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THE APPLICATION OF FUZZY-SET THEORY
TO THE BURNTHROUGH RANGE EQUATION

INTRODUCTION

Electronic warfare (EW) analysis is fraught with uncertainty, because the tactics and systems of a
potential enemy are never completely known. A continuing effort is made to reduce such uncertainty
by intelligence collection, but there is always a residue. Furthermore the uncertainty is not statistical.
If an EW problem is treated by probability, then personal or subjective probability, that is, the degree of
belief [1], must be used. Some authorities hold this to be an improper use of mathematical probability
[2]. An alternative approach is to use the theory of fuzzy sets [3], which is said to be particularly suit-
able for nonstatistical uncertainty, although agreement on this point is incomplete [4-8]. The purpose
of this report is to demonstrate the application of fuzzy-set theory to an elementary EW problem and
present methods that may be generally used with the extension principle of fuzzy-set theory.

THE BURNTHROUGH RANGE EQUATION

The burnthrough range equation for self-screening against a search radar may be written in the
form [9]

4w B E;(SNR), és !

where
o is the radar cross section of the target (square meters),
By is the bandwidth of the jammer,
Bp is the bandwidth of the radar receiver,
Eg is the effective radiated power of the radar, (ERP) 5,
E; is the effective radiated power of the jammer, (ERP);,
0y is the radar-antenna beamwidth,
0 is the radar-antenna scan rate, :
(SNR), is the minimum integrated signal-to-noise ratio necessary for detection, and
A is the radar pulse-rate frequency.

Generally, the values of some of the arguments in Eq. (1) are not precisely known. Uncertainty
in the values of variables on the right-hand side of Eq. (1) is translated into a corresponding uncer-
tainty in the value of R. We apply fuzzy-set theory and treat the uncertain varjables as "fuzzy variables"
that may be represented as a fuzzy set, each with a membership function. (The membership function
for a fuzzy set expresses on a scale of 0 to 1 the degree of membership of each element of some
universe of interest in the set.) Consider the case where two of the radar parameters, say Ex and Bg,
are uncertain. Later we shall discuss the general case where any number of variables are uncertain.
We rewrite Eq. (1) as

E

2 _ p2R
R KBR’ | @

Manuscript submitted May 17, 1982.
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GROSS, HANRAHAN, AND HOOD

where K is a known constant and R, Eg, and By, are the fuzzy variables. Membership functions for Ep
and By are assumed given and are denoted respectively by uz(e) and ug(b). Then by Zadeh’s exten-
sion principle [10al. the membership function for R is

up(r) = sup min [z (e), ug(h)] 3
e
subject to the condition
r= K-/e/b. 4

A simple example of this case with piecewise linear functions for uyz and up is given in Appendix A
along with an analytical solution.

'MATHEMATICAL ASPECTS

‘We first present an analytlcal approach to the solutlon of "fuzzy equations" using the burnthrough
range equation as an example.

- Two Fuzzy Independent Variables

Normalizing rin Egs. (3) and (4), we write |
ur(r) = sup min [ug(e), up(®)1 | ' (5)
e

“ subject to the condition .
r’b=e (6)
“Substituting for e in Eq. (5) we obtam ‘
ug(r) = sup min b;E(r b) wg(b)]. A7)

We let [4,B] be the domain of ug(r). For each rin [4,B], both v,(b) A ug(r2b) and upz(b)
have the same domain, say [C,D]. Furthermore, we assume that both functions v,(5) and ug(b) are
analytic on [C,D]). It follows from the identity theorem [11] that for each r the function
v,(b) — ug(b) has at most finitely many zeros in the interval [C,D]. In other words, the functions
v,(b) and ug(b) intersect at most finitely many times. We let these intersections take place at the
values ;, j=1, 2, ..., n, b; € [C,D]. We now concentrate on a typical such interval, say [5,_;, b].
Wlthout any loss of generallty, we assume that u g(b) 11es below v,(b) for b€ (b, b) Thus typl-
cally, we have a situation like the one in Fig. 1.

v, (b)

Fig. 1 — Typical interval between intersections
of v,(b) and p g(4)

O
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The points b;, i=1,2,...,¢ in (b, b) at which dupg/db=0 and simultaneously
d’up/db* < 0 are the points at which u () attains local maxima in (4,_;, ;). We need only examine
the points b,_y, b1, bj2, ..., by, b;. The largest of the values pug(b;_1), up(by) with i=1, 2, ..., ¢
and u (b)) is equal to

sup minlv,(b), pg(b)].
belb; 1,61

We repeat this analysis for each of the intervals (b;_,, bj), j=12, ..., n using C for by, and for
the interval (b,, D), exchanging uz and v, when »,(b) lies below ug(d). If we denote the largest
such value (or a largest value) in [5,_;, b] by M; and that in [b,, D] by M,, then for the value of r
used

pg (r) = max (M, max M;). (8)
J .

We then repeat the entire process for enough values of r to establish a curve for pup.

Thus far we have provided an analytical procedure to obtain the membership function for the
burnthrough range as a fuzzy variable, provided that analytic membership functions for the effective
radiated power and the bandwidth of the radar are given. The same procedure may be used for any
function of two fuzzy variables when one of them can be expressed in terms of the other and the
dependent variable, as in Eq. (6), and the given membership functions are analytic. The last condition
is not true for the example of Appendix A, but local maxima are not involved there.

More Than Two Fuzzy Independent Variables

The only theorem that seems to deal with the more difficult case of more than two fuzzy variables
is due to Baas and Kwakernaak [12,10b] and may be stated as follows:

Theorem: Let u;, i=1, 2, ..., n, be n piecewise continuously differentiable membership func-
tions with finite supports. Let g be a continuously differentiable mapping of R” into IR (the real line).
At points where the respective derivatives exist, let u'/(x) = du;(x)/dx; and g(x) =

dg (x;, x5, ..., x,)/ 9x;. Suppose that the point ¥ = (X, X,, ..., %,) € R"satisfies the following:
e u';(%)and g(%),i=1, 2, ..., n, exist and are nonzero. | |
o u (X)) =py (%) == p, ().
e u'(%)/g (%) has the same sign for each i € {1, 2, ..., n}.

Then % is a strict relative maximum point of the mathematical programming problem

subject to the condition

g(xll x2) ceey xn) =g(-£.1) 22: csey 2’1) =g(2)'

Suppose that values for Eg, Bg, and £, in Eq. (1) are uncertain. Then we define F A (£,)*® and
write

9
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—
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e
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%
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GROSS, HANRAHAN, AND HOOD

where k is a constant and R, Eg, Bg, and F are the fuzzy variables. A new membership function
ur(f) for F is derived from a given membership function for f, as a fuzzy variable. Then by the
extension principle

pr(r) = sup min lup(@), up(8), pr(] | o
subject to the condition
r=in <. (11)
Normalizing r in Eq. (9), we write
ur () = sup minlus(e), up(8), ur () (12)
-subject to the condition
rlb = ef. (13)

To apply the theorem of Baas and Kwakernaak, we must assume the following:

® Each of the membership functions mg(e), up(d) and urz(f) is piecewise
‘ continuously differentiable with finite support;

®  There exist & b, and fsuch that u'z(&), u's(B), and u'r(f) exist and are nonzero;

o up(@d)= pp(b)= nr(F);

~

~

. &, Fovem g B2, 2 .
L 7}1-E(e , éﬂ-[r(f), and —é—}p.g(b) have the same sign.

" Under these four conditions it follows from the theorem of Baas and Kwakemaak that
wg(r) is attained at &, b and j for any given r. This result assures us that in principle under these
four conditions we can find the desired value of g (r). but it does not provide a procedure. Further-
more, the last two conditions are rather strong and often may not be satisfied. The theorem gives only
sufficient conditions for a solution.

We now present a method which expands upon the previous one. This method not only assures
the existence of a solution under reasonable hypotheses but also provides an analytical procedure for
finding u z (r). .

Eg
Welet T = B—, so that Eq. (9) becomes

R
" R=kJFT. ~ (14)

By the procedure of the previous section we can determine the membership function u T(t) for T; then
Eq. (14) can be viewed as an equation with only two independent fuzzy variables, F and T. ‘Applying
the procedure once more, we can determine the desired membership function u g (r) for R.

It is important to demonstrate that we could just as well have chosen to make the substitution
T = ERF and followed the same procedure. It is not obvious that the substitution chosen does not
affect the final result, that is, the derived membership function ug (r). That ug(r) is independent of
the choice follows from a theorem dealing with the general n-dimensional case, which we state and
prove in Appendix B. "
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Thus we have provided an analytical method for obtaining the membership function for the
burnthrough range, provided that analytic membership functions for the effective radiated power, the
bandwidth, and the pulse rate frequency of the radar are given. More generally, the same procedure
can be used recursively when any number of variables in Eq. (1) are fuzzy. More generally still, the
method can be used for any fuzzy equation where appropriate substitutions can be made and the given
membership functions are analytic.

If a single "best" value of a fuzzy variable is desired, it may be taken as the mean and called the
(nonstatistical) expected value. Thus for burnthrough range R, the expected value is

ER) =j;°° rug(r) dr/f;o ur(r) dr. . (%)

This definition is not restricted to analytic membership functions.

DIGITAL COMPUTER SOLUTION

We now discuss an approach which is suitable for automatic computation. Equation (4) can be
written in the parametric form

e =g,

2 | | |
b= -I—iz—s (16)

where s is a parameter which generates all points (e, b) satisfying Eq. (4) with fixed K and . Substitut-
ing for e and bin Eq. (5) gives

ugp(r) = sup min [z (s), pp ({%i s)]. | (17

This is a simple problem of maximization of a function of a single variable, for which standard numeri-
cal techniques are available. The functions uz and u g need not be continuous, much less analytic.

The method can be applied generally to any relation of the form

z=f(xy) (18)
for which a suitable parametric form |

x=PJ(zs),

y=P(zs) B (19)

can be obtained. Functions P, and P, need not be analytic either, ohly calculable by an algorithm. The
membership function for the dependent fuzzy variable is then given (in terms of membership functions
for the independent fuzzy variables) by :

pz(z) = sup min {uy[P,(z 5)], uylP,(z 91}, (20)
s
which again only requires finding the maximum of a function of one variable.

Figure 2 illustrates the method with continuous functions uy and wy. Loci of Eq. (18) or, alter-
natively, Egs. (19), for two values of z are shown superimposed upon contours of -

mxxy(x y) A minluy(x), uy()]. o ' 1

Lonied

—

2
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%
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fix, y)=2 puxxy =0
S
A xR /
/] 5 /
/] L/ Fig. 2 — Hlustration of the computer solution for u(z) when z
/] = f(x, y), given py(x) and py(y). Rectangles represent con-
vl 1 / tours of constant w yyy(x, y) = min [uy(x), py()]. One set
/ 0.8 8 of nested rectangles is obtained for convex py and uy; other-
/ wise, more than one is obtained. Loci of f(x, y) are shown for
0 40'6 / two values of z. For each value of z, the corresponding locus is
/ 7 7 traversed by varying parameter s, and uz(z) is found as the
/] °'_2 maximum of u y« y on the locus.
/| =/, )
/700 A AeeNd
uxxy =0 ;
8y -
(9 fix, Y) £2)

Since uy and py-are continuous functions, it follows from Eq. (21) that the loci of constant py.y
(contours) are rectangles (or degenerate rectangles, including points, rectangular areas or line seg-
ments) with their sides parallel to the x and y axes. For each value of z, the corresponding locus is
traversed by varying s, and u z(z) is found as the maximum of uy.y on the locus. A FORTRAN pro-
gram for this procedure with the example of Appendix A is presented in Appendix C.

Equation (18) can be further generalized to the case Qf a function of n fuzzy variables:
2=l Xp e, X)) (22)
A parametric repreéentation of fnow has the form o '
= P{(z, 51, 52, s Spet),
X, = P,(z, 51, $3, ..., Sp-1), (23)
Where the sy, 53, ..., s, are independent parameters. The expression for u 7 is then B

[Lz(l) =  sup min[p.l[Pl(z, Sty 52, ven s S,,_l)], [Lz[Pz(Z, S1, §2, o0 S,,_l)],
Sl,Sz, ceioSpy

walPG st 52 e s, e

where u;(x) is the membership function for the fuzzy variable X;. As the number of paraméters
increases, numerical efficiency becomes more important. In many situations the membership functions
will be continuous and convex, allowing the use of efficient maximization algorithms.

A major problem in the application of fuzzy-set theory is the specification of membership func-
tions. In the example of Appendix A, u and up are assumed given. A more general form of the pro-
gram in Appendix C has been written which prompts an "expert" user to specify "most possible,"
"minimum possible," and "maximum possible" values of the fuzzy variables. These values are used to
construct triangular membership functions. A further generalization would allow membership functions
to be specified for any of the independent variables. Such a program might be termed a fuzzy calcula-
tor.
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DISCUSSION

The analytical and computer methods presented have much wider application than the
burnthrough equation and EW analysis. They may be used for any fuzzy equation involving any
number of variables when suitable substitutions can be made and, for the analytic method, when the
given membership functions are analytic. The last condition does not restrict the computer method,

which is generally the most practical means of solution. The analytical method is most valuable for
theoretical considerations.

The expected advantages of the fuzzy-set approach to analysis involving nonstatistical uncertainty
are as follows:

®  Membership functions (or agreement with suggested membership functions) for fuzzy
variables should be easier to obtain from experts who tend to be unwilling to commit
themselves to single numbers.

®  The uncertainty is made explicit and carried through the analysis to appear as a fuzzy
result. This is less misleading than the use of uncertain, single numbers leading to a
sharp result.

L There is a built-in sensitivity analysis with simultaaeous variation of uncertain quantities
and weighting of their possible values (by means of their membership functions).

The above advantages are cited against the use of expected values with a personal-probability
(degree-of-belief) approach. A more proper comparison would be against personal probability with dis-
tributions for, say, Ex and By as random variables that lead to a distribution for R as a random vari-

able. But such an approach is not currently used. The relative merits of it and the fuzzy-set method
need further study.
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Appendix A

EXAMPLE OF THE BURNTHROUGH EQUATION WITH TWO FUZZY
INDEPENDENT VARIABLES

We assume the known parameters in Eq. (1) are

o = 10° m?,

BJ = 107 HZ,

E_, = 106 W,
(SNR), : = 10,

0, = 4r/180 rad,

0 = qr/5 rad/s, and
£ =102Hz.

We let the membership functions for Ep and By as fuzzy variables be given by Flgs Al and A2.
These functions can te written .

ppb) = 4 —— (b-10°, b ¢ (106, 5-1061, , | (Ala)
—1- s——b | se [5-106, 107, | . ' (A1b)
4 5-10° ; |
=381 peno, 1.510, - | (Alc)
4 5-105 |
and
- ll_e _ 1108 109 |
ugle) 9[108 1], e € [108,107, | o (A22)
-1 9 1010 : |
9[10 109}, e € [10°,10'9], .(A2b)

It is convenient to make the substitutions BR = Bp'105, Ej = Ep-10%, and, correspondingly,
b = b*-10° with e = e*-10%. Then Eq. (2) becomes

. Ea '
R? = (10K)2=2%, ‘ (A3)
Br -
which we write as
R2= (10K)T. ' (A4)

QITITCCYTIOND
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U T T
3l
4 pglb)
0 { |
108 5-108 107 1.5-10
: b (Hz}
Fig. A1 — Membership function for By
as a fuzzy variable
T 1 i T I !
pelel
/

0 1 1 1 ] ]
108 109 1010

Fig. A2 — Membership function for Eg
as a fuzzy variable

e (W)
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Our first task is to find the membership function u 7(¢) for T with ¢t A e*/b* (where A means "defined
as"), using the new membership functions:

pi(b) = %(b* —1), b* € 11,51, (A5a)
= Lls— & px ¢ 15,101 (ASb)
4 5 ’ » ’
_3l3_ 2 e
= 4[3 3 ] b* € [10,15], (ASc)
and
pie®) = %(e‘ — 1), e* € [1,10], | (A6a)
= Llio- £, e € 110,100 | ” (A6b)
9 10 ! )
According to the extension principle, the membership function for T is found from
pr(t) = sup min [z (6*),pz(e*)], (A7)
€
subject to ¢t = e*/b*, or simply
pr(t) = sup min [u5(6*),v,(b%)], (A8)

where v,(6*) A ug(th*).

Figure A3 is a plot of u3(5*) and plots of u,(b*) for t = 0.5, 1, 2, and 3 and indicates how a
graphical solution might be obtained. In this simple case there are no local maxima, and solutions are
found from intersections of uz(b*) and »,(b*). It is also clear from the figure which branches of the
functions give a solution for different regions of the domain {5*}.

Thus, analytically, we find

5t- -;— .
wr(t) = ———, t € [0.0667,0.775], S ' (A9a)
20 S
—t+3
9
25¢—1 ' : ’
2005 9" t e.[0.775,2], - . (A9b)
_ 100 — ¢
= 90+ 4r’ t € [2,100], _ (A9c)

= (, otherwise.

The desired membership function for the burnthrough range is then found, in view of (A4), from
ur(r) = ug 10KVt) = pur(2). (A10)
This is plotted in Fig. A4 as ug (r').

11
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0.75

0.50

0 5 10 - 15
b*

Fig. A3 — Intersections of u 5(b*) with »,(6*)
for various values of ¢

15

r° {km}

Fig. A4 — Resulting membership function
for the burnthrough range
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Appendix B

THEOREM THAT THE RESULT IS INDEPENDENT
OF THE SUBSTITUTION USED

For a case of n fuzzy independent variables we use the extension principle in a more general
form* than Eq. (10). We let X be a Cartesian product of universes, X = X; X - x X,, and let
Ay, ..., A, be nfuzzy sets in X;, ..., X, respectively. We let fbe a mapping from X to a universe Y
such that y = f(x), y € ¥, xA(x), ..., x,), x € X,and x, € X;, i=1, 2, ..., n. The extension
principle allows us to induce from the n fuzzy sets 4; with membership functions u A,-(x") a fuzzy set B

on Y through fsuch that the membership function for Bis
ps() = sup min [uy G, ..., py Cxp)l
. x
y=f{x)
=0if f1(p) = ¢, (B1)

where f~1(y) is the inverse image of y and ¢ is the empty set.
J

Theorem: Let h be a mapping from X,_; X X, to a universe Z and g be a mépping from
X; x -+ x X,_, X Z to the universe Y such that for every y € Y the set of simultaneous solutions {x)
of z=h(x,_;, x,) and y = g(xy, ..., x,—2, z) is equal to the solution set of y = f(x). Let Cbe a
fuzzy set induced on Z thorough h by the fuzzy sets 4,_; and 4,. Then
pe) = sup  minluy (x), oo g G6nd), me@)]. (B2)
XpaeeerXpy_2Z e ‘
y=g(xy, Xy _9,2)

Proof: It suffices to prove the theorem for » = 3. The general case then follows by mathematical
induction. Thus we want to prove that, for all x = (x;, x,, x3) in the solution set of y = f(x);

sup ‘min[u.Al(xl),u»Az()éz),uAJ(x3)] =

y=rf{(x) . » ‘
sup minf 4, (x1), sup min [ 4, (x2), p 4, (x3)1}. (B3
y-g(lxl,z) z-hfx:xJ) ‘
We let
S0 = {x:f(x) =y, minly 4 (), 14, (02, 14, (x3)] = u-Al(x,-)}, (B4)

3
where i =1, 2, 3. It is clear that |J S;(») is the solution set of y = f(x). It suffices then to show
i=1

that Eq. (B3) is valid for all S;(y).

*D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York, 1980, pp. 36-37.

13
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We first evaluate the right-hand side of Eq. (B3) for S;(y). From definition (B4) we have for all
X ES](_)/)

pa,(x) < minlp G, p g, ()]
< sup minlu 4, (65), p 4, (x3)]. (B5)
X2 X3
Thus the right-hand side of Eq. (BS) becomes for x € S;(y)
sup minfu 4 Gep),  sup  minlu,, (), g, Ge3)1) = sup p g (xp). (B6)
xp.z X9,X3 X
Z"h(xz,X3)
But for x € S,(y) the left-hand side Eq. (B5) can be written, in view of Eq. (B4), as
sup mln[u,, CANTYREYNTIRE N B sup pa,(xp). (B7)
Thus Eq. (BS) is valid for x € S$,(»).
For S,(y) we have from Eq. (B4)
4,(02) = minfu 4, (x2), 1, (x3)], (BS)
so that in the right-hand side Eq. (B3) for x € S,(»)
sup min[u 4, (%), 4, (x3)] = sup pa,(x2). (B9)

X2:X3
Also, since p4,(x3) < py,(x)) for Sy(p), it follows that the right-hand side of Eq. (B3) becomes for
x € Sz(y)

ilile min[u 4 (x)), sgzp o, ()] = s;lzp #a,(x2). (B10)
m=h(xyxy)
For 5,() the left-hand side of Eq. (B3) becomes with (B4)
sup minfu 4 Oc), g, (60,4, 0c3)] = sup gy, (x3). (B11)

Thus Eq. (B5) is valid for x € §,(y) as well.

Similarly we can show that Eq. (B5) is valid for x € S3(y) and, therefore, for all x in the solution
set. The hypotheses of the theorem are sufficient; we can show that they are not necessary. Further,
the hypotheses are satisfied with

f(Xl, cony Xp-1s X2) = g[xl, ey x,,_z,h(X,,_l.x,,)]. (B12)

The problem of when f has the desired property is interesting and will be discussed in a subsequent
report.
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Appendix C
COMPUTER SOLUTION OF THE EXAMPLE IN APPENDIX A

The FORTRAN program listed in Table C1 calculates the membership function and average
(mean) value of the burnthrough range for the example in Appendix A. To show the generality of the
procedure, the parametric expressions for e and b and the functions uy and up are implemented as
FUNCTION subprograms. The subroutine LIMITS restricts the search to regions of the (e, b) plane
where u g and up are nonzero. Thus the program is applicable to any case where the effective radiated
power and the bandwidth are the only uncertain radar parameters. Results are shown in Table C2 for
the membership functions and known parameter values of Appendix A.

Table C1 — Computer program for the burn-through rangé when the
radar’s effective radiated power and bandwidth are uncertain

PROGRAM FUZ2Z
C . . *
i R L L Y Y Y Y 2 2 I
C A PROGRAM FOR CALCULATING THE BURNTHROUGH RANGE FOR A HOSTILE . *
C SEARCH RADAR AGAINST A SELF SCREENING JAMMER *

L ‘ *

C*************************************t*********************************
C
o L L s R L e i LTl Ty,
c &
C THE BURNTHROUGH RANGE, R, DEPENDS ON THE ERP, E, 'AND BANDWIDTH *
(o B, OF THE RADAR THROUGH: R**2=A*E/B, WHERE A DEPENDS ON KNOWN *
C PROPERTIES OF THE JAMMER AND THE 'RADAR.. *
C THIS PROGRAM CALCULATES THE MEMBERSHIP FUNCTION FOR THE FUZZY *
C VARIABLE R WHICH DEPENDS ON THE FUZZY VARIABLES E ‘AND B. ‘ *
C FOR GIVEN R WE HAVE E=PE(R,S), B=PB(R,S), WHERE S -
[ IS A PARAMETER WHICH GENERATES ALL: E,B PAIRS WHICH *
C YIELD R. E AND B HAVE MEMBERSHIP FUNCTIONS FMUE(E) AND FMUB(B). :
C : L. N : - . .
CRA MRk kR kAR R R Ik R E R R AR R R AR AR A R AR A AR R AR AR AR AR AR F AR AR AR AR AR RARKR
c .

PARAMETER PI=3,14159 - ‘

COMMON SMIN,SMAX,RMIN, RMAX A

NR=180

NS=1000
[of

TYPE * 'RADAR CROSS SECTION (SQ. M) ?'

ACCEPT *,SIG g

TYPE * 'JAMMER BANDWIDTH (MHZ) ?'

ACCEPT *,BJ

TYPE *,'JAMMER ERP (WATT) ?°'

ACCEPT *,EJ

TYPE * 'RADAR BEAMWIDTH (DEG) ?'

ACCEPT *,W

W=W*PI/180,

TYPE *,'SCAN RATE (HZ) ?2'

ACCEPT *,SR

SR=2,*PI*SR

TYPE *,'MIN. SNR FOR DETECTION ?'

ACCEPT *,SNR

TYPE *,'PRF (PPS) ?'

ACCEPT *,PRF
C

Table continues
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Table C1 (continued)

400

C

C

O O 00000000

109

C CALCULATE EXPECTED VALUE

¢ :
g$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$‘$$$$$$$$$$$$$$$$$$$$

C .
c****************************************************t******************

'AND EXPRESSIONS FOR R AND S IN TERMS OF E AND B.

LA R R Yy Y Y P Py Y S S R X ]

A=(S5IG*BJ/(4.*PI*EJ*SNR)) * (W*PRF/SR) **¢ .8
A=A*1ES8

CALL LIMITS(@.,9)
SUM=0.
WSUM=0.
AVG=0.

DO 508 I=1,NR
R=RMIN+ (RMAX-RMIN) *FLOAT (I-1) /FLOAT (NR-1)
CALL LIMITS(R,1)
SUP=0.
DO 406 J=1,NS
S=SMIN+ (SMAX-SMIN) *FLOAT (J-1) /FLOAT (NS-1)
SUP=AMAX1 (SUP,AMIN1 (FMUE (PE (R,S)) ,FMUB (PB(R,S))))
CONTINUE
R=R/10040.
TYPE *,'R (KM) =',R,'MU(R) =',SUP

SUM=SUM+SUP*R
WSUM=WSUM+SUP

CONTINUE

IF (WSUM.GT.1lE-6) AVG=SUM/WSUM
TYPE *,'AVERAGE BURNTHROUGH RANGE (KM) =',AVG

END

SUBROUTINE LIMITS(R,I)

»

THIS SUBROUTINE DETERMINES SEARCH LIMITS ON R AND S.
IT REQUIRES UPPER AND LOWER LIMITS ON E AND B
OUTSIDE OF WHICH FMUE(E) AND FMUB(B) ARE ZERO,

* % % *-%

COMMON SMIN,SMAX,RMIN,RMAX,A
DATA EMIN/l./,EMAX/lDG./,BMIN/l./,BMAX/15./

IF (I.GT.6) GOTO 1@9
RMIN=SQRT (A*EMIN/BMAX)
RMAX=SQRT (A*EMAX/BMIN)

RETURN

CONTINUE
SMIN=AMIN]1 (EMIN,BMIN*R**2 /A7)
SMAX=AMAX] (EMAX,BMAX*R**2 /A7)
RETURN

END

~Table continues
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Table C1 (continued)

FUNCTION PE(R,S)

c

L Ly L Y S TR a2 Lt
c THIS FUNCTION, TOGETHER WITH PB(R,S), DEFINES THE DEPENDENCE *
C OF R ON VARIABLES E AND B. THE RELATION IS R**2=A*E/B. *
c *

C***********f**************************************t********************
C

COMMON SMIN,SMAX,RMIN,RMAX,A
c

PE=S
RETURN
END

C
o e R R R R R e e e e e e R R
Cc

FUNCTION PB(R,S)

ChetkkhhhhhhhhhhhhhRrhhhhhhhhhhhhhbhbhhrhhhhbdkdhhhhhhhhhhdhhhrhhhhhhddd

C THIS FUNCTION, TOGETHER WITH PE(R,S), DEFINES THE DEPENDENCE *
(o OF R ON VARIABLES E AND B. THE RELATION IS R**2=A*E/B. *
C : *

C*******t*****t*****iktt***********t*****g*i**********&*****************
COMMON SMIN, SMAX,RMIN,RMAX,A
C

PB=A*S

IF (R.GT.lE-3) PB=PB/R**2

RETURN

END

c
C885555555855585558553555555558555855555555555555555555586555558556988888
c

FUNCTION FMUE (E) '

Ct***********?**********************************************************
C . . *
C THIS REPRESENTS THE MEMBERSHIP FUNCTION FOR FUZZY VARIABLE E. *
C . . *
c***********************************************************************
o ;
C SIMPLE EXAMPLE ,

FMUE=8. v -

IF (E.GE.l..AND.E.LE.10.) FMUE=(E-1.)/9.

IF (E.GT.10..AND.E.LE.100.) FMUE=(18.-E/18.)/9.

RETURN .

END -
[od

c ' .
FUNCTION FMUB (B)

C*****************************************************************#*****
< : * y
c THIS REPRESENTS THE MEMBERSHIP FUNCTION FOR FUZZY VARIABLE B. *
c . o *
C******************************************************f****************
. o e ,
C SIMPLE EXAMPLE

FMUB=0.

IF (B.GE.l..AND.B.LE.5.) FMUB=(B-1.)/4.

IF (B.GT.5..AND.B.LE,1@.) FMUB=(5.-B/5.)/4.

IF (B.GT.1€,.AND.B.LE.15.) FMUB=(3.-B/5.)*3./4.

RETURN

END
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Table C2 — Computer output for the program in Table C1 with
the membership functions and known parameter values of
Appendix A

$ RUN FUZZ

Taggg CROSS SECTION (5G. M) 7
féngR BANDWIDTH (MHZ) ?
JAMMER ERP (WATT) ?

1.0E6

RADAR BEAM WIDTH (DEG) ?

1.0
SCAN RATE (HZ) ?

0.1
MIN. SNR FOR DETECTION ?
10.0 '
PRF (PPS) ?
100.0
R.(KM) = 0.3466001 MU(R) = ©.0000000E+00Q
R (KM) = ©@.4786926 MUCR) = 9,1855764E-02
"R (KM} = 0.6107852 MUCR) = 0.2004713
"R (KM) = ©.7428777 MUCR) = 0.3220916
R (KM) = ©.87439703 MUCR) = ©0.4459961
R (KM) = 1.007063 MU(R) = @.5818230 -
R (kM) = 1.139155 MU(R) = ©.7087278
R (KM) = 1.271248 MU(R) = ©.,7931786
R (KM) = 1.403341 MU(R) = ©.8506137
R (KM) = 1.535433 MU(R) = 0.9012267
R (KM) = 1.667526 MUCR) = 0.9414500
R (KM) = 1.799618 MJ(R) = ©0,9768122 .
R (KM} = 1.931711 MU(R) = 0.9953954
R (KMm) = 2.063803 MU(R) = ©.9810811
R (KM) = 2.195896 MUCR) = ©0.9656657
R (KM) = 2.327989 MUCR) = 0.9502503
R (KM) = c.460081 MU(R) = ©.,9337337
R (KM) = 2.592174 MU(R) = ©.9172173
R (KM) = 2.724266 MU(R) = ©.8995996
R (KM) = 2.856359 MU(R) = ©.8830831
R (KM) = 2.988451 MU(R) = ©0.8651874
R (KM) = 3.120544 MUCR) = 0.8467467 .
"R (KM) = 3.252636 MUC(R) = 0.8291292
R (KM) = 3.384729 MU(R) = 0.8104104 -
R (KM) = 3.516821 MUCR) = ©.7926978
R (KM) = .3,648914 MUCR) = @.7738354
R (KM) = 3.781007 MU(R) = ©@.7561366
R (KM} = 3.913099 MUCR) = ©.7371097
R (KM) = 4.04519¢2 MUCR) = @.7195187
R (KM) = 4.177284 MUCR) = ©.7004953
R (KM) = ~ 4.309377 MUCR) = ©@.6831930
R (KM) = 4.441469 MU(R) = ©.6645205
R (KM) = 4.573562 MUCR) = ©.6475086
R (KM) = 4.705654 MUCR) = ©@.6290241
R (KM) = 4.837747 MU(R) = 0.6128144
R (KM) = 4.969840 MUCR) = @.5948097
R (KM) = 5.101932 MUCR) = @.5781121 "
R (KM) = 5.234025 MUCR) = ©@.5621302
R (KM) = 5.366117 MUCR) = ©.5451371
R (KM} = 5.498210 MUCR) = ©.5285189

Table continues
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Table C2 (continued)

£

R (KM) = 5.6303082 MUCR) = ©.5123141

R (KM) = 5.762395 MUCR) = ©.4966409

R (KM) = 5.894488 MUCR) = ©.481300e

R (KM) = 6.026580 MU(R) = ©0.4665687

R (KM) = 6.,158673 MUCR) = ©,4524058

R (KM) = 6.290765 MU(R) = ©0.4387506

R (KM) = 6.422858 MUCR) = ©0.4233998

R (KM) = 6.554951 MUCR) = ©.409749¢

R (KM) = 6.687043 MUCR) = ©.3964981

R (KM) = 6.819135 MU(R) = ©.3828891

R (KM) = 6.9512e28 MU(R) = ©.3696639

R (KM) = 7.083320 MU(R) = ©0.3581413

R (KM) = 7.215413 MUCR) = 0.3449887

R (KM) = 7.347506 MU(R) = ©.3319885

R (KM) =  7.479598 MUCR) = ©0.3199065

R (KM) = 7.611691 MUC(R) = ©.3084331

R (KM) =  7.743783 MU(R) = ©.2969701

R (KM) = 7.875876 MUCR) = ©0.2860853

R (KM) = 8.007968 MUCR) = 0.2762794

R (KM) = 8.140061 MUCR) = ©.2663836

R (KM) =  8.272153 MU(R) = ©@.2549562

R (KM) = 8.404246 MU(R) = ©.2448068

R (KM) = 8.536339 MU(R) = 0.2358705

R (KMm) = 8.668430 MU(R) = 0.2248322

R (KM) = 8.800524 MU(R) = ©@.2168122

R (KM) = 8.932616 MU(R) = ©@.2074694

R (KM) = 9.064708 MUCR) = ©@.1977779

R (KM) = 9.196801 MU(R) = ©0.1901431

R (KM) = 9.328894 MU(R) = 0.1825137

R (KM) = 9.460986 MU(R) = ©.1730798

R (KM) = 9.593080 MUCR) = ©0.1639993

R (KM) = 9.,725171 MU(R) = 0.1559047

R (KM) = 9.857264 MU(R) = ©.1482931

R (KM) =  9,989355 MUCR) = ©@.1406857

R (KM) = 10.12145 MUCR) = ©0.1337029

R (KM) = 10.25354 "MU(R) = 0.1277320

R (KM) = 10.38563 MUCR) = 0.1216348

R (KM) = 10.51773 MUCR) = ©0.1140414

R (KM) = 10.6498¢2 MU(R) = ©.1064510

R (KM) = 10.78191 MUCR) = ©.1000918

R (KM) = 10.91400 MUCR) = 9.5029056E-02
R (KM) = 11.04610 MU(R) = 8.7447226E-02
R (KM) = 11.17819 MU(R) = 8.2949318E-02
R (KM) = 11.31028 U(R) = 7.6041251E-02
R (KM) = 11.44238 U(R) = 7.0592560E-02
R (KM) = 11.57447 U(R) = 6.4644873E-02
R (KM) = 11.70656 MUCR) = 6.0495801E-02
R (KM) = 11.83865 MU(R) = 5.3257197E-02
R (KM) = 11.97075 MU(R) = 4.9441695E-0¢2
R (KM) = 12.10284 MUCR) = 4.3067295E-02
R (KM) = 12.23493 MUCR) = 3.8065791E-02
R (KM) = 12.36702 MUCR) = 3.4255862E-02
R (KM) = 12.49911 MU(R) = 3.0447721E-02
R (KM) = 12.63121 MU(R) = 2.2890359E-02
R (KM) = 12.76330 MUCR) = 1.9085437E-02
R (KM) = 12.89539 MU(R) = 1.5282005E-02
R (KM) = 13.02748 MUCR) = 1.1480063E-02
R (KM) = 13.15958 MU(R) = 7.6795518E-03
R (KM) = 13.29167 MU(R) = 3.8804412E-03
R (KM) = 13.42376 MUCR) = ©.0000000E+00
AVERAGE BURNTHROUGH RANGE (KM) = 4.430007

$

GITITESYTIOND
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