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SOME ERROR PROBABILITIES FOR THE ASSOCIATION OF
PASSIVE DF MEASUREMENTS WITH RADAR RETURNS

INTRODUCTION

A great deal of attention is currently focused on multiple-sensor surveillance systems.
One important aspect of such systems is the correct association of data from different
sensors with the same target. Of particular interest here is the problem of associating a set of
measurements from a passive direction-finding (DF) system with the correct target in a
surveillance radar system, This can be viewed as a problem in statistical pattern recognition
in which a set of DF measurements is to be assigned to a class whose characteristics are
determined from measurements of a radar target, This classification is performed by
choosing the radar target that will minimize a discriminant whnch is a function of the DF
data and the data on the radar target.

One difficulty inherent in this problem is due to the asynchronous operation of the
radar and DF systems. Because the targets may be in motion, it is necessary to smooth or
extrapolate in time the DF measurements, the radar data, or both in order that informa-
tion from both sensors refer to the same set of target positions, It is not immediately
obvious, however, which set of data should be smoothed. Gerlach [1] assumed simultaneous
measurements and used no smoothing. Coleman [2] smoothed the radar data only, Bath
[3] smoothed both the radar and DF data to some extent. No claim was made by any of
these authors that his choice was optimum, and in fact the question of which data to
smooth was not explicitly addressed. The purpose of this report is to bound the perfor-
mance obtainable under each of the four possible smoothing options listed in Table 1. In the
interest of conciseness the mnemonic abbreviations shown in Table 1 for these options will
be used freely. Using some simplifying and unifying assumptions outlined subsequently,
exact expressions for the probability of classification error are obtained for three of the
options: RDS, RS, and NS. The probability of etror with DS is evaluated with an

importance-sampling simulation. Due to the nature of the assumptions, these error probabil-

Table 1 — Mnemonic Abbreviations for
the Smoothing Options

Mnemonic Smoothing Option
RDS Radar and DF smoothing
RS Radar smoothing only
DS DF smoothing only
NS No smoothing
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ities represent lower bounds on realistically obtainable performance. These results for the
RDS and RS options have been described previously [2] but are reviewed here in somewhat
more detail. The results for the remaining options are new.

ASSUMPTIONS

A number of assumptions about the problem are made. Those based on earlier work
[2] include the following:

L Starting with a set of passive measurements and asking which set of radar detections
it should be paired with, This assumption assures that each DF target is associated with only
one radar target (with the implicit requirement that radar data on the appropriate target be
available). Several DF targets are allowed to be paired with a single radar target; for ex-
ample, paired with an aircraft target may be separate sets of DF measurements to each of

several fransmitters on board.

® Associating an entire passive measurement set as a unit (rather than measurement by
measurement}. This assumption implies an ability to correctly associate a new DF measure-
ment with existing DF measurements of the same target. It should allow more accurate DF-
to-radar association than if the association proceeded on a single DF measurement.

® Basing the association decision on minimizing a sum of squared passive-to-radar
bearing differences. This assumption is based on a generalized likelihood classifier for
Gaussian random variables [4] and has been implicit in all of the radar/DF associstion
schemes known to this author,

Further assumptions are made to simplify the problem. There are two targets, and
both are stationary. This allows classification without smoothing to be a viable option.
Target 1 is under both radar and DF observation, while farget 2 is observed only by radar.
Due to the symmetry in the probiem this assumption ean be made without loss of gener-
ality. Radar and DF equipments are colocated. Therefore the only radar measurement of
interest is azimuth, The targets are separated in azimuth by u, (defined as the azimuth of
target 2 minus the azimuth of target 1). The set of DF measurements and the two sets of

g 7y i toe] oo v ants sivhinonsd oA
radar measurements contain n measurements each, AD measurements are unbissed and

independent, The measurement errors are Gaussmn with the DF errors having variance
02 . and the radar errors having variance ¢2 . Since there are only two targets, the d

DF g Ix y two targets, the decision
procedure is to evaluate the discriminant function for each, form the difference, and
compare to zero. Specifically, the procedure is to compute

n n
1 - - 2 1 - - 2
a= _n“z (BDFi_Bzi) - ;Z:(GDFE_BII') 1)
i=1 i=1

and associate the DF measurements with target 1 if d > 0 {correct decision) and with
target 2 if d < O {incorrect decision). In this equation ) ; is the ith DF-based azimuth
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estimate. If DF smoothing is not used (RS and N8), 6 pFi is just 0 p;, the ith DF measure-
ment. If DF smoothing is used (RDS and DS),

n
1
==5" 6
n
k=1

Opri=%pF DFk’

the average of the DF measurements. Similarly 0, is the ith radar-based estimate of the
azimuth of target 1, With no radar smoothing 6, is & ;, the ith radar azimuth measure-
ment of target 1. With radar smoothing

1 n
81;=04 Th O1p>
k=1

the average of the radar azimuth measurements of target 1. Similar relationships hold
between 0 ;, 84, 0; and the smoothing options.

Because the sign of d in Eq. (1) is unaffected by a scale change in azimuth, the means

and standard deviations of the densities are normalized by o throughout the subsequent
development except where noted. The notation

H=ulopp
and
0=0g/0p
will be used.
In the next four sections the probability of classification error P, is evaluated for the
four smoothing options under the assumptions just outlined.

P, WITH RADAR AND DF SMOOTHING (RDS)

. When both the radar data and the DF data are smoothed, the estimates éDFI-, él,-, and
8 5; are all independent of i. Equation (1) can therefore be rewritten as

" a

d (éDF_ t'5“'2)2 - (BDF_ 31)2

il

= 26,0pp-20,0pp+02 - 02 (2)

= (0,-6,)[(8,+8,)- 2651
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Both of the factors in this expression are linear combinations of Gaussian random variables
and are therefore Gaussian. The mean of the first factor is

n
., 1
E{f,-b.}=E ;E CIV
i=1

n
1
‘;Z E{gzs' 31;'}
i=1

= .
Similarly

E{6,-bppt=n
and

E{d, -d5.)=0.

These last two equations imply

It

P
DF{ ~ &

(=~}

+6.)- 2
2 1

oy

nSI
ﬁa][

The variances are just as simply calculated:

A s 1 2
var{f , - 61} =n—2 Evax{&zi- 84;)
i=1

el
=]
b2

1

|

and

n n » 3g2 -
var{{f, +8,}- 20 pp } = n—+4var{8 DF)
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From independence of the BDFI" 815, and 021' it follows that the (921' - 911') and (92!' + Blf)
are independent. Consequently, the two factors in Eq. (2} are independent, and the product
d is less than zero if and only if its two independent Gaussian factors are of opposite sign.
The probability of error can therefore be expressed as

P, = Prob (d <0)=Prob (4, 6, <0)Prob[(éz+él)— 26DF>0]
+Prob (8, - 6, > 0) Prob [(62 +6,)- 26DF<0].

Or, if ®(x) is defined as the cumulative distribution function for a zero-mean unit-variance
Gaussian random variable,

4 4
Pe = -\/202]11 1-¢ /E(2+02)
n
—H —d

+|1-& ,/20‘2/n ¢ /%(2+02) i.

This result can be more concisely expressed by using (from Ref, 5)

1 -Xx
D(x) = Eerfc (Hﬁ) ,

where
erfe {x)=1- erf (x),

to obtain

o 1- erf (%)ert‘ (2\;42%)
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This function is plotted in Fig. 1 versus uy/n with ¢ as a parameter.

.'b

Several observations can be made regarding this result, First, the curve for ¢ = 0 reflects

performance with perfect radar measurements and, in effect, is obtained using frue positions
instead of estimates for the 911 and 32 in Eq. (1). Therefore this curve gives the perfor-
mance of an idealized max1mum-hkhhood detector. As ¢ increases, the probability of error
increases slowly until 0 approaches unity. This suggests that the accuracy of the radar (02 )
is not important as long as it is significantly better than the accuracy of the DF equipment

(0}r)-

Further insight can be gained into the behavior of this function by using a different
normalization. After substituting the definitions

'“a
M=
Opr

and

1 1
-
n_m
m- -
@)
s
ui \
[ —
r F ]
3 5 1 —
o L =
2 3 .
ir
& <
i A
gLl [T I I\ I VI 1 S W B
©b 1 10 50

pn

Fig. 1 — Performance with radar and DF smoothing (RDS)
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into Eq. (3), the probability of error becomes

1/2
1/2 2 2
1- erf(__——- erf UDF UR
op /(] n)) / ) ( )
: ﬂ\/_ \y/ ? \'ua‘v/:/ : \"“'a‘/E/ /
P, = . (@)

after some manipulation®. Figure Z shows contours of constant log, o P, plotted versus
log; ¢ 10 pp/{tgy/n)l and logy o |0 R /(kg/7)].T It can be thought of as a log-log-log plot of P,
versus the two standard deviations opp and o witn |u,ly/r fixed to unity. It is apparent
from this plot that not only is 65 unimportant when 05 << opyp but opp is unimportant
when opp K op. '

The question of which variance is more important can be considered more rigorously
using sensitivities. The sensitivity of the function P, with respect to oy is defined as

p OgdP,

e
ag
R A aoR

Similarly
o G.. OP
¥ €
Se — e .
oo P, 90pp

*As (from Ref. 5) erf (-x) = —erf (x), Eq. (3) shows P, to be an even function of y. In the manipulation to
arrive at Eq. (4) the sign of #t is lost as it is brought under the radical and the symmetry of P, with respect
to ¢ is destroyed. This situation was corrected by replacing i, by |)‘.la| in Eq. (4).

tFigure 2 was produced with the aid of MACSYMA, a large symbolic manipulation program developed at
the MIT Laboratory for Computer Science and supported by the National Aeronautics and Space Admin-
istration under grant MSG 1323, by the Office of Naval Research under grant N00014-77-C-0841, by the
U.S. Department of Energy under grant ET-78-C-02-4687, and by the U.S. Air Force under grant
F49620-79-C-020,
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It is not difficult to show that these can be defined equivalently as

p 9(og,4 P}

e =

S =
%r  d(log,, 05)

p, _ AMogyP)

9pr  B(log; g Opp

These two quantities are equal in Fig. 2 wherever the contours are at 45° with respect to
the axis, The locus of such points is shown in Fig. 2 and represents the boundary between
the region where a small percentage change in ¢, is more significant than the same per-
centage change in ¢ and the region where the opposite is true.

LOG  loy /lug V0 )
-0.5

f T T T T T T T T T T 0
[ P
st >g'®
R Tor .
- sfe <sle =
f oF —-05 \4;
iﬂ
- <
&
]
] ©
2 S
=3
4 -,
5
-
_

Fig. 2 — RDS contours of constant log10 (Pe)
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P, WITH RADAR SMOOTHING ONLY (RS)

When only the radar data are smoothed, Eq. (1) becomes

n . n .
ds= %Z(GDFI'" 62)2 - ,_IIZ(GDFF 91)2
=1 i=1

1 - A 22 A9
=;Z (2816DF1‘_2'626DF:' +8y - 07 )

i=1
-~ A L) -~ 2 n
=(@y-0y) | (0, +0,)- ;ZGDFE
i=1
=By - 8]0, + 81~ 2By ] (5)

This discriminant is identical to Eq. (2). The performace is therefore exactly the same as
when both radar and DF data are smoothed. This equivalence is shown under a rather
restrictive set of assumptions and is not expected to hold in a more general case such as
when the target is in motion.

P, WITH DF SMOOTHING ONLY (DS)

With DF smoothing only, Eq. (1) becomes
13/ - 2 1 L /- 2
d=|-;Z(9DF‘32;‘) } "[;_ (HDF_ 31:‘) .‘ - (6)

After an unsuccessful attempt to determine analytically the probability that this quantity is
less than zero, a Monte Carlo simulation was conducted using importance sampling to re-
duce the number of trials required. (Importance sampling is briefly described in Appendix
A.) To make effective use of the importance-sampling method, it seemed best to use one
approach for 0 < 1 and another for o 2 1. For ¢ < 1 the parameter modified by importance
sampling was o g. This led to an estimate of probability of error of the form
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N, -8
51 i °nr |- Oprk /1 1\ ved) -
=T ) T exp "“-—) -d'},
N '
T o1 DF [ 2 ohe OpF

where éD F 18 the sample value of éDF on the kth trial, N.. is the number of trials, O'DF is
the modified oy (the value actually used in the simulation), and the function U{x) is de-
fined by

U(x)=1,ifx >0,

= (J, otherwise.

The variable d’ is the computed discriminant with f p p drawn from the modified density.
The value of 0 was set to unity with no loss of generality other than the o5 = 0 case
{reated separately below, Based on only the assumption that P, curves with DF smoothing
would not be drastically different from Fig. 1 {which turned out to be correct), oy was
chosen o bring {u, joi'ij\jhﬁ to a vatue {constant for each vaiue of opp and chosen by
hand) such that Fig. 1 indicated a P, in the range 0.15 to 0.25. The results of this simulation
for N 7 = 10,000 are shown in Figs. 3a, 3h, and 3c. Figures 3d, 3e and 3f are the results of a
different simulation; the reasons {or and description of this simulation are as follows.

As o is increased to values gbove unity, it becomes impractical to obtain an increase in
simulated errors by varying o p. To see this, first note that ¢ < 1 implies oy > 0 as
sketched in Fig. 4a. Most errors occur when fpp {alls above #5;. Increasing oy by a modest
amount will increase the probability of this type of error significantly. Figure 4b shows the
type of situation implied by ¢ > 1 or o > g p. Here ervors are usually due to §; falling
above fl,;, Increasing opp by a modest factor will have very little effect on the probability
of error. Increasing oy enough to significantly affect P, would in fact lead to the nonzero
terms in Eq. {7} {ratio of the true to the modified probability density function for Oy}
being usually very small but occasionally very large. This implies an undesirably large vari-
ance for P,. (This was in fact demonstrated.)

For the special case in which g = 0 = 0 the simulation is not necessary, because RDS
and DS become identical. (It is immaterial whether or not radar measurements are smoothed
when they are exact.) From examination of Eq. {3) in the limit as ¢ goes to O

1 p/n
P =—erfc —~=
€ 2 22

or

10
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Fig. 3a — Performance with DF smoothing only (DS): 10,000 trials with (4,/0pp yWn set to 2 and
& = (.25, with the four eurves being for n =1, 2,4, and 8

11



J. 0. COLEMAN

0.5

0.1

0.05

A
[
e

PROBABILITY OF ERROR,

0.01

0.00%

.-p-"‘""—

0.001

0.5 1 10 s¢

3
wn
Fig. 3b — Performance with DF smoothing only: 10,000 trials with {1, iuI',F Y \/r? set to 2 and o= 0.5,
withn=1,2,4,and 8

12




NRL REPORT 8443

0.5

__,.-
S et

\

\

<«

g‘ -

x 1 \

- 4

w

m \

=]

-

-

ot

=]

-1

@

[~]

« 1t

e oM X
0.005
Q.001

c.5 1 10 50

5
I v
Fig. 3c — Performance with DF smoothing only: 10,000 trials with- (i, /0np )\/;I- setto 2.75and o =1,
withn<=1,2,4,and 8

13



4. 0. COLEMAN

A

\
0,05 %\\

<

0.01

PROBABILITY OF ERROR,Pe

d__,—ﬂ-’”"'ﬂ
=

0005

0.001

|

]

0.5 1

5
v

Fig. 3d — Performance with DF smoothing only: 10,000 trials with X ‘set to 2.75and 0=1,
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P,

Fig. 4a — Situation in which opp 23> 0, causing errors when 0 ,p = 85,

T

Fig. 4b — Situation in which o <€ 0, causing errors when 8, >0,
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For o > 1 the quantity varied in the importance-sampling formulation was u,, the true
separation in azimuth of the two radar targets. The primary type of classification error for
o > 1 is, as described earlier, that for which #4; > 8,;. It should be apparent from Fig. 4b
that the frequency of this type of error should increase significantly as ¢, becomes smaller.
Also, for 0 <1 as in Fig. 4a changing u, enough to significantly effect P, would result in the
ratio of the true to the modified probability density function becoming usually very small
but occasionally very large. Therefore, to hoid down the variance of the estimate of P,
varying p, is restricted to 0 > 1.

A significant amount of computation was saved by transforming Eq. (6) to an equiv-
alent form

@ = 22a) + 3 (-2, ®
k=2
where
f[o2
Y =\/1 +—
0.2

and where the z, are independent and Gaussian with unity variance. All the 2, except 24
and z,,,; have zero mean, and

E{zl} =Xmy
ard
E{zn+1 } =Xm, ,

where

u
X=p/n=—/n,
9pF
1ty
i 207y '
18
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and

1~
207

m2=

The quantity X is the quantity against which P, was plotted in Figs. 1 and 3. This equivalent
formulation is derived in Appendix B. Varymg i, in Eq. (6) is equivalent to varying X
(which is proportional to u,) here. The computational advantage is obtained because only
two random variables are affected now, whereas varying u, in Eq. (6) affected 2n random
variables.

The error-rate estimate is now

4 A xm? e - Xm )2
exp (24 my) (2,41 g )

- (2 - X'm - (2, - X’mz)zj} U-d",

where X' is the modified value of X.

The results of this simulation are shown in Figs. 3d, 3e, and 3f. The ¢ = 1 case was in-
cluded to allow a comparison of the two simulations, The smoothness of the curves in Figs.
3d, 3e, and 3f does not reflect superior accuracy compared to Figs. 3a, 3b, and 3¢, but in-
stead reflects the fact that the points on the curves are not independent. Because the param-
eter modified in the importance-sampling procedure is the parameter used as the indepen-
dent variable in the plots, and because the value to which it is modified (selected as before
for an actual error rate of 0.15 to 0.25) depends only on ¢, the actual set of N trials was
carried out only once for each combination of n and ¢ and was not repeated for different
values of X. The only things that um.ugt:u with X were the weights given to the outcomes of
the trials. In fact when a calculation of d' at a higher value of n followed a calculation using
a smaller n (but with other parameters unchanged), only those terms of d' corresponding to
the difference between the two n values needed to be calculated. These observations greatly
reduced the amount of computation from that required with all points on the curves in-
dependently calculated. They also imply that both the points within a curve and the curves
within a plot in Figs. 3d, 3e, and 3f are dependent. For example, comparison with the
curves for other values of o indicates that Fig. 3¢ may be a better representation of true P,
than Fig. 3d, even though Fig. 3d appears neater.

19
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P, WITH NO SMOOTHING (N5}

When no smoothing is used, Eq. (1) becomes

N Leed \

Lz=1 l’_’li=1 _l
1 2 _ 42
=;Z(“2§DF:‘32£+23DF:“91£+32:“ ’315\}

i=1
12y Y. g..) 3
. Bai 01} {{8ai 1:‘)“23131?:]
=1
With definition of the variables
62!._ 611
U. =
i \/_Qg

and
Bo; ¥y~ 20pp
w =
: \/_2\/02 +2
8 becomes

It is easily shown that v; and w, are independent Gaussian random variables with unit vari-
ance. The calculation of their means is postponed until needed. After the substitutions
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and

d becomes

G\/02+2 L 2 \_ 1 x2 )
‘- n (Zyl) (il ') ®

It is readily seen that the x; and y; are Gaussian variables independent of each other with
unit variance, The parenthesized terms in Eq. (9) are therefore the independent noncentral
chi-squared [6] variates defined by

R
[

"
INgE
R
X,

=N

a8

-~
]
=
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with noncentrality parameters a? and b? respectively, where

a?= g (E{xf})z

and

Substituting for x; and y, yields

and
n (E{w;}+E{v;} \?
*’“Z;( vz )
where
_ M
E{U‘}_ﬁo
and
E}\wi} £

22
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Consequently

Vaefl 1

and

b—'ﬂ l_‘_—“l—
2 \o” JoTi3

The probability density functions for x2 and 2 are [6]

2 1 x (n—2)/2 a2 x2
P a(x )="‘(;) exp '—2~‘— Inr,g_l(ax)

2 2
and
- 2 2
1/(y (n—2)/2 _,b__l- I by
pya(y2)=§(g) exp {7y " g ) Tnr2-2 )

Rewriting Eq, (9) as

d= U:{(;z + 2(3’2 _ x2)

shows the probability that d < is the same as the probability that y2 <x2, or

o0 2

P, = fpxz(x2)d(x2)f pyz(yz)d(yz)-
0 0

23
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Substituting for the density functions and carrying out a change of variables resulis in

oo

x

- e By R — 2

Pe = (ab) fov-ble {(x"+a )IZIV{M}dxfyy+le {y“+b }’szv{by) dy ,
0 0

where p = {n - 2}/2 and n is assumed even. This integral was evaluated by Price in Appendix C
of Ref. 7, which is reproduced in this report as Appendix C (with comments and errata for
Appendix C being given in Appendix D). From Egs. (C-37) and (C-50) the probability of
error is

i} ~(a%+p2 24w g (20

o fa
Fe=\y272/%¢ L, mimi g/

m=0

This resuit is expressed in terms of the Marcum @-function, defined in Eq. (C-4), and [,,,,
the modified Bessel function of the first kind. The factor 6, is the Kronecker delta func-
tion, which is equal to one when its subscripts are equal and is otherwise equal to zero. P,
can be derived in closed form for odd n by expressing it in terms of the doubly noncentral
F distribution [8], but the resulting expression is so complex as to make its evaluation in
the present context unjustified. For the special case n = 1 the resulting P, is identical with
that for the other smoothing options,

P, was evaluated with the aid of the techniques outlined in Ref. 9 for the evaluation of
the Q-functlon and Ref. 10 for the Bessel functions. The results are plotted in Figs. ba
mrougn 51. Not burprl.’aulgl_y, NS turns out to be the poorest pcu.u:.uu:l. of the four smocth-
ing options.

BOUNDING PERFORMANCE AS RESTRICTIONS ARE REMOVED

Under the assumptions outlined at the beginning of this report the best performance is
obtained (Fig. 1) when the radar measurements are smoothed prior to their use in a discrim-

inant. As long as the radar measurements are smoothed, performance is not affected by

smoothing the DF measurements. This is somewhat surprising, because in the absence of
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smoothing of the radar data performance is improved by smoothing the DF measurements
{Figs. 3 and 5). Although the probability of error derivations given earlier do not generalize
easily to multiple {more than two) radar targets, these same conclusions are expected to

hold.

With nonstationary targets the situation is expected to be somewhat different. The
simple averaging used for smoothing with stationary targets would have to be replaced by a
significantly more complex procedure, Examples of suitable procedures are a-§ tracking
[11] and Kalman filtering [12]. Suppose the radar and DF systems are synchronized in
time so that when a DF measurement is made, the radar system simultaneously measures
the positions (in two or three dimensions for best smoothing performance) of all of the
targets. Even under these rather ideal conditions, the quality of a smoothed estimate would
be reduced from the stationary target case, and hence the remaining performance gain due
to smoothing would be diminished. The amount of the remaining performance gain would
depend on the number of degrees of freedom in the motion of the targets. If the targets

were constrained to move in a straight line (two degrees of freedom if the motion is con-
fined to a plane), performance might be expected to approach that of the nonstationary

arathl W O pAGRAAT g P AVLAAUQUINT 1iAInidL T DApATLYER WO IF* Tneil Vaallu SAL ULt LiSLAS UG ualsiiad

case (with a large number of measurements). At the other extreme, if no constraints what-
ever were placed on the motion of the targets, positions at different instances in time would
be completely independent and smoothing would contribute nothing (fortunately this is not
realistic), The probability-of-error curves in Figs. 1 and 5 therefore represent lower and
upper bounds respectively on the probability of error with target motion, synchronous mea-
surements, and radar smoothing only. With DF smoothing only and conditions otherwise as
just described the probability of error would be bounded by Figs. 3 as the lower bound and
Figs. 5 as the upper bound. (The assumption of independent unbiased Baussian measure-
ment errors remains in force throughout this discussion.)

If the radar and DF measurements were made asynchronously and target motion were
still permitted (there being no need to synchronize the measurements if targets are guaran-

teed stationary), additional difficulties would be introduced. Subtracting an estimated azi-
muth (as is done under twgo of the four options discussed) is meaningful onlv when the

b R L AL Sl B LE L | SPa VAAT AURL PV LD LAIGLRASHUAA J AT JLATALIILIGI WL Vllly ¥YLiICEL wic

estimate refers to the time the measurement was made. Comparing radar and DF measure-
ments directly in this context is not possible, and some sort of smoothing or extrapolating
procedure would be necessary. If only the radar data were smoothed, they would have to be
extrapolated to the times of the DF measurements. This type of extrapolation introduces
additional error, as it must be based on inexact velocity estimates. Due to this additional
error, the error rate can never be expected to equal the lower bound given by Fig. 1. No
upper bound on the probability of error in this situation is available.

With asynchronous operation and target motion, smoothing the DF data without
smoothing the radar data introduces problems. With radar measurements of different targets
taken at different times, to what time should the DF data be extrapolated? To extrapolate
to the time of each radar measurement in turn could require an unrealistic amount of com-
putation. Realistic or not, Figs. 3 provide the lower bound on error rate. No upper bound is

ilahla

P 1
av GLACARIAC

Table 2 identifies the figures representing the bounds described in this section.
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Table 2 — Summary of Figures Bounding the Probability of Error

Figure Numbers of P, Bounds
Target Svnch
Motion ynehronous RS DS RDS
Allowed? Measurements
Lower | Upper | Lower Upper | Lower | Upper
No Irrelevant 1.2 1.2 3 3 1,2 1,2
Yes Yes 1,2 5 3 5 1,2 NA
Yes No 1,2 NA 3 NA 1,2 NA
CONCLUSIONS

From the discussion thus far it is apparent that in the general target-motion-with-
asynchronous-operation environment, smoothing of the radar data should be used. As dis-
cussed earlier in this report, the use of DF smoothing in addition to radar-data smoothing
does not necessarily improve performance. (Equation (5) showed that with stationary targets
no improvement is obtained.) DF smoothing can be used in a limited way, however, to reduce
the total computational burden in certain types of environments. For example, the DF data
can be preprocessed by breaking up the data into batches in such a way that all measure-
ments within a batch are taken over a short enough time interval that they can be averaged
together and submitted to further processing as a single measurement, If the environment is
such that several independent DF mesasurements can be made in g time interval in which
total angular motion of a target would never approach the standard deviation of the result-
ing average, error-rate performance should not be degraded. This can be understood (at least
in terms of the stationary-target case} by noting that if DF measurements are batched into
groups of n;, in the manner described, then in Eq. (4) opy must be replaced by UDF/\/"_b
(the standard deviation of the average) and n must be replaced by n/n;. To prevent this
change of n from inappropriately raising the variance of 8, and 0, by ny, 6z must be re-
placed by gy /7. The effects of these substitutions exactly cancel. The reduction of » in
Eq. {5) will more than compensate for the computing time required for the preprocessing.

Now that the desirability of smoothing the radar data has been established, how much
(or what method of) smoothing is appropriate? Comparison of Egs. (1), (3), and (5) shows
that the performance difference between the best options (RDS or RS) and each of the other
is zero if o = 0 or n = 1 and increases as either ¢ or n becomes greater. This is consistent with
the intuitively satisfying notion that the details of the smoothing technigue will not signifi-
cantly affect performance as long as the variance of the smoothed radar data is less than the
variance of the DF bearing against which it is compared. Both because of radar data smooth-
ing and because this DF bearing may be the result of averaging together a number of DF
measurements, the relationship of these two variances may be significantly different than
the relationship between the variances of the measurements themselves.
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Appendix A
IMPORTANCE SAMPLING

Accuracy in probability estimation by Monte Carlo simulation is obtained by making
the number of experimental {rials sufficiently high that the event whose probability is being
estimated occurs many times. For low probability events, the number of trials required for a
desired accuracy can be impractically large. Importance sampling { A1, AZ] is a simulation
technique which can often reduce the number of trials required by modifying the probabil-
ity density of the random variable(s) in the simulation to increase the number of occur-
rences of the event of interest, The estimate is then adjusted in such a way as to remove the
bias this would otherwise induce in the estimate, The explanation which follows is patterned

after Mitchell [A1].

First consider the ordinary Monte Carlo simulation procedure depicted in Fig. Al. For
each ftrial a Bernoulli random variable y representing the event of interest is generated as a
function of an input random vector x characterized by a density function p{x). That is,
y = F(x). The variable y is equal to one if the event of interest occurred and zero if it did
not, The probability estimate is obtained as the average of ¥ over many trials,

For the simulation using importance sampling shown in Fig. A2 the density p(x) is re-
placed with a modified density p,, (x) which will cause the event of interest to occur more

Py

INPUT RANDOM
VARIABLE * X PROCESSOR | BERNOULLI RANDOM VARIABLE'y  |AYERAGE OVER PROBABILITY
= () MANY TRIALS F———=

DENSITY p (%) ESTIMATE
Fig. Al — Ordinary Monte Carlo simulation

INPUT RAND! BERNOULL| RANDOM

VARIABLE : QM PROCESSOR VARIABLE : y o AVERAGE OVER PROBABILITY

DENSITY p_ %) F{xi @ MANY TRIALS ESTIMATE

wiX)

Fig. A2 — Simulation with importance sampling
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frequently. The processor output is multiplied by a weighting function w(x) to compensate
for the change from p(x) to p,, (x). The weighting function must be chosen so that

E{y}=E{w(x)y,,)or

| N
J Flx)p{x) dx =j Fx)wi{x)p,, (x)dx .
Therefore the weighting function must be

p(x)
p,x)’

w(x)=

The weight to be applied for a particular trial is just the ratio of the original to the modified
density function evaluated at the specific value of x used for that trial.

The variance of the estimate can be expressed in terms of the first and second moments
of the estimate. Because the estimate has been designed to be unbiased, the first moment is
equal to the probability being estimated. Obviously in any case of real interest this will not
be available in a suitable mathematical form or there would be no need to perform the simu-
lation. The second moment tends to be at least as elusive. In the absence of analysis of the
variance of the estimate, the choice of a modified density p,, (x) becomes heuristic. It can
be shown, however, that in cases involving simple (analytically tractable) functions p(x) and
F(x), importance sampling can dramatically improve estimation accuracy [Al, A2].
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Appendix B
DERIVATION OF EQ. (8)

Equation {6} can be rewritien using vectors rather than summations as
1 1
= [0 o - 32“2 - ;H%F - 91H2

by defining the n-vectors

Opp 311W : 891
Opp = | Opp | »©1 7| 81a|. Oy= |0y
6}DF Hln L32n

The vectors fpp, 84, and 0, are independent Gaussian-distributed random vectors with
covariances M, 02, and 02 respectively, where M is an n-by-n matrix with every element

equal to 1/n and I is the n-by-n identity matrix.

By defining {for this appendix only) a partiticned vector

and a partitioned matrix

RN
@=lotr
the discriminant equation can be written as
nd=xTQx .
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The Gaussian random vector x has a mean

where ¢ is defined to be an n-vector whose elements are all unity. The covariance of x,
denoted by K, is found to be

o2I+n4; M

K= =-——ae—————— e

M | kI+M

From this point on, linear transformations on x are used to proceed toward the desired dis-
criminant form.

Jh [ =i L - R T I i cd

It is simple to demonstrate that the matrix K is positive definite as 1 n
Because it is both positive definite and symmetric, it can be factored into symmetric posi-
tive-definite square roots:

Mg as J 15 nonzero.

K =88

It is straightforward to verify that S is given by

tn
I
!
1
i
1
!
!
|
!
!
f
|
1
]
1
i
!
|
]
]
Y E S —

S-l = e e —— e e |
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and used to transform x to a new variable

The covariance of ¥y is

E{(y- BN (v- By)) =578 (x - Blx) ) - Blx}) |57

and the mean of y is

The discriminant equation can now be written in terms of the transformed variable y as
nd = xTQx = yTSQSy = yT Ty,

where

T=8Qs.

Performing the multiplications and simplifying yields

T = e Y. Ot S Sy U R,

0 T—m’— (\/02+2—U)M
' ' i
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The next step in the derivation requires that T first be diagonalized. Matrices U and D
are required such that

T=UTDU,

where U is orthogonal (UT = U™ 1) and D is diagonal (all off-diagonal elements are zero).
The matrix U satisfying these requirements is in this case of the form

[Fio]
o-[ 512

where F'is any n-by-n orthogonal matrix whose first row is composed of identical elements.

It is not necessary to specify F further in order to complete the derivation. For convenience
the value in the first row will be assumed positive, which implies a value of 15/n. A familiar
example of such an F' matrix is a discrete-Fourier-transform (DFT) matrix.

Solving for the diagonal matrix D results in

V1+2/62 0 0 - 0 !
0 10~ 0!
0 o1 - g 0
e e 0
. 0 0 01 i
D=og? | [ oo .
:-\/1 + 2/62 0 0 0
! 0 -1 0 0
0 I 0 0 -1
i { 0 0 0 —1J

A new random vector can now be defined as
z=Uy,
and the discriminant equation becomes

nd =yTTy = (UT2)T(UTDU)UT2) = 27Dz .
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The covariance of the new variable is the same as the old:
cov{z} =cov{Uy} =Ucov{yv}UT=uruvT =1.

The mean of z is

E{z}=UE{y}
or
— -
1 1
+_
02 +92 o
0
0
E{z} _,u\/ﬁ ———————————
21 1
JoZ+g O
0
0
If 2 is expanded to
[ 7
%y
%
2= ,
Lz2n
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where the z, are independent Gaussian random variables with unit variance. Defining

and noting that the means of the z values here match those in the text completes the
derivation.
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APPENDIX C

APPENDIX C [Reproduction of Appendix C of Ref. 7]
REDUCTION OF A DOUBLE INTEGRAL INVOLVING BESSEL FUNCTIONS*
R. Price, MIT Lincoln Laboratory

I. INTRODUCTION

Maximon29 has studied the following integral, which for ¥ = 0 arises in trying to find the
probability that the envelope y of a sine-wave-plus-narrow-band-noise process is less than r
times the envelope x of another such process, the noises being assumed independent and both of
unit variance.

w .
P_,labr) = a¥p™¥ S‘ K exp [—(x2 + al)/Z] I,(ax) dx
o

xr
. S va exp [—(y2 + bz)/Z] 1 {by) dy (C-1)
o

Here Iy{z) is the modified Bessel function of nonnegative integral order ¥, and a and b are
parameters which, for v = 0, are respectively equal to the amplitudes of the sine waves in the
processes whose envelopes are x and y. {See Rice30 for the derivation of the envelope proba-
bility density functions contained in Eq.{C-1), with ¥ = 0.) Maximon obtains P in terms of a
Neumann series of modified Bessel functions:

P_(abr) = (%)Zu exp [—%(aarZ + bz)/(i + rz)] Z € (%)iﬁm Lim (ia—fiz-) (C-2)
m=0
where
/el (ifm=o0)
m 1 (if m > 0) {v an integer » 0) {C-3}

The series {C~2} can be considered in closed form in terms of Lommel's functions of two vari-

ables,3 1

but tabulations by which the series may be evaluated exist chiefly in terms of the
'Q-function" examined by ]Vla.rc‘.:m.32 This function is the cumulative probability distribution of
the envelope of a sine-wave-plus-narrow-band-noise process:

i ) 3
Quv) = 3 x exp[—{x" + u"}/2] I, {ux) dx

v

=14 —exp [—(uz + VZ)/}:] E {%}m L {uv}
m=1
expi-a? +vh/2) Y M1 (e (C-4)

m=0

n

* Jones> hos recenflr and independently reduced the double integral [Eq.(C-6}] for v=1 =r, obtaining the par-
ticulor case of the solution {Eq.{C-35}] where m = v = {1 [given also by Eg.(C-41)}].
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“The first series is due to Bennett, and the second, which is connected with the reciprocation

properties of Lommel's functions of two variables,31 is quoted by Helstrom.23

In this Appendix we deal with a double integral similar to Eq. {C-1), which arises in finding
the probability that the sum Y of a number {v + 1) of squared envelopes of sine-wave-plus-
narrow-band~noise processes is less than rz times another such sum X where all the noises are

; # . I : ¢ o o 14
independent and have unit variance. The probability density function of X is

piX) = % (x/af)”/2 exp[-{X +a)/2] 1, NXa (C-5)

and that of Y is identical to Eq.{C-5) with 8 in place of ¢. Here a and 8 are proportional to
the sums of the sine-wave powers {squared amplitudes) in the processes yielding X and Y, re-
spectively. The double integral for the probability that Y is less than I‘2 times X is thus, after

making the changes of variables X = x?‘, Y = y2 and a = az, g= bZ:
20
T T AR T | C 2 2 ey pen ol
r’v\a.D,r} = {abj x expi—ix +a j/&j J.v fax) ax
o
Xr
v+i 2 2
. S y expi={y" +b7)/2) 1, (by) dy . (C-6)
o

II. DEVELOPMENT OF A RECURSION RELATION FOR P,(a,b,r)

The first step in attacking Eq. (C-6) is to integrate by parts:

Xr o0
exp[(:.aa + bz)/Z} (ab)”Pv(a,b,r) = — exp [—XZ/Z] [xVIV(aX) g‘ () dy” :
) Yo io

w 2 Xr 2
-x"/2 d v v+l -y /2 R
+SO e 4 [x 1, (ax) SO e I,(by) dy] dx (C~7)

where, for v 2 1, the first term on the right of Eq. (C-7) vanishes. We now make use of the

Bessel-function plr‘operty34

T (C-8)
L fex)] = ex’L_lex) | (C-9)

Expanding the derivative in Eq. {C-7) and applying Eq.{C-9}, we obtain

© XT
exp[(az+b2)/2](ab)vPu(a,b,r)=a§ x¥ exp[—xz/Z]Iu_i(ax) [S‘ yu+1 exp[_yZ/ZIIv(by) dy] dx
o o

o
+ r”*zg K exploxf(t + £2)/2] 1 fax) T fbrx) dx . (C-10)
o

Apgain integrating by parts in the inner integral of Eq. (C-10), and using Eq. (C-9),

* In terms of classicel statistics, this is equivalent to finding the probability distribution function of the ratio of
the lengths of two (2y+ 2)-dimensional random vectors, all of whose components are mutually independent and
Gaussian with unit voriance, and whose two mean vectors are of specified lengths. It appears that the method
of solution followed here could be generalized te vectors of different dimensionalities.
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xr

Xr
T yVH exp [—yZ/ 2] 1, (by} dy = ~exp [-v*/2] yvlufby}
: . : (e}

‘ xr v 2
b y expl-y~/2) I, ,(by) dy
o

Yo
{(C-11)

which, when substituted into Eq, (C-10) yields, for v > 1,
2, .2 v _ © oy 2 Xy 2
exp{{a"+b"}/2]{ab} P fa,b,r) = ab x" expf[-x /ley_i(ax) dx v’ expl—y /ley_i(by) dy
o 0

I Sl V) z. 2. .. o
exp[-x (1 +r )/Zjlv(ax} lp(brx) dx

o0
2
—ar’ S x“Y exp[-xz{i + rzl/lev_i(ax) Ip(brx) dx (C-12)
o
In order to cast Eg. (C-12) in a more symmetric form for later convenience, we note that, inte-

grating by paris and using Eq. {C-9} once again, with » 2 1,
o5

p+2 2y
r_x exp[—xz(i+r2)/2]IV(ax)Iv(brx)

o
ru+zS‘ $2 M oxp[=xP (14 r8)/2)T (ax) T (brs) dx = — i
@ v 1+r o
v+2 oo
r 2 2 d v v
+ Lt rz SO EXP{_X {1+r }J/Z} % {[X Ip(ax)} Ex Iv{brx}]} dx
v+2 e
= ar > S‘ xZV exp [-—xz(i +r2)/2]lu i(ax) Iv(br-x) dx
t1+r o -
{C-13}

r+3 L]
4 Br S ¥ expi-xt (4 r1/2] 1 (ax) I, (brx) dx
O

1+r2

Combining Eqgs. {C-12) angd {C-13), we have

© xr
Pv(a,b,r) = (ab)i—vg x¥ exp[—xz/Z]IV_i{ax} de. yv exp[—yZ/ZIT.v‘_i(by) dy

o 0
rpi-v S‘ x%¥ expl-x“{1 + £8/2]1 fax) I, (brx) dx

2 2
N exp{—{a” +b 3/ 2] ru+3 a”
o

1+r

thus giving the recursion

2 2
P la,b,r) =P, ,{ab.r+ BXP[H:‘: :zb )/2]

{z a"”bi“”g x*Y exp[-x°(1 + r%)/2]1 (ax) 1, _(brx) dx
e

—r¥al 'pb'yS‘ Xz;; exp[—xzti + rZ)/Z]Iv_i(ax) }V{brx) dx} {C-14}

o]
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Equation {C-14) is a reduction formula by which we can obtain the general result if we know
PO(a,b, r} as given by Maaucimor:.z'9 It is necessary, however, to evaluate the pair of integrals

in Eq. (C-14), and this is where the complication lies.* The integrals are solved by using ancther
Bessel-function proper'tyss that ig similar to Eq. (C-8}:

GV 2=V (C-15)

which leads to

Z £ 0™ tex) = x¥ M P (ex) (C-16)
and as a special case
G fe0) =2 T (e . (C-17)
Therefore,
a'”(br)i"v S': le" exp [—xz(i + rz}/ZIIv(ax) I, 4(brx) dx = (,—:_- ;_a,v (ﬁ d(gr) yr-1
% g: x expl-x2(1 + r2)/2]1_(ax} 1 (brx) ax {C-18)

and similarly for the other integral in Eq.(C-14}, a and (br} simply being interchanged.
The integral in the right member of Eq. (C-18)-is™

9.2+b?'r2]I [ abr
o

S‘ x exp[—xz(i + rz)/Z]IO(ax) I (brx) dx = (1 + 21 exp[ 3
0 2{1+r") 1+r

5] - (c-19)

Comtbining Eqs. {C-14}, (C-18) and {C-19),

exp[—(az + bz)/?-],
1+ r'z)2

' 2. 2.2
. 2py+2 4 0 d, 2w ,1 d a +hb'r abr
{[r (a da r (br dlbrf” exp [ 1+ 2y ] Io [i + r_‘Z]}

-
< Ir

]v-i [ d ]v-i

L
br d{br)

_ 1 d
Pv(a, b,r) = Pv_i(a,b,r') + e FrY

er exp_[_(az " bz)/z} {}_
1+ r2)3 a da

=P, 4la,b,r) +

2, .22 3
+ foxe [ﬁ) (* -, [::I;z] [ - g [ffl;z]) (c-20)

80 long as v > 1.
TIT THATAT T
4k, OLINAL DULIU

ATy T . oL L
IJIN run I'V\a, D, r)

Iterating the recursion formula [Eq. {C-20)] and reverting to the variables o = az, 8= bz,
we obtain

* Such integrals are treated by Watson (Ref. 31, pp. 395-396) in connection with Weber's second exponentiol in-
tegral, of which Eq. (C-19) is on example; with regard to integrals of the type appearing in Eq. {C-14) Watson
seems unduly pessimistic,
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P (Wa, NF, 1) = P_(Na, NF, r} + SXRI-(@ )]
v o -‘1)

4(r+r
v
2j . 4 ,j-1 d_j-i @ + Br
,21 27 (507} (dB} expir——ﬁ—1 T )])
J:

.I(r—r Vi NaBr/t1 + £ 4 {ZJﬁ—rZJ }I{*J__r/{i-i-r 31 C-24)

which, expanding according o the binomial formula for the derivative of a product, differentiating
exp[{a + Brz)/Z(i + rz)], and returning to the variables a, b, yields

2 2

exp! B'_?_+_+_§__, vooj-1 i . .
P (a,b,1)=P (a,b,r)+ 2“1‘;1‘ i AR, 2k Ee2-2) 2§-26-2
(r+r™0) j=1 k=0 £-0
1) (1) (2 k1 d s b
O e {(r {1a+r;2§
Pl - ‘Z(z)llil 2y ]} , (C-22)
where
(:ln) " m! (nn!— w7 (fm<0orm>n, (:1): o) {C-23)

is the binomial coefficient.
We now need to find the result of operating on the term in the braces of Bg. {C-22}. Using
Eq.(C-16) with ¢ = b, x =ar/(4 + %),y =¢ and m = 0 or —1 [note: _(z) - I_ (2], leads to

(ééib)! blilabr l}:( rz)l(g)‘l!!i[abr]

1i+r i+4r
1 4d.¢ abr } r £, b, -f abr
T, - 27,22 (C-24)
bav’ ol .zl ( z) ] D

and further application, this time withc = a, x = br/{1 + rz), v=k, andm = 1 — f or —{ yields

et B Iiafi 1} - (1 :PZ) M /et L Mi abr ] (C-25)
&SR 5 ] ff‘;z]} 1:r )< o/a 1[ abr ] : (C-26)

Similarly, we find

i 4 k abr T k+£ £-k+4 abz
2 da’ ’ {b 1[1“,2]} (i“_ (a/b) I£k+i{i+ri - le-em

Substituting Eqs, (C-25) through (C-27) in Eq. (C-22), and interchanging the dummy variables
k and £ in the part of Eq. {C-22) corresponding to the term r'Z {a/b) I [abr/(1 + rz)], we are
led to

e
(=]
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aarz + ba
exp |- 2E-22-] o -1 -4
P (a,b,r)=P (a,b,r}+ MAr) Y e HhH Y ¥ d0h (3’1)
v r+ r'i) k i
j:‘_[ k=0 £=0
. br.k- £y abr br k +1 -1, a k-1#+1
{r =7t ERty ] e — Tt ket
abr
XL _yuq [ ]} (C-28)
Letting m = k- £ + 1, and noting that k and hence m can range from — = to +« without changin
the value of Eq. (C-28) because of the benavior of (Jk ) as defined by Eqg. (C-23),
a.zr2 + b2
2{1 + r Y r,m -1 ,a m [ abr ]
Pliabri=Piahbri+ fdf 21y g B 4Ty
il Thhad Rt BN L L R I A _ i [ ! I 1 i 1L
v o r+r° Y i 1“Va br ml1+r2]

+ (r—r'i) (.P;E)m'i m 1[ abrzl} Z (r + r‘i -2 Z (J -1 (m_

+é- ‘1) (€-29)
We now inquire about the final sum in Eq. (C-29)

We have
2j-2
¥ (ZJ“2> x3 = (1 + x84
q=0

={1+ x)j-“l (1 + x)j-‘1

-1 j-1
E E (J;i) (_]—'1) JHi=1-n (C-30)
=0 n=0
Comparing powers of x, withn=m + £— 1, we deduce
-1 oy _
Z {"2 )(mu 1 (Jj;;) {C-31)

By Eq. (C-31) and the behavior of (753_;‘3) as defined by Eq. (C-23), Eq.{C-29) now becomes

a%r® + B¢
exp |- ————

3 v o )
P,(a,b,r)=P (a,b, 1)+ 2] " F earh 2y (372
(r+r™ ") . =, J-m
=1 m=-j+2
[ br.m abr -1, ,br.m-1 abr
{25 (E™ Hr-rTh (P 2]
{ br m[i+r] a m-1[1+r]
2. 2 2 2
ar +b
eXp l_ —2_ l{h;r - az‘ Iil abrz]
=P_(a,b, )+ t 2“+1r” A bro/ *l4 4 p=l
fr+r (r + 1%
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-1 v o .
+ (r-—r_i))2 10{ aer! + 7 (r+r-1)-23( 5 (;J—z)

{r+r 14+r j=2 me_j42 j=m
51
br.m -1 ,a ,m abr -1 S 2j=2 b abr
T T I [ e h L ()R, !ﬁ*fl)]
r n=-j+1 r
exp !_ar+bl —————ELI{h]
P (a,b,r) =P {a,b,r)+ Z“” l
{r+r” r+r-
-1 v )
T () R MR B (le'z) (r = ") 1 [h]
{r+r ) =2
v i
-1,-2] v 2i-2 2j-2 br ym
+ (r+r 7} Z ([r(j—m) (J+m)l {——
=2 m=1
-1 42j-2 2j-23} . a ,m
-{r (j—m)—r(jﬂn”('ﬁ) )Im{h}
Vv
1 -4,-2] {2j-2
sfe—rh Y @weeh (j_i)l{}{h]
j=2
v
sr-rh T e L (HA a0y 10 (c-32)

j=2

where we have used the fact that Im(z) = I_m(z), and h = abr/(1 + rz). Gathering terms,

a r + b .
exp |- 2175 I el
P fa,b,r)=P (a,b,r) + 22 ) ‘r—r ) 1_[h] Z—-‘%T
{r+v 7} i=1 fr+r 7} d
T (brz -2 1]
a brz 1
¥ _ j-1
e -rTh Z (r 47 Z (jZJn 24) [(br)n * (br) 11,R]
j=2 n=1

CT et Y (- (D)

j=2 m=1

et () o ) ]
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2.2 2
ar +b .
exp’ 201 4 > ] ! . v (23‘-1)
=P _(a,b,1)4 I ey oy Y L
° (r+r77) l ° jzi(r+r')3
v
2 -1/2j~ b
RS (I35 = (S o
=t m=4

- [r-1 (?—;111) ?ﬂi;n)} tor ) Im[h]l (C-33)

Rearranging the double summation in Eq. (C-33) so that summing on m occurs first, we have
finally,

v (Zjl-i)
Pv(a,b,r)=Po(a,b,r)+exp[ a r +b ] I(rwr ) I l abr ]

2(1 + r?) Dy (et ~1)25+1
v
R R G o e [y
m=1

=m

- z [ o =77

=Po(a,b,r)+exp[ a’r? + p? ] ‘(I‘—I‘ ) Z brm (

[ abr I
2(1 + r%) fm 1+l
v N
2j-6 -1, -2j-1
L (Gen©) e rh
j=m+6mg
Vv
by mpdmym . abr (2j— W (r + - H-4 (C-34)
m m{H G+ m G- m) - fC-
m=1 r j=m

Equation {C-34) is valid for v 21, a £ 0, andb £ 0, and 5

o is the Kronecker delta-funetion
o° 0 otherwise,

6mo =1 form =0, 5m When r = 1, Eq. {C-34) reduces to

P (a,b, 1) =P (a,b,1) + exp[- a® + b%)/4]

v )
; } 5 =2]
b,m (2j—1)'2
o L T - T (ab/2) E Geml(G—my - (€-35)
m={ j=m

There i8 an alternate expression for the final summation in Eq, {C-35) that may sometimes
be preferable. Using the identity

v

a2 -1 ! 1]
2j—1)!2 _ {(2m) (v + i)z -
.E GralGom - el L e (m 1) (€-36)
j=m j=m
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we obtain in lieu of Eq. (C-35)

P,(a,b,4)=P (a,b,1) + 27" exp[~(a +b%)/4]

¥
!
) (_v-—}_m_)‘ [( 1 ab/2) Z L(]i:lLTz,_ . (C-37)
m=1

3-111

To prove Eg. {C-36}, it suffices to establish that it is true for v = m, which can be seen im-
medijately because the summations of Fg. {C-36) are then just single terms, and that the difference
in the right side between the summation for v = M + 1 and that for v = M is equal to a like differ-
ence in the left side. Taking these differences, we have o prove

(2M + 1)1 27¢M-2 (2M + 2y1272M-3
M+i+m) {(MFIom) ~m{M+1+m) (M+1-m)

—M

2 ..
(M+D!'2 3 -M-2m-~1)
Z M S T (-8

which becomes, multlplymg Eq, {C-38) through by ZM+2 m{M + 1 + m)! and taking the difference

K
w
jand
ot
e
m
oF
m
=
&
i
i

M ; "
(M+r27 M+ +2m—j) _ 2M+ 127
L e ety e o (C-39)

j=m

The left member of Eq. {C-39} may be written

" _ M
sy o) i : -]
E “\E[jt I)n)z. MM+ j+1)-2(j—m)]= 2 (M;_ nt)!“' 2™
M
17t
- I e e-s0
j=m+‘1

and changing the subscript j to j' = j ~ 1 in the second summation of the right-hand gide of
Eq. {C-40}, we obtain a2 sum identical to the first sum on the right-hand side, except that it reaches
only to M — 1 rather than M, Thus Eq. {C-40) is equal to (M + j + 1}! Z_j/(j —m)! for j=M, and
Eq.{C-39) is thereby proved, substantiating Eg. {C-36).
Although Eqgs. {C-35) and {€-37) are generval formulas, it may on occasion be pre
express the solution in terms of Po(a,b, 1} and a single pair of Bessel functions, by reducing
the sum of Bessel functions through Bessel-function recursion relatien3.36 We have done
this for v of 1 through §, inclusive, and find that the minimum number of algebraic terms
is obtained when reduction is made in terms of Iv(ab/z) and Iv_i(ab/z). However, the number

of algebraic terms appears to grow iike 1 + {v{v — 1}}/2, so that it ig difficult to go much beyond
v =5

P,(a,b,1) = P (a,b, 1) + 2727 — a%) expl~(a” + b9/4] a7 1,(a) (C-4t)
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P,(a,b, 1) = P_{a,b, 1) + 27T (b% — a%) expl—{a® + b2)/4)

© (1297 1, (@) + 972 L, (a} (8)) (C-42)

-10

P,(a,b, 1) (6% — a%) exp[-(a® + b%)/4]

Po(a,b, 1} + 2
w2 -3 2
+ [16q " L,(q) (29 + s) + @ 7 I,(q) {28p + s7)] {C-43)

P,a,b,1) = P_(a,b,4) + 273 % —a%) exp[-(a® + b%)/4]

. [‘iq'3 I;(q) (195 - 2%+ 69 . 2%5 + 60p +55°}
+ q'4 14(q) (65 . qu + 44ps + 53)] {C-44)
-16

Pgla,b, 1) = P (a,b,1) +2 (bz - az) exp[—(az + bz)/ﬂ

» (8a7* 140a) (843 - 28 + 87 . 275 + 3104p + 26857 + 52ps + 357)
+97° 1,(q) (843 - 2% + 87 - 2°ps + baps” + 496p% + 5] (C-45)
where p = az‘bz, q=ab/2, and s = a® + b2,

IV. SIMPLE DERIVATION OF P (a,b,r)

For completeness we present here a short derivation® of the relation between Po(a, b, r)
and Marcum's @Q-function, which is quoted in Eqgs. (36) and (37} and which can be obtained from
Maximon's result [Eqs. (C-2) and (C-3)] and the second series of Eq. (C-4) of this appendix. The
following derivation given here appears to be considerably less complicated than that employed
by Maximon.

Referring to IZBq. (C-62) of this appendix and to Eqgs. (28) and (32) of the text (generalized from

— = A% [ N .
r=1), witha =a", §=Db",

2
L) Xr
PO(N@_,\/F,r) = % S exp[- (X + a)/Z]Io('JXcv) dx S‘ exp[—{Y + ﬁ)/Z]IO('\/Y,G) dy (C-46)
(4]

(o]

The Laplace transform of Po('\f—o:, NE,r) with respect to B is

L{a,r,s) :S' P_(Na NE,r) e % g
o

10" xré - .
=IS‘° exp[—(X+as)/2]IoWXa dx S‘o exp[~Y/2] aY So exp[-p(s +5] IQNY_'G) as

2
w X
-1 f exp [— (X +a)/2]I_(NXa) dX 5‘ T oexp[-¥/2 + Y/(45 4 2)] 4
€ 0 o 0 {s + %)

* The Loplace transform method given here was apparently anticipated by J.E. Storer in unpublished work performed
in 1960. (See the remarks of Jones33 which introduce his Appendix B.)
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-(X+a)/2 Io(m) 11 - exp [—er‘z/(i + 25)]] ax

L]
ar o.'rg
exp{-— -———-*2} exp{ > ] 5] }
L(m,r,s}:%r 2(12+r) i 4{r +i) [s+2 (1-!;1') ]
{1 + 1) s+¢’(1+r)“

2
o —{ 2{1 + r )} , exp{qrz + uz[sa:z‘i(i + rzb'ii}

{C-47)
21 + %) sis+ 27 1+ 257
where we have used the Laplace transform formula3?
b i
S exp-yUl I {(2NgU} dU = v " expln/v} . {C-48)

Examining Eq.{C-47), we see that it is the Laplace transform of a sum of three terms; the
first is unity, the second is, by Eg. {C-48),

e {2{i+r }

8 2
. pi— ——— I '\iaﬁr/(i +r Y
(1 4 r) ex{ 2.(1+r2')} ol

and the third is

2
T
exp {_ 2(i+rz}} £ B zZ
~ : . S exp {_ __7} I, NaBr/(1 + v d8 . (C-49)
2(1 + r™) o 2(1 + ")

If the upper limit of the integral in Eq. {C-49) were infinity, the entire expression would be unity,
again by Eq. (C-48), so that we conclude

1 b ar2‘+ﬁ
PO{\‘a,\’ﬁ,r') S g exp[ —_—] I_War/(1 +r )] [+1¢)
2{i+ 1y 2{i+ ¢

2
—L o ex [5 ar 1L'B] I [Nefr/(1 + r2)] a8
{1 +r7} 2{t +r

{(b/N1 + rz) exp {# far/N1 + rz)zﬂ; (b/~4 + r2‘}2}

Sz

IO{(ar{"\/i + 12} /N + 0] atb/NA 5 vy

ar+b) (abr

1
- — expl
2 2(1+r

1 +r7)

o
[\]
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Therefore,

2.2 2
i ar +b abr
ex —[ 10[ 2]

Q( ar b )
! - 2 2
/1+r2 #1+r2 {1417 2{1 + r") 1+r
where we have returned to the parameters & = Na, b= \fﬁ and have referred to Eq. (C-4). Max-

imon's result [Eqgs. (C-2) and (C-3)]for »= 0 is checked by substituting the second series of
Eq. (C-4} in Eq. (C-50}.

P (a,b,r} = {C-50)
o

REFERENCES

14. C.W. Helstrom, Statistical Theory of Signal Detection (Pergamon Press, New York, 1960},
op. cit., p. 174, with f=1.

23, C.W. Helstrom, "The Resolution of Signals in White, Gaussian Noise," Proc. IRE, 43,
1111-1118 (September 1955).

29, L.C. Maximon, "On the Representation of Indefinite Integrals Containing Bessel Functions
by Simple Neumann Series,” Proc. Amer. Math. Soc. 7, 10541062 (1956).

30. 5.0Q. Rice, "Mathematical Analysis of Random Noise," Bell System Tech. J. 23, 282-332
(July 1944) and 24, 46-156 (January 1945), Sec. 3.10. Reprinted in N. Wax, Selected
Papers on Moise and Stochastic Processes (Dover Publications, New York, 1954).

31. G.N. Watson, A Treatise on the Theory of Besse! Functions (MacMillan, New York, 1948),
Sec. 16.5.

32. J.1. Marcum, "A Statistical Theory of Target Detection by Pulsed Radar— Mathematical
Appendix,” Report RM-753, The RAND Corporation, Santa Monica, California
{1 July 1948), and Trans. IRE, PGIT IT=6, 159 {April 1950).

33. 1. J. Jones, "The Probubili?r of Error for o Four-Tone FSK Demodulator in the Presence of
Crosstalk or Interference,” Engineering Note 290(R), Sylvania Applied Research Laboratory,
Waltham, Massachusetts (7 February 1962).

34. G.N. Watson, op. cit., p. 79, Eq. (5).
3B o p.79, Eq. )
p.79.

37. A. Erdélyi, et gl., Tables of Integral Transforms, Vol.l, Bateman Manuscript Project,
Colifornia Institute of Technology (McGrow=Hill, New York, 1954), p. 197, Eq. (14).

For convenience in ordering copies of Lincoln Laboratory reports
cited in this document, each reference is followed by its ASTIA
number. In addition, Unclassified (relecsed) reports hove also
been ossigned Hayden serials (designated H-}, indicating that
they are obtainacble, at cost, as microfilm or photoprint copies
from the Micro-Reproduction Service, Hoyden Memorial Library,

M.I.T., Cambridge 39, Massachusetts.

53




Appendix D
COMMENTS AND ERRATA FOR APPENDIX C
Appendix C has been reproduced in its entirety from Price [7]. It contains the neces-
sary derivation to complete the analysis begun in the present report’s text of probability of

error with no smoothing of the data.

The mathematics in Appendix C was checked and found correct with the following
exceptions:

® In the equation which follows Eq. (C-13) the exp [-(a2 + b2)/2] factor in the
second line should be multiplying the entire right-hand side of the equation rather than just
the second and third lines as shown.

® In Hqg. {C-21})the exp [-{a+ 8] factor in the first tine should be exp [-(a + 8)/2].

In neither of these cases does the error propagate to the equations which follow.
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