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SUPPRESSION OF SECOND TIME AROUND
RADAR RETURNS USING PRI MODULATION

INTRODUCTION

A second time around return (Fig. 1) is a class of radar interference that does not necessarily
interfere with the detection of a desired target but rather generates false targets (undesirable detec-
tions). A low pulse repetition frequency (PRF) radar transmits a series of uniform pulses spaced To
seconds apart. If there is a large object (an island or mountain) located beyond the operating range,
cTd12, of the radar, where c is the speed of light, then it is possible for this large object to create a sub-
stantial return (called a second time around return) at the front end of the radar receiver. In addition,
the return will appear in a fixed range bin that is much closer than the actual range of the false target as
seen in Fig. 1.

R RANGE OF THE FALSE TARGET

SECOND TIME AROUND

RETURN

TRANSMITTED
SIGNAL

2R /c

Fig. I- Second time around return

If we assume that we are attempting to detect slow moving targets and thus an MTI is not used
and we process the radar returns using a CFAR threshold detector, there is a good probability that the
second time around return will be detected and as a result generate a false target. Also, no amount of
integration of noncoherent or coherent pulses will improve the rejection of the undesired detections.

However, we show in this report that modulating the pulse-repetition-interval (PRI) of the
transmitted pulses and then integrating the returns over the respective range bins substantially improves
the suppression of the second time around returns and thus reduces the false alarm rate.

Figure 2(a) illustrates the modulated PRI concept where the PRI is changed linearly. We transmit
n pulses with the pulse separation reduced by A T seconds each time a pulse is transmitted. The smal-
lest PRI possible is To, and the largest is To + (n - 1)A T. We assume that AT > - where r is the
pulse width (cT/2 is the range bin size, cTOd2 is the operating range of the radar, and T0/IT is the
approximate number of range bins).

Manuscript submitted January 7, 1982.
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Fig. 2 (a)- Modulated PRI; n = 4, A T ;
(b) sliding second time around return

Figure 2(b) shows the effect of modulating the PRI on the second time around return. After the
second pulse, the undesired return is in the first range bin; after the third pulse, it is in the second
range bin and so on. Hence if A T > r, the second time around return will slide from one range bin to
another and yet never be in the same range bin twice if nA T < To. If we integrate incoherently over
the n pulses for a given range bin, then the effect of the second time around return in a given range bin
can be diminished. This occurs because as n increases, the bias threshold also increases while the input
power of the second time around return remains constant for that given range bin. Thus, the detection
likelihood of that return decreases for the given range bin. However, we must remember that as n
increases, the possible number of range bins that the second time around return can appear in also
increases. Therefore, it will have more chances to be detected at least once in one of the n - 1 possi-
ble range bins. The next sections present an analysis and discussion of the tradeoffs of using a modu-
lated PRI radar to suppress second time around returns. The results of the following sections also apply
if the PRI is randomly jittered so long as same PRI is not repeated over the n transmitted pulses. In
addition, we assume that the range extent of the second time around return is less than the radar range
bin size, cT/2.

ANALYSIS

We begin by making the following parameter definitions:

Sd = average single pulse power of the desired signal
Nq = average single pulse power of the quiescent noise
S2 = average single pulse power of the second time return.

The .queiscent noise is the receiver input noise that does not include the second time around return.
The quiescent noise power and the desired false alarm rate will determine the detector threshold. We
assume that second time around returns do not occur often enough to affect this threshold.
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If we use a modulated PRI radar and consider a given range bin that contains only the second
time around return and quiescent noise, then after envelope detection and integration the received sig-
nal voltage, r, will have the form

r = s2(j) + I n.(k)
k=1

(1)

where s2 ) is the second time around return voltage which we assume occurs on just the j th pulse and
nq (k), k = 1, 2, ... n is the quiescent noise voltages that occur on every pulse. If we consider the
detection of the second time around return in noise, then from Eq. (1), we see that the integrated sig-
nal to noise power ratio for the second time around return, (S/N), can be written as

f S| lS2lN nN (2)

assuming no integration losses. Hence we see from Eq. (2) that as n increases the integrated (S/N)
decreases. The integrated (S/N) is plotted in Fig. 3 for various values of (S2Nq). This graph also
shows the lossless integration gain or improvement of the desired signal to noise ratio as a function of
n.

I2 5

20
4

1 10

n a NO. OF PULSES INTEGRATED

Fig. 3 - Integrated (S/N) vs no. of pulses with (S2 /Nq) as a parameter

Let P;) be the quiescent false alarm probability where Phi) is the probability that a false alarm is
obtained each time there is an opportunity under the condition that the second time around return is
not present. The quiescent false alarm number rf(q) is related to the quiescent false alarm probability by
the relationship [1]

p (q) 0.693
fa (q

3



GERLACH AND ANDREWS

The probability, PD, of detecting the second time around return for a given range bin is a function of
(S/N), rIf,), and the statistical characteristics of the second time around return which we will character-
ize by its Swerling number, M (see the appendix for an explanation of the various Swerling cases),
where M= -0, I, II, III, IV (0 indicates a nonfluctuating target). We must be careful when calculating
this probability of detection due to the nature of the received signal, r, as seen in Eq. (1). Since the
second time around return appears in this equation as a single random variable and not as a sum of ran-
dom variables, the Swerling cases II and IV reduce to Swerling cases I and III respectively. To see this,
we rewrite Eq. (1) as

r =I S2(1) + nq (k) (3)

Even though s2 (O) may be varying statistically' from pulse to pulse, only one of these random pulses
appears in a given range bin. This pulse can be modelled for the purposes of analysis as n pulses of
identical amplitude, s2 (Q)/n in that range bin. Hence Swerling cases II and IV reduce to case I and III
respectively. Therefore for each case:

PD (case= 0) = PD (S2/nNq, rf(q), n, M= 0) (4)

PD (case= I) = PD (S,.nNq, r., n, M = I) (5)

PD (case = II) = PD (Sz/nNq, r~al), ii, Mq = I) (6)

PD (case= III) = PD (SJnNq, rfd n, M = III) (7)

PD (case= IV) = PD (S2/nNq, rfq), n, M = III) (8)

The difference in performance due to the difference in Swerling cases becomes apparent if we
define the performance measure, P2 , as the probability that the second time around return will be
detected in at least one range bin out of a possible n-I range bins. For Swerling cases 0, I, and III, P2
is simply equal to PD since the second time around returns do not vary from pulse to pulse and the
threshold in each range bin is equal. Hence if one return exceeds this threshold, all of the returns in
each range bin will exceed this threshold. However, for Swerling cases II and IV, the probabilities of
detection for each range bin are independent. Thus for each Swerling case we can express P2 as

P2 (case = 0) = PD (case= 0) (9)

P2 (case= I) = PD (case= I) (10)

P2 (case = II) = 1 - (1- PD (case- II))'- (11)
P2 (case= III) = PD (case = III) (12)

P2 (case= IV) = I- (1- PD (case- IV))'-' (13)

It is possible using well-known formulas RI and existing computer programs [2] to calculate PD as
expressed by the parameters seen in Eqs. (4) through (8). Using these results, we can calculate P2 for
each Swerling case by using Eqs. (9) through (13). We plot in Figs. 4 through 9, P2 versus n using the
quiescent false alarm number, Swerling case, and the second-time around return to quiescent noise
power ratio as parameters. We also assume a square law detector is part of the radar receiver.
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n = # PRI SWERLING = 0

.01 .02 .03 .05 .1 .2 .3 .5 1 2 3 5 10 20 30 50 .100
P2 PERCENT PROBABILITY OF AT LEAST ONE FALSE ALARM

Fig. 4 - P2 vs fr, Swerling case 0

QUIESCENT FALSE ALARM NO. I06

.1 .2 .3 .5 1 2 3 5 10 20 30 50 100
P2 = PERCENT PROBABILITY OF AT LEAST ONE FALSE ALARM

Fig. 5 - P2 vs n; Swerling case I
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0.020.03 0.05 0.1 0.2 0.3 0.5 1 2 3 5 10
P2 a PERCENT PROBABILITY OF AT LEAST ONE FALSE ALARM

Fig. 6 - P2 vs n; Swerling case II, r)q) _ 106

n-*PRI SWERLING CASE==n QUIESCENT FALSE ALARM NO.- 106

.1 .2 .3 .5 1 2 3 5 10

P2 . PROBABILITY OF AT LEAST ONE FALSE ALARM

Fig. 7 - P2 vs n; Swerling case III
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O.2 0.03 0.05 0.1 0.2 0.3 0.5 1 2 3 5 10
P2 = PERCENT PROBABILITY OF AT LEAST ONE FALSE ALARM

Fig. 8 - P2 vs n; Swerling case IV

0.02 0.03 0.05 0.1 02 0.3 0.5 1 2 3 5 10
P2= PERCENT PROBABILITY OF AT LEAST ONE FALSE ALARM

Fig. 9 - P2 vs tr, Swerling case II, rod) = 1010
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DISCUSSION

Swerling Cases II and IV

If we keep all other parameters constant except the Swerling case, then the curves seen in Figs. 6
and 8 indicate that

P2 (case = IV) < P2 (case = II). (14)

Thus we see from Eq. (14) that if the false target can be characterized by one large reflector together
with a number of small reflectors, then performance improves (P2 becomes smaller). However, there
is not a large change in performance.

The plots in Figs. 6 and 8 also obviously indicate that performance degrades as the second time

around return to quiescent noise power ratio, (SJNq), increases. We see from these figures that P2 is
very sensitive to (SJNq). For example, if the Swerling case is II or IV and the number of PRI's, n, is
approximately 50, then decreasing (SJNq) by 5 dB results in a hundredfold decrease in probability of at
least one false alarm. Also we see for (SJNq) > 10 dB and the quiescent false alarm number equal to
106 that for most practical purposes, even a modulated PRI system does not effectively suppress the
second time around return. These plots also indicate for (SJNq) < 5 dB that the modulated PRI sys-
tem can offer significant improvement if the number of PRI's is chosen properly.

Let us examine how P2 varies with n, the number of modulated PRI's. We see that for small n,
that in most cases P2 rises to a local maximum then decreases to an absolute minimum and finally
increases. In fact, it can be shown that as n approaches infinity that P2 approaches one. Intuitively,
this occurs because as n - oo, the integrated signal to noise ratio as expressed by Eq. (2) goes to zero.
Thus for a given range bin, the probability of detecting the second time around return will approach the
quiescent false alarm probability or PD - p (q) Hence from Eqs. (11) or (13), we see that P2 - 1 as
n- oo and PD - Pq) In practice, P2 will not approach one because n is upper bounded by the
number of range bins that are possible.

The local maximum exists in most cases because as n initially increases from two, there are more
opportunities for the second return to be detected whereas the decrease in integrated input (S/N) as
expressed by Eq. (2) does not offset this until after the local maximum.

If we asked what is the improvement of using modulated PRI over a nonmodulated PRI system,
then we can show that

P2 (nonmodulated, n) > P2 (2 pulse modulated PRI). (15)

Equation (15) is true under the assumption that we are integrating more than one pulse for the non-
modulated system. The inequality becomes larger as the number of integrated pulses increases for the
nonmodulated PRI system. In addition, we can show that if the number of pulses integrated is larger
than the number of PRI's, then performance degrades.

We see an interesting phenomena if we compare the curves of Figs. 6 and 9. In these figures, all
parameters are the same except for the quiescent false alarm number. In Fig. 6, the false alarm
number is 106 and in Fig. 9, the false alarm number is 1010. We see that by increasing the false alarm
number to 1010 that tremendous improvement is possible. For example, if n = 50, (S2/Nq) = 5 dB,
and /:jbY) = 106, then P2 = 1%. However, if we raise the false alarm number to 1010 while holding the
other parameters constant, then P2 falls to 0.01%.

8
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The price we pay by decreasing the quiescent false alarm probability is that the detection probabil-
ity of the desired signal decreases. This is because the threshold of the detector must be raised in order
to decrease the probability of a false alarm. Let us examine what occurs to the modulated PRI system
performance if we increase the desired signal to quiescent noise ratio in order to maintain a constant
probability of detection for desired targets.

In Fig. 10 we have plotted the required signal to noise ratio versus the number of integrated
pulses necessary to obtain a probability of detection of 0.5 for a Swerling case II target using the false
alarm number as a parameter. We see from the figure that in order to maintain PD = 0.5 for all n, we
need only to increase our transmitter power by approximately 1.5 dB when going from a false alarm
number of 106 to 1010. However by increasing the transmitter power by a given amount also increases
the second time around return's power by that same amount. Hence P2 will increase.

225_ SWERLING CASE fl
P0 .5

20

10 2 3 5 10 2030 50 100 200300 500 1000
n *NO. OF PULSES INTEGRATED

Fig. 10-Required (S/N) vs n

For example using Fig. 6, if n = 100, (S2 /Nq) = 5 dB, r0"a) = 106, and the radar returns are Swer-
ling case II, then P2 =0.35%. If we raise rj~aQ) to 1010 and also increase our transmitter power by 1.5 dB
to maintain a constant probability of detection, then (SINq)= 6.5 dB. For this case, we can show
using Fig. 9 that if n = 100, then P2 = 0.35%. Therefore by slightly increasing the transmitter power
and increasing the detector threshold, we have decreased the probability of at least one second time
around return being detected by tenfold. Hence, it would seem that modulated PRI systems work best
when the quiescent false alarm number of the detector is large. Additional curves similar to those seen
in Fig. 10 are found in Ref. 3 for v'arious Swerling cases and false alarm numbers.

Plots similar to those seen in Figs 6 and 8 are possible whereby we vary the desired signal to
second time around return power ratio, Sd/52, while holding the quiescent signal to noise ratio, Sd/Nq,
a constant. These result because we can write

9
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SdIS2 = (Sd/Nq)/(SJNq). (16)

We plot P2 vs n with Sd/52 as a parameter for a Swerling case II target, rfaf) = 106, and the quiescent
signal to noise ratio equal to 0 dB in Fig. 11. Not unexpectantly, we see that performance degrades as
Sd/S2 decreases or equivalently as the second time around return's power increases.

SWERLING CASE EU QUIESCENT FALSE ALARM NO. = 106

i, I I, I 1 I IIIII I
.1 .2 .3 .5 1 2 3 5 10 20

P2 * PERCENT PROBABILITY OF AT LEAST ONE FALSE ALARM

Fig. 11 - P2 vs n with Sd/S2 as a parameter

Swerfing Cases 0, I, and III

We can order the performance of the modulated PRI radar system by Swerling number and find
that

P2 (0) < P2 (III) < P2 (I) (17)

where we hold all other parameters equal. Thus a nonfluctuating second time around return (case 0) is
suppressed to greater extent than fluctuating returns. In addition, if the false target can be character-
ized by one large reflector together with a number of small reflectors, then performance improves.

Similar to Swerling cases II and IV, performance degrades as S2/Nq increases and is very sensitive
to this parameter as indicated by the curves seen in Figs. 4, 5, and 7. However, unlike cases II and IV,
P2 has no local extrema when the number of PRI's is varied. For Swerling cases 0, I, and III, P2 is a
monotonically decreasing function of n. Its maximum occurs at n = 2 and its minimum at n = oo* In
fact, it is possible to show (see the discussion on cases II and IV) that P2 Pfa) as n - oo* Also

10
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similar to cases II and IV, significant improvement in performance is possible by raising the detection
threshold (and hence the false alarm rate) as indicated by the curves seen in Fig. 4.

A DESIGN EXAMPLE

Let us determine the number of modulated PRI's necessary such that the probability of at least
one false alarm due to the second time around return is less than 1%. We do this under the following
conditions:

1. The second time around return is located just beyond the maximum operating range of the
radar (i.e., at least as far away as a desired target at the maximum operating range).

2. The second time around return's radar cross section is three times larger than the desired tar-
get.

3. The quiescent false alarm number is 106.

4. The signal to quiescent noise ratio of the desired signal is 0 dB at the maximum operating
range.

5. The second time around return pulses are independent from pulse to pulse and consist of
many uniformly distributed scatterers (Swerling case II).

From conditions 1, 2 and 4, we can show that (S2/NVQ)dB = 4.8 dB.

To find n, the required number of modulated PRI, we use Fig. 6 and the above given parameters.
From this figure, we see that n is approximately 45. Note that we can reduce the number of modulated
PRI significantly by raising the quiescent false alarm number and increasing our transmitter power
slightly in order to maintain a constant probability of detection for the desired target (see Fig. 10).
Hence we see that the processing complexity can be reduced by using more transmitter power. Also
note that we placed the second time around return at the best possible range for its detection. In most
situations the bogus return will be located much farther away than the maximum operating range of the
radar so that its cross section can increase considerably while still maintaining P2 less than 1%.

CONCLUSIONS

We have shown that a staggered PRI radar system can offer considerable improvement over a
nonstaggered radar system in rejecting second time around returns which cause false alarms. This
improvement is a function of the number of staggered PRI, the quiescent false alarm number, the
Swerling number of the false return, the transmitted signal power, the second time around noise power,
and the quiescent noise power of the radar. Small changes in transmitted signal power can be traded-off
with the quiescent false alarm number to significantly suppress the bogus return. In addition for all
other parameters being equal, if the second time around return is a Swerling case II or IV target, then
there is an optimum number of staggered PRI that can be chosen to minimize the likelihood of detec-
tion of the second time around return.
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Appendix
SWERLING CASES

Swerling [All employed four different fluctuation models of radar cross section in calculating the
probability of detection of targets modeled in this way. The four fluctuation models are as follows:

Case 1. The echo pulses received from a target on any one scan are of constant amplitude throughout
the entire scan but are independent (uncorrelated) from scan to scan. This assumption ignores the
effect of the antenna beam shape on the echo amplitude. The probability-density function for the
cross section a- is given by the density function

P(cr) =-'exp |- - Of > 0 (Al)
a-av G-av

where a-av is the average cross section over all target fluctuations.

Case 2. The probability-density function for the target cross section is also given by Eq. (Al), but the
fluctuations are more rapid than in case 1 and are taken to be independent from pulse to pulse
instead of from scan to scan.

Case 3. In this case, the fluctuation is assumed to be independent from scan to scan as in case 1, but
the probability-density function is given by

P =42 exp 2_--| (A2)

Cav a

Case 4. The fluctuation is pulse to pulse according to Eq. (A2).

We refer to the nonfluctuating radar cross section as Case 0.
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