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THE DESIGN OF A REAL-TIME SIGNAL SORTER

INTRODUCTION

The purpose of signal sorting is to process data from a radar receiver at high rates and identify
various emitters as the sources of pulses. This problem is very acute in a threat-engagement scenario
characterized by a large amount of electromagnetic activity and the need to respond to threats in real
time. Current front-end processing schemes used in real-time systems cannot process receiver outputs
with more than a million pulses per second, which could occur in such a scenario, on a pulse-by-pulse
basis. This research focused on the design of a system that could handle these high pulse densities.

The processing strategy that has been developed as a result of this work is to filter out quickly the
pulses of those emitters which have already been identified, thus allowing more processing time for the
unidentified emitters. This filtering is done in a content-addressable memory (CAM),* as shown in
Fig. 1. The data on the emitters that have been identified are stored in the CAM. These data are com-
pared to the data from the input pulses. The matching in the CAM is done on the emitter parameters
detected by the receiver, namely, direction of arrival (DOA) and carrier frequency (FREQ). Pulse
width is also generally determined by the receiver. However, uncertainties in actually detecting and
accurately measuring the edges of the pulse render this parameter less useful for sorting. Therefore,
pulse width is not used in this matching scheme. Since the size of the CAM is limited and the number
of active emitters is not known beforehand, the CAM is loaded with the parameters of the emitter's
pulses which are next expected to arrive at the receiver. It is possible to load the CAM with the next
expected pulses if the last pulse arrival time and the pulse repetition interval (PRI) are known. The
emitter pulses which are matched in the CAM need no further processing except to compute the
expected next arrival time, which is a simple addition. This assumes a stable PRI or a PRI which varies
over a small window.

Several other factors complicate this filtering task. Missing pulses, overlap of pulses, and mea-
surement uncertainties in the receiver increase the amount of processing needed to identify the PRI of
each particular emitter. Emitters which intentionally vary their PRI add further problems in computing
PRIs and next arrival times. If the signal sorter is part of an airborne system, the DOA parameter of
the emitters will change with time. Some emitters can also vary the FREQ with time. Since DOA and
FREQ are the primary sorting parameters, an extra amount of processing is needed if either of these
parameters changes, because the pulses will not match in the CAM.

The size and power constraints of airborne systems rule out the use of the large, high-speed
supercomputers which would be theoretically necessary to achieve the required processing speeds. But
by use of the CAM filtering scheme with a small array of microprocessors, a signal sorter can be con-
structed using large-scale-integration (LSI) circuits which can handle the high data rates and meet the
size and power constraints. The end result of this work was the construction of a laboratory prototype
of a real-time signal-sorting system.

*A glossary of terms is included as an appendix.
Manuscript submitted October 15, 1981.
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SOFTWARE SIMULATION

To test various architectures and algorithms prior to constructing a hardware model of the signal
sorter, a software simulation was first written. The simulation was written in FORTRAN and modeled
the system to the register level of detail.

In addition to the simulation of a signal sorter system, a software model of the environment was
constructed to provide an input data stream for testing the sorter operation. The environment model
can generate an interleaved set of pulses, such as would be seen in a real environment. Various types
of emitters can be generated. This includes regular emitters with stable parameters and exotic emitters
such as those that vary their PRI or frequency. The model allows various signal densities and different
mixes of emitter types to be run. All of the emitter parameters are changeable on a run basis, but the
same environment can be generated to run against different sorter designs for comparison.

A model of an antenna and receiver system was also made as part of the overall simulation. The
antenna system parameters were chosen to model a feasible system. The ability to measure the angle
of arrival on a pulse-to-pulse basis was modeled in the antenna and receiver system. This parameter
was shown to be important in the signal sorting process.

Various signal-sorter options and architectures were evaluated using these software models, and
some results of these studies have been reported [1-41. The architecture that appeared to work best for
dense environments is shown in Fig. 1.

Fig. I - Signal-sorting system block diagram

SIGNAL-SORTER ARCHITECTURE

As shown in Fig. 1, the signal-sorting system is partitioned, both logically and physically, into
several different subtasks: matching the input data from the receiver in the content-addressable memory
(CAM), emitter identification and file management in the microprocessor array, forming of the List of
next expected pulse arrivals, and loading the CAM from the List. These subtasks all run simultane-
ously and asynchronously. This is accomplished by the use of first-in-first-out (FIFO) buffers between
these different subsystems. The FIFOs smooth out the variations in input data rates to the different
subsystems and allow them to perform their tasks asynchronously as required.
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Interrogation in the CAM

The input to the CAM buffer consists of the DOA and FREQ parameters from the receiver and
the time of arrival (TOA) of the pulse from a real-time clock in the system. The DOA and FREQ of
the new pulse are tested against all the emitters in the CAM simultaneously. A CAM is a memory that
is accessed, not by addresses, but by contents. In the scheme implemented in this system, an exact
match of all bits is required for a pulse to match. For a matched pulse, an expected next time of arrival
(NTOA) is computed from the TOA and the pulse repetition interval (PRI), which is stored in a
memory parallel to the CAM, as shown in Fig. 2. The matched data and the NTOA are then passed to
the List-forming processor so that they can be loaded into the CAM at the proper time for the arrival of
the next pulse from that emitter.

PRIK CAM

+ TOA

NTOA

(FROM REAL TIME
CLOCK)

Fig. 2 - The CAM hardware

If a pulse is not matched in the CAM, it is passed to the microprocessor array through the FIFO
ARRAY buffer for further processing to determine the reason why it was not matched. There are
several reasons why a pulse might not match in the CAM. New pulses which had not yet been charac-
terized would not match. Also, missing pulses and pulses with varying parameters would cause non-
match conditions. Since the match criterion is an exact match of all bits, quantization errors will
prevent some matches of previously characterized emitters.

Microprocessor Array

The FIFO ARRAY buffer receives the data from the pulses which are not matched in the CAM.
The buffer contains in parallel the DOA, FREQ, and TOA of the pulse. The output of the FIFO
ARRAY buffer is connected to the microprocessor array. The microprocessor array consists of three
identical, parallel microprocessors. Each processor has a 4096-word random-access memory (RAM),
which contains the emitter files.

The emitter files are partitioned among the three separate memories according to DOA. There
are 64 DOA cells, each of which covers approximately 5.6° in azimuth. Each processor memory con-
tains one-third of the DOA cells, distributed in such a fashion that adjacent DOA cells are in different
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HUSSON AND EVANS

processors, as shown in Fig. 3. This interleaved arrangement facilitates the file-searching procedure.
Since the DOA of a moving emitter should only change by one between consecutive pulses, and any
uncertainty in DOA measurement would be one cell, it is only necessary to search for an unmatched
pulse in the current DOA cell and the two adjacent to it. Therefore, the three-processor configuration
allows the three DOA cells to be searched simultaneously. Figure 3 shows a pointer stored in the first
location of each DOA cell. This pointer is the address of the next available free location in the cell. By
looking at this value, the processor can tell directly how many emitters are in that DOA cell.

PROCESSOR I

LOC. MEMORY
O POINTER

128

129

2688
2689

DOA 0

POINTER

DOA 3

DOA 60

PROCESSOR 2
MEMORY

I POINTER

DOA I

POINTER

DOA 4

POINTER

DOA 61

PROCESSOR 3
MEMORY

FPOINTE7R

DOA 2

POINTER

DOA 5

POINTER

DOA 62
DOA 63

Fig. 3 - Microprocessors' memory map (emitter file)

Two other parameters which help speed up the file-management task are derived from the DOA
field through hardware-mapping tables. The FUNCTION tells the microprocessor whether it contains
the DOA file of the current pulse or the adjacent DOA cell file for that pulse, either above or below.
The BLOCK ADDRESS gives the beginning address within the RAM memory of the DOA file to be
searched. Using this address, the processor can access directly the proper DOA cell.

In the microprocessors, the emitter pulse is compared with those in the same DOA cell and also
the two adjacent DOA cells. A between-limits match is performed on the FREQ parameter of the
pulse. If a match is found, the parameters are updated in the file and the information is passed to the
List-forming stage. An emitter which is not found in the file is added to the file.

Five parameters are stored in the file for each emitter. The FREQUENCY and TIME OF
ARRIVAL inputs to the processor, along with the computed PULSE REPITION INTERVAL and
TYPE are kept in the file. The number of pulses seen (NPR) is also kept for those emitters which
have not yet been identified and classified by TYPE and PRI.
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Greater flexibility could be achieved in the microprocessor array if all the memories were accessi-
ble by all the processors. This could allow more overlap in processing among the three processors than
is currently possible. However, this advantage would be negated by the memory-contention problems
and the added memory-contention hardware. Another trade-off area is the fixed maximum size of the
DOA bins. No provision was made in this work for a possible overflow condition (more than 25
emitter entries in one 5.60 DOA cell). A more flexible, dynamic memory allocation scheme would also
increase the required processing time and decrease overall throughput.

List-Forming Processor

The List is an ordered arrangement of the emitter pulses which have been identified and are being
held until each is loaded into the CAM just prior to its next pulse arrival. The List consists of a
number of FIFO bins which are ordered as a sequence of time slots. Each bin is loaded with those
emitters whose expected next arrival times fall within the same time slot. The contents of a bin of the
List are then loaded into the CAM one emitter at a time during the appropriate time slot, as deter-
mined by the real-time clock. No ordering is done on the data within a given bin other than the first-
in-first-out characteristics of the buffers. Figure 4 illustrates the List and the CAM loading data paths.

Fig. 4 - List-forming/load-CAM stages

An emitter is loaded into the proper bin of the List corresponding to its NTOA. The association
of a particular bin with a given NTOA is determined by a group of consecutive bits in the NTOA
referred to as "time-slot" or "time-window" bits. To have a uniform distribution of the emitters in the
bins, and to be able to load the emitters into the CAM to provide the highest hit ratio, the appropriate
values for the time slot should be chosen. This includes the number of bits in the time window, which
determines the number of bins, and the location of the bits within the NTOA word, which determines
the width of the time window.

Many different configurations of the List were tried using the simulation. Several different
configurations of the number of bins and the time window were shown to be effective for a large range
of different environments. It was found, as expected, that the optimum list configurations were related
to the expected range of PRIs in the environment. Some of these configurations were not practically
feasible because they required an excessive amount of hardware. Several of the configurations did fit
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HUSSON AND EVANS

within both the size and performance constraints. Thus, the hardware was built to allow several
different List configurations to be used. The List can be configured as either 8 or 16 bins with time
slots of either 128 or 256 As.

The List-forming processor receives the data from either the microprocessor array through the
List Buffer or the CAM match circuitry and loads it into the proper bin in the List. This List is ordered
in time only by the bins which contain the emitters and not within the bins themselves.

CAM-Load Processor

The CAM-load processor loads the CAM from the List during those time periods when the CAM
is not busy processing the data from the receiver. A real-time clock is used to select the bin from
which data are loaded into the CAM. The time slot, as described above, is generated from the real-
time clock and is used to determine the module number (bin) from which data are loaded into the
CAM.

This procedure of loading the CAM in time slots attempts to make efficient use of the limited
CAM space by the loading of only those emitters into the CAM which the system expects to see during
the next period of time. Emitters are loaded into the CAM during the same time slot as their next
expected arrival time. The loading of an emitter into the CAM precedes its expected arrival time by an
amount of time less than or equal to the size of the time slot. However, delays in loading the CAM
from the List due to multiple entries in the same time slot could cause the emitter data to be loaded
into the CAM after the expected arrival time.

When the CAM is loaded from the List, a window is applied on the real-time clock, to determine
the bin for CAM loading, identical to the window used on the NTOA word to determine the bin for
loading the List. Once the bin is determined, its data are unloaded sequentially from top to bottom
(i.e., FIFO). The emitters in the List are ordered only by next arrival time into the proper bin. A fully
time ordered list would overload the List-forming processor and the CAM-load processor.

EMITTER PROCESSING ALGORITHM

An emitter pulse is channeled to the microprocessor array when it does not match with the con-
tents of the CAM. This could occur because of a new emitter, whose parameters are not yet in the file;
a previously missing pulse, which caused the emitter not to be in the CAM; pulse overlap, which dis-
torted the parameters detected by the receiver; receiver measurement quantization error; DOA change;
or varying parameters, such as PRI or frequency. The task of the microprocessor array is to determine
whether the unmatched pulse is from a new emitter or is due to one of the other causes listed. If it is
from a new emitter, the processor will attempt to compute the pulse repetition interval (PRI) using the
successive pulses seen. The parameters of the new emitter will be stored in the proper DOA cell of the
emitter file. The processors will also assign a type to each emitter as a regular (stable PRI) emitter, a
pulse-group emitter, a CW emitter, or a jittered PRI emitter.

Figure 5 shows the flowcharts for the processing algorithm. The processing of a new pulse from
the buffer is begun simultaneously in all three microprocessors. Therefore, a processor must wait until
both of the others are finished with the previous pulse. A processor shows this ready state by setting
the SYNC flag. When the three SYNC flags are set and a pulse is in the FIFO ARRAY buffer, the OK
flag is set true. This signals the processors to read the next set of emitter data from the buffer. The
five data words read from the FIFO ARRAY buffer are DOA, FREQ, TOA, FUNCTION, BLOCK
ADDRESS.
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Fig. 5(a) - Pulse-processing algorithm
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PULSE GROUP
NEW EMITTER

REGULAR
EMITTER

NEW
EMITTER

Fig. 5(b) - PRI calculation routine
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Fig. 5(c) - Interrupt handling routine
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HUSSON AND EVANS

The three processors are synchronized only during the time when input data are read from the
FIFO ARRAY buffer which is common to them. The processors are not necessarily synchronized dur-
ing the execution of the entire algorithm.

The BLOCK ADDRESS points to the RAM address of the DOA cell to be searched. This
memory location contains a pointer to the next available address in that memory block. If the proces-
sor finds no entries in the file in the DOA block being examined, a test of the FUNCTION parameter is
performed. If FUNCTION = 0, which signifies that the processor contains the correct DOA cell for
the pulse being processed, the new emitter is stored in the file. Note that the other two processors,
whose FUNCTION parameters will be 1 and 2 for this emitter, will be simultaneously searching the
adjacent DOA cells for a DOA change. Five parameters are stored in the file for each emitter. The
FREQ and TOA were read from the FIFO ARRAY buffer. The PRI is initially set to -1 on the first
pulse seen from an emitter, because at least two pulses are needed to compute it. The type is initially
set to 8, which means a new emitter whose PRI and TYPE have not yet been determined. The NPR
parameter, which is the number of pulses seen, is initialized to zero. A flag is also set in the processor
to show that a new emitter has been seen, and the memory pointer for that DOA cell is also updated.

If the DOA block in memory is not empty, each of the emitters in the block is compared to the
new emitter for the FREQUENCY parameter. This match is a between-limits test, with a program-
mable window to allow for small frequency variations. If no FREQUENCY match is found, the same
procedure for adding a new emitter to the file is performed.

A match of the FREQ in the proper DOA cell means that the emitter had previously been put in
the file. The next test is to check whether the PRI and TYPE had already been identified. If the TYPE
is 1 or 2, the emitter had previously been identified. If the FUNCTION is 0, meaning no DOA change,
a missed pulse is assumed. The expected next time of arrival (NTOA) is computed and the emitter
parameters are sent to the load CAM stack (LCS). If the FUNCTION of the matched emitter is not 0,
the DOA has moved to one of the adjacent cells. The emitter parameters must then be moved to the
new correct DOA block in the proper processor. The emitter data are put into the common stack and
an interrupt is generated in the other two microprocessors.

The interrupt handling procedure is shown in Fig. 5(c). If the FUNCTION is not 0, the processor
does not contain the file of the DOA cell for this emitter. The processor then simply reenables the
interrupt and waits for the other processors to complete. If FUNCTION 0, the parameters are read
from the common stack and stored in the proper DOA cell. The NTOA is then computed and the
emitter parameters are passed to the LCS. The interrupts are then enabled, and that processor is ready
to begin processing the next pulse.

If the PRI of the matched pulse has not yet been computed (TYPE = 8 or 9), the PRIP subrou-
tine is executed. The flowchart for this subroutine is shown in Fig. 5(b). This subroutine attempts to
compute the PRI and set the emitter TYPE for newly seen emitters. For regular emitters, three pulses
(two PRIs) are used to verify PRI stability. A stable PRI is defined to be within a programmable limit.
A 3-,ts window was used in the simulation, and a 16 -,As window was found to be needed during the
actual hardware testing. This window is dependent on the accuracy of the TOA computation and the
uncertainties and delays in the data generator. The implications of the choice of window sizes for both
PRI and frequency matching are several. Small windows allow measurement uncertainties without
building up the emitter file and causing extra processing. A larger window may allow some emitters
with frequency or PRI agility to be identified, however it may not allow discrimination between two
emitters with close parameters. Previous studies have shown the relationship between resolution and
the discrimination problem. After the PRIP routine is executed, the emitter parameters are updated in
the emitter file. If a new PRI has been computed, the parameters are also passed to the load CAM
stack so the emitter can be put into the CAM to filter future pulses.
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SIMULATION RESULTS -

The use of a software simulation of the signal sorter allowed much better monitoring of system r'-
performance and operation than could be done on the actual hardware in real time. This included run-
ning the same scenario against different configurations for comparison. Any point in the system is
easily monitored in the software program, making performance evaluation and testing easier.

A more difficult problem is the criteria to use to make performance comparisons. Through trial
and error it was found that key performance measures for the signal sorter include the number of "hits"
or matches in the content-addressable memory, or more precisely the hit/miss ratio; the sizes or max-
imum number of words of the various FIFO buffers separating the subsystems; and the processing
delays of pulses through the system. The hit/miss ratio gives an overall indication of how well the data
filtering is being done. The sizes of the buffers tell whether particular subsystems are keeping up with
the data rates; whether the processing load is well distributed among the subsystems; and how the pro-
cessing load varies with time, such as when additional emitters are first seen. The processing delay is
the amount of time from when an emitter pulse is seen at the receiver until it is processed through the
system. This is important for a real-time response in a threat scenario.

It was seen that, as expected, these various performance measures were coupled. Changing a
parameter in the system configuration could have different effects on the different performance mea-
sures. Therefore, comparisons between various architectures and system configurations must take into
account several of the performance measures. No specific attempt at combining the different perfor-
mance measures into a single overall performance number or rating has been made.

The simulation results discussed in this report all use the same basic architecture shown in Fig. 1.
Other architectures were studied and some of the results have been reported [1-41. Different parame-
ters of the system were varied and compared using the simulation program. Some of the more interest-
ing results will be shown.

Theoretically, all parameters in the simulation program can be changed from run to run. How-
ever, some parameters are generally held fixed once the basic architecture has been designed. These
include such things as the number of microprocessors in the emitter identification array, the processing
times for different functions in the system, and the maximum buffer sizes allowed. Some of these were
fixed due to physical and technological constraints and some were found by experimentation. The
other parameters being tested, which were therefore variable from run to run, were set interactively by
user inputs. Figure 6 shows an example of the user interaction with the program. The user starts the
simulation by entering SEG MESS4 at the computer terminal. The program then prompts the user for
the different input parameters and waits for the user to enter the desired values.

Figure 6 also shows the outputs to the user terminal for a run of the simulation. The user input
parameters are shown as part of the output. The NUMBER OF EMITTERS is the number of emitters
desired in the scenario for the run. The parameters for these emitters are then set in the data generator
program, using the random number generator within a specified range of typical parameter values. The
MAX. SEPARATION BET. ON TIMES is the period of time during which all the emitters are turned
on. For example, in the case shown, all the emitters will be on by 0.02 s after the start of the run.
Having all the emitters turn on in a short period of time (0.02 s) simulates a worst-case processing load
for the system. The beginning of the run is set as time 0.0 s. The ASSOC. PROC. TIME IN
MICROSEC is the amount of time required for processing an input pulse in the content-addressable
memory subsection. This includes the amount of time to read the pulse from the buffer, interrogate
the CAM, and place the matched or unmatched data in the proper buffer. The MPP PROC. TIME IN
MICROSEC PER INSTRUCTION is the machine cycle time of the microprocessors being simulated.
The CAM MANAGER PROC. TIME IN MICROSEC refers to the amount of time required by the sys-
tem to load the parameters of one emitter from the List to the CAM. All of these processing times

11
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OK, SEG MESS4

NUMBER OF EMITTERS = 50

4AX SEPAPATION BET. ON TIMES = .C2

ASSOC. PROC. TIME IN MICROSEC 1.0

MPP PROC. TIMvE IN MICROSEC PER INSTRUCTION 0.3

CAM MANAGER PROC. TIME IN MICROSEC = 1.0

# CAM REGS = 24

INITIAL # OF MOD. IN THE LCAM STACK = 16

INITIAL U OF BITS SHIFTED = 512

ADVANCE LOAD TIME IN MICROSEC = n
NUMBER OF EMITTERS IDENTIFIED BEFORE CONFIG = 200

RUN TIME IN SEC. = 0.1

NMCNT= 9 MCNT= 1498 !AX= 580 CAME= 2 MPPB 5 UPDPUF= 0
MTIME=0.007158 NCWL= 1520 MLCAMBUF= 3 IDOAD= 2
ICFD= 0 NEA= 1660 NIA= 161 INLT1= 9 I:LT2= 2 INLT3= 57

0 0 1 0 0 3 0 0 0 0 1 0 1 1 1 6

0 2 3 0 0 1 1 0 1 1 0 0 ?.i0 0 1
e 0 2 0 2 0 2 1 0 3 1 2 2 0 1 2
4 0 1 0 0 0 11 C I CO O 00 0 
TOTAL EMITERS IF MPPR= 50

13 14 14 11 13 10 13 12 12 13 13 12 14 12 16 16

**** STOP

Fig. 6 - Typical simulation run

were determined by the architecture used and the speeds of commercially available components. By
changes in these processing-time parameters different parts of the system can be sped up or slowed
down for experimental purposes and worst-case analyses.

The # CAM REGS parameter allows the user to set the number of words in the CAM in the
simulation. This is important because a content-addressable memory consumes a much larger amount
of space per bit than a conventional random-access memory and it should be kept as small as possible
without degrading performance. The next two user input parameters set the configuration of the List.
The INITIAL # OF MOD. IN THE LCAM STACK sets the number of bins in the List, and the INI-
TIAL # OF BITS SHIFTED allows the user to enter the time slice per bin in microseconds. The RUN
TIME IN SEC. is the length of the simulated engagement. The length of a run should be at least
several times the amount of time needed for all the emitters to turn on, to show both the transient and
steady-state operation of the system.

Also shown in Fig. 6 are the resulting outputs of the simulation run. NEA is the total number of
pulses entering the system from the receiver during the run. NIA is the number of pulses which did
not match in the CAM and NMCNT is the number of these misses which occurred after the emitters
had been identified and put in the emitter file (steady state). MCNT is the number of pulses which
matched in the CAM. The maximum sizes of the CAM input buffer and the MPPR FIFO array buffer
during the run are shown as CAMB and MPPB. MAX is the maximum delay of a pulse through the
system in microseconds.

12
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The distribution of emitters in the emitter file among the 64 DOA cells is shown next, along with
the total number of emitters in the file at the end of the run. The last set of output numbers shows the
maximum instantaneous sizes of each of the List bins during the run.

These outputs provide cumulative statistics on the performance of the signal sorter during the
run. For example, all the displayed results show maximum values or total counts. To judge perfor-
mance more fully, it is necessary to see how some of these performance measures varied during the
run rather than to see just the total or maximum values. For this reason the ability to provide plots of
any variable in the program vs time was added to the simulation.

From the simulation-run example shown in Fig. 6, several variables were plotted vs time, and the
plots are shown in Fig. 7. Figure 7(a) shows the count of the number of pulses which miss in the
CAM. It is also the total number of pulses going into the microprocessor array. From this graph, it is
seen that there are two distinct portions of the run. All of the emitters are turned on during the initial
0.02 s of the run, and they generate a high rate of misses in the CAM until they have all been
identified and put into the emitter file. Once the emitters have been identified, the rate of misses
decreases drastically, showing the effectiveness of the steady-state filtering in the CAM during this run.
The parameter MPPR [Fig. 7(b)] shows the maximum number of pulses in the buffer between the
CAM circuitry and the microprocessor array. All of the missed pulses in the CAM pass through this
buffer. This value peaks during the time when the emitters are still being identified and the rate of
input to this buffer is high, as is shown by Fig. 7(a). Figure 7(c) shows the processing delay for pulses
through the system. This parameter is also greatest during the initial phase of the run, when all the
new emitters are being identified and the processing load is greatest. The processing delay is defined as
the amount of time from the time of arrival of the pulse to the time the microprocessor array has com-
pleted processing that pulse. This includes the processing times in the CAM and the microprocessor
array and the delays in the FIFO buffers.
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Fig. 7(a) - CAM misses vs time (50 emitters)
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Fig. 7(b) - Array processing buffer size vs time (50 emitters)
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Fig. 7(c) -Pulse-processing delay vs time (50 emitters)

COMPARISON OF ARCHITECTURES

These simulation tools were developed to allow comparisons of different system configurations in
a much easier way than by changing and rechanging hardware. This section will show how some
different system parameters were determined and tuned using the simulation. Other system architec-
tures have been examined [1,21 as well as different architectures for the microprocessor array [3,41.
The example used shows the time-slice size of the List bins being varied to determine an optimal List
configuration. The computer outputs of runs using three different bin sizes, with all other system
parameters held constant, are shown in Figs. 8(a) through 8(c). By examining the value of NMCNT
(nonmatches in the content-addressable memory front-end), we can see that a bin size of 512 /is works

14
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**** STOP

Fig. 8(a) - Simulation run with 256-As List bin size
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Fig. 8(b) - Simulation run with 512-As List bin size
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Fig. 8(c) - Simulation run with 1024-As List bin size
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best when there are 16 bins in the List, for the environment that was used in the run. The data-
generator routine for these runs allowed emitters to be generated with pulse repetition interval (PRI)
values ranging between 500 as and 8 ms. The number of emitters in the scenario was 80. All emitters
were regular-type emitters, meaning that they had stable frequency and PRF parameters. The total
pulse density was on the order of 25,000 pulses per second.

When the List bin size is 512 As, the total time taken to cycle through all 16 bins is 8.192 ms,
which is greater than the maximum time between pulses of any emitter in the scenario. This
configuration therefore works best. The main reason why a bin size of 256 p s does not perform as well
is that the system will cycle through all the bins of the List in 4.096 ms. For those emitters whose PRI
is greater than this value, the problem of where to put the next pulse in the List occurs. These
emitters may not get into the CAM at the proper time, and thus more misses will occur in the CAM,
which will generate a greater processing load on the system. A bin size of 1024 As causes a different
effect. Since many emitters will have PRIs less than the time-slice size of a bin, more than one copy of
the same emitter may be in one bin simultaneously. This could cause the number of entries in a bin to
exceed the CAM size, which could cause emitters in the CAM to be overwritten by others before the
emitter pulse arrives. This again would cause an increase in the number of misses in the CAM. Figure
9 graphically shows the count of CAM misses vs time during the three runs. It can be seen that the
performance of the system during the initial emitter turn-on and identification phase was identical for
all three runs.

I BIN size = 256 useo.
2 BIN size - 512 useo.
3 BIN size - 1024 uS9o.

a)

a-

C)

C0

0.DZ Z.i0l 0.02 Z.03 0.Et4 0.FiS 0.0S Z.Ei7 iZ.E2 0.79 0.10
RUN TIME [sec.)

Fig. 9 - CAM misses vs List bin size

SIGNAL-SORTER PROTOTYPE HARDWARE

The signal-sorter system shown in Fig. I and described in the Signal-Sorter Architecture section
has been constructed as a laboratory prototype. The system consists of 18 wire-wrapped 23 cm by 23
cm (9 in. by 9 in.) circuit boards (Fig. 10). Schottky Bipolar semiconductor logic is the predominant
type employed. This section provides details of the various subsections of the system.
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Fig. 10 - Signal-sorting system

Microprocessors

The three identical processors in the microprocessor array were custom designed for the signal-
sorting task using Advanced Micro Devices AM2901 bit-slice microprocessors as the central processing
elements. Four 2901s were used to construct a 16-bit microprocessor with a basic machine cycle time
of 300 ns. The instruction execution times range from 0.6 to 1.2 Aus including the instruction fetch
from memory.

There were several reasons why the 2901 bit-slice microprocessor was chosen for this task. It was
determined that a word width of 16 bits would be needed, and at the time of the initial design there
were no 16-bit microprocessors available. This word width requirement, along with the fact that the
required processing speeds were much faster than that of any of the available 8-bit microprocessors,
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HUSSON AND EVANS

meant that a custom-designed processor was needed. The other advantage of the bit-slice approach was
that it allowed a custom-designed, microprogrammed instruction set to be implemented. This further
enhanced the processing-speed capabilities. Among the several available bit-slice microprocessors, the
AM2901 was chosen because it was 4 bits wide, it used a single power supply, and it had many compati-
ble support circuits, since its internal electronics were the popular TTL type.

The architecture and instruction set of the processors were designed specifically for this signal-
sorting task, but with enough instruction-set flexibility to allow different identification algorithms to be
programmed. Many custom instructions were microprogrammed to perform several tasks simultane-
ously during one instruction cycle. Each processor occupies two circuit boards. On what is called the
main board are the arithmetic logic unit (ALU), the control unit, the program memory (1 K x 16), and
the interrupt logic, as shown in Fig. 11. The auxiliary processor board (Fig. 12) contains the data
memory (4 K x 16) and the I/O buffers to the Common Stack FIFO and List buffer FIFO. The two
boards are linked by two unidirectional 16-bit data busses and various other clock and control signals.
The D bus is a tristate input bus which is also connected to the output of the FIFO ARRAY BUFFER.
Figure 13 shows the fabricated auxiliary processor board. The three processors are linked together by
the interrupt signals and the Common Stack. The Common Stack is a 64-word FIFO that is used to
pass data among the three processors.

Y8US

|PROGRAM COUNTER| m

U

EXT INT- FNT~UPT~ F

Fig. t1 - Microprocessor block diagram
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Fig. 12 - Microprocessor auxiliary board block diagram

Fig. 13 - Microprocessor auxiliary board
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The instruction set of the processors is microcoded and is contained in programmable read-only
memories (PROMs). This means that the instruction set itself can be easily added to or modified. If a
production system was actually built using a fixed processing algorithm, the algorithm could be coded
directly in microcode, which would reduce the overall processing time by more than 50% since all the
overhead of instruction fetches would be eliminated. This would allow higher data rates to be handled
by the system.

Content-Addressable Memory (CAM)

The CAM hardware consists of the array of content-addressable memory circuits, the CAM
buffers, the match logic and the PRI memory (Fig. 14). This circuitry is all controlled by the CAM
controller, which will be described in detail later.

X L-. .. ... ..

I j E . ._ , , I ..... .. ._. .. j

L: _ . i U I I : : . . . i : _ _ . E .... ........ ..

~~~~~~7 .^sy W .

iNTEL 3104
4x4 CONTENTI- - -- - ADDRESSABLE MENAORY

79Z7"(3)

Fig. 14 - CAM board

The CAM array and the CAM input buffer are shown in Fig. 15. The CAM array consists of 36
content addressable memory modules of 4 bits by 4 words each. They are configured to form a CAM
array of 24 words of 24 bits each. The CAM word is separated into two fields, 12 bits for the FRE-
QUENCY and 12 bits for the DOA, although only 6 bits are currently being used for this field. The
CAM can perform a MATCH/NO MATCH search of its entire memory in 80 ns. All bits in a word
must match for the MATCH line to be set true.

The CAM input multiplexer allows either of two inputs into the data input lines of the CAM.
One in-put source is the data loaded into the CAM from the List. The other source is the CAM input
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Fig. 15 - Content-addressable memory

buffer which contains the digitized receiver outputs. The CAM buffer is a 64-word by 24-bit first-in-

first-out (FIFO) buffer, which gets its inputs from the receiver outputs, or from the data stream genera-
tor in the case of the laboratory tests.

The PRI memory is a 24-word by 12-bit memory configured in parallel to the 24-word CAM

array. It holds the PRI values of the emitters currently in the CAM. These PRI values are used to
generate the expected next time of arrival (NTOA) of those pulses which match in the CAM. The
MATCH logic decodes the MATCH outputs from the CAM to the address of the CAM location that
was matched. This address is used to get the proper value from the PRI memory to calculate the
NTOA.

List

The List hardware consists of the 16 List bins, the List input multiplexer, and the List buffer, as

shown in Fig. 4. Included with each bin of the List is logic which allows the List to be configured as
either 8 or 16 bins and also logic which keeps track of the number of emitters in each bin of the List
and the maximum number in the bin since system reset.

Each bin is a FIFO of 64 words by 36 bits. The bin size is 64 words because the high-speed FIFO
devices used to fabricate it are 64 words deep by 4 bits wide. The bits are divided among three fields,
12 bits each for DOA, FREQUENCY, and PRI. The determination of which bin in the List to load an
emitter into is based on four bits from the expected next time of arrival word.

The List buffer is the buffer between the microprocessor array and the List. This has also been
referred to as the Load CAM Stack. The size of this buffer is 64 words by 16 bits. The four words for
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HUSSON AND EVANS

each emitter (DOA, FREQ, PRI, NTOA) are loaded into the buffer by the processors in a serial-by-
word fashion. Another FIFO was added in parallel to the List buffer to output the same data to an
external display device (the minicomputer, in this case).

The List input mutliplexer selects between the two sources of inputs to the List. These two
sources are the List buffer, with the identified emitters from the microprocessor array, and the matched
data from the CAM array.

CAM Controller

The CAM controller is a microprogrammed controller which performs three functions in the
signal-sorter system. These tasks are to control the interrogation of the CAM with the input data, to
load the CAM from the List, and to load the List. The controller logic is diagrammed in Fig. 16. The
microcontroller used is the Advanced Micro Devices AM2911, and the microprogram is stored in pro-
grammable read-only memories (PROMs) for ease of programming and modification. The basic micro-
cycle time of the controller is 300 ns. At this clock rate, it requires 900 ns (3 microcycles) to process
an input pulse from the CAM input buffer to either the List (CAM match) or the FIFO ARRAY buffer
(CAM mismatch). Loading the CAM from the List requires 600 ns. The time required to load the
List from the LIST BUFFER (microprocessor array) is 1.8 /ts. This procedure involves demultiplexing
the data from the FIFO into a single parallel word to be loaded into the List. During this time, the
CAM controller cannot process any incoming pulses. The theoretical limit of the current CAM con-
troller scheme is a maximum input data rate of about 500,000 pulses per second. Higher data
throughput rates could be achieved by increasing the amount of logic in the CAM controller to overlap
the multiple tasks.

LIST BUFFER EMPTY

AM MATCH ADORESS MICROCON TROLLER

CAM BUFFER EMPTY LOC

OOL REGISTER

CONTROL
SIGNALS

Fig. 16 - CAM controller

A flowchart of the CAM controller process is shown in Fig. 17. Since the controller has multiple
tasks, they are prioritized in the order (1) process input pulse data, (2) load the List, (3) load the
CAM. These priorities are implemented in the microcode by the order in which the controller checks
the status flags.

LABORATORY TESTING

Test Configuration

The signal-sorter system has been interfaced to two general-purpose minicomputers for testing in
the laboratory. The minicomputers are a Prime P300 (Fig. 18) and a Prime P400. Both are 16-bit
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Fig. 17 - CAM controller algorithm

Fig. 18 - Prime P300 minicomputer
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general-purpose computers with parallel input and output interfaces. The laboratory configuration is
shown in Fig. 19. The P300 computer is used to load the software into the microprocessors, initiate
and control the signal-sorter operation, monitor the hardware test points, and provide the input data
stream to the sorter. The P400 computer receives information from the signal sorter to provide a real-
time display of the emitters that have been identified.

IMHz

P30 SINA P400I

GRAPHICS
TERMINAL

Fig. 19 - Laboratory test configuration

The interface to the P300 consists of four 16-bit unidirectional busses plus the appropriate
handshaking signals. A single control program in the P300 directs the operation of the signal sorter and
controls the data-stream generator, based on operator commands which are input through the
computer's console. The control functions allowed are load the microprocessor software, system reset,
system run, clear CAM, and generate the test data stream. The monitoring functions allow the
operator to examine the microprocessor memories (emitter file) and the sizes of the List buffers. Two
types of data streams can be generated for testing. A set of pulses for a small number (less than 20) of
emitters can be generated. The operator specifies the DOA and FREQ parameters for each emitter and
also the number of pulses to be input to the signal sorter. This allows known bit patterns to be moved
through the sorter to test the overall hardware operation.

The other data stream generator subroutine uses the same data generator routine used in the
software simulation. The operator input to the routine is the number of emitters desired. The program
then generates a set of emitters with random parameters. From the emitter parameters a list of pulses
seen by the simulated receiver, ordered in time, is created in the memory of the P300. This list is then
output to the signal sorter in real time, based on the TOAs computed. An external 1-MHz clock pro-
vides the timing for the computer to output the data stream. This data stream allows for a more
thorough test of the hardware and the signal sorting processing scheme. Both of the data-stream gen-
erators can provide repeatable data streams for comparing different system configurations and for veri-
fying hardware operational status.

The hardware monitor function of reading the microprocessor data memories allows the operator
to look at the emitter files. This can show how many emitters have been identified and their stored
parameters (DOA, FREQ, TOA, TYPE, PRI).

The display program on the P400 computer provides a real-time display of those emitters
identified by the microprocessor array. The display is simply a dump of the data passing on the inter-
face between the microprocessor array and the List buffer of the signal sorter. The data passing this
point are those emitters which have been identified by the processors and those emitters which were
previously identified but for some reason did not match a pulse in the CAM. The display program
currently has no provision for purging nonactive emitters from the graphics display, but it is useful for
providing real-time feedback of system operation in terms of seeing what emitters have been identified.
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Several other external signals are also being monitored. These include the state of the micropro-
cessors (RUN, HALT, FAULT), the microprocessor SYNC signals, and the number of NO MATCHs
in the content-addressable memory. The microprocessors' status and the SYNC are displayed in LEDs
on the control panel. The number of NO MATCHs is kept in an external hardware counter.

Test Results

Basic tests of each hardware module were made during the integration process. After the system
was completely built and tested, further tests were conducted to determine if the system performed like
the software simulation. In doing these tests, several limitations of the laboratory test facility were
discovered. The worst limitation was on the data-stream generator. Both the number of simultaneous
emitters and the number of pulses per second that could be generated by the Prime P300 computer
were smaller than desired for a full test. When more than ten simultaneous emitters were generated,
the computer-output delays caused the PRIs of the emitters to appear unstable to the signal sorter.
Since the loading of the CAM in the signal sorter is based on stable PRIs, more pulses did not match in
the CAM than would be expected theoretically.

Table 1 shows five runs made while the number of emitters was varied. All emitters generated
for these runs were TYPE 1 emitters, that is, with stable PRI and frequency parameters. When ten
emitters were input to the signal sorter, the delays caused by the P300 output caused some of the
emitters to be identified as TYPE 4 emitters, with an unstable PRI parameter. The percentage of non-
matching pulses in the CAM also increased. Theoretically, if an emitter has a stable PRI, only three
pulses are required for identification. For ten emitters, the minimum number of missed pulses in the
CAM would be 30. When the number of emitters was increased to 20, both the percentage of non-
matches and the percentage of emitters identified as TYPE 4 increased.

Table 1 - Laboratory Test Results (CAM Size = 24, Run Time = 0.06 s)

Total Number of TYPE 1 TYPE 4
Number of Number of CAM Emitters Emitters

Run Emitters Pulses Nonmatches Identified Identified
1 5 516 19 5 0
2 5 508 23 5 0
3 10 1696 53 9 1
4 10 1696 63 8 2
5 20 2564 250 13* 8

*One duplicate entry in emitter file

The overall logic of the signal-sorter system was verified by these tests, even though direct com-
parison could not be made to the simulation results and denser environments could not be run. When
runs were made with five emitters, the results showed that the CAM filtering and the emitter
identification worked as designed. Another test of the CAM filtering procedure was made by varying
the number of words in the CAM. The CAM size is easily varied by the control-panel switches. The
results showed that when the number of CAM words was decreased below the number of emitters in
the environment, more input pulses were missed in the CAM. This is as expected and agrees with pre-
vious results obtained using the simulation. Some of the results of this test are shown in Table 2.

If a better data-generating scheme could be obtained, further tests could be performed on the
hardware. Based on extrapolation of the limited results, performance of the signal should match that of
the software simulation.
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Table 2 - Test Results: Effect of Varying CAM Size
(Number of Emitters = 5, Run Time = 0.06 s)

Total Number of
Run CAM Size Number of CAM

Pulses Nonmatches
1 24 516 19
2 12 556 21
3 4 483 54

SUMMARY

The software simulation of the signal-sorter system showed that identifying many emitters in a
dense environment in real time is possible with current technology. Using the simulation, an architec-
ture was developed which would both handle the high data rate requirements and be feasible to con-
struct with current state-of-the-art components. The resulting architecture was tested against various
environments with the simulation. The simulation results and a paper design of the system showed
that the theoretical processing limit of the signal-sorter system was on the order of 500,000 pulses per
second. The major constraining factor is the speed of the content-addressable memories and the CAM
controller circuitry. The CAM controller circuitry could be speeded up by the use of a hard-wired logic
design instead of the firmware-based microcontroller.

A hardware prototype of the signal-sorting system for testing in the laboratory was then built.
The hardware in this system was described in a previous section. After all the modules were tested and
found to be functional, the integrated system was interfaced to a minicomputer in the laboratory for
system testing. Included in the hardware that was built were many test points and additional circuitry
for monitoring the system operation.

Tests were run using this laboratory configuration, and the closed-loop signal sorter was able to
identify and filter effectively multiple emitters in a data stream. Limitations in the general-purpose
minicomputer interface limit the density of an environment that can be generated to less than 50,000
pulses per second. This data rate is much smaller than the projected limit of the system which was
built. As of now, the hardware system has not been tested to its limits. However, the performance of
the hardware for the less-dense environments closely matches the performance of the simulation.

It is hoped that the system will be tested further with a data generator that can provide a higher
data rate. It would also be desirable to interface the signal sorter to a receiver front end in the labora-
tory for accurate real-time tests of these architectural concepts. This signal sorter would act as a prepro-
cessor to an overall EW system, which would use the emitter information determined by the signal
sorter to provide identification, classification, and real-time response.

One problem which was not fully solved in this work was the identification and classification of

exotic emitters. Examples of this class are frequency-agile and random-PRI emitters. The predicted
pulse time of arrival scheme described in this report, using the matching of direction of arrival and fre-
quency in a CAM, would not be as effective in identifying and filtering these types of emitters. Runs
made with the current simulation show this to be true. Schemes such as adding another CAM to hold
these classes of emitters or adding special exotic-emitter processors to the system have been suggested.
The testing of these possible solutions will require more work to be done using the simulation pro-
grams.
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Appendix

GLOSSARY OF TERMS

Angle of Arrival - The direction of an incoming pulse with respect to the boresight of the receiving
platform.

Bit-Slice Microprocessor - A section of a microprocessor that may be combined in parallel with other
such sections to form complete CPUs with various word lengths.

Content-Addressable Memory (CAM) - A random-access memory which is accessed by the data con-
tents of the memory rather than by an address.

CAM Controller - Control circuitry which provides timing and control signals for the CAM Load Pro-
cessor and the List Forming processor (see Fig. 1).

CAM Load Processor - Processor which provides the task of loading the CAM from the List
(see Fig. 1).

Common Stack - The buffer used for transferring data from the microprocessor array to the List-
Forming processor.

Direction of Arrival (DOA) - See angle of arrival.

Emitter - The source of a radar pulse.

FIFO - First-in-first-out buffer used to interface subsystems having different data-rate capabilities.

FIFO Array Buffer - The buffer between the CAM circuitry and the microprocessor array (see Fig. 1).

List - The memory circuitry which holds the pulse parameter data which will be loaded into the CAM
(see Fig. 1).

List Bins - Partitions of the List which are used to order the emitter data in the List in a next time of
arrival sequence (see Fig. 2).

List-Forming Processor - Processing portion which loads the proper List bin with the data passed from
the content-addressable memory or the Common Stack.

Microprocessor - The central processing unit (CPU) of a small computer, implemented on one or a
few integrated circuit packages.

Microprocessor Array - The group of parallel microprocessors which perform the main signal-
identification task (see Fig. 1).

Microprogramming - The implementation of a control function of a processing system as a sequence
of control signals stored in a control memory.

Pulse Repetition Frequency - Reciprocal of the pulse repetition interval.
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Pulse Repetition Interval - The time period between successive pulses from an emitter.

Signal Sorter - A system which can sort emitters based on their parameters from a multiemitter data
stream out of a radar receiver.

Time of Arrival (TOA) - Emitter pulse parameter relating to the time the pulse arrived at the receiv-
ing system.
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