »2. We
therefore conclude that for 0 < s < sg, the asymptotic solution of Eq. (59) valid for decreasing values
of o is of the form

T = { exp [v(s — sp)] + O(a)
where F stands for an arbitrary constant and sy = b/a, b being the radius of the liquid core.

The asymptotic expansion of Q accordingly will be
0= Ds"+ { exp v (s — sp)1 + 0(a); (61)
and the asymptotic expansions of the other pertinent variables U, ¥, and X can be evaluated therefrom.

In fact, if we express the first of Egs. (56) in terms of the nondimensional variable s, we get
Vis)=s % + 2 +a)I(s).

The expression for I(s) is obtainable by equating Eq. (61) to Eq. (57) since they both represent the
(Q-variable:

Q = Ds" + { exp [v(s — sg)] = Ba"s" + 3asal(s).
Proceeding along these lines and neglecting the positive powers of the small parameter & (or o), and

since we are considering asymptotic expansions, we find, after elementary operations, that

Fv
3aas

Similarly, by using Eqs. (51) and (54), we shall reach the asymptotic representations of U and of the
normal stress A X; the results are:

V(s) = %(as)”‘1 + exp (s — sp)l.

Us) = Blas)™t + s 2D o 15— ),
2
X6 = 35 Loxp (s - sol.

If we introduce the nondimensional arbitrary parameters
Ey= Ba"?, F, = F/3ad?
we can write the previous results in dimensionless form as follows:

1 V(s) = 1 Ey "1+ 1 vFexp [v(s — syl
a n N

nin+1)

Ly =g+ 7 Frexp (s = sp)l; (62)
a s
R(s) R (s) (s) . SaF )
ayoga) = azz = Qazs = [1 - %]Els + Lexp v(s ~ sp)l;
X(s) = —0%2— Fyexp lv(s — sp)l.

These equations prove that within the liquid core the oscillations induced by a long-period forcing func-
tion vary as exp (1/o°) and not linearly with o2 as one might have originally surmised by inspection of
Egs. (43) and (44).

14
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The monomial terms that appear in the expressions for U and R are regular functions in the inter-
val 0 £ s < sp and will offset any discontinuity -that might arise because of the presence of the
exponentials. The V variable varies as » ~ 1/o and will tend to increase; we know, however, from
other sources that ¥ will be discontinuous at the interface.

On the other hand, the variable X related to both the dilatation and the normal stress in the liquid
core depends on the exponential alone since aw? is a finite constant; the X will therefore exhibit a
discontinuous behavior typically induced by a boundary layer as described in the following.

The behavior of the exponential term depends on the relative values of (s — sg) and v ~ 1/o.
For small values of ¢ and for s much less than sy, § — s¢ is negative, and the exponential of a large
negative number provides a negligible contribution; we can say then that, from a practical point of
view, the X variable vanishes at large distances from the top layer.

On the other hand, consider the situation where s — s, is small enough to be comparable in mag-
nitude with the assumed small value of o; the exponential then provides a sizeable contribution. The
smaller the value of o, the thinner the width of the topmost layer where X is nonvanishing. In the
limit as o approaches zero, the stress distribution can be assumed to behave as a delta-function having
a finite spike at s = s,.

For s = sy = b/a, Eq. (62) become

Lyw) =g st + 20t + D g,
a M)
2 A 2 .
X(b) = 2 Fi=n(n+1) 222 p, (63)
M) )\So
R (b) .
ayola) Ey st

whereas ¥ can be taken to be discontinuous at the interface. We have two arbitrary parameters E,, F;
plus the value of the discontinuity suffered by V in going from the liquid to the solid layer. These are
then three quantities we can use in trying to satisfy the boundary conditions at r = a.

This approach was followed‘in evaluating the load numbers of low order, e.g., of order n = 2, 3,
4, which are rather well known from direct physical measurements. The agreement was good. We are
therefore convinced that our analytical solution is an adequate representation of the physical conditions
existing at the liquid core-solid mantle interface; and believe that the same procedure should be used
for the calculation of higher order load numbers which are not known from ground data but which can,
nevertheless, play a significant role in the final determination of the spheroidal deformations.
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