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A FORTRAN-BASED PROGRAM FOR COMPUTERIZED
ALGEBRAIC MANIPULATION

INTRODUCTION

In 1973 the author described a computer-automated algebraic manipulation program [11 to process
and manipulate a Poisson series. The purpose of the present report is to describe a much revised and
improved version of this original work. The original employed a one-dimensional chained format to
represent each series. It proved quite easy to implement and required a minimal amount of overhead
within the machine. However for certain applications, such as planetary theory, a literal polynomial
denominator is required in order to complete the theory. A two-dimensional representation proved
more advantageous to represent the divisors. In the latter part of this report this extented representa-
tion is described in detail along with an improved version of the one-dimensional chained-format
representation.

The earliest efforts in programming literal algebraic expansions on a computer were by Herget and
Musen [21 in 1958. However, due to the limitations of the IBM-650 in use at the time, little progress
was made until the introduction of the high-speed computers in the early 1960s. FORMAC [3] was
introduced in 1964 and was followed by MATHLAB [41, REDUCE [51, and MACSYMA [61 a few
years later. These languages were quite general and required little programming skill but unfortunately
could not efficiently satisfy the widely varied demands of each individual-user. This was especially true
for the more serious researchers attempting to solve the massive algebraic problems encountered in
lightly perturbed dynamical systems. Many minutes of central-processor (CPU) time were required
when solving seemingly simple problems, and users were almost always plagued with failures due to
storage overflow when attempting to solve sizable problems.

To satisfy their own specialized requirements, some researchers began to construct their own alge-
braic manipulation programs to satisfy their own specialized needs. For example, Deprit et al. [7] have
introduced a program called E.S.P. (Echeloned Series Processor) to compute an analytical lunar ephem-
eris. Van Flandern and Pulkkinen [81, Jefferys [9], and Broucke [10] have constructed similar pro-
grams to manipulate the Poisson series occurring in classical perturbation theory. Unfortunately these
programs are for the most part neither documented or in an easily exportable form. An excellent sur-
vey of many of the applications of algebraic manipulation programs in physics may be found in Barton
and Fitch [11].

The program described here grew mainly out of the author's unsuccessful attempts at implement-
ing REDUCE on the NRL CDC 3800 in 1971. Since that time, due to the laboratory's acquisition of a
PDP-10, REDUCE and MATHLAB have both become available through DECUS, and both have been
implemented on-site at NRL. MACSYMA has also become available through the ARPANET.
MACSYMA represents one of the most extensive developmenits daein this field. It''fha -been-most:
helpful in solving sma~l-sc'a eprobles of general interest. However, storage lliat ori~ [12] at -the
host computer site precIidefthe execution oxf'very large scale problems. For this discussion a large-scale
pro'blem involves ex-pressio'nsof50,0' t'erms or more.

Manuscript submitted March 16, 1982.
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For a program to be effective, one should be able to reproduce a computation of the size of, say,
Delaunay's original lunar theory [131 in a reasonably small amount of CPU time (several minutes or
less) on any present-day, large-size electronic computer. Although this requirement may seem unreal-
istic, it is called for because a fundamental requirement of the program being considered here is the
ability to significantly expand upon such a theory in a reasonable amount of CPU time. Here a reason-
able increment of CPU time is defined as the maximum that can be assigned to a single run at most
computer centers (usually several hours or less). A larger amount of time is considered unreasonable
in relation to efficient machine usage.

For the machine to reproduce in several minutes what Delaunay accomplished in 20 years by
hand, a machine-to-man speed factor of over several hundred thousand to one is desired (if Delaunay
spent at least several hours per day on this task). From the author's experience, it appears that most of
the general algebraic (symbol) manipulators in use today have attained a speed factor of not more than
5000 to 1. Thus, these systems appear to be of limited use when performing massive algebraic calcula-
tions, and more specialized programs or machines are required.

The overall modern high-speed electronic computer can outpace its human counterpart by over
10,000,000 to 1 when performing numerical computations. However, when manipulating algebraic
expressions, the same computer becomes over 1000 times less efficient. It seems that much improve-
ment in software (and hardware) development is needed over what is apparently present technology.
This situation may be changed soon with the construction of the LISP machine [141. This is a new
computer system which is hard-wired for the LISP programming language to provide a high perfor-
mance and economical implementation of this language. Since MACSYMA is written in LISP, its per-
formance should increase by an order of magnitude. An unfortunate disadvantage is that portability is
sacrificed completely for such systems, except between machines of identical design.

All computerized algebraic manipulation programs have two things in common. It cannot be
accurately determined in advance how long the program will run, and it cannot be predicted in advance
how much storage will be required for intermediate and final results. When the size and length of the
program approach the limit of a particular machine, storage overflow may result. Sometimes a simple
rearrangement of the calculations will bring success. In more extreme cases a total reformulation of the
problem is required. Automated algebraic manipulations may be approached in two ways: as a problem
of symbolically matching and substituting strings of characters through an applicative language such as
FORMAC or REDUCE or as a problem of applying algebraic laws of operation on fixed data structures
[15,16]. The latter approach is simpler and easier to implement and thus is the approach that is fol-
lowed.

PROGRAM OBJECTIVES

The construction of a general-purpose algebraic manipulator suitable to the needs of a diverse
multidisciplinary research community appeared to be not feasible for the reasons presented in the
preceding section. Therefore it was decided to restrict the range of applicability of the manipulator to a
specific area of research and at the same time produce a result which is fast and efficient within its
domain. FORTRAN compatibility of the program and a high efficiency factor were specific goals of the
developmental program. Portability of the program between machines of different manufacture was of
high priority. Standard FORTRAN-IV programming was to be adhered to whenever possible. Exotic
methods of coding were discouraged, even though advantages could be realized on machines of a par-
ticular design.

A program was therefore devised to manipulate the sometime lengthy harmonic series occurring
in the study of lightly perturbed dynamical systems such as found in astrodynamics. Desired manipula-
tor capabilities include the addition, subtraction, multiplication, simplification, differentiation, and
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integration of one or more series. With the successful implementation of these algebraic operations, it
would be possible to produce high-order series solutions to a set of first-order differential equations that
characterize the mathematical foundation of certain astrodynamical and other problems.

INTERNAL REPRESENTATION

Many problems in applied mathematics can be solved by series expansions. One such series is the
so-called Poisson series [15], which can be written in the form

~~ratonal 1 argument involving a
v rtional polynomial of sin 1z . . . ~~~~~~~linear combination of .

fraction several variables Cos several angles

This form is the underlying mathematical form used by this program and in classical perturbation
theory. In addition, this series is significant in algebraic manipulation because it contains several impor-
tant properties:

* The sum, difference, and product of two Poisson series is a Poisson series.

* The substitution of one Poisson series into another yields a Poisson series.

* The symbolic integration and differentiation does not change the form of the series.

Internally to the machine, each term of the Poisson series is represented by 12 32-bit words.
These words, which are in common to all subroutines, are

NEXT(k) word giving the location (index) of the next term in the list

N(k) word giving the integer numerator

M(k) word giving the integer denominator

KTERM(j,k) nine words giving the polynomial index containing the packed integer
exponents whose values are restricted from -128 to +127, a sine-cosine bit
(-1 or +1 for sine or cosine respectively), and a trigonometric-argument index
containing the packed integer coefficients whose values are restricted from
-128 to +127.

Each word contains four packed coefficients which can represent the polynomial exponents, the tri-
gonometric argument coefficients, or the sine-cosine bit. The leading integer polynomial and tri-
gonometric coefficient is restricted to the range of -64 to +63, whereas the remaining coefficients are
restricted to -127 to 128 inclusive. Each algebraic term, denoted by k, requires 12 words of storage,
which is the space required by NEXT, N, M, and KTERM.

STORAGE MANAGEMENT

The success of any algebraic manipulator depends on the effectiveness of the storage management
procedures that have been devised. Elementary list-processing techniques are used to handle efficiently
the sometimes large series that are generated as intermediate and final results. The chain of elements
comprising a series is denoted as a list. Distinction is made between an active list containing one or
more elements and an inactive list denoting the null series (Fig. 1). The arrays NEXT, N, M, and
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END
POINTER

MSTART(3) MAX(3)

£�E1
MAX (5) |

|MAX(9) |

Fig. 1 - Internal list structure (symbolic). Round symbols denote free storage throughout this report

KTERM are dimensioned in the driver program to sufficient size to accommodate the problem at hand.
From the author's experience, a dimension of 10,000 will suffice for most of the moderately sized prob-
lems, whereas a dimension of over 50,000 may be required for the larger scale problems. Since 12
words are required for each term, 600,000 words will be required to store 50,000 terms within memory.
This is approaching the limit of the storage available on many present-day computers. A reformulation
of the problem may be necessary to reduce storage requirements.

The number of different series is limited to 1000. A few series each having many terms or many
series each having a few terms cannot be exceeded. In other words, space is allocated to the nonvan-
ishing terms only. The remaining space is denoted as free storage. Also, adjacent elements of a partic-
ular list may be interlaced with the terms of separate lists and the free storage, as in Fig. 2.

The location of the lead term of a particular list I is given by the head pointer MSTART(D)., and
its terminal location is given by the end pointer MAX(I). The elements of each list are chained
together by pointers; that is, the location of the (j + l)th term is given by NEXT(j). The location of
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Fig. 2 - Example of an actual internal list structure

the preceding element is not given; a chain cannot be followed in its reverse direction. The storage not
allocated to active storage is denoted as free storage, which is also kept in chained format, with the
lead-cell location being given by LZERO. The space required for each multiplication, addition, etc. is
taken as needed from free storage, whereas the unneeded space created as a result of simplification is
returned to the free storage, where it is again available for use as required. "Garbage collection" (the
collection of unused space into a single area of contiguous storage available for future use) is carried
out continuously in this manner. The storage management is automatically carried out by the data
chain routines (to be described next) and thus is of little concern to the user.

DATA CHAIN MANIPULATIONS

A number of subroutines will now be described which manipulate the series in various ways. A
hierarchy of operations is constructed starting from the simplest and growing in complexity to the more
complicated operations. Each successive procedure depends on those before it; thus the coding is kept
relatively simple, most routines being kept to less than one page of FORTRAN statements. Most of
these subroutines are required by the mathematical and algebraic routines to be described later and are
generally not required explicitly in using the program.
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Subroutine START

START is called initially at the start of the program. It performs a number of initial housekeep-
ing duties, of which the most pertinent are as follows:

* The head pointers MSTART(I) and MAX(I) are initialized.

* The total memory to be used is set up as free storage in chained format. LZERO denotes
the leading free storage cell in chained format. All the memory is in free storage initially.

Subroutine SWITCH(I,J)

SWITCH(I,J) interchanges the correspondence of the series I with that of J; that is, I =J.

Subroutine ZERO (I)

ZERO(I) negates the series I and releases its occupied space to free storage. To illustrate how

this subroutine operates, consider the list arrangement of Fig. 3a. A call to ZERO(I) rearranges the
pointers, and the resulting list arrangement is shown in Fig. 3b. MSTART(I) is set to zero, and I

becomes a null series.

.0 OCCUPIED STORAGE

ILZERO FID 4- -4-

(a) Before

(b) After

Fig. 3 - Typical list arrangement before and after CALL ZERO(I)

Subroutine TRANSF(I,J)

TRANSF(I,J) negates the series J (if active) and returns the space to free storage. A new list J

is then created equivalent to but separate from I. Consider the particular list structure of Fig. 4a. After
a call to TRANSF(IJ) the arrangement becomes that of Fig. 4b. The series I is left unchanged.

6
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(a) Before

MSTARTcI

I LZERO Er
(b) After

Fig. 4 - Typical list arrangement before and after CALL TRANSF(I,J)

Subroutine LINK(I)

LINK(I) returns all entries of the series I which are zero to free storage, leaving only the nonzero
entries chained together. Figure 5 describes a call to the subroutine LINK which then applies it to a
sample chain. As shown in Fig. 5b, the null terms are returned to the free-cell list.

(a) Before

(b) After

Fig. 5 - List arrangement before and after CALL LINK(I)
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Subroutine SIMP(I)

SIMP(I) collects like entries in I. The terms are ordered according to the argument index, the
sine-cosine bit, and the polynomial index respectively during this operation. The routine will sort in
place; no additional intermediate storage will be required. The resulting unneeded space is released to
free storage.

ALGEBRAIC MANIPULATIONS

Another set of subroutines has been devised to carry out the various mathematical and algebraic
operations. These subroutines and the speed with which they are carried out depend on the data-chain
procedures just mentioned.

Whenever possible in these subroutines, the coefficients are computed as exact integer fractions.
However, it is impossible to avoid the unwieldly fractions which appear when higher order expansions
of certain functions are computed. When this is the case, a nonexact representation is used. Here the
computational speed is increased, since the integer fractional coefficients need not be searched for com-
mon factors. However, a new problem appears. Due to roundoff errors, terms with small coefficients
sometimes appear when theoretically equal terms are subtracted. Provision for deleting these terms are
made because badly needed storage is wasted if these small coefficients are retained. A threshold
EPSLON is set to delete these unwanted coefficients. The use of nonexact coefficients is usually
necessary when 'extensive high-order calculations are performed and is also convenient when literal
expressions are evaluated numerically. The logical variable NEXACT is set to .TRUE. if the rational
coefficients cannot be preserved. These coefficients, when encountered, are printed in a floating-point
format.

Subroutine FACTOR(N,M)

A call to the subroutine FACTOR(N,M) automatically removes the common factors from the
numerator and denominator (N,M). When working with inexact coefficients, this subroutine negates
any term whose coefficient is less then EPSLON, a lower limit on the size of the coefficient. This limit
is set according to the physics of the problem at hand, that is, several orders of magnitude less than the
smallest coefficient physically meaningful. The Euclidean factorization algorithm [171 is used.

Subroutine ADD(IJ,K)

If I ad J •6 K, the subroutine ADD(I,J,K) adds the series J to I and places the simplified result in
K. If K = I the routine acts as an accumulator: I + J - I. This routine is extremely fast-almost
instantaneous as compared to some of the other algebraic routines (such as MULT) to be described
later.

Subroutine SUB(IJ,K)

SUB(IJ,K) which is similar to ADD(IJ,K), subtracts the series J from I and places the
simplified result in K.

Subroutine MULCON(I,n,m)

MULCON(I,n,m) multiplies the series I term by term by the rational fraction n/m.

8
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Subroutine MULT(I,J,K)

MULT(I,J,K) multiplies each term of the series I with each term of J to form a result which is
stored in K. Provision is made to truncate any term whose order exceeds a specified value. During
multiplication, the following trigonometric identities are introduced implicitly:

2 cos x cos y = cos(x + y) + cos(x - A

2 cos x sin y = sin(x + y) - sin(x -y),

2 sin x cos y = sin(x + y) + sin(x -y),

2 sin x sin y = cos(x + y) + cos(x -y),

cos(-x) = + cos x,

sin(-x) = - sin x,

cos(0) = 1,

sin(0) = 0.

For these trigonometric identities, two terms are produced (labeled A and B in Fig. 6) for each product
Im Jn. The required space for both A and B is taken from free storage. Next the partial result K must
be searched for like entries. If such a term is found, the new term A or B is combined with it. If no
such entries are found, as is shown in the example of Fig. 7, the new terms are inserted (in order) in
the partial list K. The actual terms are not moved in memory; only the pointers are recomputed.

The searching operation just described can be very time consuming if not carried out efficiently.
Since the partial result K is always ordered, it is not necessary to search its entire length each time a
new term is produced. A binary search scheme has been devised using this fact to sort efficiently. First
the new term is compared to the middle term of the list. This comparison determines whether the
lower or upper half of the list need next be searched. The remaining portion is again halved, and the
new term is again compared with its midpoint. This procedure is carried out repetitively until the

LZERO E _III

Fig. 6 - List arrangement during multiplication of subproduct ImJn

9
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Fig. 7 - List arrangement after the new terms (labeled A and B) are inserted in K

correct location for the insertion at the new term has been determined. For a list of 4000 terms only
about 12 such comparisons need be made. Actually, because the partial list K is always kept in chained
format, the midpoints of each successive half-interval cannot be determined by formula directly. To
circumvent this problem, the pointers (which give the location of each successive term) are mapped
onto a linear array. It is this array that is searched, and the locations of the required midpoints are
obtained directly. As this mapping is in itself time consuming, it need only be carried out a dozen or so
times during the course of a long multiplication. The effect of this procedure is to make the program
running time solely dependent on the total number of multiplications performed and eliminate its
dependence on the length of the final result. For example, a multiplication which produced a result of
over 4000 terms required over 1 hour of CPU time without the optimal search. After the
implementation of this technique, the time was reduced to less than 2 minutes.

During multiplication truncation is carried out by the limits specified by KCHOP, MORDER, and
KFACT. For example if the ith variable is to be truncated at order j + 1, then set KCHOP 0) = j. If
more than one polynomial variable is a high-order small quantity, then MORDER and KFACT should
be used. Suppose the ith and jth polynomial variables are first-order and third-order small quantities
respectively. Further suppose the result of a multiplication is to be truncated at order m. Then set
MORDER = m, KFACT(i) = 1, and KFACTQ) = 3. The truncated terms are not stored, and only
the desired portion of the result is produced.

Subroutine POWER (I,n,J)

POWER(I,n,J) multiplies the series I by itself n - 1 times and stores the result in location J;
that is, I**n - J.

Subroutine EXPAND(I,k,m,n,J)

EXPAND(I,k,m,n,J) calculates the binomial expansion of the quantity (-1 + I)m/n, where
I << 1. The pair (m,n) are integers. The expansion is terminated at order k in I. The result is stored
in location J.

10
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Subroutine DERIV(Ij,K) CI

DERIV(Ij,K) differentiates the series stored in location I term by term with respect to the jth ,
packed variable. The result is stored as the Kth chain. I remains unaltered unless I = K. If j is posi-
tive, the derivative is taken with respect to the jth packed polynomial variable. If j is negative, the
Ij Ith trigometric variable is assumed.

Subroutine NDERIV(Ij,n,K)

NDERIV(I,j,n,K) differentiates the Ith chain with respect to the jth packed variable n times.
The result is stored in location K.

Subroutine BRACKE(I,J,m,n,K)

BRACKE(I,Jmn,K) calculates the Poisson bracket (J,J) mn with respect to the variables m,n.
The result is stored in location K.

Subroutine INTEG(Ij,K)

INTEG(Ij,K) integrates each term of I with respect to the jth packed variable. The result is
stored in location K.

Subroutine DEnm(I,NUM,DEMON,J1,...,Jn,K,L1,...,Lm)

DEnm(I,NUM,DEMON,Jl,...,Jn,K,Ll,...,Lm) is used to input the various terms of a series to
the machine. The term (NUM/DEMON) X1**J1 ... Xn**Jn (sin/cos) (Ll*Y1 + ... + Lm*Ym) is
added to the contents of the series I. J1, ... , Jn and L1, ... , Lm represent the first n and m packed
polynomial and trigonometric exponent and coefficient values respectively. This routine and others
similar are used to input series to the machine. At present only the routines DE44, DE124, DE168,
and DE204 are implemented. These represent the values for (n,m) of (4,4), (12,4), (16,8), and
(20,4) respectively. In principle only one routine, namely DE 248, need be implemented. However as
two lines of FORTRAN code are required for each use, it is too lengthy for most applications. Loca-
tion I may assume any number from 1 through 1000; that is, 1000 different series may be represented.

Subroutine SUBAB(I,J,m,n,v)

SUBAB(I,J,m,n,v) substitutes m2 1 -n 2 in the Ith chain, where m and n represent the mth
and nth packed variable. That is, when sin i and cos i are stored as polynomial variables, the substitu-
tion becomes cos2i -1- sin2i. This substitution will in effect search for the trigonometric identity
sin2i + cos2i = 1. The operation is carried out v times, and the result is stored in location J. In the
expression 315/512 cos4i - 135/256 cos2i + 27/512, a call to SUBAB(I,J,m,n,2) performs the substitu-
tion 1-sin2i twice. The result is 315/512 sin4i - 45/64 sin2i + 9/64. This substitution sometimes
greatly reduces the size of certain intermediate and final expressions. The result is stored in location J.

Subroutine CUT (I,J)

CUT(I,J) deletes all the nonperiodic terms in the series I and stores the result in location J. The
routine requires no additional space if I = J.

11
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Subroutine SECULA(I,J)

SECULA(I,J) is similar to CUT(I,J), except that the periodic terms are eliminated. Only the
nontrigonometric terms remain.

Subroutine TRUN(I,J,j,n)

TRUN(I,J,j,n) negates all terms above order n in the jth packed polynomial variable. In general
only the terms below order MORDER are retained during a multiplication. The rest are negated before
they are stored and simplified. The result is stored in location J if I ;' J. If the preservation of I is not
required, I may be set to J, so that no additional space is required.

Subroutine SELECT(I,J,j,n)

SELECT(I,J,j,n) retains all terms of order n in the jth packed polynomial variable of the series I
and removes all other members. The result is placed in location J. If I = J, the selection is performed
in place, and no additional space is required.

Subroutine CHOOSE(I,J,j,n)

CHOOSE(I,Jj,n) is similar to SELECT, except that all terms of periodicity n in the jth packed
trigonometric argument are retained. The result is stored in location J.

Subroutine TAYLOR (I,Jj,m,K)

TAYLOR(I,J,j,m,K) performs a Taylor-series expansion on the series I with respect to x, which
denotes the jth packed variable:

f(x + AX) = 1 ak [f(X)] (AX)k. (1)

The f(x) and x terms are stored as I and J respectively. The expansion is terminated at order m in Ax.
The result is stored in location K.

Subroutine EVAL(I,Jj,A)

EVAL(I,J,j,A) substitutes the floating-point number A for the jth packed polynomial variable.
The result is stored as J. Rational coefficients are not preserved, and floating-point coefficients are
computed.

Subroutine OUTLP(I)

OUTLP(I) prints or punches the series I in a literal form. The punched form is FORTRAN com-
patible and can be inserted as part of another FORTRAN program with no additional modifications.
The output may be given as described in two forms: either with the coefficients of each term presented
as exact integer fractions whenever possible and the remaining coefficients presented as floating-point
numbers or wiih all coefficients presented as floating-point numbers.

Subroutine SHORT (I)

SHORT(I) is similar to OUTLP, except that only the first and last ten terms are printed.

12
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Subroutine SPLIT(I,J,iv)

SPLIT(I,J,iv) splits the series I into two components, I and J. I contains only those terms that
do not depend on the ivth packed polynomial variable. J contains all the remaining terms. No addi-
tional storage is required. The initial contents of J, if any, are released to free storage.

Subroutine TAEVAL(I,J,iv,k)

TAEVAL(I,J,iv,k) evaluates the series I for the ivth trigometric packed variable in k multiples of
r/2. Rational coefficients are preserved. The result is placed in J. Its initial contents, if any, are
released to free storage.

Subroutine KEVAL(I,J,iv,KNUM,KDEMON)

KEVAL(I,J,iv,KNUM,KDEMON) substitutes the rational fraction KNUM/KDEMON for the
ivth packed variable. The resulting series is evaluated, simplified, and placed in location J. Rational
coefficients are preserved.

Subroutine MULONE(I)

MULONE(I) truncates the series I according to the criteria specified by KFACT, KCHOP, and
MORDER.

Subroutine MULVAR(Iiv,num)

MULVAR(Iiv,num) multiplies the series I by the ivth packed variable to power num.

Subroutine DEFONE (I)

DEFONE(I) sets the series I to unity.

Subroutine ERASE (Iiv)

ERASE(Iiv) erases the dependence of the series I on the ivth packed variable; that is, it sets the
ivth variable to unity and evaluates and simplifies the resulting series.

Subroutine IN(I,L)

IN(I,L) reads the series stored on the Lth logical unit into central memory as the series I.

Subroutine OUT (I,L)

OUT(I,L) reads out the series I onto the Lth logical unit. This subroutine is used when no
storage is available in central memory. The resulting released space then becomes available for addi-
tional computations.

Subroutine TFORM(I,J,iv,IS,IC)

TFORM(I,J,iv,IS,IC) performs a transformation on the series I which places a trigometric vari-
able of position iv into a polynomial in powers of sin(iv) and cos(iv). These are loaded into positions
IS and IC as polynomial variables. For example cos 3A will be transformed into 4 cos3A - 3 cos A.
The result is stored in location J.

13
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Subroutine SUBST(I,J,iv,L)

SUBST(I,J,iv,L) substitutes the series J for the ivth packed variable in the series I. The result is
stored in location L. The routine is valid for only positive exponents of the series J.

Subroutine ACCUM(IJ)

ACCUM(IJ) adds the series J to I, and J becomes the null series. No additional storage is
required for this computation, because I and J are merely combined. If I = J, then I - 2I.

THE EXTENDED TWO-DIMENSIONAL REPRESENTATION

A one-dimensional chained format has been employed up to this time to represent the algebraic
expressions internal to the machine. This scheme has proven easy to implement. However the limita-
tions of this method become rather apparent when processing very large expressions: those of 50,000
terms or more. This is due in part to the following reasons:

* The polynomial and trigonometric nodes must be recopied for each term regardless of
their equivalence to other nodes. Most periodic series contain many like nodes and there-
fore must be recopied for each term.

* The one-dimensional search, although efficient, can be time consuming. The efficiency of
the program is directly dependent on the time required to insert the terms as they are pro-
duced during multiplication. The time required for sorting the many thousands of terms
can be reduced by use of the two-dimensional procedure in spite of the increased over-
head.

* The method does not adapt well to the more generalized Poisson series, that is, those
series containing literal polynomial divisors.

Figure 8 describes an alternate two-dimensional method [161. The polynomial divisors may be
linked to either or both the trigonometric and coefficient node for generality. In some problems
encountered in astrodynamics a polynomial divisor will appear during the integration of a series with
several time-dependent trigonometric arguments. If they are all slowly varying, they cannot be
expanded and must be carried as a divisor of each trigonometric node. They need not be recopied for
each coefficient node.

Each polynomial and trigonometric node is listed only once. All of the numerical coefficients
associated with each trigonometric node are linked left and right through each coefficient node. Like-
wise all the numerical coefficients associated with each polynomial node are linked up and down
through each coefficient node. Each chain of trigonometric and polynomial nodes are also linked for-
ward and backward. Two separate free-cell lists are maintained: one for the coefficient and the other
for the polynomial and coefficient nodes which have identical structure.

For example the following expression can be represented in both the one-dimensional or new
two-dimensional extended representation:

1/2 X2Y cos(A + B) + 2/3 X2Y cos(2A - B) + 3/8 X3y2 cos(2A - B)

+ 2/3 X3Y4 cos(3A + B) + 9/7 X2Y cos(4A,- B) + 5/8 X3Y4 cos(4A - B). (2)

Figure 9 describes the internal representation, and Fig. 10 shows the structure in the extended two-
dimensional representation.

14
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Fig. 8 - Two-dimensional extended representation (P = polynomial, T = trigonometric, and C = coefficient)

Fig. 9 - One-dimensional representation of Eq. (2)
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Fig. 10 - Extended two-dimensional representation of Eq. (2)

The preceding example did not include polynomial divisors. Figure 11 describes how the follow-
ing expression containing polynomial divisors is represented in the machine:

1/2X**2*Y*cos(A + B) 1/4Z**2*cos(2A - B)
(X + 2Y) (Z - 3X)*(X + 2Y**2) (

Figure 12 describes the head pointer MSTART for the two-dimensional method. It contains the posi-
tions of the leading polynomial and trigonometric nodes. Figure 13 describes the structure of each
polynomial node. It contains three pointers. Two are used to denote the next and preceding polyno-
mial node respectively. The third points to the leading coefficient node.

Figure 14 describes the trigonometric node. Its structure is identical to the polynomial node with
the addition of one pointer to reference the polynomial divisor (if any). The coefficient node is shown

Fig. 11 - The representation of polynomial divisors
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I To the leading polynomial
node

To the leading trigonometric
node

Fig. 12 - A head pointer for the two-dimensional method

To the preceding
polynomial
node

To the next
polynomial
node

To the leading
coefficient node

Fig. 13 - Polynomial node

LNEXT

To the polynomial
divisor (if any)

To the preceding
trigonometric node

To the leading
_ coefficient

node

To the next
trigonometric node

Fig. 14 - Trigonometric node
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in Fig. 15. It is the most complicated as it contains seven pointers. Four pointers link the preceding
and successive nodes both vertically and horizontally. Two pointers link the polynomial and tri-
gonometric nodes at the head of the chain. These are not absolutely necessary, because these nodes
could be recovered by following the chain linking each coefficient back to its origin. However, this can
be time consuming, and the storage saved is not worth the loss in efficiency. The seventh pointer
locates the polynomial divisor (if any) associated with that node.

To the preceding vertical
coefficient node

To the preceding
coefficient m

node

To the trigonometric
node

To the polynomial node

To the next horizontal
No coefficient

node

To the polynomial
divisor (if any)

To the next vertical
coefficient node

Fig. 15 - Coefficient node

Figure 16 shows the free-cell head pointer LZERO. Its two entries contain the location of the
head pointers of the unused (available) coefficient nodes NNEXT and trigonometric and polynomial
nodes LNEXT. The polynomial divisors when needed are drawn from LNEXT.

To the leading trigonometric
or polynomial free-storage
cell

To the leading numerical-
coefficient free-storage cell

Fig. 16 - Free-cell-storage head pointer
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The two-dimensional version of the program has been coded; however, it is still in the experi-
mental stage and not ready for export. The author will make a listing available to any interested per-
son. It is not included in the listing at the end of this report.

SUMMARY OF THE STORAGE-ALLOCATION METHODS

Thus in the overall development of the program, three storage-allocation schemes have been pur-
sued:

* Unchained sequential. This method was used in an earlier undocumented version of the
program. It is probably the most efficient method of storing the terms, because no
pointers (and the space they occupy) are required. Adjacent terms in each series are
stored in adjacent locations in memory. However, it is probably the least efficient in
terms of running time, because only the less-efficient sorting algorithms can be applied.
This is especially true for the sort-in-place operations required for massive calculations.
Peripheral disk storage could be used to take advantage of the more efficient routines, but
again valuable CPU time is required for the necessary data-transfer operations. This
method proved simplest to implement and was fastest for problems involving expressions
of no more than a hundred terms.

* One-dimensional chained format. This is the method described in the first part of this
report. It appears to be a good compromise between storage and computational efficiency.
It is fairly easy to implement and proved superior for problems involving expressions of
10,000 terms or less. The required overhead is minimal, because only one pointer is
required per term. An efficient sort-in-place algorithm is used to promote efficiency dur-
ing the multiplication and simplification of massive expressions.

* Two-dimensional chained format. This method, just described, proved most difficult to
implement, because seven pointers are required for each coefficient node and four for
each trigonometric and polynomial node. During multiplication and simplification these
pointers must be constantly manipulated, which is time consuming to implement. In
theory this method should be the most efficient, because it should strike a best comprom-
ise between storage and computational efficiency, especially if a fairly dense coefficient
matrix is encountered. This has not been realized in practice, since the coefficient array
tends to be sparse: several terms or less per polynomial or trigonometric node. This
method has the potential of being the most efficient computationally, especially during the
multiplication of two large expressions. In practice this also has not been realized. How-
ever, this format should permit the implementation of a highly efficient sort-in-place algo-
rithm. It is anticipated that when this algorithm is implemented, some improvement in
computational speed will be realized.

PROBLEM EXAMPLES

Multiplication

The first example is a simple multiplication. Suppose the following two expressions are to be
multiplied together, which are stored in the arbitrary locations #100 and #200 respectively:

#100 =-4/7 UY2sin(A + 3B - 5D) + 1/2 V3XY6cos(6B + 2C - D) + 2/3 X2Y (4)

and

#200= -U 7 V8 - 9/5 UV2 cos(C - 7D) + V3XY8sin(9A - 3B). (5)
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The following driver program is required for this example:

PROGRAM AMULT

C EXAMPLE OF A MULTIPLICATION

COMMON/LPOLY/LPOLY(24)/LARG/LARG(8)
CALL START

C ASSIGN NAMES TO VARIABLES
LPOLY(1)=1HU
LPOLY(2)=1HV
LPOLY(3)=1HX
LPOLY(4)=lHY
LARG (1)=1HA
LARG (2)=1HB
LARG (3)=1HC
LARG (4)=1HD

C DEFINE FIRST SERIES AND PRINT
CALL DE44(100,+1,2,0,3,1,6,+1,0,6,2,-1)
CALL DE44(100,-4,7,1,0,0,2 -1,1,3,0,-5)
CALL DE44(100,+2,3,0,0,2,1,+1,0,0,0,0)
CALL OUTLP(100)

C DEFINE SECOND SERIES AND PRINT

CALL DE44(200,+1,1,0,3,1,8 -1,9,-3,0,0)
CALL DE44(200,-9,5,1,2,0,0,+1,0,0,1,-7)
CALL DE44(200 -1,1,7,8,0,0,+1,0,0,0,0)
CALL OUTLP(200)

C MULTIPLY TOGETHER - PLACE RESULT IN #300
CALL MULT(100,200,300)
CALL OUTLP(300)
STOP
END

The necessary subroutines to support this driver program are listed in Appendix A.
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The program output is listed below, with the input series #100 and #200 being shown along with
the output, #300:

START OF EXECUTION

WRITE SERIES 100
LENGTH = 3

-4/7*U*Y**2*SIN( A+3B-5D)
+1/2*V**3*X*Y**6*COS(6B+2C-D)
+2/3*X**2*Y

WRITE SERIES 200
LENGTH = 3

-U**7*V**8
-9/5*U*V**2*COS(C-7D)
+V**3*X*Y**8*SIN(9A-3B)

WRITE SERIES 300
LENGTH = 13

+4/7*U**8*V**8*Y**2*SIN(A+3B-5D)
-1/2*U**7*V**11*X*Y**6*COS(6B+2C-D)
-2/3*U**7*V**8*X**2*Y
+18/35*U**2*V**2*Y**2*SIN(A+3B+C-12D)
+18/35*U**2*V**2*Y**2*SIN(A+3B-C+2D)
-9/20*U*V**5*X*Y**6*COS(6B+3C-8D)
-9/20*U*V**5*X*Y**6*COS(6B+C+6D)
+2/7*U*V**3*X*Y**10*COS(1OA-5D)
-2/7*U*V**3*X*Y**10*COS(8A-6B+5D)
-6/5*U*V**2*X**2*Y*COS(C-7D)
+1/4*V**6*X**2*Y**14*SIN(9A+3B+2C-D)
+1/4*V**6*X**2*Y**14*SIN(9A-9B-2C+D)
+2/3*V**3*X**3*Y**9*SIN(9A-3B)
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A Binomial Expansion

As an example demonstrating how a series expansion may be computed, 1/(1 + E sin M)1/2 is to
be expanded to eighth order in E. To truncate the expansion at order eight, KFACT(4) is set to 1, and
MORDER is set to 8. E is the 4th packed polynomial variable and M is the 4th trigonometric packed
variable. The following sample driver program is required to compute this series:

PROGRAM AXPAND
C EXAMPLE OF AN EXPANSION

COMMON/II/KFACT(24)/JJ/MORDER
COMMON/LPOLY/LPOLY(24)/LARG/LARG(8)
LOGICAL NPRINT

CALL START

C DEFINE VARIABLES

LPOLY(4)=1HE
LARG (4)=1HM

C SET TRUNCATION LIMITS
MORDER=8
KFACT(4)=1

C DEFINE E*SIN(M)
CALL DE44(100,1,1,0,0,0,1,--1,O,0,0,1)

C COMPUTE (1 + E*SIN(M))**(-1/2) TO 8TH ORDER IN "E"
CALL EXPAND(100,8,-1,2,200)
CALL OUTLP(100)
CALL OUTLP(200)
STOP
END
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The program output is listed below:

START OF EXECUTION

EXPAND (1 +100)**(-1/ 2)

TO ORDER 8 IN100

RESULT STORED IN200
TOTAL TIME = 0.15 SEC

WRITE SERIES 100
LENGTH 1

+E*SIN(M)

WRITE SERIES 200

LENGTH = 25

+6435/4194304*E**8*COS(8M)
-6435/524288*E**8*COS(6M)
+45045/1048576*E**8*COS(4M)
-45045/524288*E**8*COS(2M)
+225225/4194304*E**8
+429/131072*E**7*SIN(7M)
-3003/131072*E**7*SIN(5M)
+9009/131072*E**7*SIN(3M)
-15015/131072*E**7*SIN(M)
-231/32768*E**6*COS(6M)
+693/16384*E**6*COS(4M)
-3465/32768*E**6*COS(2M)
+1155/16384*E**6
-63/4096*E**5*SIN(5M)
+315/4096*E**5*SIN(3M)
-315/2048*E**5*SIN(M)
+35/1024*E**4*COS(4M)
-35/256*E**4*COS(2M)
+105/1024*E**4

+5/64*E**3*SIN(3M)
-15/64*E**3*SIN(M)
-3/16*E**2*COS(2M)
+3/16*E**2
-1/2*E*SIN(M)
+1
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Transformation into a Polynomial Form

Certain problems that appear in astrodynamics require that an expression be transformed into a
polynomial form. As an example to show how this may be accomplished, suppose that X cos(19A) +
Y sin(16A) is to be transformed into a polynomial in first powers of sin(A) and cos(A). The driver
program for this example is as follows:

PROGRAM ATRANS
C EXAMPLE OF A POLYNOMIAL TRANSFORMATION

COMMON/LPOLY/LPOLY(24)/LARG/LARG(8)
CALL START

C DEFINE "SA"=SIN(A) AND "CA"=COS(A)

LPOLY(1)=2HSA

LPOLY(2)=2HCA
LPOLY(3) =1HX
LPOLY(4)=1HY
LARG (1)=1HA

C DEFINE X*COS(19A)+Y*SIN(16A)
CALL DE44(100,1,1,0,0,1,0,+1,19,0,0,0)
CALL DE44(100,1,1,0,0,0,1,-1,16,0,0,0)

CALL OUTLP(100)

C TRANSFORM THE SERIES IN LOCATION #100 INTO
C A PURELY POLYNOMIAL FORM

CALL TFORM(100,200,-1,1,2)
CALL OUTLP(200)

C NOW DO THE REVERSE PROCEDURE - I.E., LINEARIZE THE SERIES
CALL DE44(10,1,1,0,0,0,0,-1,1,0,0,0)
CALL DE44(12,1,1,0,0,0,0,+1,1,0,0,0)
CALL OUTLP(10)
CALL OUTLP(12)
CALL SUBST(200,10,1,250)
CALL SUBST(250,12,2,300)

C PRINT RESULT AND COMPARE WITH ORIGINAL SERIES IN #100
CALL OUTLP(300)
STOP
END
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The program output is shown below:

START OF EXECUTION M,-
::::.WRITE SERIES 10

LENGTH = 1

+SIN(A)

WRITE SERIES 100
LENGTH = 2

+X*COS(19A)
+Y*SIN(16A)

WRITE SERIES
LENGTH = 1

12

+COS(A)

TRANSFORM 100 200 --1
SUBSTITUTE 200 200 2

TOTAL TIME = 0.46 SEC

TOTAL TIME = 1.33 SEC

1 2

1 9

SUBSTITUTE 200
SUBSTITUTE 250

WRITE SERIES 200
LENGTH = 18

-262144*SA**18*CA*X
+1114112*SA**16*CA*X
-32768*SA**15*CA*Y
-1966080*SA**14*CA*X
+114688*SA**13*CA*Y
+1863680*SA**12*CA*X
-159744*SA**11*CA*Y
-1025024*SA**10*CA*X
+112640*SA**9*CA*Y
+329472*SA**8*CA*X
-42240*SA**7*CA*Y
-59136*SA**6*CA*X
+8064*SA**5*CA*Y
+5280*SA**4*CA*X
-672*SA**3*CA*Y
--180*SA**2*CA*X
+16*SA*CA*Y
+CA*X

WRITE SERIES 300
LENGTH = 2

+X*COS(19A)
+Y*SIN(16A)

The result is shown in series #200. To check the result, sin(A) and cos(A) are both substituted into
the expression using the routine SUBST. The result is in location #300 and agrees with the original
expression in #100, as it should.
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Computation of the Legrendre Polynomials

The Legrendre polynomials can be computed from the expansion

(1 - 2hX + h2') 1 2. (6)

The coefficient of hk will be the kth Legrendre polynomial. The code to perform this expansion and
selection is listed below:

PROGRAM LEGRENDRE

COMMON/II/KFACT(24)/JJ/MORDER
COMMON/LPOLY/LPOLY(24)/LARG/LARG(8)

CALL START
LPOLY(1)=1HX
LPOLY(2)=1HH
KFACT(1)=0
KFACT(2)=1
MORDER=6

C DEFINE H**2-2*H*X
CALL DE44(60,1,1,0,2,0,0,+1,0,0,0,0)
CALL DE44(60,-2,1,1,1,0,0,1,0,0,0,0)
CALL OUTLP(60)

C EXPAND TO INVERSE SQUARE ROOT
C PLACE RESULT IN LOCATION #70

CALL EXPAND(60,MORDER -1,2,70)

C SELECT POWERS OF "H" - THEIR COEFFICIENTS
C WILL BE THE LEGRENDRE POLYNOMIALS

DO 10 K=1,MORDER
CALL SELECT(70,100+K,2,K)
CALL ERASE(100+K,2)

10 CALL OUTLP(100+K)
END
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The program output is shown below:

START OF EXECUTION

WRITE SERIES 60
LENGTH = 2

-2*X*H
+H**2

WRITE SERIES 104

LENGTH = 3

+35/8*X**4
-15/4*X**2
+3/8

EXPAND (1 + 60)**(-1/ 2)
TO ORDER 6 IN 60
RESULT STORED IN 70
TOTAL TIME = 0.12 SEC WRITE SERIES 105

LENGTH = 3

WRITE SERIES 101
LENGTH = 1

+63/8*X**5
-35/4*X**3
+15/8*X

WRITE SERIES 106

LENGTH = 4WRITE SERIES 102
LENGTH = 2

+3/2*X**2
-1/2

+231/16*X**6
-315/16*X**4
+105/16*X**2
-5/16

WRITE SERIES 103
LENGTH = 2

+5/2*X**3
-3/2*X
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A Series Solution to a Differential Equation

An excellent example is a series solution to Kepler's equation relating the orbital mean anomaly
to the true anomaly. This example is chosen because the result may be compared with the published
solution in the literature [18]. The differential equation to be considered is

df (1- e2)-312 (1 + e cos f)2 (with f = M when M = 0). (7)
dM

The problem is to compute f - M to a high order in e and to assume e < < 1. To first order in e:

df = 1 + 2e cos f
dM

-f- M 2e sin M. (8)

To second order in e, the first order-solution is used on the right-hand side:

df = (1 + 3/2e2 + ... ) (1 + e cos(M + 2e sin M))2
dM

-f - M = 2e sin M + 5/4e2 sin 2 M + ... . (9)

This procedure could in principle be carried to any order in eccentricity. The driver program
required to solve Kepler's equation to eighth order in eccentricity is listed below:

PROGRAM KEPLER

COMMON/II/KFACT(24)/JJ/MORDER
COMMON/LPOLY/LPOLY(24)/LARG/LARG(8)
COMMON/NN/NPRINT

LOGICAL NPRINT
CALL START
NPRINT=.TRUE.

C SET TRUNCATION LIMITS
KFACT(4)=1
JOR=8
MORDER=JOR

C DEFINE VARIABLE NAMES
LPOLY(4)=1HE
LARG (4)=1HM

C CARRY OUT EXPANSION

CALL DEFONE(101)
CALL DE44(102,-1,1,0,0,0,2,+1,0,0,0,0)
CALL DE44(103,+1,1,0,0,0,0,+1,0,0,0,0)
CALL DE44(103,+1,1,0,0,0,1,+1,0,0,0,1)
CALL EXPAND(102,JOR/2,-3,2,105)
CALL MULT(103,103,106)
CALL MULTC105,106,107)
CALL SUB(107,101,110)
DO 30 MORDER=1,JOR
CALL TAYLOR(110,500,-4,MORDER,112)
CALL CUT(112,112)

30 CALL INTEG(112,-4,500)
CALL OUTLP(500)
END
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The program output, that is, the solution of Kepler's equation to eighth order in E, is listed
below:

START OF EXECUTION

EXPAND (1 +102)**(-3/ 2)

TO ORDER 4 IN102
RESULT STORED IN105
TOTAL TIME = 0.04 SEC
TAYLOR SERIES EXPANSION
TIME FOR TAYLOR SERIES
TAYLOR SERIES EXPANSION
TIME FOR TAYLOR SERIES
TAYLOR SERIES EXPANSION
TIME FOR TAYLOR SERIES
TAYLOR SERIES EXPANSION
TIME FOR TAYLOR SERIES
TAYLOR SERIES EXPANSION
TIME FOR TAYLOR SERIES
TAYLOR SERIES EXPANSION
TIME FOR TAYLOR SERIES
TAYLOR SERIES EXPANSION
TIME FOR TAYLOR SERIES
TAYLOR SERIES EXPANSION
TIME FOR TAYLOR SERIES

110 500
EXPANSION
110 500

EXPANSION
110 500

EXPANSION
110 500

EXPANSION
110 500

EXPANSION

110 500
EXPANSION
110 500

EXPANSION
110 500

EXPANSION

-4 1 112
= 0.02 SEC

-4 2 112

= 0.09 SEC
-4 3 112

0.18 SEC
-4 4 112

= 0.34 SEC
-4 5 112

= 0.62 SEC

-4 6 112

= 1.13 SEC

-4 7 112

= 1.97 SEC

-4 8 112
= 3.35 SEC

WRITE SERIES 500
LENGTH = 20

+556403/322560*E**8*SIN(8M)
-7913/4480*E**8*SIN(6M)
+4123/11520*E**8*SIN(4M)
+43/5760*E**8*SIN(2M)
+47273/32256*E**7*SIN(7M)
-5957/4608*E**7*SIN(5M)
+95/512*E**7*SIN(3M)
+107/4608*E**7*SIN(M)
+1223/960*E**6*SIN(6M)
-451/480*E**6*SIN(4M)
+17/192*E**6*SIN(2M)
+1097/960*E**5*SIN(5M)
-43/64*E**5*SIN(3M)
+5/96*E**5*SIN(M)
+103/96*E**4*SIN(4M)
-11/24*E**4*SIN(2M)
+13/12*E**3*SIN(3M)
-1/4*E**3*SIN(M)
+5/4*E**2*SIN(2M)
+2*E*SIN(M)
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A Transcendental Equation

Kepler's equation relating the eccentric anomaly E to the mean anomaly M is M = E - ecc sin E.
The program and solution of this equation for E as a function of M to sixth order in ecc are as follows.

PROGRAM INVERT
C IN wM=E-ECC*SIN(E)" SOLVE FOR "E" AS A

COMMON/LPOLY/LPOLY(24)/LARG/LARG(8)
COMMON/II/KFACT(24)/JJ/MORDER
CALL START
LPOLY(4)=3HECC
LARG (1)=1HM
CALL DE44(101,+1,1,0,0,0,1,-1,1,0,0,0)
CALL DE44(102,+1,1,,0,0,1,-1,1,0,0,0)
KFACT(4)=1

DO 700 MORDER=1,6
CALL TAYLORC102,101,-1,MORDER,103)

700 CALL SWITCH(103,101)
CALL ROUTLP(101)
END

FUNCTION OF "M"

WRITE SERIES 101
LENGTH = 12

+27/80*ECC**6*SIN(6M)
+125/384*ECC**5*SIN(5M)
-4/15*ECC**6*SIN(4M)
+1/3*ECC**4*SIN(4M)
-27/128*ECC**5*SIN(3M)
+3/8*ECC**3*SIN(3M)
+1/48*ECC**6*SIN(2M)
-1/6*ECC**4*SIN(2M)
+1/2*ECC**2*SIN(2M)
+1/192*ECC**5*SIN(M)
-1/8*ECC**3*SIN(M)
+ECC*SIN(M)
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An Example of Polynomial Denominators

The following series shows how the output might appear if literal polynomial divisors are present:

WRITE SERIES 20
LENGTH = 10

+1/8*A**2*B**4*C**6*D**8*SIN(12A+1OB+8C+6D)
(12AD+1OBD+8CD+6DD)(12AZ+1OBZ+8CZ+6ZZ)

-9/8*A**2*B**2*C**12*D**4*COS(10A+5B+4C+5D)
(1OAD+5BD+4CD+5DD)(1OAZ+5BZ+4CZ+5ZZ)

-81/32*A**2*C**18*SIN(8A+4D)
(8AD+4DD)(8AZ+4ZZ)

-1/4*A**2*B**3*C**12*D**6*COS(7A+8B+3C+5D)
(7AD+8BD+3CD+5DD)(7AZ+8BZ+3CZ+5ZZ)

-2/3*A**5*B**5*C**5*D**5*COS(7A+7B+7C+7D)
(7AD+7BD+7CD+7DD)(7AZ+7BZ+7CZ+7ZZ)

+7/4*A**2*B**6*C**5*D**7*SIN(6A+5B+4C+6D)

(6AD+5BD+4CD+6DD)(6AZ+5BZ+4CZ+6ZZ)

+7/4*A**2*B**6*C**5*D**7*SIN(6A+5B+4C)
(6AD+5BD+4CD)(6AZ+5BZ+4CZ)

+2/3*A**5*B**5*C**5*D**5*COS(5A+3B+C-D)
(5AD+3BD+CD-DD)(5AZ+3BZ+CZ-ZZ)

-9/8*A**2*B*C**18*D**2*SIN(5A+3B-C+4D)
(5AD+3BD-CD+4DD)(5AZ+3BZ-CZ+4ZZ)

+1/4*A**2*B**3*C**12*D**6*COS(5A+2B+5C+D)
(5AD+2BD+5CD+DD)(5AZ+2BZ+5CZ+ZZ)

In this example, one polynomial is referenced from the trigonometric node, and the other is referenced
from the coefficient node. The terms in this example are examples of the most general terms that the
system can represent thus far.
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CONCLUDING REMARKS

The following concluding remarks are in order:

* It appears that algebraic manipulations of interest in classical perturbation theory may be
easily performed on a high-speed computer using the FORTRAN language.

* The use of elementary list-processing techniques appears to be quite advantageous when
manipulating large series internally to the machine. This method of storage management
was tried along with a packed format representation (adjacent terms in a series stored in
adjacent locations in memory). Whereas the latter method proved simpler in implementa-
tion, it proved to be nearly useless when larger scale calculations were performed which
required the most efficient use of core storage.

* From experience it appears that for problems of small to intermediate size the one-
dimensional representation appears to be superior to the more complicated two-
dimensional scheme. However for large-scale problems and/or those requiring polynomial
denominators, the latter method appears to be slightly advantageous.

* Extremely lengthy algebraic computations requiring 10 min or more of CPU time may
require additional storage (disk or drum) for storage of intermediate results.

* The program can be run on any computer possessing a FORTRAN compiler and a 32-bit
(or greater) word length with few modifications. It may be adapted to any machine with a
shorter word length but with major modifications.

* The program will perform about 100 multiplications per second with no truncation on a
PDP 11/780. For example, the product of a 50-term series with itself will require about
25 s assuming no truncation occurs. If substantial truncation takes place, the required
time is greatly reduced. About 1 man-year's work of algebra can be reproduced in 1
minute of CPU time on a PDP 11/780.
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Appendix A
PROGRAM LISTING

Listed below are subroutine START and, in alphabetical order, the most important routines
comprised by the system. In the interest of conserving space, some of the more specialized subroutines
are not included in the listing. Also, the two-dimensional version is not included. The complete pack-
age is available from the author.

SUBROUTINE START
IMPLICIT REAL*8 (A-H,O-Z)

70 FORMAT C///)
80 FORMAT(19H START OF EXECUTION)

COMMON/AA/NEXT(1000)/BB/N(1000)/CC/M(1000)/DD/KTERM(9,1000)
COMMON/HH/MSTART(1050)/HI/MAX(1050)/NC/NOCHOP
COMMON/GH/NUTIL(30)/LL/INDEX/KORE/KORE
COMMON/II/KFACT(24)/JJ/MORDER/KK/LZERO/UU/LMAP(1024)
COMMON/MM/NOFACT/NN/NPRINT/NM/LPRINT/OO/NEXACT
COMMON/RR/EPSLON/SS/NOFIX/IJ/KCHOP(24)/NT/NOTRUN
COMMON/LPOLY/LPOLY(24)/LARG/LARG(8)
LOGICAL NOFACT,NPRINT,LPRINT,NOFIX,NEXACT,NOTRUN,NOCHOP
DATA NPY/6/,NTG/2/,NVAR/8/,NTIP/9/,NTGP/7/
DATA INDEX/Z40808080/,KORE/1000/
DATA LPOLY/1HA,1HB,1HC,1HD,1HE,1HF,1HG,1HH,

1HI,1HJ,1HK,1HL,1HM,1HN,1HO,lHP,
* 1HQ,1HR,1HS,1HT,1HU,1HV,1HW,1HX/
DATA LARG /1HA,1HB,1HC,1HD,1HE,1HF,1HG,1HH/
PRINT 80

PRINT 70
NOFACT=.FALSE.
LPRINT=.TRUE.
NPRINT=.TRUE
NOFIX=.TRUE.
NEXACT=.FALSE.
NOTRUN=.FALSE.
NOCHOP=.FALSE.
EPSLON=1.OD-9

MORDER=63
LZERO=1

DO 10 K=1,24
KCHOP(K)=63

10 KFACT(K)=O

DO 30 K=1,30,1
30 NUTILCK)=O

DO 40 K=1,1050,1
MSTART(K)=O

40 MAX(K)=O
DO 50 K=1,KORE,1
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NEXT(K)=K+1

N(K)=O
M(K) =+1
KTERM(NTIP,K)=+1
DO 50 LJ=1,NVAR

50 KTERM(LJ,K)=INDEX
NEXT(KORE)=O
RETURN
END

SUBROUTINE ACCUM(ISA,ISB)
IMPLICIT REAL*8 (A-H,O-Z)

150 FORMAT(11H ACCUMULATE,I4,3H TO,I4)
160 FORMAT(21H TIME TO ACCUMULATE =,F7.2,4H SEC)

COMMON/AA/NEXT(1)/BB/N(1)/CC/M(1)/DD/KTERM(9,1)
COMMON/HH/MSTART(1)/HI/MAX(1)/KK/LZERO
COMMON/LL/INDEX/NN/NPRINT
LOGICAL NPRINT
DATA NPY/6/,NTG/2/,NVAR/8/,NTIP/9/,NTGP/7/
IF (ISA.EQ.ISB) CALL MULCON(ISA,2,1)
IF (ISA.EQ.ISB) RETURN
LT=O
KA=MSTART(ISA)
KB=MSTART(ISB)
IF (KB.LE.O) RETURN
IF (KA.LE.O)CALL SWITCH(ISA,ISB)
IF (KA.LE.O) RETURN

XNB=TMLEFT(MS)
ISC=ISA

10 DO 20 LX=1,NTIP
IF (KTERM(LX,KB)-KTERM(LX,KA)) 40,20,30

20 CONTINUE
IF (LT.LE.O) MSTART(ISC)=KA

IF (LT.GT.O) NEXTCLT)=KA
LT=KA

NA=NEXT(KA)
NB=NEXT(KB)
CALL REFACT(N(KA),M(KA),N(KB),M(KB),1,1,N(KA),M(KA),O)
N(KB)=O0

M(KB)=l1
DO 25 LX=1,NVAR

25 KTERM(LX,KB)=INDEX
KTERM(NTIP,KB)=+1
NEXT(KB)=LZERO
LZERO=KB

KA=NA
KB=NB
IF (KA.LE.O) GO TO 60
IF (KB.LE.O) GO TO 50
GO TO 10
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30 IF (LT.LE.O) MSTART(ISC)=KB

IF (LT.GT.0) NEXT(LT)=KB
LT=KB
KB=NEXT(KB)
IF (CKB.GT.0) GO TO 10
GO TO 50

40 IF (LT.LE.O) MSTART(ISC)=KA
IF (LT.GT.O) NEXT(LT)=KA
LT=KA
KA=NEXT(KA)
IF (KA.GT.O) GO TO 10
GO TO 60

50 NEXT(LT)=KA
MAX(ISC)=MAX(ISA)
GO TO 70

60 NEXT(LT)=KB
MAX(ISC)=MAX(ISB)

70 CALL LINK(ISC)
MSTART(ISB)=O
MAX(ISB)=O
IF (NPRINT) RETURN
XNA=TMLEFT(MS)

XNT=XNB-XNA
PRINT 150,ISB,ISA
PRINT 160,XNT
RETURN

END

SUBROUTINE ADD(ISA,ISB,ISC)
IMPLICIT REAL*8 (A-H,O-Z)

150 FORMATC4H ADD,I4,3H TO,I4,10H RESULT INI4)
160 FORMAT(14H TIME TO ADD =,F7.2,4H SEC)
170 FORMAT(24H STORAGE OVERFLOW IN ADD)

COMMON/AA/NEXT(1)/BB/N(1)/CC/M(1)/DD/KTERM(9,1)
COMMON/HH/MSTART(1)/HI/MAX(1)/KK/LZERO
COMMON/LL/INDEX/NN/NPRINT
LOGICAL NPRINT
DATA NPY/6/,NTG/2/,NVAR/8/,NTIP/9/,NTGP/7/
IF (ISA.EQ.ISB) CALL TRANSF(ISA,ISC)
IF (ISA.EQ.ISB) CALL MULCON(ISC,2,1)
IF (ISA.EQ.ISB) RETURN
IF (ISA.EQ.ISC) CALL ADDACC(ISC,ISB)
IF (ISB.EQ.ISC) CALL ADDACC(ISC,ISA)
IF (ISA.EQ.ISC.OR.ISB.EQ.ISC) RETURN
LT=O
KA=MSTART(ISA)
KB=MSTART(ISB)
IF (KA.GT.O.AND.KB.LE.O) CALL TRANSF(ISA,ISC)
IF (KA.LE.O.AND.KB.GT.O) CALL TRANSF(ISB,ISC)
IF (KA.GT.O.AND.KB.LE.0) RETURN
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IF (KA.LE.O.AND.KB.GT.0) RETURN ,
CALL ZERO(ISC)
IF (KA.LE.O.AND.KB.LE.0) RETURN
XNB=TMLEFT(MS)

10 DO 20 LX=1,NTIP
IF (KTERM(LX,KB)-KTERM(LX,KA)) 40,20,30

20 CONTINUE
NT=LZERO
IF (NT.LE.O) GO TO 200

LZERO=NEXT(NT)
NEXT(NT)=O
CALL REFACT(N(KA),M(KA),N(KB),M(KB),1,1,N(NT),M(NT),O)
DO 110 LX=1,NTIP

110 KTERM(LX,NT)=KTERM(LX,KA)
KA=NEXT(KA)
KB=NEXT(KB)
IF (N(NT).EQ.O) GO TO 120
IF (LT.LE.0) MSTART(ISC)=NT

IF (LT.GT.O) NEXT(LT)=NT
LT=NT
GO TO 140

120 M(NT)=1

KTERM(NTIP,NT)=+1
DO 130 LX=1,NVAR

130 KTERM(LX,NT)=INDEX

NEXT(NT)=LZERO
LZERO=NT
GO TO 140

30 LC=KB
KB=NEXT(KB)
GO TO 100

40 LC=KA
KA=NEXT(KA)
GO TO 100

100 NT=LZERO
IF (NT.LT.O) GO TO 200

LZERO=NEXT(NT)
NEXT(NT)=O
IF (LT.LE.O) MSTART(ISC)=NT
IF (LT.GT.O) NEXT(LT)=NT
N(NT)=N(LC)
M(NT)=M(LC)
DO 111 LX=1,NTIP

111 KTERM(LX,NT)=KTERM(LX,LC)
LT=NT

140 IF (KA.GT.O.AND.KB.GT.O) GO TO 10
IF (KA.LE.O.AND.KB.GT.0) GO TO 30
IF (KA.GT.O.AND.KB.LE.O) GO TO 40
MAX(ISC)=NT
CALL LINK(ISC)
IF (NPRINT) RETURN
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XNA=TMLEFT(MS)

XNT=XNB-XNA
PRINT 150,ISA,ISB,ISC
PRINT 160,XNT
RETURN

200 PRINT 170
CALL QUIT
STOP
END

SUBROUTINE ADDACC(ISA,ISB)

IMPLICIT REAL*8 (A-H,O-Z)
150 FORMAT(11H ACCUMULATE,I4,3H TO,I4)
160 FORMAT(14H TIME TO ADD =,F7.2,4H SEC)
170 FORMAT(27H STORAGE OVERFLOW IN ADDACC)

COMMON/AA/NEXT(1)/BB/N(1)/CC/M(1)/DD/KTERM(9,1)
COMMON/HH/MSTART(1)/HI/MAX(1)/KK/LZERO
COMMON/LL/INDEX/NN/NPRINT
LOGICAL NPRINT
DATA NPY/6/,NTG/2/,NVAR/8/,NTIP/9/,NTGP/7/
IF (ISA.EQ.ISB) CALL MULCON(ISA,2,1)
IF (ISA.EQ.ISB) RETURN
KA=MSTART(ISA)
KB=MSTART(ISB)
IF (KA.LE.O.AND.KB.GT.0) CALL TRANSF(ISB,ISA)
IF (KA.LE.O.AND.KB.GT.0) RETURN
IF (KA.GT.O.AND.KB.LE.0) RETURN
IF (KA.LE.O.AND.KB.LE.O) RETURN
XNB=TMLEFT(MS)
MSTART(ISA)=O
MAX(ISA)=O
LT=O

10 DO 20 LX=1,NTIP
IF (KTERM(LX,KB)-KTERM(LX,KA)) 40,20,30

20 CONTINUE
NT=KA
CALL REFACT(N(KA),M(KA),N(KB),M(KB),1,1,N(NT),M(NT),O)
KA=NEXT(KA)
KB=NEXT(KB)
NEXT(NT)=O
IF (N(NT).EQ.O) GO TO 24
IF (LT.LE.O) MSTART(ISA)=NT
IF (LT.GT.O) NEXT(LT)=NT

LT=NT
GO TO 100

24 M(NT)=1
KTERM(NTIP,NT)=+1
DO 25 LX=1,NVAR

25 KTERM(LX,NT)=INDEX
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NEXT(NT)=LZERO
LZERO=NT
GO TO 100

30 NT=LZERO

IF (NT.LE.O) GO TO 200
LZERO=NEXT(NT)
NEXT(NT)=O
IF (LT.LE.O) MSTART(ISA)=NT
IF (LT.GT.O) NEXT(LT)=NT
N(NT)=N(KB)
M(NT)=M(KB)
DO 35 LX=1,NTIP

35 KTERM(LX,NT)=KTERM(LX,KB)
KB=NEXT(KB)
LT=NT
GO TO 100

40 NT=KA
IF (LT.LE.O) MSTART(ISA)=NT
IF (LT.GT.O) NEXT(LT)=NT

KA=NEXT(KA)
NEXT(NT)=O
LT=NT
GO TO 100

100 IF (KA.GT.O.AND.KB.GT.0) GO TO 10

IF (KA.LE.O.AND.KB.GT.0) GO TO 30

IF (KA.GT.O.AND.KB.LE.0) GO TO 40
MAX(ISA)=LT
CALL LINKCISA)
IF (NPRINT) RETURN
XNA=TMLEFT(MS)

XNT=XNB-XNA
PRINT 150,ISB,ISA
PRINT 160,XNT
RETURN

200 PRINT 170
CALL QUIT

STOP
END

SUBROUTINE QUIT

RETURN

END

SUBROUTINE CHOOSE(ISA,ISB,IVARIB,NUM)
IVVV=-IABS(IVARIB)
CALL COMBIN(ISA,ISB,IVVV,NUM,5)
RETURN
END
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SUBROUTINE COLECT(ISA,KEYC)
20 FORMAT (33H * CALL GARBAGE COLLECTOR ****,5X,2I8)
30 FORMAT (39H * STORAGE EXCEEDED IN MULTIPLY ****)

COMMON/VV/NUMPAR,KOUNT,KOLECT,KSCAN/NN/NPRINT
COMMON/TT/NTOTAL/NUMBER/NUMBER
LOGICAL NPRINT,KSCAN
IF (KEYC.EQ.O) GO TO 10
NUMBER=NUMBER+1
NTA=KOUNT IF (NUMBER.LT.10) GO TO 10

PRINT 30
CALL QUIT
STOP

10 CALL LINK (ISA)
IF (.NOT.NPRINT) PRINT 20,NTA,NTOTAL
RETURN

END

SUBROUTINE COMBIN(ISA,ISB,IVARIB,NUM,KFUN)

101
102
103
104

105
109
106
107

FORMAT(29H
FORMATC30H
FORMAT(16H
FORMAT(16H
FORMAT(16H
FORMAT(16H

FORMAT(17H
FORMAT(27H

RETAIN
RETAIN

RETAIN
RETAIN
RETAIN
RETAIN

STORE

ONLY PERODIC TERMS IN,I3)
ONLY CONSTANT TERMS IN,I3)
TERMS INJ3,9H TO ORDERJ3,14H WRT,I3)
TERMS INJ3,9H OF POWERJ3,4H WRT,I3)
TERMS INI3,15H OF PERIODICITY,I3,4H WRT,I3)
TERMS INI4,19H WITH DEPENDENCE ONI4)
RESULT IN,I4)

STORAGE OVERFLOW IN COMBIN)
COMMON/AA/NEXT(1)/BB/N(1)/CC/M(1)/DD/KTERM(9,1)
COMMON/HH/MSTART(1)/HI/MAX(1)
COMMON/KK/LZERO/LL/INDEX/NN/NPRINT
LOGICAL NPRINT
DIMENSION IAC4)
DATA NPY/6/,NTG/2/,NVAR/8/,NTIP/9/,NTGP/7/
IF (ISA.NE.ISB) CALL ZERO(ISB)
IF (NPRINT) GO TO 10

IF (KFUN.EQ.1) PRINT 101,ISA
IF (KFUN.EQ.2) PRINT 102,ISA
IF (KFUN.EQ.3) PRINT 103,ISA,NUM,IVARIB
IF (KFUN.EQ.4) PRINT 104,ISA,NUM,IVARIB
IF (KFUN.EQ.5) PRINT 105,ISA,NUM,IVARIB
IF (KFUN.EQ.6) PRINT 109,ISA,IVARIB
PRINT 106,ISB

10 K=MSTART(ISA)

IF (K.LE.O) RETURN

IF (ISA.EQ.ISB) GO TO 60
J=LZERO
MSTART(ISB)=LZERO

20 JN=J
GO TO (21,21,23,23,23,23),KFUN

21 DO 26 LJ=NTGP,NVAR
IF (KFUN.EQ.1.AND.KTERM(LJ,K).NE.INDEX) GO TO 36
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IF (KFUN.EQ.2.AND.KTERM(LJ,K).NE.INDEX) GO TO 38

26 CONTINUE
IF (KFUN.EQ.1) GO TO 38
IF (KFUN.EQ.2) GO TO 36

23 JW=(IABS(IVARIB)+3)/4
IF (IVARIB.LT.0) JW=JW+NPY
CALL UNPACK(KTERM(JW,K),IA)
JV=MOD(IABS(IVARIB),4)
IF (JV.EQ.0) JV=4
IF (KFUN.EQ.3.AND.IA(JV).LE.NUM) GO TO 36
IF (KFUN.EQ.4.AND.IA(JV).EQ.NUM) GO TO 36
IF (KFUN.EQ.5.AND.IA(JV).EQ.NUM) GO TO 36

IF (KFUN.EQ.6.AND.IA(JV).NE.O) GO TO 36
GO TO 38

36 N(J)=N(K)
M(J)=M(K)
DO 37 LJ=1,NTIP

37 KTERM(LJ,J)=KTERM(LJ,K)
JN=NEXT(J)

38 KN=NEXT(K)
IF (JN.GT.0) GO TO 40
PRINT 107
CALL QUIT
STOP

40 IF (KN.EQ.0) GO TO 50
J=JN
K=KN

GO TO 20

50 LZERO=NEXT(J)
NEXT(J)=O
MAX(ISB)=J
CALL LINK(ISB)
RETURN

60 GO TO (61,61,63,63,63,63),KFUN
61 DO 66 LJ=NTGP,NVAR

IF (KFUN.EQ.1.AND.KTERM(LJK).NE.INDEX) GO TO 90
IF (KFUN.EQ.2.AND.KTERM(LJ,K).NE.INDEX) GO TO 80

66 CONTINUE
IF (KFUN.EQ.1) GO TO 80
IF (KFUN.EQ.2) GO TO 90

63 JW=(IABS(IVARIB)+3)/4
IF (IVARIB.LT.0) JW=JW+NPY
CALL UNPACK(KTERM(JW,K),IA)
JV=MOD(IABS(IVARIB),4)
IF (JV.EQ.0) JV=4
IF (KFUN.EQ.3.AND.IA(JV).LE.NUM) GO TO 90
IF (KFUN.EQ.4.AND.IA(JV).EQ.NUM) GO TO 90
IF (KFUN.EQ.5.AND.IA(JV).EQ.NUM) GO TO 90
IF (KFUN.EQ.6.AND.IA(JV).NE.0) GO TO 90

80 N(K)=O
90 K=NEXT(K)
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IF (K.GT.0) GO TO 60

CALL LINK(ISA)
RETURN

END

SUBROUTINE CUT(ISA,ISB)
IVARIB=O
NUM=o
CALL COMBIN(ISA,ISB,IVARIB,NUM,1)
RETURN

END

SUBROUTINE DEFONE(ISA)
COMMON/AA/NEXT(1)/BB/N(1)/CC/M(1)/DD/KTERM(9,1)
COMMON/HH/MSTART(1)/HI/MAX(1)/KK/LZERO/LL/INDEX
DATA NPY/6/,NTG/2/,NVAR/8/,NTIP/9/,NTGP/7/
CALL ZERO(ISA)

MSTART(ISA)=LZERO
MAX(ISA)=LZERO
K=LZERO
N(K)=1
M(K)=1
DO 10 LJ=1,NVAR

10 KTERM(LJ,K)=INDEX
KTERM(NTIP,K)=1
LZERO=NEXT(K)
NEXT(K)=O
RETURN

END

SUBROUTINE DERINT(ISA,IV,ISB,KFUN)
40 FORMAT (14H DIFFERENTIATE,I3,7H W.R.T.,I3,10H RESULT IN,I3)
45 FORMAT (27H STORAGE OVERFLOW IN DERINT)

50 FORMAT (10H INTEGRATE,I3,7H W.R.T.,I3,10H RESULT INI3)
COMMON/AA/NEXT(1)/BB/N(1)/CC/M(1)/DD/KTERM(9,1)
COMMON/GH/NUTIL(1)/HH/MSTART(1)/HI/MAX(1)/NN/NPRINT
COMMON/KK/LZERO
LOGICAL NPRINT
DIMENSION IA(4),IB(4)
DATA NPY/6/,NTG/2/,NVAR/8/,NTIP/9/,NTGP/7/
IF (KFUN.EQ.1.AND..NOT.NPRINT) PRINT 40,ISA,IV,ISB
IF (KFUN.EQ.2.AND..NOT.NPRINT) PRINT 50,ISA,IV,ISB
IF (KFUN.EQ.1.AND.ISA.NE.ISB) GO TO 100

CALL TRANSF(ISA,ISB)
K=MSTART(ISB)
IF (K.LE.0) RETURN
IF (IV.LT.O) GO TO 30
JW=(IABS(IV)+3)/4
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JV=MOD(IABS(IV),4)
IF (JV.EQ.0) JV=4

10 CALL UNPACK(KTERM(JW,K),IA)
IF (KFUN.EQ.1) GO TO 20
IF (KFUN.EQ.2) GO TO 25

20 KCON=IA(JV)
IA(JV)=IA(JV)-1
CALL REFACT (N(K),M(K),1,1,KCON,1,N(K),M(K),1)
NUTIL(12)=NUTIL(12)+1
GO TO 28

25 IA(JV)=IA(JV)+1
KCON=IA(JV)
CALL REFACT (N(K),M(K),1,1,1,KCON,N(K),M(K),1)
NUTIL(13)=NUTIL(13)+1

28 CALL REPACK(IA,KTERM(JW,K))
K=NEXT(K)
IF (K.GT.0) GO TO 10
CALL LINK(ISB)
RETURN

30 JW=(IABS(IV)+3)/4+NPY
JV=MOD(IABS(IV),4)
IF (JV.EQ.O) JV=4

31 CALL UNPACK(KTERM(JW,K),IB)
IF (KFUN.EQ.1) GO TO 32
IF (KFUN.EQ.2) GO TO 34

32 KCON=-IB(JV)*KTERM(NTIP,K)
CALL REFACT (N(K),M(K),1,1,KCON,1,N(K),M(K),1)
NUTIL(12)=NUTIL(12)+1
GO TO 36

34 KCON=+IB(JV)*KTERM(NTIP,K)
CALL REFACT (N(K),M(K),1,1,1,KCON,N(K),M(K),1)
NUTIL(13)=NUTIL(13)+1

36 KTERM(NTIP,K)=-KTERM(NTIP,K)
K=NEXT(K)
IF (K.GT.O) GO TO 31
CALL LINK (ISB)

RETURN

100 CALL ZERO(ISB)
K=MSTART(ISA)
IF (K.LE.O) RETURN
MSTART(ISB)=LZERO
J=MSTART(ISB)
IF (IV.LT.O) GO TO 80
JW=(IABS(IV)+3)/4
JV=MOD(IABS(IV),4)
IF (JV.EQ.O) JV=4

60 N(J)=N(K)
M(J)=M(K)
DO 62 LJ=1,NTIP

62 KTERM(LJ,J)=KTERM(LJ,K)
CALL UNPACK(KTERM(JW,J),IA)
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KCON=IA(JV)
IA(JV)=IA(JV)-1
CALL REFACT (N(J),M(J),1,1,KCON,1,N(J),M(J),1)
NUTIL(12)=NUTIL(12)+1
CALL REPACK(IA,KTERM(JW,J))
JN=NEXT(J)
KN=NEXT(K)

IF (KN.LE.O) GO TO 90
IF (JN.LE.0) GO TO 92
IF (N(J).NE.0) J=JN
K=KN
GO TO 60

80 JW=(IABS(IV)+3)/4+NPY
JV=MOD(IABS(IV),4)
IF (JV.EQ.0) JV=4

81 N(J)=N(K)
M(J)=M(K)
DO 83 LJ=1,NTIP

83 KTERM(LJ,J)=KTERM(LJ,K)
CALL UNPACK(KTERM(JW,J),IB)
KCON=-IB(JV)*KTERM(NTIP,J)
CALL REFACT (N(J),M(J),1,1,KCON,1,N(J),M(J),1)
NUTIL(12)=NUTIL(12)+1
KTERM(NTIP, J) =-KTERM(NTIP, J)
JN=NEXT(J)
KN=NEXT(K)
IF (KN.LE.O) GO TO 90
IF (JN.LE.O) GO TO 92
IF (N(J).NE.O) J=JN
K=KN
GO TO 81

90 MAX(ISB)=J
LZERO=NEXT(J)
NEXT(J)=O
CALL LINK(ISB)
RETURN

92 PRINT 45
CALL QUIT
STOP
END

SUBROUTINE DERIV(ISA,IV,ISB)
CALL DERINT(ISA,IV,ISB,1)
RETURN

END
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SUBROUTINE DE44(ISA,NUM,NDEMON,I1,I2,I3,I4,
* KTRIG,J1,J2,J3,J4)
COMMON/AA/NEXT(1)/BB/N(1)/CC/M(1)/DD/KTERM(9,1)
COMMON/HH/MSTART(1)/HI/MAX(1)/KK/LZERO/LL/INDEX
DIMENSION IP(4),IA(4)
DATA NPY/6/,NTG/2/,NVAR/8/,NTIP/9/,NTGP/7/
IP(1)=I1
IP(2)=I2
IP(3)=I3
IP(4)=I4
IA(1)=J1
IA(2)=J2
IA(3)=J3
IA(4)=J4
K=LZERO
LZERO=NEXT(K)
NEXT(K)=O
N(K)=NUM
M(K)=NDEMON
KTERM(NTIP,K)=KTRIG
DO 10 LJ=1,NVAR

10 KTERM(LJ,K)=INDEX
CALL REPACK(IP,KTERM(1,K))
CALL REPACK(IA,KTERM(7,K))
CALL SETUP(O,0)
CALL INSERTCISA,K)
RETURN

END

SUBROUTINE ERASE (ISA,IV)

20 FORMAT (6H ERASE,I3,4H WRT,I3)
COMMON/AA/NEXT(1)/BB/N(1)/CC/M(1)/DD/KTERM(9,1)
COMMON/HH/MSTART(1)/HI/MAX(1)/NN/NPRINT
LOGICAL NPRINT

DIMENSION IAA(4)
IF (.NOT.NPRINT) PRINT 20, ISA,IV
K=MSTART(ISA)
IF (K.EQ.0) RETURN
JW=(IV+3)/4
JV=MOD(IABS(IV),4)
IF (JV.EQ.0) JV=4

10 CALL UNPACK(KTERM(JW,K),IAA)
IAA(JV)=O
CALL REPACK (IAA,KTERM(JW,K))
K=NEXT(K)
IF (K.GT.O) GO TO 10

CALL SIMPCISA)
RETURN
END
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SUBROUTINE EXPAND (ISA,IORDER,IN,IM,ISB)

30 FORMAT (12H EXPAND (1 +,I3,4H)**(,I2,1H/,I2,1H))
40 FORMAT (10H TO ORDERI3,3H IN,I3)
50 FORMAT (18H RESULT STORED IN,I3)
60 FORMAT (14H TOTAL TIME =,F7.2,4H SEC)

COMMON/NN/NPRINT/NM/LPRINT/LL/INDEX
LOGICAL NPRINT,LPRINT,PNPRNT
XNB=TMLEFT(MS)
PNPRNT=NPRINT
IF (LPRINT) NPRINT=.TRUE.

PRINT 30, ISA,IN,IM
PRINT 40, IORDER,ISA
PRINT 50, ISB
CALL ZERO (ISB)
ISC=1003
ISD=1004
CALL ZERO (ISC)
CALL ZERO (ISD)
CALL DEFONE(ISB)
CALL DEFONE(ISC)
IF (IN.EQ.O) GO TO 20
IF (IORDER.EQ.O) GO TO 20
JN=IN
JM=IM
DO 10 K=1,IORDER,1
JN=IN-(K-1)*IM
JM=K*IM
CALL FACTOR (JN,JM)
CALL MULT (ISA,ISC,ISD)
CALL ZERO (ISC)
CALL MULCON (ISD,JN,JM)
IF (K.LT.IORDER) CALL ADD (ISB,ISD,ISB)
IF (K.EQ.IORDER) CALL ACCUM (ISB,ISD)

10 CALL SWITCH (ISD,ISC)
20 CALL ZERO (ISC)

CALL ZERO (ISD)
IF (LPRINT) NPRINT=PNPRNT
XNA=TMLEFT(MS)
XNT=XNB-XNA
PRINT 60, XNT
RETURN
END

.46



NRL REPORT 8611

SUBROUTINE FACTOR (NN,MM)

IF (NN.EQ.0) MM=1
KA=NN

KB=MM
10 KC=MOD(KA,KB)

IF (KC.EQ.0) GO TO 20
KA=KB
KB=KC
GO TO 10

20 KF=IABS(KB)
NN=NN/KF
MM=MM/KF

RETURN

END

SUBROUTINE INSERT (ISA,KTA)
IMPLICIT REAL*8 (A-H,O-Z)

260 FORMAT (34H POINTER NEGATIVE DURING PARTITION)
270 FORMAT (27H POINTER NEGATIVE IN INSERT)

COMMON/AA/NEXT(1)/BB/N(1)/CC/M(1)/DD/KTERM(9,1)
COMMON/GH/NUTIL(1)/HH/MSTART(1)/HI/MAX(1)/KK/LZERO/LL/INDEX
COMMON/TT/NTOTAL/UU/LMAP(1)/VV/NUMPAR,KOUNT,KOLECT,KSCAN
LOGICAL KSCAN
DATA NPY/6/,NTG/2/,NVAR/8/,NTIP/9/,NTGP/7/
NUTIL(17)=NUTIL(17)+1
CALL SWIFNC(KTA)
IF (MSTART(ISA).GT.0) GO TO 10
MSTART(ISA)=KTA
MAX(ISA)=KTA
NEXT(KTA)=O
KOUNT=1
RETURN

10 IF (N(KTA).EQ.0) GO TO 190
IF (KOUNT.LT.KOLECT) GO TO 12
CALL COLECT(ISA,O)
CALL SETUP(NTOTAL,1)
KOLECT=KOLECT+300

12 IF (NUMPAR.GE.1024) GO TO 40
IPAR=16*NUMPAR
IF (KOUNT.LE.IPAR) GO TO 40
KSCAN=.FALSE.
NUMPAR=2*NUMPAR
XSUM=O.ODO
YSUM=O.ODO
XKOUNT=KOUNT
DXK=XKOUNT/NUMPAR
KS=MSTART(ISA)
DO 30 MX=1,NUMPAR
LMAP(MX)=KS
XSUM=XSUM+DXK
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IF (MX.EQ.NUMPAR) GO TO 30

DO 20 MY=1,500
IF (YSUM.GE.XSUM) GO TO 30

YSUM=YSUM+1.ODO
IF (KS.LE.O) GO TO 230

20 KS=NEXT(KS)
30 CONTINUE
40 MSB=MSTART(ISA)

L=MSTART(ISA)
LAST=O
IF (KSCAN) GO TO 130
MX=NUMPAR/2
LX=LMAP(MX)
MDX=NUMPAR/4

50 DO 60 LJ=1,NTIP
IF (KTERM(LJ,LX)-KTERM(LJ,KTA)) 80,60,100

60 CONTINUE
GO TO 90

80 IF (MDX.EQ.O) MDX=1
MX=MX-MDX
MDX=MDX/2
IF (MX.LE.O) GO TO 110
LX=LMAP(MX)
GO TO 50

90 L=LX
GO TO 180

100 IF (MDX.EQ.O) GO TO 120
MX=MX+MDX
LX=LMAP(MX)
MDX=MDX/2
GO TO 50

110 LX=MSB
120 L=LX
130 DO 140 LJ=1,NTIP

IF (KTERM(LJ,L)-KTERM(LJ,KTA)) 160,140,200
140 CONTINUE

GO TO 180

160 IF (LAST.NE.O) GO TO 170
MSTART(ISA)=KTA
NEXT(KTA)=L
KOUNT=KOUNT+1
RETURN

170 NEXT(LAST)=KTA
NEXT(KTA)=L
KOUNT=KOUNT+1
RETURN

180 CALL REFACT (N(KTA),M(KTA),N(L),M(L),1,1,N(L),M(L),O)
190 N(KTA)=O

M(KTA)=1
KTERM(NTIP,KTA)=1
DO 195 LJ=1,NVAR
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195 KTERM(LJ,KTA)=INDEX

NEXT(KTA)=LZERO rr
LZERO=KTA
NUTIL(5)=NUTIL(5)+1
RETURN

200 LN=NEXT(L)
IF (LN) 240,210,220

210 MAX(ISA)=KTA
NEXT(L)=KTA
NEXT(KTA)=O
KOUNT=KOUNT+1
RETURN

220 LAST=L
L=LN
NUTIL(15)=NUTIL(15)+1
GO TO 130

230 PRINT 260
CALL QUIT
STOP

240 PRINT 270
CALL QUIT
STOP
END

SUBROUTINE INTEG(ISA,IV,ISB)
CALL DERINT(ISA,IV,ISB,2)
RETURN

END

FUNCTION IRGSGN(K)

COMMON/DD/KTERM(9,1)/LL/INDEX
DATA NPY/6/,NTG/2/,NVAR/8/,NTIP/9/,NTGP/7/
DO 100 LJ=NTGP,NVAR

IF (KTERM(LJ,K)-INDEX) 200,100,300
100 CONTINUE

IRGSGN=O
RETURN

200 IRGSGN=-1
RETURN

300 IRGSGN=+1

RETURN

END
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FUNCTION KEVEN(L)

J=L/2
M=J*2
IF (M.EQ.L) KEVEN=1

IF (M.NE.L) KEVEN=-1
RETURN

END

SUBROUTINE LINK (ISA)
COMMON/AA/NEXT(1)/BB/N(1)/CC/M(1)/DD/KTERM(9,1)
COMMON/GH/NUTIL(1)/HH/MSTART(1)/HI/MAX(1)
COMMON/KK/LZERO/LL/INDEX/TT/NTOTAL
DATA NPY/6/,NTG/2/,NVAR/8/,NTIP/9/,NTGP/7/
K=MSTART(ISA)
MSA=MSTART(ISA)
NTOTAL=O
LNZP=O
IF (MSA.GT.O) GO TO 10
MAX(ISA)=O
RETURN

10 MSA=o
20 NADDR=NEXT(K)

CALL SWIFNC(K)

IF (N(K).EQ.O) GO TO 30
NTOTAL=NTOTAL+1
LNZP=K
IF (MSA.EQ.O) MSA=K
IF (NADDR.EQ.O) GO TO 40
K=NADDR

GO TO 20

30 IF (LNZP.GT.O) NEXT(LNZP)=NEXT(K)
KN=NEXT(K)
NEXT(K)=LZERO
LZERO=K
M(K)=1
KTERM(NTIP,K)=1
DO 34 LJ=1,NVAR

34 KTERM(LJ,K)=INDEX
NUTIL(4)=NUTIL(4)+1
IF (KN.EQ.O) GO TO 40
K=KN

GO TO 20

40 MSTART(ISA)=MSA
MAX(ISA)=LNZP
IF (LNZP.GT.O) NEXT(LNZP)=O
RETURN

END
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SUBROUTINE MULCON(ISA,ICONST,JCONST)

20 FORMAT (9H MULTIPLY,I3,3H BY,I6,1H/,I6)
COMMON/AA/NEXT(1)/BB/N(1)/CC/M(1)/DD/KTERM(9,1)
COMMON/HH/MSTART(1)/HI/MAX(1)/NN/NPRINT/NM/LPRINT
LOGICAL NPRINT,LPRINT
ICONS=ICONST
JCONS=JCONST
CALL FACTOR (ICONS,JCONS)
IF (.NOT.NPRINT) PRINT 20, ISA,ICONS,JCONS
IF (ICONS.EQ.O) CALL ZERO (ISA)
K=MSTART(ISA)
IF (K.LE.0) RETURN

10 CALL REFACT (N(K),M(K),1,1,ICONS,JCONS,N(K),M(K),1)
K=NEXT(K)
IF (K.GT.O) GO TO 10

RETURN

END

SUBROUTINE MULONECISA)

COMMON/AA/NEXT(1)/BB/N(1)/CC/M(1)/DD/KTERM(9,1)
COMMON/HH/MSTART(1)/HI/MAX(1)
COMMON/NT/NOTRUN/IJ/KCHOP(1)
COMMON/II/KFACT(1)/JJ/MORDER
DIMENSION IA(24),IB(24)
LOGICAL NOTRUN
DATA NPY/6/,NTG/2/,NVAR/8/,NTIP/9/,NTGP/7/
NPY4=4*NPY
K=MSTART(ISA)
IF (K.LE.0) RETURN

10 DO 20 LJ=1,NPY
20 CALL UNPACK(KTERM(LJ,K),IA(4*LJ-3))

KH=O
DO 30 LJ=1,NPY4

30 KH=KH+IA(LJ)*KFACT(LJ)
IF (KH.GT.MORDER) N(K)=O
DO 40 KV=1,NPY4
IB(KV)=IA(KV)-KCHOP(KV)
IF (IB(KV).GT.0) N(K)=O

40 CONTINUE
K=NEXT(K)
IF (K.GT.O) GO TO 10

CALL LINK(ISA)
RETURN

END
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SUBROUTINE MULTX(ISA,ISB,ISC)
350 FORMAT (9H MULTIPLY,3I4,9H TO ORDERI3)
370 FORMAT (10H LENGTH =,I5,9H TIME =,F7.2)

COMMON/AA/NEXT(1)/BB/N(1)/CC/M(1)/DD/KTERM(9,1)
COMMON/GH/NUTIL(1)/HH/MSTART(1)/HI/MAX(1)/TT/NTOTAL
COMMON/II/KFACT(1)/JJ/MORDER/KK/LZERO/LL/INDEX/NT/NOTRUN
COMMON/NN/NPRINT/NUMBER/NUMBER/IJ/KCHOP(1)/NC/NOCHOP
LOGICAL NPRINT,PNPRNT,NOTRUN,NOCHOP
DIMENSION IA(24),IB(24),IC(24)
DATA NPY/6/,NTG/2/,NVAR/8/,NTIP/9/,NTGP/7/
IF (.NOT.NPRINT) PRINT 350, ISA,ISB,ISC,MORDER
XNB=TMLEFT(MS)
NPY4=4*NPY
CALL LINKCISA)
CALL LINK(ISB)
MSA=MSTART(ISA)
MSB=MSTART(ISB)
CALL ZERO (ISC)
IF (MSA.LE.O.OR.MSB.LE.O) RETURN
PNPRNT=NPRINT
NPRIWT=.TRUE.
K=MSA
J=MSB
CALL SETUP(O,O)

20 IF (NOTRUN) GO TO 50
DO 21 LJ=1,NPY

21 CALL UNPACK(KTERM(LJ,K),IA(4*LJ-3))
KH=O
DO 22 LJ=1,NPY4

22 KH=KH+IA(LJ)*KFACT(LJ)
30 IF (NOTRUN) GO TO 50

DO 31 LJ=1,NPY
31 CALL UNPACK(KTERM(LJ,J),IB(4*LJ-3))

JH=KH
DO 32 LJ=1,NPY4

32 JH=JH+IB(LJ)*KFACT(LJ)
IF (JH.GT.MORDER) GO TO 320
DO 40 KV=1,NPY4
IC(KV)=IA(KV)+IB(KV)-KCHOP(KV)
IF (IC(KV)) 40,40,320

40 CONTINUE

50 IF (LZERO.GT.O) GO TO 60
CALL COLECT(ISC,1)
CALL SETUP(NTOTAL,1)

GO TO 50
60 KTA=LZERO

LZERO=NEXT(KTA)
NEXT(KTA)=O

-70 IF (LZERO.GT.O) GO TO 80
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CALL COLECT(ISC,1)
CALL SETUP(NTOTAL,1)
GO TO 70

80 KTB=LZERO
LZERO=NEXT(KTB)
NEXT(KTB)=O
DO 84 LJ=1,NPY
IVA=KTERM(LJ,K)-INDEX
KTERM(LJ,KTA)=KTERM(LJ,J)+IVA

84 KTERM(LJ,KTB)=KTERM(LJ,KTA)
DO 86 LJ=NTGP,NVAR
IVB=KTERM(LJ,K)-INDEX
KTERM(LJ,KTA)=KTERM(LJ,J)+IVB
IVC=KTERM(LJ,K)-KTERM(LJ,J)

86 KTERM(LJ,KTB)=IVC+INDEX

IF (KTERM(NTIP,K)) 90,100,100
90 IF (KTERM(NTIP,J)) 110,150,150

100 IF (KTERM(NTIP,J)) 210,270,270

C SIN*SIN TO -COS+COS
110 CALL REFACT (N(J),M(J),N(K),M(K)

NUTIL(8)=NUTIL(8)+1
N(KTB)=-N(KTA)
M(KTB)=+M(KTA)
KTERM(NTIP,KTB)=+1
KTERM(NTIP,KTA)=+1
GO TO 310

,-1,+2,N(KTA),M(KTA),1)

C SIN*COS TO SIN +SIN
150 CALL REFACT (N(J),M(J),N(K),M(K),+1,+2,N(KTA),M(KTA)1)

NUTIL(9)=NUTIL(9)+1
N(KTB)=+N(KTA)
M(KTB)=+M(KTA)
KTERM(NTIP,KTB)=-1
KTERM(NTIP,KTA)=-1
GO TO 310

C COS*SIN TO -SIN+SIN
210 CALL REFACT (N(J),M(J)

NUTIL(10)=NUTIL(10)+1
N(KTB)=-N(KTA)
M(KTB)=+M(KTA)
KTERM(NTIP,KTB)=-1
KTERM(NTIP,KTA)=-1
GO TO 310

,N(K),M(K),+1,+2,N(KTA),M(KTA),1)

C COS*COS TO COS+COS
270 CALL REFACT (N(J),M(J),N(K),M(K),+1,+2,N(KTA),M(KTA),1)

NUTIL(11)=NUTIL(11)+1
N(KTB)=+N(KTA)
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M(KTB)=+M(KTA)
KTERM(NTIP,KTA)=+1
KTERM(NTIP,KTB)=+1
DO 272 LJ=NTGP,NVAR

IF (KTERM(LJ,KTA).NE.INDEX) GO TO 310
IF (KTERM(LJ,KTB).NE.INDEX) GO TO 310

272 CONTINUE
CALL REFACT(N(KTA),M(KTA),1,1,2,1,N(KTA),M(KTA),1)
N(KTB)=O
GO TO 310

310 CALL INSERT (ISC,KTA)
CALL INSERT (ISC,KTB)

320 NJ=NEXT(J)
NUTIL(16)=NUTIL(16)+1
IF (NJ.EQ.O) GO TO 330
J=NJ
GO TO 30

330 NK=NEXT(K)
IF (NK.EQ.0) GO TO 340
K=NK

J=MSB
GO TO 20

340 CALL LINK (ISC)
NPRINT=PNPRNT
IF (NPRINT) RETURN
XNA=TMLEFT(MS)
XNT=XNB-XNA
PRINT 370,NTOTAL,XNT
CONTINUE
RETURN
END

SUBROUTINE MULVAR (ISA,IV,NUM)

20 FORMAT (9H MULTIPLYI3,11H BY VARIBLEI3,9H TO POWER,I3)
COMMON/AA/NEXT(1)/BB/N(1)/CC/M(1)/DD/KTERM(9,1)
COMMON/HH/MSTART(1)/HI/MAX(1)/NN/NPRINT/IJ/KCHOP(1)
LOGICAL NPRINT
DIMENSION IAA(4)
IF (.NOT.NPRINT) PRINT 20, ISA,IV,NUM
K=MSTART(ISA)
IF (K.EQ.O) RETURN
JW=(IV+3)/4
JV=MOD(IABS(IV),4)
IF (JV.EQ.O) JV=4

10 CALL UNPACK(KTERM(JW,K),IAA)
IAA(JV)=IAA(JV)+NUM
CALL REPACK (IAA,KTERM(JW,K))
K=NEXT(K)
IF (K.GT.0) GO TO 10
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C:

CALL MULONE(ISA)
RETURN

END

SUBROUTINE NDERIV (ISA,IV,NUM,ISB)

20 FORMAT (10H PDERIV OF,13,4H WRT,I3,I8,6H TIMES)
30 FORMAT (18H RESULT STORED IN,I3)

COMMON/NN/NPRINT/NM/LPRINT
LOGICAL NPRINT,LPRINT,PNPRNT
PNPRNT=NPRINT
IF (LPRINT) NPRINT=.TRUE.
PRINT 20, ISA,IV,NUM
PRINT 30, ISB
CALL TRANSF (ISA,ISB)
DO 10 K=1,NUM,1

10 CALL DERIV (ISB,IV,ISB)
IF (LPRINT) NPRINT=PNPRNT

RETURN

END

SUBROUTINE OTERM(K)
IMPLICIT REAL*8 (A-H,O-Z)

310 FORMAT (200A1,185A1)
320 FORMAT (5X,130A1)
321 FORMAT (5X,130A1/(15X,120A1))
350 FORMAT (1X,I11,A1,111,24(A1,A3,A2,A2,I4),2A4,8(I4,A4),A1)
360 FORMAT ( F24.7,24(A1,A3,A2,A2,I4),2A4,8(I4,A4),A1)

COMMON/AA/NEXT(1)/BB/N(1)/CC/M(1)/DD/KTERM(9,1)
COMMON/GH/NUTIL(1)/HH/MSTART(1)/HI/MAX(1)
COMMON/MM/NOFACT/KK/LZERO/LL/INDEX/TT/NTOTAL
COMMON/LPOLY/LPOLY(1)/LARG/LARG(1)
COMMON/OTERM/LSTAR,LBLANK,LARROW,LTRIGA,LTRIGB,LPAREN,SOEFF
DIMENSION KEDIT(97),LEDIT(385),IA(24),IB(24)
LOGICAL NOFACT,FLOAT,REORDR

REAL*4 SOEFF
DATA NPY/6/,NTG/2/,NVAR/8/,NTIP/9/,NTGP/7/
DATA LBLANK/4H /
DATA MPAREN/1H)/
DATA LCOSA/4H*COS/
DATA LSINA/4H*SIN/
DATA LCOSB/4H( /
DATA LSINB/4H( /
DATA LSLASH/1H//
DATA KBLANK/1H /
DATA KPLUSN/1H+/
DATA MINUSN/1H-/
DATA LSTAR/1H*/
DATA LARROW/2H**/

DATA KZERO/1HO/
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C SWITCH SIGN OF DEMOMINATOR
IF (M(K).LT.0) N(K)=-N(K)
IF (M(K).LT.0) M(K)=-M(K)
DO 11 LJ=1,NPY

11 CALL UNPACK(KTERM(LJ,K),IA(4*LJ-3))
DO 12 LJ=NTGP,NVAR

12 CALL UNPACK(KTERM(LJ,K),IB(4*(LJ-NPY)-3))

C DETERMINE IF RATIONAL FRACTION OF NOT
FLOAT=. FALSE.
LPAREN=MPAREN
TF (KTERM(NTIP,K).EQ.-1) LTRIGA=LSINA
IF (KTERM(NTIP,K).EQ.-1) LTRIGB=LSINB
IF (KTERM(NTIP,K).GE.+O) LTRIGA=LCOSA
IF (KTERM(NTIP,K).GE.+O) LTRIGB=LCOSB
IF (IRGSGN(K).NE.O) GO TO 14
LPAREN=LBLANK
LTRIGA=LBLANK

LTRIGB=LBLANK

14 IF (NOFACT) GO TO 50
SM=M(K)
SM=DABS(SM)
IF (SM.LT.1.OD4) GO TO 40
SM=DLOG10(SM)+0.0001DO
SM=DMOD(SM,1.ODO)
IF (SM.LT.0.001DO) FLOAT=.TRUE.
IF (FLOAT) GO TO 50

C DETERMINE IF SIGN OR COSINE FOR RATIONAL FRACTION

40 ENCODE (385,350,KEDIT) N(K),LSLASH,M(K),
* (LSTAR,LPOLY(I),LBLANK,LARROW,IA(I),I=1,24),
* LTRIGA,LTRIGB,(IB(I),LARG(I),I=1,8),LPAREN
GO TO 60

C DETERMINE IF SIGN OR COSINE FOR FLOATING POINT
50 COEFF=N(K)

COEFF=COEFF/M(K)
SOEFF=COEFF
ENCODE (385,360,KEDIT) SOEFF,

* (LSTAR,LPOLY(I),LBLANK,LARROW,IA(I),I=1,24),
* LTRIGA,LTRIGB,(IB(I),LARG(I),I=1,8),LPAREN

C DELETE UNNECESSARY POLYNOMIAL OR TRIG VARIABLES
60 DO 65 I=1,24

IF (IA(I).EQ.O) KEDIT(3*I+4) =LBLANK
IF (IA(I).EQ.0) KEDIT(3*I+5) =LBLANK

65 IF (IA(I).EQ.0) KEDIT(3*I+6) =LBLANK
DO 70 I=1,8
IF (IB(I).EQ.O) KEDIT(2*I+79)=LBLANK

70 IF (IB(I).EQ.O) KEDIT(2*I+80)=LBLANK
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C DECODE INTO SINGLE CHARACTERS

DECODE (385,310,KEDIT) (LEDIT(I),I=1,385)

C DELETE UNITY EXPONENTS AND MULTIPLIERS

DO 80 I=1,24
IF (IA(I).NE.+1) GO TO 80
LEDIT(19+12*I)=KBLANK
LEDIT(20+12*I)=KBLANK
LEDIT(24+12*I)=KBLANK

80 CONTINUE
DO 90 I=1,8
IF (IB(I).EQ.+1) LEDIT(316+8*I)=KBLANK

90 IF (IB(I).EQ.-1) LEDIT(316+8*I)=KBLANK

. C INSERT + SIGNS IN TRIG ARGUMENT LIST
DO 100 I=1,8
ISTART=I+1
IF (IB(I).NE.+O) GO TO 110

100 CONTINUE
GO TO 130

110 IF (ISTART.GT.8) GO TO 130
DO 120 I=ISTART,8

120 IF (IB(I).GT.O) LEDIT(313+8*I)=KPLUSN

C DELETE COEFFICIENTS FOR UNITY VALUES
130 IF (N(K).GT.O) LEDIT(2)=KPLUSN

DO 132 LJ=1,NVAR
IF (KTERM(LJ,K).NE.INDEX) GO TO 134

132 CONTINUE
GO TO 160

134 CONTINUE
IF (N(K).EQ.-1.AND.M(K).EQ.+1) GO TO 138
IF (N(K).EQ.+1.AND.M(K).EQ.+1) GO TO 140
GO TO 160

138 LEDIT(2)=MINUSN
140 DO 142 I=3,24
142 LEDIT(I)=KBLANK

DO 145 I=1,24
IF (IA(I).EQ.0) GO TO 145
LEDIT(13+12*I)=KBLANK
GO TO 160

145 CONTINUE
LEDIT(313)=KBLANK

160 IF (M(K).EQ.1) LEDIT(13)=KBLANK
IF (M(K).EQ.1) LEDIT(24)=KBLANK

C DELETE TRAILING ZEROS IN FLOATING POINT COEFF
IF (.NOT.NOFACT.AND..NOT.FLOAT) GO TO 190
MKOUNT=24
DO 180 I=1,10
IF (LEDIT(MKOUNT).NE.KZERO) GO TO 190
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LEDIT(MKOUNT)=KBLANK

180 MKOUNT=MKOUNT-1

C COMPRESS INBETWEEN BLANKS
190 MKOUNT=1

DO 210 I=1,385
IF (LEDIT(I).EQ.KBLANK) GO TO 210
IF (MKOUNT.EQ.I) GO TO 200
LEDIT(MKOUNT)=LEDIT(I)
LEDIT(I)=KBLANK

200 MKOUNT=MKOUNT+1
210 CONTINUE

IF (MKOUNT.LE.130) PRINT 320, (LEDIT(I),I=1,MKOUNT)
IF (MKOUNT.GT.130) PRINT 321, (LEDIT(I),I=1,MKOUNT)
NUTIL(14)=NUTIL(14)+1
RETURN

END

SUBROUTINE OUTLP (ISA)
IMPLICIT REAL*8 (A-H,O-Z)

270 FORMAT (//)
330 FORMAT (//,13H WRITE SERIES,I4,/,9H LENGTH =,I5,/)
340 FORMAT (/,2X,17H ** FILE EMPTY **,/)

COMMON/AA/NEXT(1)/BB/N(1)/CC/M(1)/DD/KTERM(9,1)
COMMON/TT/NTOTAL/HH/MSTART(1)/HI/MAX(1)
COMMON/LPOLY/LPOLY(1)/LARG/LARG(1)
CALL LINK (ISA)
PRINT 330,ISA,NTOTAL
K=MSTART(ISA)
IF (K.GT.O) GO TO 10
PRINT 340
RETURN

10 CALL OTERM(K)
K=NEXT(K)
IF (K.GT.0) GO TO 10
PRINT 270
RETURN

END
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SUBROUTINE POWER (ISA,IJKL,ISB)

70 FORMAT C1X,I3,16H RAISED TO POWERJ3,17H RESULT STORED INJ3)
80 FORMAT (44H **** SERIES RAISED TO A NEGATIVE POWER ****)

90 FORMAT (14H TOTAL TIME =,F7.2,4H SEC)

COMMON/NN/NPRINT/NM/LPRINT
LOGICAL NPRINT,LPRINT,PNPRNT
XNB=TMLEFT(MS)
PNPRNT=NPRINT
IF (LPRINT) NPRINT=.TRUE.
PRINT 70, ISA,IJKL,ISB
IF (IJKL.GE.0) GO TO 10
PRINT 80
CALL QUIT
STOP

10 ISC=1002
CALL ZERO (ISC)
IJ=IJKL-1
IF (IJ) 20,30,40

20 CALL ZERO (ISB)
CALL DEFONE(ISB)
GO TO 60

30 CALL TRANSF (ISA,ISB)
GO TO 60

40 CALL TRANSF (ISA,ISB)
DO 50 K=1,IJ,1
CALL MULT (ISA,ISB,ISC)

50 CALL SWITCH (ISC,ISB)
60 CALL ZERO (ISC)

IF (LPRINT) NPRINT=PNPRNT
XNA=TMLEFT(MS)

XNT=XNB-XNA
PRINT 90, XNT
RETURN
END

SUBROUTINE REFACT (NAA,MAA,NBB,MBB,KN,KM,NCC,MCC,KETCH)
IMPLICIT REAL*8 (A-H,O-Z)

180 FORMAT (50X,27H LOOSING ACCURACY IN REFACT)
190 FORMAT (50X,27H DEMONINATOR ZERO IN REFACT)

COMMON/MM/NOFACT/OO/NEXACT/RR/EPSLON/SS/NOFIX
DATA EXFACT/1.OD+9/,MLIM/1000/
DATA ATOL/1.OD-2/,BTOL/1.OD-4/,CTOL/1.OD-6/
LOGICAL NOFACT,NOFIX,NEXACT
IF (MAA.NE.O.AND.MBB.NE.O) GO TO 10
PRINT 190
STOP

10 NA=NAA
MA=MAA
NB=NBB

MB=MBB
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IF (NOFIX) GO TO 50

IF (KETCH) 20,20,30
20 CALL FACTOR (MA,MB)

NCC=NA*MB+MA*NB

MCC=MA*MBB

GO TO 40

30 CALL FACTOR (NA,MB)
CALL FACTOR (NB,MA)
NCC=NA*NB
MCC=MA*MB

40 NCC=KN*NCC
MCC=KM*MCC

GO TO 170

50 DMAX=2147483647.ODO
AN=NA
AM=MA

BN=NB
BM=MB

IF (KETCH) 60,60,70
60 CN=AN*BM+AM*BN

CM=AM*BM

GO TO 80

70 CN=AN*BN
CM=AM*BM

80 CN=KN*CN
CM=KM*CM

COEFF=CN/CM
ABSAB=DABS(COEFF)
IF (ABSAB.GT.EPSLON) GO TO 90
NCC=O
MCC=1

RETURN
90 IF (NOFACT) GO TO 130

IF (IABS(MA).LT.MLIM) GO TO 100
SA=DABS(AM)
SA=DLOG10(SA)
SA=SA+CTOL
SA=DMOD(SA,1.ODO)
IF (SA.LT.BTOL) GO TO 130

100 IF (IABS(MB).LT.MLIM) GO TO 110

SB=DABS(BM)
SB=DLOG10(SB)
SB=SB+CTOL
SB=DMOD(SB,1.ODO)
IF (SB.LT.BTOL) GO TO 130

110 IF (DABS(CN).GT.DMAX) GO TO 120
IF (DABS(CM).GT.DMAX) GO TO 120
NCC=IDINT(CN+DSIGN(ATOL,CN))
MCC=IDINT(CM+DSIGN(ATOL,CM))
GO TO 170

120 CALL XACTOR (CN,CM)
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IF (DABS(CN).GT.DMAX) GO TO 130
IF (DABS(CM).GT.DMAX) GO TO 130
GO TO 160

130 CN=COEFF*EXFACT
CM=EXFACT
NEXACT=.TRUE.

140 IF (DABS(CN).GT.DMAX) GO TO 150

IF (DABS(CM).GT.DMAX) GO TO 150
GO TO 160

150 CN=CN/10
CM=CM/10
IF (DABS(CN).GE.1.0D3.AND.DABS(CM).GE.1.0D3) GO TO 140
PRINT 180
STOP

160 NCC=IDINT(CN+DSIGN(O.5DO,CN))
MCC=IDINT(CM+DSIGN(O.5DO,CM))
RETURN

170 CALL FACTOR (NCC,MCC)
RETURN

END

SUBROUTINE REPACK (III,IA)
DIMENSION III(4)
DATA KN1/ZO0000100/
DATA KN2/Z0010000/
DATA KN3/ZO1000000/
IN=(III(4)+128)
IM=(III(3)+128)*KN1
IL=(III(2)+128)*KN2
IK=(III(1)+ 64)*KN3
IA =IK+IL+ IM+ IN
RETURN
END
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SUBROUTINE REVERSCISA)
COMMON/AA/NEXT(1)/HH/MSTART(1)/HI/MAX(1)
MSA=MSTART(ISA)
IF (MSA.EQ.0) RETURN
MSTART(ISA)=MAX(ISA)
MAX(ISA)=MSA
LAST=MSA
KX=NEXT(MSA)
NEXT(LAST)=O
IF (KX.EQ.0) RETURN
NKX=NEXT(KX)

10 NEXT(KX)=LAST
IF (NKX.LE.O) GO TO 20
LAST=KX
KX=NKX
NKX=NEXT(NKX)

GO TO 10
20 RETURN

END

SUBROUTINE SECULA(ISA,ISB)
IVARIB=O
NUM=O
CALL COMBIN(ISA,ISB,IVARIB,NUM,2)
RETURN

END

SUBROUTINE SELECT(ISA,ISB,IVARIB,NUM)
CALL COMBIN(ISA,ISB,IVARIB,NUM,4)
RETURN
END
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SUBROUTINE SETUP(KA,KEYS)
IMPLICIT REAL*8 (A-H,O-Z)
COMMON/VV/NUMPAR,KOUNT,KOLECT,KSCAN

COMMON/NUMBER/NUMBER/UU/LMAP(1)

LOGICAL KSCAN
DO 10 JX=1,1024

10 LMAP(JX)=O
IF (KEYS.EQ.O) NUMBER=O
IF (KEYS.EQ.O) KOLECT=300
KOUNT=KA

KSCAN=.TRUE.
NTEMP=MAXO(KA,1)
AB=DLOG(DFLOAT(NTEMP))
AB=AB/DLOG(2.ODO)
NUMPAR=AB+0.00001DO
NUMPAR=(2**NUMPAR)/16
IF (NUMPAR.GT.512) NUMPAR=512
IF (NUMPAR.LT.2) NUMPAR=2
RETURN

END

SUBROUTINE SIMPCISA)
40 FORMAT (9H SIMPLIFY,I4,10H LENGTH =,I5,8H TIME =,F7.2)

COMMON/AA/NEXT(1)/BB/N(1)/CC/M(1)/DD/KTERM(9,1)
COMMON/HH/MSTART(1)/HI/MAX(1)/NN/NPRINT/TT/NTOTAL
LOGICAL NPRINT,KSCAN
XNB=TMLEFT(MS)
CALL LINKCISA)
CALL REVERS(ISA)
MSA=MSTART(ISA)
IF (MSA.EQ.0) RETURN
ISB=1001

CALL ZERO(ISB)
CALL SETUP(O,O)

20 K=MSTART(ISA)
IF (K.EQ.O) GO TO 30
MSTART(ISA)=NEXT(K)
NEXT(K)=O
CALL INSERT(ISB,K)
GO TO 20

30 CALL SWITCH(ISA,ISB)
MSTART(ISB)=O
MAX(ISB)=O
CALL LINK(ISA)
IF (NPRINT) RETURN
XNA=TMLEFT(MS)
XNT=XNB-XNA
PRINT 40,ISA,NTOTAL,XNT
RETURN

END
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SUBROUTINE SUBXC(ISA,ISB,ISC)
10 FORMAT (9H SUBTRACT,I3,5H FROMI3,13H AND STORE INI3)

COMMON/GH/NUTIL(1)/NN/NPRINT/NM/LPRINT
LOGICAL NPRINT,LPRINT,PNPRNT
IF (.NOT.NPRINT) PRINT 10, ISB,ISA,ISC
PNPRNT=NPRINT
NPRINT=.TRUE.
N6=NUTIL(6)
CALL MULCON (ISB,-1,1)

CALL ADD (ISA,ISB,ISC)
CALL MULCON (ISB,-1,1)

ID6=NUTIL(6)-N6
NUTIL(7)=NUTIL(7)+ID6
NUTIL(6)=N6
NPRINT=PNPRNT

RETURN
END

SUBROUTINE SUBAB (ISA,ISB,IVA,IVB,NUM)
60 FORMAT (11H SUBSTITUTE,5I4)
70 FORMAT (36H **** STORAGE OVERFLOW IN SUBAB ****)

80 FORMAT (14H TOTAL TIME =,F7.2,4H SEC)
COMMON/AA/NEXT(1)/BB/N(1)/CC/M(1)/DD/KTERM(9,1)
COMMON/HH/MSTART(1)/HI/MAX(1)
COMMON/KK/LZERO/NN/NPRINT/NM/LPRINT
LOGICAL NPRINT,LPRINT,PNPRNT
DIMENSION IA(4),IB(4)
DATA NPY/6/,NTG/2/,NVAR/8/,NTGP/7/,NTIP/9/
PNPRNT=NPRINT
XNB=TMLEFT(MS)

IF (LPRINT) NPRINT=.TRUE.
PRINT 60, ISA,ISB,IVA,IVB,NUM
CALL TRANSF (ISA,ISB)
DO 50 J=1,NUM,1
ISC=1005
CALL ZERO (ISC)
K=MSTART(ISB)
IF (K.LE.O) RETURN
L=LZERO
MSTART(ISC)=L
IF (K.GT.O) GO TO 5
IF (LPRINT) NPRINT=PNPRNT

RETURN
5 JWA=(IVA+3)/4

JVA=MOD(IVA,4)
IF (JVA.EQ.O) JVA=4
JWB=(IVB+3)/4
JVB=MOD(IVB,4)
IF (JVB.EQ.O) JVB=4

10 CALL UNPACK(KTERM(JWA,K),IA)
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IF (IA(JVA).LT.2) GO TO 30
IA(JVA)=IA(JVA)-2
CALL REPACK (IA,KTERM(JWA,K))
N(L)=-N(K)
M(L)=+M(K)
DO 15 LJ=1,NTIP

15 KTERM(LJ,L)=KTERM(LJ,K)
CALL UNPACK(KTERM(JWB,L),IB)
IB(JVB)=IB(JVB)+2
CALL REPACK (IB,KTERM(JWB,L))
LN=NEXT(L)
IF (LN.GT.0) GO TO 20

PRINT 70
CALL QUIT
STOP

20 L=LN
30 KN=NEXT(K)

IF (KN.EQ.0) GO TO 40
K=KN
GO TO 10

40 MAX(ISC)=L
LZERO=NEXT(L)
NEXT(L)=O
CALL SIMP(ISB)

50 CALL ACCUM (ISB,ISC)
IF (LPRINT) NPRINT=PNPRNT

XNA=TMLEFT(MS)
XNT=XNB-XNA
PRINT 80, XNT
RETURN

END
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SUBROUTINE SUBST (ISA,ISB,IV,ISC)

30 FORMAT (10X,32H **** NEG EXPONENT IN SUBST ***)
40 FORMAT (1X,11H SUBSTITUTE,4I4)

COMMON/AA/NEXT(1)/BB/N(1)/CC/M(1)/DD/KTERM(9,1)
COMMON/HH/MSTART(1)/HI/MAX(1)
DIMENSION IA(4)
PRINT 40, ISA,ISB,IV,ISC
ISD=1009
ISE=1010
ISF=1011

CALL ZERO (ISC)
CALL ZERO (ISD)
CALL ZERO (ISE)
CALL ZERO (ISF)
LMIN=+100
LMAX=-100
K=MSTART(ISA)
IF (K.EQ.O) RETURN

JW=(IABS(IV)+3)/4

JV=MOD(IABS(IV),4)
IF (JV.EQ.O) JV=4

10 CALL UNPACK(KTERM(JW,K),IA)
NUM=IA(JV)
IF (NUM.GT.LMAX) LMAX=NUM
IF (NUM.LT.LMIN) LMIN=NUM
K=NEXT(K)
IF (K.GT.O) GO TO 10
IF (LMIN.LT.O) PRINT 30

IF (LMIN.LT.O) STOP
CALL DEFONE(ISD)
CALL SELECT (ISA,ISC,IV,O)
DO 20 L=1,LMAX
CALL MULT (ISD,ISB,ISE)
CALL SWITCH (ISD,ISE)
CALL ZERO (ISE)
IF (L.LT.LMIN) GO TO 20
CALL SELECT (ISA,ISE,IV,L)
CALL ERASE (ISE,IV)
CALL MULT (ISE,ISD,ISF)
CALL ACCUM (ISC,ISF)

20 CONTINUE
CALL ZERO (ISD)
CALL ZERO (ISE)
CALL ZERO (ISF)
RETURN

END
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SUBROUTINE SWIFNC(K)
COMMON/BB/N(1)/DD/KTERM(9,1)/LL/INDEX
DATA NPY/6/,NTG/2/,NVAR/8/,NTIP/9/,NTGP/7/
IF (N(K).EQ.O) RETURN
IF (IRGSGN(K)) 10,30,40

10 DO 20 LJ=NTGP,NVAR
KTERM(LJ,K)=KTERM(LJ,K)-INDEX

20 KTERM(LJ,K)=INDEX-KTERM(LJ,K)
IF (KTERM(NTIP,K).LT.O) N(K)=-N(K)
RETURN

30 IF (KTERM(NTIP,K).LT.O) N(K)=O
40 RETURN

END

SUBROUTINE SWITCH(ISA,ISB)
COMMON/HH/MSTART(1)/HI/MAX(1)
MSISA=MSTART(ISA)
MXISA=MAX(ISA)
MSISB=MSTART(ISB)
MXISB=MAX(ISB)
MSTART(ISA)=MSISB
MAX(ISA)=MXISB
MSTART(ISB)=MSISA
MAX(ISB)=MXISA
RETURN

END
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SUBROUTINE TAYLOR (ISA,ISB,IV,NUM,ISC)

20 FORMAT (24H TAYLOR SERIES EXPANSION,5I5)
30 FORMAT (36H TIME FOR TAYLOR SERIES EXPANSION =,F7.2,4H SEC)

COMMON/NN/NPRINT/NM/LPRINT
LOGICAL NPRINT,LPRINT,PNPRNT
XNB=TMLEFT(MS)
PNPRNT=NPRINT
PRINT 20, ISA,ISB,IV,NUM,ISC
ISD=1012
ISE=1013
ISF=1014
CALL ZERO (ISF)
IF (LPRINT) NPRINT=.TRUE.
CALL DEFONE(ISD)
CALL TRANSF (ISA,ISE)
CALL TRANSF (ISA,ISC)

DO 10 K=1,NUM,1
CALL DERIV (ISE,IV,ISE)
CALL MULCON (ISE,1,K)
CALL MULT (ISB,ISD,ISF)
CALL SWITCH (ISF,ISD)
CALL MULT (ISD,ISE,ISF)

10 CALL ACCUM (ISC,ISF)
CALL ZERO (ISD)
CALL.ZERO (ISE)

CALL ZERO (ISF)
IF (LPRINT) NPRINT=PNPRNT
XNA=TMLEFT(MS)
XNT=XNB-XNA
PRINT 30, XNT
RETURN
END

FUNCTION TMLEFT(IT)
TMLEFT=O.0
RETURN

END
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SUBROUTINE TRANSF CISA,ISB)

50 FORMAT C37H *** STORAGE OVERFLOW IN TRANSF ****

COMMON/AA/NEXTC1 )/BB/NC 1)/CC/MC 1)/DD/KTERMC9, 1)

COMMON/GH/NUTILC 1)/HH/MSTART 1 )/HI/MAXC 1)
COMMON/KK/LZ ERO/LL/INDEX
DATA NPY/6/, NTG/2/ ,NVAR/8/, NTIP/9/ ,NTGP/7/
IF CISA.EQ.ISB) RETURN
IF CLZERO.GT.0) GO TO 10
PRINT 50
CALL QUIT
STOP

10 CALL ZERO CISB)

MSTART(CISB) =LZERO

KF=LZ ERO
KI=MSTARTCISA)
IF (KI.GT.0) GO TO 20
MSTART(CISB) =0
MAX( ISA) =0

MAXCISB) =0

RETURN

20 NCKF)=+NCKI)
MCKF) =+M(KI)
DO 24 LJ=1,NTIP

214 KTERMCLJ,KF)=KTERMCLJ,KI)

NUTILC2) =NUTIL(2).ul

KNI=NEXT CKI)

IF CKNI.EQ.0) GO TO 40
KI=KNI
KNF=NEXTCKF)
IF CKNF.GT.0) GO TO 30
PRINT 50

CALL QUIT
STOP

30 KF=KNF
GO TO 20

'40 LZERO=NEXTCKF)

NEXTCKF) =0

MAXC ISA) =KI
MAX( ISB) =KF

RETURN
END

SUBROUTINE TRUN(CISA, ISB, IVARIB, NUM)

CALL COMBINCISA,ISB,IVARIB,NUM,3)
RETURN
END
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SUBROUTINE UNPACK (IZ,II)

COMMON/LL/INDEX
DIMENSION II(4)
IA=IZ
IF (IA.EQ.INDEX) GO TO 10
II(4)=MOD(IA,256)-128
IA=IA/256
II(3)=MOD(IA,256)-128
IA=IA/256
II(2)=MOD(IA,256)-128
IA=IA/256
II(1)=MOD(IA,256)-64
RETURN

10 II(1)=O
II(2)=O
II(3)=O
II(4)=0
RETURN
END

SUBROUTINE XACTOR (XN,XM)
IMPLICIT REAL*8(A-H,O-Z)
DATA CTOL/1.OD-2/,DTOL/1.OD-5/
IF (XN.EQ.O.ODO) XM=1.ODO
XN=XN+DSIGN(CTOL,XN)
XM=XM+DSIGN(CTOL,XM)
XN=XN-DMOD(XN,1.ODO)
XM=XM-DMOD(XM,1.ODO)
XA=XN+DSIGN(DTOL,XN)
XB=XM

10 XC=DMOD(XA,XB)
IF (DABS(XC).LT.CTOL) GO TO 20
XA=XB+DSIGN(CTOL,XB)
XB=XC+DSIGN(CTOL,XC)
XA=XA-DMOD(XA,1.ODO)
XB=XB-DMOD(XB,1.ODO)
XA=XA+DSIGN(DTOL,XA)
GO TO 10

20 XN=XN/DABS(XB)
XM=XM/DABS(XB)
RETURN
END
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SUBROUTINE ZERO (ISA)
COMMON/AA/NEXT(1)/BB/N(1)/CC/M(1)/DD/KTERM(9,1)

COMMON/GH/NUTIL(1)/HH/MSTART(1)/HI/MAX(1)
COMMON/KK/LZERO/LL/INDEX
DATA NPY/6/,NTG/2/,NVAR/8/,NTIP/9/,NTGP/7/

MSA=MSTART(ISA)

IF (MSA.EQ.0) GO TO 30
K=MSA

10 N(K)=O
M(K)=+1
KTERM(NTIP,K)=+1
DO 15 LJ=1,NVAR

15 KTERM(LJ,K)=INDEX
NUTIL(1)=NUTIL(1)+1
KN=NEXT(K)
IF (KN.EQ.0) GO TO 20
K=KN
GO TO 10

20 NEXT(K)=LZERO
LZERO=MSA

30 MSTART(ISA)=O
MAX(ISA)=O
RETURN
END

71


