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A REFINED NUMERICAL METHOD

. TNTROnDUTION

This report describes a numerical method for analyzing the properties of solitary waves in water
and assesses the method's accuracy. A second report (J. M. Witting, "High Solitary Waves in Water:
Results of Calculations," NRL Report 8505) presents detailed and comprehensive results.

Figure 1 presents the motivation for the research and hints at some of the results. The figure
plots the square of the speed of a solitary wave in water against its amplitude. The plot is nondimen-
sional; speeds are referenced to the speed of long linear waves in water; amplitudes are referenced to
the water depth well away from the solitary wave. To make the figure legible, only high solitary waves
are shown. The complete curve would extend downward to a speed of unity and an amplitude of zero.
it terminates with the highest wave in water. The highest wave has a "kineticity" twice the amplitude.'
Figure I shows the limiting relationship as a barrier.
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Fig. 1 - Amplitude-speed relationship. Displayed are sample data from several theories that claim
high accuracy. The numerical results of previous investigators generally fall below those obtained
by other means, except for the highest wave. Our calculations of the relationship data agree with
those of Longuet-Higgins and Fenton (1974) and with Byatt-Smith and Longuet-Higgins (1976),
except for very high waves.

Manuscript submitted on June 24, 1981.
*Thi fact hnv been known since Stokes (see Lamb, 1932 Art. 2501, i not before; it is the resultof te hight 
a sharp crest, i.e., a discontinuous slope. The only way that this can occur is if the fluid at the crest moves at the same speed as
the wave itself. The Bernoulli Law then demands the limiting-height-speed relationship.
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WITTING AND BERGIN

Methods used to deduce the properties of solitary waves fall into three classes: (a) expansion
about a small parameter, e.g. the amplitude, (b) numerical methods, and (c) others. No matter what
the method, reliance on numerical computation is necessary to approach the higher waves. Figure I
presents the results of our calculation, and displays sample results from each of the three methods
whose authors claim 4 to 5 figure accuracy. Prior to this work, mutual agreement of the stated accura-
cies could be found only between the results of Longuet-Higgins and Fenton (1974) and those of
Byatt-Smith and Longuet-Higgins (1976). Except for the highest wave, the numerical methods pro-
duced somewhat smaller speeds for a given amplitude than did the others, All previous works claiming
high accuracy give a limiting wave height within 0.0015 of 0.8270.

Figure 1 shows that for all but the very highest waves, perfect (to the resolution of the figure)
agreement is found between the numerical method presented here (the line), and the results of
Longuet-Higgins and Fenton (1974) and of Byatt-Smith and Longuet-Higgins (1976). The dilemma
remains, however, that the method described here also yields a highest wave higher than previously
reported. We feel that a detailed description of our numerical method is called for to discuss why out
method gives more accurate results than other numerical methods (Miles, 1980 reviews the status of
solitary wave research and points out the unsatisfactory status of knowledge of high solitary waves),

This report is organized as follows: Section 2 develops the basic theory for describing a solitary
wave and defines certain conformal transformations that are useful for numerical calculations. Section
3 describes the representation of the solution and identifies features of the solitary wave which are com-
puted. Section 4 describes the numerical procedures used in obtaining solutions. Section 5 compares
the results to those of earlier investigators. Section 6 briefly summarizes the results and offers conclu-
sions.

2. BASIC THEORY AND USEFUL TRANSFORMATIONS

A. The Kind of Solitary Wave Considered

Figure 2a shows an idealization of solitary waves in water. Apart from dissipative effects, the
wave propagates at a constant speed and without change of form over an impermeable and horizontal
bottom. The conventional mathematical model describing the solitary wave takes the fuid to be
incompressible and inviscid, with all fluid motions irrotational. In addition, the conventional model
neglects surface stresses imposed by the relatively undense air, and imposes a constant pressure boun-
dary condition at the air-water interface. Because only pressure gradients appear in the equations of
motion, the uDDer surface of the water is considered stress-free. The model eontemrniates only niane
waves, so that motion is confined to the x-y plane (see Fig. 2a), By assuming at the start that the wave
moves at constant speed and shape through still water, one may make a Galilean transformation to
wave coordinates where the wave is stationary. Viewed from wave coordinates the situation is then one
of a steady, incompressible, irrotational flow in two dimensions.

Two equations completely govern the local motion in the interior of the fluid. These are that
div u = 0 (incompressibility) and (curl ul) = 0 (irDrotationality). It follows that a velocity potential 4
and a stream function 4 are tied to Cauchy-Riemann conditions:

u = =~X-8iY

v = o/ly = -84/8x.
As is customary, define a pair of complex variables z = x + iy and w = + (4'. Then the local motion
in the interior of the fluid is satisfied by any analytic function w = w(z), or, alternately z z(w). Fig-
ure lb is the map to wspace.

It remains to pose boundary conditions. These are the following: the flow at the bottom of the
channel is horizontal; flows away from the wave are horizontal and shear-free, and the same on each
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NRL REPORT 8504

side of the wave; the pressure along the free surface vanishes. Identifying this upper boundary in
advance is possible in w-space (it corresponds to qp = constant). It is not possible in z-space. There-
fore, most researchers since Stokes (1880) have selected w to be the independent variable, then
z = z(w) is the desired solution. With this choice of independent variable the boundary conditions are:

y = O

dz _ 1
dw U

along , - 0

as X -* ± cc

gy + -/ i dz- = gh + - UL along = q02 dw 2

(2)

(3)

(4)

where g is the acceleration of gravity, h is the water depth away from the wave, and U is the speed of
the wave relative to still water. Like Yamada (1957, 1958), we nondimensionalize in the way that
minimizes external parameters appearing in z and w. This is the system h = If = 1. Pxuations (2),
(3), and (4) then become:

y = O

dz 1
dw

y + F21 d 12 + ±LF2
'+ 2 F dw . 2

along * - 0

as 4 - ±- -

along ip = 1

where F U/lv' is the Froude Number.

Henceforth in this report, solitary waves are defined to be z = z(w) subject to Eqs. (5), (6), and
(7). As Fig 1 shows, there may be more than one solitary wave that corresponds to a given F. This
remarkable discovery was made by Longuet-Higgins and Fenton (1974), and has been confirmed by
other investigators.

B. A Transformation of the Free Surface to a Unit Circle

For the purposes of performing a trustworthy numerical analysis, we found it desirable to move
the domain of the nasty boundary condition, Eq. (7), to the unit circle by a conformal transformation.
Levi-Civita (1925) and Yamada (1957, 1958) show how to do this. The transformation

-- tanh' 4 w
4 (8)

the region occupied by the fluid into the interior of the unit circle (see Figs. 1 b, Ic).

The flow can be described with a new dependent variable:

I _I i Intdw/dz) _-- +ir. (9)

In Eq. (9) 0 is the angle of surface inclination and r = In q, where q is the fluid speed dw
dz

t1ins, tn Pic, )r the hinencnru frnnAl;f--
.\Vt ^^^ C' . __ .. g *- V v- Is ~t~tUI ..

0 = O

[L = 0

dq2 I II -sinOd- '-- 2os a- = rF

along 0, ± I

at ± I

on the unit circle.

(10)

(11)

(12)

3

(5)

(6)

(7)
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WMImN AND BERGIN

The last condition is not- self-evident (Yamada 1958 gives a derivation). Its integral forms an
alternative to Eq. (12):

q3 (a) = q-¾10) + 3l Hi sine sec t aoer on the unit circle, (13)
PrF f0" 2

C. Another Useful Transformation

The transformation described in Section 2B of this report has the unfortunate side-effect in which
the point marked ± I in Fig. 2c is singular. Although we shall use numerical methods that converge
despite the singularity, it is possible to improve the accuracy of some of the 'derived (to be defined -
later) quantities by expanding about the point -. The independent variable A is formed by the -
transformation:

ge e+PW = + iy (14) 7
where j, a positive real number, is defined later. Figure 2d shows the mapping fro-M 2b.

y~~~~~~~~~~~~~

(a)~~~ ~~ ~~~~~~~~~~~~~~ tb : 

S ~ ~ ~ ~ ~ ~

-3-

i(a) (id) -0: 

Fig. 2 -Domains of the fluid under various conformal transformations: a. the z x + y plaAe; b. the w - + plane; c. the -
mapping of the fluid into the interior of a unit circle; d. the plane appropriate for expansions about a point at infinity. he point -
marked S marks a singularity that can trouble accurate calculations. It is infinitely far away from the fluid in the. limit of :
infinitesimal waves; it approaches the free surface as the wave amplitude approaches its highest value..-

4~~~~~~~~~~~~~~ E..
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In an earlier paper making use of this transformation, Witting (1975) was able to estimate the
location and some of the properties of the singularity at S. For the wave of limiting amplitude, the
highest wave in water, S is located on the free surface, and its properties are known (see Lamb, 1932
and Grant, 1973).

3. TREATMENT OF THE SINGULARITIES AND DEVELOPMENT
OF A FOURIER SERIES SOLUTION

A. Basic Relationships

The aim here is to find a solution for f1 (Eq. (9)) that satisfies the boundary conditions (Eqs.
(10), (11), and (13)). We split the solution into two parts, one of which is an attempt to explicitly
account for some of the singular behavior at S. Thus,

tQ (SW = 5- Id' 0It) C% a 5

fQO(C} = 60 + iTO (16)

=O + ir, . (17)

We define n0 to be

flo In l+A (18)
3 l +A

where X is a constant to be defined presently. Note that Eq. (18) satisfies the boundary conditions
(Eqs. (10) and (ii)), but not necessarily Eq. (13). On the unit circle Eq. (18) gives

sin (300) = 1 A qa,() (19)

q0 (r) = I. (1 2) (I + cos a-) (20)

and Eqs. (19) and (20) provide the relationship between A and q0 (0)

X = l-q I(0)J [1+qJ(0}. (21)

In the numerical work A is to be specified, sometimes from specifying q0 and using Eq. (21). Hence,
flo(4) is determined explicitly. Note that for the highest wave the singular behavior of fl 0 matches
that demanded for a sharp corner along a free surface.

Specifically, when q0 vanishes, A is unity, and the singularity in Eq. (18) is on the free surface.
Equation (18) goes to:

cr0 (af)u= 6- C for 0 < or < ar, (22)
6

ao(cr)= 6 for-vr cr < 0, (23)

TOWo) I In in I cr|
3 i 2

This connforme with the requir tht te toal iror a of*h t : _ + f A Aaw is 120 0. . _ fI o r__ ace _ws _ s| ww ~~.a. Gus~ LoavMAswtall- *e-1 Boor 11 aI ce VI Ut LoIUW _Xlb1 usV ul flu wa l

lim O {(r ) = r- and lim O (ar) = -.
+ 6-6 0- 6

5



WMTTING AND BERGIN

As q0 departs from zero the singularity in Eq. (21) moves away from the free surface, to infinity
when q0 = .1 The location of the singularity generally conforms to the estimated locations found by
Witting (1975); the nature of the singularity conforms only for the highest wave, but should not be in
too much error for almost highest waves. In any case. fl. should account for much of the Ringular
behavior of ft at S for high waves.

The remaining part of the solution, flr, is represented as the Fourier series:

S aQ' (24)

The boundary condition Eq. (10) demands that all a, be real.

The components of ft on. t he h-a f ae surface are:

-( -= ~ a,, sin na (25)

and
rr)= 5- a, cos an. (26)

,, =0

These are the (real) Fourier expansions of O, and `T; knowledge of either as a function of a permits
the calculation of a, through various techniques; we use the fast Fourier transform.

Specifically, Eq. (13) is the governing equation used to'calculate the a, Only the interval (O,r)
is needed. The final boundary condition, 1, is that q (ir) = I. Hence, Eq. (13) has the extra informa-
tion that:

I = q3(O) ± 3-2 sin 0 see - do- (27)

which relates F2 to q (0) and 0(a).

Bernoulli's Law gives the amplitude:

a -1 F2t1 - 2(0)1, (28)
2

anni vT nnnrirntnr it ic an Pscy matter tn rnmniite a prcrfilp iicino the rptitoinnchin

dx + idy = sec der (29)
irr q (a) 2

that arises from Eqs. (8) and (9) once 9 and q are known.

A final check may be made to test for gross programming or other errors. The test is to see
whether the pressure, initially set to zero by Eq. (7) is actually zero at the end. This (kinematic) pres-
sure p is:

p = (I _2) (_ I). (30)

Obviously, that p defined above be small is a necessary condition for an accurate solution; however, it is
not a sufficient condition, as we shall see later.

B. Derived Relationships

The parameter q(0) is the input parameter that serves to distinguish one solitary wave from
another. We call those other parameters basic that arise most directly from the calculations and are

6
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computed to the highest precision. These are F2, a, q, and 0. Derived parameters are those that come
less directly from the calculations, or cannot be computed with the highest precision. The first of these
were given in Eq. (29), namely the horizontal and vertical coordinates, from which a profile can be gen-
erated.

Other derived quantities of interest are defined below. The solitary wave mass Mis:

M- f f , (31)
where q is the elevation above still water level. A parameter closely related to the potential energy isTI, =(r' 2_fl')

2 J-= " 

Three parameters are of interest at the flanks of the solitary wave. An expansion in powers of p.
(see Eq. (14)) leads to a surface profile specified by:

X = - x0 + rn4c mcs R + Of 2Ii4) (33)

= alert sin / + O(e2'0 ) as 0 (34)

In Eqs. (33) and (34) , satisfies

r2e tan/3 , -

The three parameters of interest are Of, x0, and aI, or alternatively, B, defined by:

-a - Be-1x1 as lxi - 0x) (36)

The horizontal drift 2x0 is identically the circulation C in the nondimensionalization used here.
Knowledge of M or V, and C is sufficient to determine other integral properties of interest, using the
relations given by Longuet-Higgins (1974). Once profiles have been computed, it is easy to compute
x0 , B, and either M or V or both.

4. DEVELOPMENT OF NUMERICAL SOLUTIONS

A. The Solution at a Fixed Resolution

Except for our explicit treatment of the singularity at S with the function no, our procedure is
similar to that of Yamada (1957, 1958). Table I gives a partial description of the steps required in
forming a basic iterative solution at a given resolution, i.e., value of N. First, a value for q(0) is
specified. This identifies a unique wave. The auxiliary function ft0 is chosen so that q0(0) = q(0),
which determines K. A total of N + 1 Fourier coefficients a, form a solution. There are N subdivi-
sions in the interval 0 < ar < ir. Thus, quantities that are functions of a are determined at points
a- = n7r/N with wn = 0, 1, 2, .... , N. At the start we let all the a,'s be zero.

Steps 5 to 13 of Table 1 outline the iterative nrncedure Frnm our eynPriPnne thei mnat AdIir!tp
aspect of the procedure occurs at Step 7, because the integral appearing in Eq. (27) is singular at
a = 7r. It is possible to show that 0 has a vertical asymptote at a = #r but that the singularity is integr-
able (we find no reference to these facts in earlier work). A simple approach is to ignore the singularity
and evaluate the integrand at the endpoint by using the limit

lim sin 0 sec -a = - 20'6) (37)
CTf7a_ 2

where the prime denotes the first derivative. We adopt this simple approach. Even though the singu-
larity is not treated elegantly, the error should be small for N sufficiently large. We tried to develop
methods to improve our treatment of this singularity, but without success.

7



WTING AND BERGIN

Table I - The Numerical Recipe

Step Step Equation(s) and
Number S Methods Used

I Choose q (0), N

2 Set q0 (0) = q (0)

3 Compute sot;) -o+() ± iro() 18,21

4 Set o = 0 for all n
This completes initialization.

5 Compute r(ai) 25

6 Compute o = 00 + o,

7 Obtain 2 27, Simpson's Rule

8 |Computea 28

9 Test to see whether a has changed
significantly from the previous iteration.
If not, this is the final iteration.

10 Compute q (a) 13

11 Compute T nr) = In q #<r) - rma)

12 Compute a new set of a,'s 26, Fast Fourier Transform

13 Return to step 5 if this is not the final
iteration. Continue if it is the final one.

14 Compute 0, q, the profile, and
other derived quantities. _ _______

Rather than specify q (0), one can just as well specify the quantity w defined by

1i=1 - FPq2(0). (38)

This produces some slight modifications to Table 1. We use the modified procedure to produce results
that can be compared to those of Longuet-Higgins and Fenton (1974) and Byatt-Smith and Longuet-
Higgins (1976).

The test used to stoD the iteration Drocess is that successive values of a differ by less than in-6.
Up to 40 iterations are required. An example of the convergence process is shown in Table 2. The
results display features found in every case examined: (a) The higher resolution samples (large N)
start much closer to their final value than do the coarser resolution samples. (b) The coarse resolution
samples arc more rapidly convergent. Fewer iterations are usually required for the finer resolution cal-
culations. The slowness of convergence for N = 1440 in Table 2 makes it risky to trust the last digit.
The limiting amplitudes and speeds differ significantly between one resolution and the other. Why this
is so is addressed later.

8
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Table 2 - Convergence of Process
to Obtain Solitary Wave Conditions for a

Given at The value of w is 0.50.

Iteration | N 90 N=1440

Number a/h | F2 a/h F2
1 0.506102 1.512203 0.480272 1.460544
2 0.476858 1.453715 0.480275 1.460549
3 0.465467 1.430933 0.480278 1.460556
4 0.463457 1.426915 0.480283 1.460566
5 0.465758 1.431517 0.480290 1.460579

6 0.469426 1.438852 0.480297 1.460595
7 0.472924 1.445847 0.480306 1.460612
8 0.475618 1.451236 0.480314 1.460628
9 0.477404 1.454809 0.480321 1.460642

10 0.478429 1.456858 0.480327 1.460655

11 0.478917 1.457833 0.480332 - 1.460664
12 0.47907Q 1.4581 5 0.8R0336 1 460672
13 0.479070 1.458139 0.480339 1.460677
14 0.478995 1.457989 0.480340 1.460681
15 0.478909 1.457818 0.480342 1.460683

16 0.478839 1.457677 0.480342 1.4b6b85
17 0.478790 1.457580
18 0.478761 1.457523
19 0.478748 1.457495
20 0.478743 1.457486

21 0.478743 1.457486 | l 1
As pointed out earlier, a necessary condition for an accurate solution is that the pressure found

from Eq. (30) nearly vanishes. Figure 3 displays that pressure, also for w = 0.50. The computed pres-
sures are indeed small, never exceeding 0.6 x 10-4, even at the coarse resolution N = 90. They are
largest near o - 1800, the flanks of the solitary wave. A striking feature in Fig. 3 is the oscillation of
the pressure, with an alternating sign at every data point except at 146' to 1480. This oscillation is
characteristic of all of the calculations; except for isolated points, its period is always 2 grid points, and
so is related to the calculations, not to the wave. We ascribe the oscillations to aliasing in the fast
Fourier transform algorithm, though it is possible that it is caused by some other numerical artifact.
Although we find the oscillations unpleasant to look at, we do not believe that they indicate a serious
"1l UUZIUII.

Figure 4 displays the behavior of the computed pressure. On a log scale it plots the envelope of
pressure curves like that of Fig. 3, for N = 180 and N = 1440. The curves for N = 360° and for N =
720 are nested within the pair shown. The behavior is typical. The computed pressure increases with
a, is always small, and becomes very small as N becomes large.

B. Extrapolation to Infinite N

Luet Q he the exact value of any of the hasic or derived variables. The numerical prnredures

described in Section 4A estimate Q by setting some finite N in advance; call this estimate

9
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°° 20C 40° 800 80° U °° 120' 140 160' 1S0°
Cr

Fig 3 - Residual pressure for w = 0.510 from the calculation with N - 90. The os-
cillatory behavior having a period of two grid points is a numerical artifact. It is typ-
ical of all our calculations. A node appears near a = 150l. Most of the calculations

show no node; rather, the magnitude of the residual pressure increases monotonical-
ly with ar.

Wa lo-,

z
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0:
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iC-

x0-7a

IV0 20' 40' 60' 80' 1004 120' 140' 160' 180
a,

Fig, 4 - Variation of the magnitude of the residual surface pressure along the
= 0.50 solitary wave. The pressures for the N - 360 and N - 720 cakula-

tions fall between the curves displayed.
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QN. Presumably, some information about Q should be present in a sequence of QN that is absent from
any individual QN. We guess that a likely behavior is that of a power law, i.e.,

QN = Q + kNts (39)

W iireV Q. t, d U mr are unknownI TIhe cWa110 lcdLuations are d10 Uin I ull 111U orLl jIC Ul 2V I NPOLIILdIY1 IV - u,

180, 360, 720, and 1440. If Eq. (39) holds exactly, then Q is given by:

QJ+l Q:-1 - QI'
Q = ~~(40)

Qj+1 + Qj-j - 2QJ4

(see Shanks, 1955). It turns out that (Eq. 39) appears to be a close approximation, in that the esti-
mates of Q from the triads 360, 720, 1440 and 180, 360, 720 usually are much closer together than
Q 1440 is to either. Moreover, log-log plots of (QN - Q) versus (N), which must be straight through
the points N = 1440, 720, and 360, also pass through or near the point at N = 180 and usually near
the p uoint at N = 90. W e believe LtLLaL trapuxt i ngi i au ita ives a cluose 4 1A L114L 1U11 t- the exact

value than does the result at the finest resolution (N = 1440).

C. Loss of Accuracy Near the Tails: Connecting the Solution to an Exponential Decay

The use of the fast-Fourier-transform algorithm demands that data be equally spaced, i.e., uni-
form intervals in ar. As we have seen, this does not produce relatively uniform errors (as measured by
the computed pressures) throughout the range of a. Neither does it reach very far out on the flanks of
the solitary wave; values of 7178. vary between 0.044 (to = 0.1) to 0.029 (a} = 1.0). For weak waves,
this is a substantial fraction of the amplitude. For all waves we match the Fourier transform solution to
an exponential falloff at the tails using Eqs. (33) and (34). The solutions are matched at a = 177° for
N > 180.

5. SAMPLE COMPARISONS WITH OTHER WORK

Longuet-Higgins and Fenton (1974), by a method totally different from ours (an expansion
method), use e to specify wave properties. They cite 5-place accuracy in wave speed and amplitude up
to o) = 0.75. Through this region (and somewhat beyond, but where comparisons can be made only to
4-place accuracy) near-perfect agreement between their results and ours exists. Figure 1 shows agree-
ment, but does not indicate how remarkable the agreement actually is. We claim about 5-place accu-
racy from e = 0.45 to breaking. Figure 5 shows the wave-speed results as a function of N for en 
0.45 and X = 0.75 along with the results of Longuet-Higgins and Fenton (1974). These wave strengths
lie at the ends of the range where both theories claim about 5-place accuracy (six significant figures in

It is evident from the figure that the limiting values are close-between 0 x 1075 and 3 x 10-5. It
is also evident that the extrapolation procedure helps a little when e = 0.75 and helps greatly when e

0.45. This is characteristic. The extrapolated value of all parameters lies closer to the N 1440
value the closer e is to unity. The calculations over the range 0< en W 0.75 agree with those of
Longuet-Higgins and Fenton (1974) for all variables given by them. For en = 0.80 and above there are
small (but mathematically significant) differences in some of the solitary wave parameters (see NRL
Report 8505 for details). There our calculations agree more closely with the more recent work of
Byatt-Smith and Longuet-Higgins (1976). The detailed comparisons with high solitary waves are
deferred to NRL Report 8505.

Given the favorable comparison with work using an independent method, the question remains
why the comparison is unfavorable with other numerical methods (see Fig. 1). To provide some

insigitlLL, we reduced IVt LUleCL1U1M LtM IheNU1ULU1UuI ofYamaua ukiY5, IYM8) whose numerical method
most closely resembles our own, i.e., he used a Fourier Series method of numerical solution.
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Fig. 5 - Calculation of the wave speed for (a) e 0.75 and for (b) - 0.45. The
points show the speeds resutting from calculations at the various resolutions
specified by N. The line is the limiting value from Eq4 40) from estimates at N -
360, 720 and 1440. The error bars show the speeds found by Longuet-Higgins and
Fenton (1974), who use a totally independent method. They give F to five decimal
places; the error bars bracket tlh range O.0S from th stati-edvalues

Specifically, we select N - 12, 24, 48, 90, 180, 360, 720, and 1440 for tAO) = 1/-,T3 (Yamada, 1958)
and for q(O) = 0 (the highest wave; Yamada, 1957). Yamada used N = 12, probably the limit for the
timm C0,,nh 6 dratwm to rUnrnoricr V~AIn r-nldf an

4
A nrnc fnr AT = 1 2 ar. enara1D i h rijnd

tLtti,.. A 5 V.1 U tSEt. .VStJAJAAAc4Wt A4VatW 0 1t Xtt atiS -Ukf S.V- A - AL,-JJfl.L _

system and numerical procedure differed somewhat from ours, however, and the agreement is imper-
fect). We conclude from the figure that our results are consistent with Yamda's, but that N = 12 is
insufficient to produce even 2-place accuracy in a or F2

- 1.

Many error estimates of numerical work on the solitary wave problem are based on the smallness
of the pressure as an indicator of errors in, say, the amplitude, In the example of Table 2 and Fig. 3, W
= 0.50, the pressure residuals are small, but errors in the speed and amplitude are not so small.
Specifically, for N - 90 Table 2 indicates an error of 0.0016 in amplitude and 0.0032 in F2 although
the residual surface pressures never exceed 0.00006 and are mnuch smalter over most o the rarnge of a
(Fig. 3).

Figure 7 shows residual pressures and estimated errors in a and F2 for oa = 0.45. We see that the
estimated error exceeds the surface nressure comnuted at all Darts of the wave bv two orders of mauni-
tude or more; the excess is greater than three orders of magnitude for a central point IF = 905. In
addition, the slope of the estimated error differs somewhat from that of the computed pressures (which
themselves are parallel). This means that a simple multiplicative factor is insufficient to relate com-
puted surface pressure to errors in solitary wave properties. We find that residual pressures are always
much less than estimated errors in wave speed and amplitude.

12
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Fig. 6 - Calculation of the wave speed and amplitude for (a) q(O) -
I/li and for (b) q(O) = 0, the highest wave. The open points
display the results calculations at the various resolutions specified by
N. The line is the limiting value from Eq. (40) from estimates at N
= 360, 720 and 1440. The error bars show the data from (a)
Yamada (1958) and (b) Yamada (1957). Calculations with resolu-
tions around N = 12 fail to give solutions accurate to two decimal
places in F2 or alh.
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Fig. 7 - Estimated errors for w 0.45. The uppermost curve estimates the error
in F2. The error in anh is one-half of this, The estimate is formed by taking the
data at N 360; 720w and 1440 and applying Eq. (40). This ensures that the last
three points fall on a straight line; that the first two also fall on the same line indi-
cates that the form of the extrapolation defined by Eq. (40) is a good one. The data
shown with open symbols give the residual pressures at particular points on the
profile of the solitary wave. It is evident that the residuai pressures are poor indica-
tors of the errors in sed and amplitude.

6. SUMMARY AND CONCLUSIONS

We have refined the numerical method developed by Yamada (1957, 1958) to compute the pro-
perties of solitary waves, The major refinements are: extending the resolution of the calculations to
the limit of our computer, probing into the nature of the behavior of some of the resultant parameters
as a function of resolution, and extrapolating to the limit of fine resolution. In addition, an auxiliary
function is included to mitigate problems caused by a singularity outside the fluid near the crest.
Unlike some more recent work, we went to the Fourier series method of solution for two reasons. ()
thez fiast Furier tvranvot*. oorisht.2 permits vosmputatton inwvolving very large ni1n~ber of Furier

coefficients, and (b) the properties of Fourier series are well known and favorable. Specifically, the
Fourier series is convergent even for functions which are singular at a point on the unit circle.

The agreement with calculations using nonnumerical methods is impressive. Where comparisons
of speed or amplitude can be made to five significant figures, there is disagreement by no more than 3
x 1it5 , except for very high waves. There is no reason to suspect that the numerical'methods used
here deteriorate for very high waves (details are in NRL Report 8505). This is the first numerical treat-
ment of solitary waves which agrees with independent methods to anywhere near the four decimal
places usually stated.

14
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What went wrong with the other numerical methods? In the case of Yamada (1958) we have
shown that the number of Fourier coefficients used is insufficient to produce highly accurate results.
Moreover, the use of surface pressure as an indicator of errors in wave amplitude and speed can be
very misleading-by large factors (orders of magnitude) Xe suspect that that the same problems may
occur in other numerical treatments, i.e., insufficient resolution and the use of the residual surface
pressure to provide an error estimate. In addition, the singularity at a = 1800 may cause unrecog-
nized, perhaps-large errors.
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