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EVALUATING THE VALIDATION OF A MONTE CARLO
SIMULATION OF BINARY TIME SERIES

INTRODUCTION

This report describes the results of an effort to characterize the properties of a statistical test
developed by the Naval Research Laboratory (NRL) to validate the Antisubmarine Warfare Program
Surveillance Model (APSURV) Mod 1.4 simulation model. The APSURV digital computer simulation
models have been the Navy's approved undersea surveillance models since their initial development.
They have been used to predict the performance of the Sound Surveillance System (SOSUS). The vali-
dation effort was one of the first attempts to assess the adequacy of the APSURV models in represent-
ing the detection performance of the SOSUS. This paper presents some preliminary results in evaluat-
ing the validation method itself. Its focus is on the properties of a statistical test developed by Johnson
and Wiener [1] designed to conduct the validation effort. Although the evaluation has been limited by
the large amount of computer time required to perform a complete analysis, the available evidence
confirms the adequacy of the validation procedure and opens up the topic as an area for further
research.

The term validation means determining whether, within the degree of assurance of statistical
tests, the simulation represents the process being modeled. In [11 a quantitative procedure for a simu-
lation model validation has been adopted and the required statistical tests developed to conduct the
task. The validation technique developed can be briefly described as follows. Each Monte Carlo repli-
cation of the simulation model for any one sensor produces a vector of m binary elements. Based on a
sample of these binary vectors, a representation is obtained of the probability distribution of the popula-
tion of binary vectors from which the sample was drawn. Using this representation the likelihood of
any vector of m binary elements may be computed under the hypothesis that it comes from the same
statistical population as the vectors generated by the simulation model. In particular the method com-
putes the likelihood of the binary vector resulting from an observed run of the actual process under the
same conditions that are represented in the simulation. The question of the validity of the simulation
model, at the significance level a, is then resolved by observing whether the likelihood of the experi-
mentally obtained vector exceeds the a th percentile of the likelihoods of the simulation generated vec-
tors. The statistical technique is appropriate for the validation of a Monte Carlo simulation of processes
such as detection processes, whose results can be reduced to a finite sequence of thresholding events
having dichotomous, i.e., binary, outcomes. Moreover, the validation technique can be applied even
when the process being simulated cannot be experimentally repeated. Thus the simulation's validity for
the case examined can be determined, to within a specified level of statistical significance, with only a
single observation of the real-world process being simulated. The statistical technique is nonparametric,
it does not assume independence between events occurring at different times, and it does not require
the assumption of any stationarity or steady state behavior of the process simulated. The simulation
validation procedure can be summarized as follows.

As a particular target traverses the surveillance zone it generates a track history of detections for
each sensor in the zone. For each sensor i there is an observed vector x; = (Qj, . .. , xkm) of 0's and
1's from an unknown probability distribution pO and the simulation generates n vectors x =
(xl, ... , xm) of 0's and l's from a probability distribution pi. Using the n generated vectors the sta-
tistical technique obtains an estimate pi of pi. The simulated data are then applied to Ai to obtain the
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sample distribution of the n vectors as an approximation to the population distribution. The test con-
sists of determining whether the observed vector x. has pi-value in the upper 1 - a region of the sam-
ple distribution. If it does then the hypothesis that x; comes from the distribution pi is accepted. The
test is applied for all i and many acceptances that x. is from pi will confirm the null hypothesis that pi is
a good approximation to po, thereby validating the simulation. It is to be expected that due to statistical
fluctuation some sensors will fail the test. Hence a distinction must be made between validation of the
simulation model in general and specific statements about the simulation of the individual sensors.
Statements about the latter are simply understood to carry the uncertainty inherent in the statistical test
itself.

This paper examines the properties of the statistical test applied to validate the simulation. Of
immediate interest is the question of whether specifying the a-th percentile of the sample distribution
does result in a probability of false rejection equal to a. In addition there are such concerns as to how
one should deal with alternative hypotheses and what kind of power the test exhibits in evaluating alter-
natives. Partial answers have been obtained to some of these questions and enough information has
been learned to establish the adequacy of the test procedure. A full analysis of the properties of the
test remains for further investigation.

Following the introduction in this report is a section on the major conclusions reached. It is fol-
lowed by a brief statement on the validation method that was evaluated. The next two sections consist
of a Monte Carlo study on the validation method and an analytical approach. Finally there is a sum-
mary and a series of appendices presenting details, as necessary, on the validation method and technical
support material on the evaluation methods.

MAJOR FINDINGS

Each Monte Carlo replication of the simulation model for each sensor produces a vector of m
binary elements. When the number of elements is small, say m = 2 or 3, the statistical test at a
significant level a does not result in a probability of false rejection equal to a. As m increases, for a
small, the probability of false rejection approaches a from below and it is practically a for m = 5 or 6.

Both a Monte Carlo evaluation and an analytical approach were taken to examine the power of the
test. In the former two alternative hypothesis were tested against the same null hypothesis. Both alter-
natives yielded high power and the more dissimilar the alternative to the null hypothesis the higher the
power of the test. In the analytical approach a simple structure was considered that allowed one to
attain power curves for the cases m = 1 and m = 2. These cases shed some light into the behavior of
the power function in general. Depending on the null hypothesis the range of possible values of the
power of the test tends towards higher power as the two distribution become more dissimilar. This is
not to say that minimum power is achieved whenever the null and alternative hypothesis coincide. It
simply states that this is the case for the longer portion of the range of possible values of the alternative
distribution. The number of exceptions gets small as a gets small and for small a in general the excep-
tions occur within a range that remains relatively close to the null hypothesis anyway. This analysis will
be discussed later in more detail. Both approaches suggest however that the test performs adequately
with respect to the power of the test.

The statistical test consists of testing the null hypothesis that the observed vector is a sample from
the population from which the n vectors produced by the simulation were generated. In so doing one
specifies a significance level a, in this case the aeth percentile of the sample distribution obtained from n
replications of the simulation. If the likelihood of the observed vector falls below the a h percentile of
the likelihoods of the simulation generated vectors the null hypothesis is rejected.
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In order to conduct the evaluation of the test a Monte Carlo approach was first taken. Sample
distributions were obtained from simple known distributions. This was done by repeatedly generating n
vectors as if by the simulation and then generating from the same distribution an n + 1 st or observed
vector. In each instance the test was conducted. By repeating the test 20 times a proportion of rejec-
tions was computed. By further repetitions in blocks of 20 repetitions each, a sequence of independent,
identically distributed random variables was generated. The Central Limit Theorem then allowed one
to obtain confidence intervals on the resulting mean proportion of rejections, which should approximate
the resulting probability of rejection when applying the test. The evidence gathered supports the con-
jecture that as the vector length m increases the probability of false rejection begins to approach a. For
the cases considered the results indicate that the probability of rejection is actually less than a for m =
2 or 3, but it approaches a from below as m increases and is practically a for m = 5 and 6. By varying
the above approach slightly the n + 1 st vector was then generated from an alternate known distribution
different from the distribution of the first n vectors. The resultant proportion of rejections now esti-
mates the power of the test. For the cases considered the test appears to discriminate very well.

To obtain the representation of the distribution of the population from which the n simulated vec-
tors come, it is necessary to estimate the function f(x) which measures the correlation effects among
elements of the vector x. Appendix A specifies the functional form of f(x.). An important conse-
quence of the evaluation is the fact that it is necessary to pay attention to the vector sample size n to
ascertain when the estimate f(x) is close enough to its theoretical value f(x) for the representation of
the distribution in question to be adequate.

VALIDATION METHOD

The simulation model in question, APSURV Mod 1.4, was designed to estimate the performance
of an acoustic sensor in the detection of a target in the ocean. Specific details of the validation metho-
dology for the simulation are given in Appendix A of this paper. The simulation is essentially based on
Monte Carlo replications of time-phased detect/no detect events and the validation considers a real-
world observed sequence of detect/no detect decisions made by the acoustic sensor. Table l illustrates
the structure of the validation data. The simulation generates n replications of vectors with m elements
and the test determines whether the random process generating the n x m matrix is equivalent to the
random process generating the (n + 1)-st or observed vector. The Method of Bahadur [21 and Lazars-
feld [31 is used to obtain the representation of the probability distribution of the population from which
the n simulation replications come. From this is obtained for each vector x - (xl, ... , xm) a likeli-
hood value

p (x) -P [i] (x) f (x)
where p1 11(x) is the probability of vector x under the assumption of independent vector elements and
f (x) is a function which represents the degree of correlation along the time stream.

For an a-level test one checks whether the likelihood of the observed vector p(x 0 ) is above the
first n * a likelihoods from the simulated set. If so, the hypothesis that x is a member of the same
random process generating the n replications is not rejected.

A MONTE CARLO EVALUATION OF THE TEST

Of the various properties of the test one is interested in evaluating, the most immediate concern
is whether specifying the a-th percentile of the sample distribution does result in a probability of false
rejection equal to a. In addition there are such concerns as to how one should deal with alternative
hypotheses and what kind of power the test exhibits in evaluating alternatives. Another important fac-
tor is the adequacy of the estimate of the probability distribution of the n simulated replications of a
track history of detections. Of particular interest is whether the number of replications is sufficient for
the estimate of the correlation function f (x) to settle about its theoretical value.

3
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Table 1 - Structure of the Validation Data

240-HOUR TRACK, 50 MODEL REPLICATIONS
1: DETECTING THE TARGET,
0: NOT DETECTING TARGET

Elapsed Time (hours) 1 2 3 4 5 6 ... 239 240

Observed Detection History 0 0 1 1 1 0 ... 1 1
Model
Replication

1 0 0 1 0 0 0 ... 1 1
2 0 1 0 0 0 0 ... 0 1
3 0 0 1 1 0 0 ... 0 1

50 0 0 1 0 0 0 ... 0 0

Predicted
Detection Probability 0.00 .20 .60 .20 .00 .00 ... .00 .60

Under the assumption that the simulation model is valid, the statistical test for a specific sensor-
track combination would normally constitute a Bernoulli trial with rejection probability a and probability
of no rejection 1 - a. Here the sample distribution (of the n replications) is used as an approximation
to the theoretical distribution; hence the actual rejection probability may appear to be data-driven.
However repetitions of the test itself under identical conditions are identically distributed and should
generate a proportion of rejections approximating the probability of rejection as the number of repeti-
tions increases. In general there are n + 1 vectors each of length m. Ideally the probability of rejection
should equal a when the n + 1st vector is from the same distribution as the first n, and it should equal
the power of the test against a specified alternative distribution when the n + 1-st vector is from the
alternative distribution. To make inferences about the probability of rejection successive repetitions of
the same test may be generated. The repetitions should be grouped into subsets of equal size from
each of which a proportion of rejections may be computed. The computed proportions are a sequence
of independent, identically distributed random variables. Taking a large enough number of subsets one
can then appeal to the Central Limit Theorem and use classical statistical techniques to make inferences
on the probability of rejection that results when applying the given test at a specific level a.

A preliminary evaluation of the properties of the test has been conducted with the use of Monte
Carlo methods. It was basically intended to determine an estimate of the level of significance obtained
in the test. The approach taken used sets of n + 1 random binary vectors which were repeatedly gen-
erated from a known distribution. Several cases were considered by varying the vector length m and by
varying n, the number of replications, for each m. The vector elements in all cases were independent
Bernoulli random variables where the probability of a 1 varied by vector element. The various cases of
m considered were 2, 3, 4, 5 and 6 vector elements. For the case m = 6 the probabilities of a 1 for all
vector elements were (.2, .4, .6, .8, .8, .8) respectively. Similarly one used for m = 5 the probability
vector (.2, .4, .6, .8, .8), for m = 4 (.2, .4, .6, .8), for m = 3 (.2, .4, .6) and for m = 2 (.2, .4). For
all of these distributions the correlation function has a theoretical value of f(x) = 1. In a typical case,
for example m = 4 and n = 50 with a random number routine, 51 vectors of length 4 are generated
and the test is applied to determine whether the 51 'h vector does or doesnot belong to the same popula-
tion from which the first 50 came. The decision is made whether or not to reject such a hypothesis.
This procedure is repeated 20 times and the proportion of rejections is computed. The sets of size 20
are replicated 100 times. The one hundred computed proportion of rejections are then treated as 100
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independent, identically distributed random variables whose mean is an estimate of the probability of
false rejection resulting from the application of the test. The test itself consists of computing the likeli-
hood q of the n + 1-st vector and the set of likelihoods (pg - p(xQ):g - 1, ... , n). The test pro-
cedure is to reject the hypothesis of association if the observed value q falls below the a-th percentile of
computed values pg. Define N to be the number of elements in the set (g:p, < q, 1 < g < n). If N

n * a, the hypothesis of association is not rejected. The hypothesis is rejected at the significance
level a if N < n * a.

In this evaluation the value of a was fixed at a = 0.30 and for each value of m the number of
replications (i.e., values of n) used were from the set (20, 50, 100, 200, 500, and 800). Not all values
of n were used for all values of m. Only for m = 5 were all values of n used. In addition as m and n
became larger both the number of repetitions in each subset from which the proportion of rejections
were computed and the number of subsets itself were decreased due to limitations in computer time
and cost.

For the cases considered the significance level achieved appears to approach a from below as m,
the number of vector elements increases.

The analysis was also conducted to estimate the power of the test when the null hypothesis was
tested against a specified alternative. For the case m = 5 tests were also conducted where the n + 1-st
vector was generated from a known distribution other than the distribution from which the first n vec-
tors were generated. These alternate distributions consisted of independent, identically distributed vec-
tor elements where the probability of a 1 was given by p = .1 in one case and p = .5 in another. The
theoretical value of the correlation function in this case is also f(x) = 1. The proportion of rejections
in this case estimates the power of the test, that is, the probability that the null hypothesis is correctly
rejected. When comparing both alternatives to the null hypothesis the test appears to discriminate very
well and the more dissimilar the alternative to the null hypothesis the higher the power of the test.

An interesting problem revealed in the evaluation is that vectors with negative likelihoods arise as
a function of the fluctuation of computed values of f(x) around its theoretical value. In the cases con-
sidered the theoretical value is f(x) = 1. As n increases the distribution of the n values f(x) tends
towards a spike at 1 and the number of vectors resulting in negative likelihoods (because f(x) < 0)
decreases or disappears. To assess the effects of the estimates f tests were performed first using the
estimates f and then replacing these estimates with the actual theoretical values f(x) = 1.

The data were collected by cases of m, n, and either f(x) = f or f(x) = 1. For each case
labeled (m, n, J) there corresponds a case (m, n, 1). To obtain an overall measure of the resulting pro-
bability of false rejection when the test was applied at a significance level a for each m, the resulting
estimates & were averaged over all values of n used for that specific m. These resulting averages can be
labeled ai, and am,1. To compute the ain only those values of n were included for which the esti-
mates f were considered adequate based on a comparison with f(x) = 1 cases. Figure 1 plots the
overall average probability of false rejection resulting for each m. For the cases considered the results
indicate that the probability of rejection is actually less than a for m = 2 or 3 but it increases to a as m
increases and is practically a for m = 5 and 6.

In addition, in these cases where the theoretical correlation function is f(x) = 1 some attention
must be paid to having a large enough number of replications (n) to make certain that the computed
values f(x) are an appropriate representation of the theoretical correlation function. An alternative
would be to find a better estimator for f(x).

The conclusions of these evaluations cannot be accepted as general because the analysis was lim-
ited to a few known distributions of simple structure. Enough evidence was collected, however, to
establish confidence in the adequacy of the procedure developed by Johnson and Wiener [1].
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Appendix B contains more detailed information on the Monte Carlo evaluation including the data
collected and tables and figures representing the information gathered from the evaluation.

AN ANALYTICAL APPROACH

The statistical test consists of computing the likelihood q of the n + 1-st vector x& and the set of
likelihoods (pg = p(xg): g = 1, ... , n), one likelihood for each of the n replication vectors
big: g = 1, . . ., n). The test procedure is to reject the hypothesis of association if the observed value q
falls below the a-th percentile of the computed values pg. Define N to be the number of elements in
the set (g: pg 6 q, 1 6 g 6 n). If N > n * a the hypothesis of association is not rejected. The
hypothesis is rejected at the significance level a if N < n *a.

As discussed in appendix A, the likelihood of any vector x is given by its Bahadur representation.

p~x) = Pil(x3) * (x)
where p[l](x) is the probability of vector x under the assumption of independent vector elements and
f(x) is a function which represents the degree of correlation between vector elements. In this section
only the simplest cases will be considered. The n X m data matrix will consist of n independent vectors
each of length m where the entries ox;X are independent, identically distributed Bernoulli random vari-
ables with probability of a 1 given by v. In this case for any vector x, f(x)= 1, and hence
p(x) p[l'(x). Now let E() denote expected value, then

v =E(xij) i=1,..., n;j=l, ... , nm

where it is assumed 0 < v < 1. In this case maximum likelihood estimates are used to obtain v. Since
this is a simplification of a slightly more general representation the estimates are obtained from the
columns of the n x im matrix.

p g(X) = Vxgi (1-Di) Xg, = 1, 2, .. ,n
I-

where
n

112n if I Xgj 0
g-I

n
vi = 1-(1/2n) if I xgi n

g- I

n
(l/n) xg, otherwise for i - 1, 2, ... , m

g-I

Notice first that v; = vj in our case for all i, j = 1, ... , i and secondly since the vi's are assumed to
be neither 0 nor 1 a reasonable correction is made should the data seem to indicate they are when
estimating them. Even though vi = vj for all i, j= 1, ... ,m it is likely that Di ; vJ for most i, j
pairs.

The particular data structure considered in this section shows that it may be the case that the pro-
bability of false rejection when applying the test approaches the significance level a as m, the vector
length, increases. For any vector length m there are 2m possible binary outcomes or members of the
population of vectors of length m. The analysis consists of letting n = 2m where all binary vector ele-
ments consist of independent, identically distributed Bernoulli random variables with the probability of
a 1 given by v. There are (2 m)2m possible outcomes from which the Bahadur representation may be
obtained. To each of these outcomes one may associate 2 m possible n + 1-st or observed vectors yield-
ing a total of (2 )2"'+1 elementary outcomes. Consider first the case where the observed vectors come
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from the same distribution as the sets of first n = 2m vectors. Specifying at, evaluating N for each out-
come, and applying the rules of the test one may establish an association between a and the actual pro-
bability of false rejection. Table 2 lists all possible outcomes when performing the test for the case
m - 1. This table shows the 4 cases of "simulated' vectors that are possible, the estimates v of v that
each case generates, the computed vector likelihoods pg for each case, the likelihoods g for each of the
possible "observed' vectors, and the value of N for each combination of simulated vectors and observed
vector. Here n = 2 2, (2m)2m = 4 and (2 m)2m+l = 8. In this case, the probability of false rejection
is independent of a specified value of a since N assumes only two values either 0 or 2. For any
a e (0, 1) the null hypothesis is rejected only if N = 0; this occurs only whenever xi = = 1 and
X- = 0 with probability v2 (1 - v) or if x -x2 - 0 and x 0 = 1 with probability (1 - v) 2 v. Hence, for
any a e (0, 11 the resulting probability of rejection is given by p, (v) = v2(1 - v) + (1 -V)2 v =

v(1 - v), depending only on v. The function p,(v) has domain [0, 1], is concave, and is symmetric
around the point v = 1/2 where it achieves its maximum of 1/4. If one considers next the case where
the observed vector comes from a different distribution, say a Bernoulli random variable with the pro-
bability of a 1 given by t, then the power of the test is also independent of a and is given by
I - p _ V2 (1 - t) + (I'- V)2 t, where A is the probability of a type II error (false acceptance). The
power of the test depends only on the values of v and t. Figure 2(a) shows p, (v) as a function of v and
Fig. 2(b) shows I -,8 as a function of t for varius values of v. For each value v0 the function I - ,P is a
straight line in t with y intercept vJ and slope (1 - 2vo). Figure 2 illustrates the behavior of the power
function. When v < 1/2, 1 - /3 increases as t increases for t > v and I -, decreases as t decreases
for t < v hence the increase in power occurs as t and v become more dissimilar for the larger portion of
the range of t. When v > 1/2, 1 -,8 increases as t decreases for t < v and 1 - )9 decreases as t
increases for t > v hence the increase in power occurs as t and v become more dissimilar for the larger
portion of the range of t. In either case as v becomes small or large (p, (v) small) the range of t for
which power decreases as t and v become more dissimilar is very small. Naturally for v = 1/2 (all vec-
tors equally likely) 1 - p = p, (v) = 1/4 for all values of t, that is, the power function is a constant
equaling the probability of false rejection for all values of t.

Table 2 - Test Outcomes for Case m = 1
Specified Data Structure

Simulated Estimated Likelihood of Likelihood of Number of
vectors value of v vector Xg obseved cases less

vector x0 than q
xg Pg (x) q N

g = I g = 2 _ _ g = 1 g = 2 x0= 0 x0= 1 x0 = 0 x0= 1
1 1 3/4 3/4 3/4 1/4 3/4 0 2
1 0 1/2 1/2 1/2 1/2 1/2 2 2
0 1 1/2 /12 1/2 1/2 1/2 2 2
0 0 1/4 3/4 3/4 3/4 1/4 2 0

For larger values of m the number of elementary outcomes to consider increases very rapidly yet
one can discern a pattern from the cases m = 1, 2, and 3. Table I listed all possible outcomes for the
case m = 1. Similarly one may list all possible outcomes for the case m = 2. There are 1024 of these.
Following the rules of the test one may evaluate the value of N for each outcome. N assumes only the
integer values 0, 1, 2, and 4. For the case m = 3 enough outcomes were listed until it became obvious
that N assumes only the integer values 0, 1, 2, 3, 4, 5, 6, and 8. The integral scale suggests a partition
of (0, 1) into overlapping subintervals where a may assume its values. For the case m = 2 the test
indicates that for a e (0, 1/41 one rejects the null hypothesis if and only if N = 0j for a e (1/4, 1/2]
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one rejects if and only if N < 1 (N = 0 or 1) and for a e (1/2, 1) one rejects if and only if M < 2
(N = 0, 1 or 2). The case a = 1 is not realistic and should be ignored as a trivality. For m = 2 one
considers their 3 subintervals of (0, 1) where a may assume its values. By listing the 1024 elementary
outcomes and their corresponding values of N one may single out those events that correspond to a
rejection of the null hypothesis for each of the 3 subintervals where a assumes its values. The events
for which N = 0 are rejection events for a e (0, 1/4], the events for which N = 0 or 1 are rejection
events for a e (1/4, 1/2] and the events for which N = 0, 1 or 2 are rejection events for a e (1/2, 1).
One associates to each event its corresponding probability and add the event probabilites corresponding
to each subinterval where a assumes values. This means that for values of a in the intervals 1I = (0,
1/41, I2 = (1/4, 1/2] and 13 = (1/2, 1) there correspond three different probability of rejection func-
tions pr(v), Pr2(v) and pr3(v) depending only on v. These functions have range [0,h 1L, [0,h2] and
[O,h31 respectively where h, E II, h2 E 12 and h3 E 13. The functions p, 2 (v) and pr 3 (V) corresponding
to the larger values of a are concave and symmetric around v = 1/2 where they achieve their maxima
h2 and h3. As a gets smaller, in this case a E 1, the function p,(v) begins to behave in a different
manner. It remains symmetric around v = 1/2 but in this instance becomes bimodal. It jumps to a
quicker maximum achieved at about v = .3 (also v = .7) and remains fairly close to its maximum for
values of v between v = .3 and v = 7. These functions are plotted in Appendix C.

For values of m > 1 the number of nonoverlapping subintervals covering (0,1] where a may be
specified is given by 2' - 1. The rightmost subinterval always has length 1/2m-1. All others have
length 1/2m. The length of the subintervals decreases rapidly and to each one there corresponds a
unique probability of rejection function pr(v) with range [0,h] where h is contained in the subinterval
where a assumes its value. The functions p,(v) depend only on v and are symmetric around v = 1/2.
As m increases h - a and it appears that for smaller a's the functions pr(v) tend to achieve their max-
imum rapidly and remain close to this maximum for values of v between the modes approximately a
rectangular shape. This means that for large m and small a the probability of false rejection is approxi-
mately a for all values of v except perhaps those close to 0 or 1. This behavior supports that observed
from the computer evaluation. In this case as m becomes large and a becomes small the probability of
rejection approaches a.

Appendix C contains plots of the different probability of rejection functions and the power func-
tions for the case m = 2.

SUMMARY

Both the Monte Carlo evaluation and the analytical approach indicate that the statistical test
developed by Johnson and Wiener is a valuable tool that accomplishes its objective as a technique for
validating the simulation model. In evaluating the properties of the test several questions have arisen
that remain open for further investigation. However, there is sufficient evidence to suggest that the
test technique is a good discriminating tool that may be applicable to simulation models resulting in
binary time series output in general.
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Appendix A

VALIDATION METHODOLOGY

The simulation model in question was designed to estimate the performance of an acoustic sensor
in the detection of a target in the ocean. The target's acoustic characteristics and the target track, i.e.,
the history of the geographical positions of the target at each hour, are provided as input to the simula-
tion model. The model operates by replicating this track many times. During a particular replication,
at each hour, the model decides that the sensor either is detecting or is not detecting the target, based
on factors such as sensor-target range and geometry; the acoustic properties of the ocean in the sensor-
target vicinity; sensor alertment due to possible detections at previous hours of this replication; and the
magnitude of a Gauss-Markov fluctuation approximated by summing three independent Ehrenfest ran-
dom walk terms (Feller [All) at each hour. Thus for a target track lasting m hours, a single replication
by the model produces a vector of m elements, each element being either 1 or 0, where 1 indicates the
sensor is detecting and 0 not detecting the target at a particular hour. It is clear that a high degree of
correlation exists between the detection events occurring at consecutive hours. This is because the pro-
bability of detection of a given target by a given sensor is a strong function of the target's geographical
position. In addition there is an alertment effect, because of prior detections, that must be considered.
Moreover, it would be most unusual for the same probability of detection to obtain at all points of a
target track. Since a moving target is changing its position and aspect relative to 'the sensor as time
progresses, no steady state will be reached in the finite duration of a target track.

The recorded history of detections of a given target by a given acoustic sensor must be considered
as a sample of size one from a population with an unknown statistical distribution.. .. It is a random
binary vector of 0's and l's with m elements. A factor affecting the selection of the validation tech-
nique is the lack of data concerning realizations of the simulated process. Multiple realizations of the
same target track are impossible to obtain for most targets and sensors of interest. Hence one is testing
the validity of the simulation model as a representation of the statistical structure underlying the
recorded history of detections. That is, the hypothesis being tested is that the unknown statistical dis-
tributions of which the observed history of detections constitutes a single sample point is the same as
the unknown statistical distribution of which the models replications constitute many sample points.

As a particular target traverses the surveillance zone it generates a track history of detections for
each sensor in the zone. For each sensor i there is an observed vector x. = Uci,, .. ., kim) of 0's and
l's from an unknown probability distribution' pa and the simulation generates n vectors x =
(xI, ... , xm) of 0's and l's from a probability distribution pi. Using the n generated vectors the sta-
tistical technique obtains an estimate hi of pi. The simulated data are then applied to hi to obtain the
sample distribution of the n vectors as an approximation to the population distribution. The test con-
sists of determining whether the observed vector x. has hi-value in the upper 1 - a region of the sam-
ple distribution. If it does then the hypothesis that x; comes from the distribution pi is accepted. The
test is applied for all i and many acceptances that x. is from pi will confirm the null hypothesis that pi is
a good approximation to po, thereby validating the simulation. It is to be expected that due to statistical
fluctuation some sensors will fail the test. Hence a distinction must be made between validation of the
simulation model in general and specific statements about the simulation of the individual sensors.
Statements about the latter are simply understood to carry the uncertainty inherent in the statistical test
itself.

The statistical hypothesis test uses the representation by Bahadur [A21 and Lazarsfeld [A31 for the
probability distribution underlying binary sequences, which is summarized as follows. Assume the tar-
get track is m hours long. Let X be the set of all points x = (xI, x2 , . .. , xxm) with each xi = 0 or 1,
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and suppose pQi) is a probability distribution on the elements of X; that is, p(x) > 0 for all x e X and
yiEXpQc) = 1. Let Ep(O) denote the expected value of the expression in parentheses when the distri-
bution p obtains. Then let

v= Ep(xi) 0 < v, < ; i=1,2, ... , m; and

Zi= (xi - vd)j)v (1 - vd i= 1,2, m.

Next define the family

,=Ep (zi *Z)i<i
r,,k =Ep (z; * z Zk) < j < k;

r12 ..m = E(Zl I Z2 Zm)

For & = (xl,x2, ... , xm) define

P[11(:&) =,!:mI v, i(I- v),j

and

fQi) = I + T.,< ,r* Z' + Ei<J<krik Z- (1)

+ + rl 2 .. m ZI Z2 Zm-

Then for each & in X,

P(&) = Pl[1(x)f(x). (2)

Thus ptlI(x) denotes the joint probability distribution of the xi's under an assumption that the xi's are
independently distributed, and f () represents the effects of correlation.

In this representation it is natural to refer to the parameters r,, as second order correlations, to the
parameters -r, as third order correlations, and so forth, culminating in rl2 m, the m-th order correla-
tion. The distribution p then is said to have order s if one correlation of order s is non-zero and all
correlations of order greater than s are equal to zero. If a distribution is known to be of a certain order
s, then the representation (1) need only extend to correlations of order s or less.

In some applications either the nature of the situation being studied or computational problems
might make it necessary to assume a specified order to the distribution, even though the value of that
order cannot be known precisely. If the selection is in error, then the "truncated" form of expression
(1) will be in error and so will the resulting values of f(x) and p(x). As defined by (6), the estimated
p(x) may not be a probability distribution and may assume negative values for some x. This point is
discussed by Bahadur [A21. In addition, to obtain the estimate p of (2) one must first obtain the esti-
mate f of (1). The statistical fluctuation associated with the values f(x) is another source of error
leading to negative values of f(x) for some x and consequently for p(x). Because p may not be a pro-
bability distribution, values taken by p are referred to as likelihood values.

In the application to the APSURV simulation several considerations led to truncating the form of
(1). A fourth-order approximation to the Bahadur-Lazarsfeld representation has been employed, trun-
cating the expression in (1) after the fourth-order correlations and using a time window of twelve
h4ours, that is, assuming zero correlation between time steps more than twelve hours apart. From
observations of the detection process it seemed reasonable to assume both that the correlation between
epochs separated by more than twelve hours is negligible compared to the correlations between epochs
closer together, and also that the contribution of correlations of order greater than four is relatively
insignificant. The truncation has also been necessary in order to keep the computer costs within reason.
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The observed realization compared with the simulation results consists of a track history of dura-
tion m hours together with the associated detection history. The simulation model is programmed to
run with input parameters characterizing the observed situation. Then n replications of the model are
run, each producing a time series (vector) & = (Xgl,Xg2, ... , xgm), g = 1,2, ... , n, of m binary ele-
ments, where 1 denotes a detection and 0 no detection of the target by the acoustic sensor. Actual
values of m and n used were m = 240 and n = 50. The n binary vectors are used to estimate the
parameters in the Bahadur-Lazarsfeld representation of the probability distribution corresponding to the
population from which the n sample vectors are generated. Simple unbiased estimators were chosen for
all parameters. The estimators for the v,'s are maximum likelihood when the distribution p[i] obtains,
that is, when the xgi's are independently distributed. Since the vi's are assumed to be neither 0 nor 1 a
reasonable correction is made should the data seem to indicate they are. The estimates are obtained by:

1/2n if 91Xg = 0

vi= - (1/2n) if XglXgj = n (3)

Oln) 9"=lxg; otherwise for i = 1,2, ... , i;

zgj= (xgi - P)/N>/i_- * (I- ) i= 1, 2, ............... ,(4)

g= 1,2, ... ,n;

and

j= (1/n) Tg`n.Zgi zgj, 1< i< j < m;

Fijik = 1 (l/n) nlzgi -zgi * zgk, < . < j < k < m;

r12 ...m = (1/n) Yg"-IZgl * Zg2 *-- Zgmn

The likelihood pg of the g-th model replication xg is given by

Pg = P (&g) = f (g) [In , -xi . (1 _ 1)1xgI] g = 1, 2, n,

with f (g) as characterized by (1) and the z-values as given by (4). Then under the hypothesis that the
random mechanism for the simulation is a model for the random mechanism underlying the observed
sensor's detections, the recorded sequence of detections of that target by the specified sensor, the
binary vector x = (x 1,x2 , ... , xm), has likelihood q = p(x), relative to the Bahadur-Lazarsfeld
representation of the n model replications given by (2) using the i's and rs computed by (3) and (5)
from the model replications. Once the numbers q = p () and {Pg = p (g): g = 1,2, ... , n) have
been obtained, it can be determined whether to accept the simulation model as valid at a significance
level a. The test procedure (a straightforward rank test) is to reject the hypothesis of association if the
observed value q falls below the a-th percentile of computed values pg. Define N to be the number of
elements in the set {pg: pg (q, 1 < g S n). Then if N > na, the simulation model is determined to
be valid in predicting the performance of the specified acoustic sensor in detecting that target. The
model is rejected as not valid at significance level a if N < na. The reason a one-sided test is used
here is that the higher the likelihood of the recorded detection history relative to the Bahadur-
Lazarsfeld representation of the model replications, the better the agreement is between the recorded
detection history and the simulation output. Hence one need only be concerned with rejecting the
simulation model if the likelihood of the recorded detection sequence is low relative to the likelihoods
of the model replications.

Finally it should be mentioned that although Johnson and Wiener [A4] could not know the struc-
ture of the probability distribution they were working with, in particular the exact structure of the
correlation function, they did address the problem of establishing the adequacy of the number of repli-
cations used (values of n) via a Smirnow two-sided goodness-of-fit test. The distribution of likelihoods
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(relative to their respective Bahadur representations) of three independent sets of fifty replications for
the same target and acoustic sensor were generated. The Smirnov two-sided test for goodness-of-fit (at
the 0.20 significance level) indicated that the three samples could be assumed to have come from the
same population. From this it was concluded that fifty replications of the model are sufficient for vali-
dation purposes. In a similar manner three independent sets of twenty replications each for the same
target and acoustic sensor were generated. Although these samples passed the Smirnov two-sided
goodness-of-fit test at the 0.10 significance level, at the 0.20 significance level the test indicated the
three samples did not come from the same population. From this it was concluded that the variability
between samples of only 20 replications was too great to permit their used in a validation.
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Appendix B

MONTE CARLO EVALUATION

In this appendix a detailed presentation is given of the data collected in performing an evaluation
of the test technique developed by Johnson and Wiener to validate the APSURV MOD 1.4 simulation
model.

Three factors were investigated, first the ability of the test to generate a probability of false rejec-
tion t which approximate the assumed specified value a; second the influence of computed values f(x)
of the correlation term f(x) in Eq. (6) of appendix A; and third the power of the test in correctly
rejecting vectors which did not come from the same population as did the original set.

The approach taken used sets of n + I random binary vectors which were repeatedly generated
from known distributions. Several cases were considered by varying the vector length m and by varying
u for each m. The vector elements in all cases were independent Bernoulli random variables where the
probability of a 1 varied by vector element. The various cases of m considered were 2, 3, 4, 5 and 6
vector elements. For the case m = 6 the probabilities of a I for all vector elements were (.2, .4, .6, .8,
.8, .8) respectively. Similarly one used for m = 5 the probability vector (.2, .4, .6, .8, .8), for m = 4
(.2, .4, .6, .8), for m = 3 (.2, .4, .6) and for m = 2 (.2, .4). For all of'these distributions the correla-
tion function has a theoretical value of f (x) = 1. Two sets of data were obtained. One set used the
theoretical values f(x) = 1 the other the computed estimates f(x). For the case m = 5 tests were
also conducted where the n+ 1-st vector was generated from a known distribution other than the distri-
bution from which the first n vectors were generated. This alternate distributions consisted of indepen-
dent, identically distributed vector elements where the probability of a I was given by p = .1 in one
case and p = .5 in another.

In a typical case, for example m = 3 and n = 20, with a random number subroutine 21 vectors of
length 3 are generated and the test applied to determine whether the 21-st vector belongs to the same
population from which the first 20 come. The decision is made to reject or not to reject this hypothesis.
The procedure is repeated 20 times and the proportion of rejections is computed. In turn the sets of 20
are repeated 100 times. The one hundred computed proportion of rejections are then treated as 100
independent, identically distributed random variables whose mean is an estimate of the probability of
false rejection resulting from the application of the test. When the n+ 1-st vector is generated from a
specified alternate distribution the proportion of rejections in this case estimates the power of the test,
that is, the probability that the null hypothesis is correctly rejected.

Tables B.l and B.2 summarize the data collected in the Monte Carlo evaluation of the test. Table
B.1 consists of values obtained with f(x) = I and Table B.2 the values obtained with f(x) = f(x), as
computed from the data. As usual, m denotes the vector length and n the number of replications from
which the Bahadur-Lazarsfeld representation is obtained for each distribution. Each case (m, n, 1) or
(m, n, }) yields an estimate a. This estimate is the average proportion of rejections computed from k
subsets each of size z. The product k x z represents the total number of times the statistical test is per-
formed for each case (m, n, 1) or (m, n, J). The computed sample standard deviation of the estimate
is denoted s. The factor s/l-k is used to obtain confidence intervals for a using percentage points of
the Student-t distribution. For each vector length m the size of the population of such vectors is 2'
possible binary vectors. In order to obtain a uniform measure of the relative size of the number of
replications from which the Bahadur-Lazarsfeld representation is obtained for each case (n, m), the
ratio n/2' is used. These ratios are listed along with the data in Tables BI and B2. In Table B2 the
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Table Bi - Test specified for a = 0.3
Data obtained with f(x) = 1

Vector No. of Subsets Number of Estimate Sample
Length size of each replication of a standard

subset per case deviation
m k/z (n/2a) a s
2 100/20 20 5 .1900 .098
2 100/20 50 12.5 .2015 .0963
2 100/20 100 25 .1940 .0799
2 100/20 200 50 .1910 .0880

3 100/20 20 2.5 .2655 .0892
3 100/20 50 6.25 .2765 .1011
3 100/20 100 12.5 .2795 .1054
3 100/20 200 25 .2770 .0968
3 40/10 400 50 .2300 .1436

4 100/20 20 1.25 .2935 .1079
4 100/20 50 3.125 .2770 .0988
4 100/20 100 6.25 .2670 .0972
4 100/20 200 12.5 .2920 .1167
4 40/10 400 25 .2725 .1281

5 100/20 20 .625 .3395 .1142
5 100/20 50 1.56 .3090 .1021
5 100/20 100 3.125 .3280 .1081
5 100/20 200 6.25 .2985 .0981
5 40/10 400 12.5 .2800 .1652
5 20/10 800 25 .2900 .1619

6 100/20 100 1.56 .2975 .1003
6 100/20 200 3.125 .3095 .1053
6 40/10 400 6.25 .2700 .1381
6 20/10 800 12.5 .3150 .1424

number of the vectors resulting with negative likelihoods for each run is denoted X and the number of
these which were the observed vector is denoted w,. Figure BI presents a comparison of estimates &
as a function of (n/2"') for f (x) = I and f (x) = f where m = 5. It can be observed that as (n/25 )
increases the estimates 4& for the case f (x) = f approach the estimates a for the case f (x) = 1, both
approaching the region a= .3. In the case f(x) = f this is accompanied by a decrease in the resulting
number of negative vectors, as is indicated in Table B2. Based on a comparison with the case
f (x) = 1, the values n/2 5 where the estimates & for the case f (x) = f are considered adequate are
6.25, 12.5 and 25. The resulting negative vectors in these cases were w = 7, w = 4 and w = I respec-
tively as compared to co = 273, co) = 121 and Xo = 65 for the cases (n/25 ) = .625, (n/2 5) = 1.56 and
(n/2 5 ) = 3.125 respectively. It should be noted that for these last three cases the value of k x z is
equal to 2000 that is, a total of 2000 sample points, whereas for the previous three cases there were
only 1200, 400 and 200 sample points (k x z) respectively. A simple calculation yields 7/1200 = .006,
4/400 = .01 and 1/200 = .005 negative vectors per sample point. Multiplying by 2000 yields 11.67, 20
and 10 negative vectors respectively, still a small number compared to the other three cases hence the
number of negative vectors does decrease as n increases.
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Table B2 - Results of Simulation Experiments
Test specified for a - 0.3

Data Obtained with f(x) -f

Vector No. of Subsets Number or Estimate Sample Vectors with Numbcrof Observed
Length Size of each replications ora Standard negative vectors with negative

subset per case Deviation likelihood likelihood
m k/z 0 (/2') (A t w

2 100/20 20 5 .1950 .0973 l l l 
2 100/20 50 12.5 .2030 .0982 0 0
2 100/20 100 25 .1945 .0794 0 0
2 100/20 200 50 .1910 .0880 0 0

3 100/20 20 2.5 .2980 .0951 18 18
3 100/20 50 6.25 .2835 .0959 0 0
3 100/20 100 12.5 .2795 .0985 0 0
3 100/20 200 25 .2795 .0980 0 0
3 40/10 400 50 .2600 .1464 0 0

4 100/20 20 1.25 .3895 .0936 69 69
4 100/20 50 3.125 .3130 .1058 0 0
4 100/20 100 6.25 .2855 .1003 0 0
4 100/20 200 12.5 .3060 .1162 0 0
4 40/10 400 25 .2925 .1403 0 0

5 100/20 20 .625 .4785 .1231 273 273
5 100/20 50 1.56 .3715 .1179 121 121
5 100/20 100 3.125 .3600 .1094 65 65
5 60/20 200 6.25 .3233 .1006 7 7
5 40/10 400 12.5 .3075 .1607 4
5 20/10 800 25 .2850 .1631 1 l

6 100/20 100 1.56 .3835 .1010 113 113
6 50/20 200 3.125 .3440 .1067 31 27
6 40/10 400 6.25 .3000 .1468 14 4
6 10/10 800_ 12.5 .3400 .1578 9 1

Vectors with negative likelihoods indicate an unstable correlation function. As the number of
rows (n) increases the correlation function begins to settle at about its theoretical value 1 and the
number of negative likelihood vectors decreases. The larger the number of outcomes (2m) of the popu-
lation from which the distribution is estimated, the larger the number of rows (n) must be for the nega-
tive values to begin to disappear. The reason is illustrated as follows:

Consider the term

rizzi.
i<j

The number of additions or the cardinality of the set

((ij): i < j, i = 1, .. ,m-1; j = 2, . m)
increases as m increases. The same happens for higher order correlations. Even as ri- 0 fast the
increased number of additions counteracts this effect somewhat as m increases. Hence for larger m's
the rate of decrease of vectors with negative likelihoods decreases even though the actual number of
negative vectors continues to decrease as n increases.
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)

Fig. BI -Estimates & vs (n/25 ) for .f(x) = I and f(x) = f; m = 5

In the procedure used whenever the observed (n + 1)st vector had a negative likelihood it was
assigned a very small probability and was automatically rejected. The overall rejection criterion was
fixed in all cases at a = .3. The sample estimate of the probability of rejection & is very sensitive to
the correlation function effects. Two effects can be distinguished: first, correlation term values that
deviate significantly from f(x) = 1 tend to misrepresent the probability distribution; second, this same
fluctuation generates a large number of negative observed vectors which inflates the proportion of rejec-
tions as such vectors are automatically rejected. Except for large ratios (n/2'n) a large proportion of
vectors with negative likelihood turn out to be the observed vector. This is the vector not included in
obtaining the Bahadur representation. A possible explanation is that the Bahadur representation tends
to represent its source. Independent of other properties of the test this is a desirable property in the
sense that the test serves its purpose as a discriminating tool. All of these effects subside simultane-
ously as n or (n/2m) increase.
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Figures B2 and B3 are plots representative of the density obtained in a Monte Carlo run for two
cases of m and n estimating a. The two cases are m = 6, n = 100, f(x) = I and m = 6, n = 400,
f(x) = f. The respective values of k and z are 100 of 20 and 40 of 10, hence the densities are for 100
and 40 points respectively. The respective means are a = .2975 and a- = .3000. The respective 95%
confidence intervals using the factors s/lfk as mentioned above, are [.2778, .31721 and [.2545, .34551.
In both cases the confidence intervals contain the actual value a = 0.3.
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Fig. B2 - Sample density function for estimates of a, m = 6, n = 100, f(x) = I
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In each Monte Carlo run to estimate a, the first n x m matrix of O's and l's was printed along
with the corresponding value of f(x) for each row vector. Relative frequency histograms of the n
values A(x) were plotted for each case (m, n). These plots revealed the expected result that as n
increases for a specific m, the spread of values of f(x) go towards a spike at 1. An example is the case
m - 5 and n - 800 plotted in Figure B4. The mean value is f(x) - 1.037 with standard deviation
0.251. Figure B5 shows a plot of values of f(x) for mn - 5 as a function of values n - 20, 50, 100,
200, 400 and 800. The values f(x) consistently overshoot their theoretical value f(x) - 1. For
values of n greater than or equal to 200 the estimates are deemed close enough for an adequate approx-
imation to the probability distribution they attempt to represent.

f = 1.037
Sf = 0.251

I : I I I

Fig. B4 - Histogram of values of f(x), m = 5, n = 800

Finally the power of the test was considered. The same Monte Carlo procedure was applied where
the observed vector was now generated from an alternate distribution. Two alternate distributions were
considered. The first one was one in which all vector elements were independent, identically distri-
buted (iid), Bernoulli random variables with p = .1 and the second one was one where all vector ele-
ments were again iid, Bernoulli random variables with p = .5. For each of these distributions a Monte
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Fig. B5 -Mean values f(x) as a function of n

Carlo run was conducted first using f (x) = 1 and then using f (x) = (x). The computed proportions
now represent the power of the test. The case tried was m = 5 and n = 200. Not only did the test
appear to discriminate well but also no appreciable difference was noted between the cases f (x) = 1
and f(x) = f(x). Figures B6, B7, B8 and B9 show plots of the relative frequency histograms resulting
in estimating 1-/3 the power of the test for all cases considered, where f3 is the probability of a type II
error, that is, of incorrectly accepting the (n+ 1)-st vector. The figures show lower power for the case p
= 0.5 as opposed to p = 0.1. For p = 0.5. the power is approximately 0.70; for p = 0.1 it is approxi-
mately 0.90. This is as it should be since p = 0.1 is "farther" from the simulated case than p = 0.5,
which was closer to the simulated probability vector (0.2, 0.4, 0.6, 0.8, 0.8). The test for this two cases
discriminated very well.

The Monte Carlo evaluation indicates that & is approximately a for both m and n large, that f gets
close to f(x) = I as n increases and that the power of the test increases as "differences" between the
base case and the (n+ 1)-st vector increase.
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100 observations
mean (1 - j) = 0.9320
STD. DEV. = 0.0505

0.80 0.85 0.90 0.95

(1 -P)
Fig. B6 - The power of the test for m = 5, n = 200, f(x) = I and p = 1

60 observations
mean (1 - t) = .9375
STD. DEV. = .0525

0.90

(1 - A

0.95 1.0

Fig. B7 - The power of the test for m = 5, n = 200, f(x) = .?and p = .1
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I I I
0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

(1 -)
Fig. B8-The power of the test for m = 5, n = 200, f(x) = I and p = .5
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mean (1-() = .7100
STD. DEV. = .0990
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Fig. B9 - The power of the test for m = 5, n = 200, f(x) = I and p = .5
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Appendix C

DETAILS OF ANALYTICAL FORMULATION

The particular data structure considered in the analytical formulation of the problem shows that it
may be the case that the probability of false rejection where applying the test approaches the
significance level a as m the vector length, increases. For any vector length m there are 2m possible
binary outcomes or members of the population of vectors of length m. The analysis consists of letting
n = 2m where all binary vector elements consist of independent, identically distributed Bernoulli ran-
dom variables with the probability of a 1 given by v. There are (2m)2 possible outcomes from which
the Bahadur representation may be obtained. To each of these outcomes one may associate 2m possible
(n + 1)-st or observed vector yielding a total of (2 fl)2m+t elementary outcomes. The case where the
observed vector comes from the same distribution as the set of first n = 2' vectors is considered first.
Specifying a, evaluating N for each outcome, and applying the rules of the test one may establish an
association between a and the actual probability of false rejection. Both the cases m = 1 and m = 2
were discussed in section 5. This appendix presents further results on the analytical approach. It deals
specifically with the case m = 2. Applying the rules of the test by direct enumeration one obtains that
the possible values of N are either 0, 1, 2, or 4. Here the test indicates that for ax E (0,1/41 one rejects
the null hypothesis if and only if N = 0, for a E (1/4,1/21 one rejects if and only if N < 1 (N = 0 or
1) and for a E (1/2,1) one rejects if and only if N < 2 (N = 0, 1 or 2). The case a = 1 is not realis-
tic and should be ignored as a triviality. By allowing the (n + I)-st vector to come from an alternate
distribution in this case each vector element a Bernoulli distributed independent random variable with
probability of a I given by t one may then analyze the resulting probability of rejecting the null
hypothesis correctly, that is, the power of the test. Consider the analysis for the case m = 2. In this
case there are 256 outcomes from which the Bahadur Lazarsfeld representation may be obtained. To
each of these outcomes one may associate 4 possible observed vectors yielding a total of 1024 elemen-
tary outcomes to be considered. These were listed in detail and the functions prI(v), Pr 2 (v) and pr3 (v)

were obtained along with their corresponding power functions I - Pt, I - /32 and I - 133. The value of
N may be 0, 1, 2 or 4, yielding three intervals in which a may assume values, I, = (0,1/41, I2 =

(1/4,1/21 and 13 = (1/2,11. To each of these intervals correspond one pr(v) function and one 1 -i
function as indicated by the respective indices. The functions pr(v) are of the form

9
pr(v) = a, avtO1( - v)i

1i=1

where the aj's are positive integers depending on the number of outcomes corresponding to each case
or to possible values of N. The functions are symmetric such that for each term a vx(1 - v)y, x ;• y
there corresponds a term b vy(1 - v)X where a = b. The probability of rejection functions and the
power functions for the case m = 2 may be obtained by listing the 1024 elementary outcomes and their
corresponding values of N. One may then single out those events that correspond to a rejection of the
null hypothesis for each of the three subintervals where a assumes its values. The events for which
N = 0 are rejection events for a e (0, 1/41, the events for which N = 0 or 1 are rejection events for
a e (1/4, 1/21, and the events for which N = 0, 1 or 2 are rejection events for a e (1/2, 1). One asso-
ciates to each event its corresponding probability and add the event probabilities corresponding to each
subinterval where a assumes values. Table Cl lists the probability of false rejection functions pt (v),

Pr2 (v) and pr3 (V). The first column lists the aj accompanying each term for the function P, (v) which
corresponds to all cases N = 0 or a E (0, 1/41. The second column lists all numbers of terms that
must be added to p,, (v) to complete or form the function p,2(v) which corresponds to the cases N = 0
or N = 1 (i.e., a E (1/4,1/21). The last column lists all number of terms that must be added to pr 2 (v)
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Table C1 - Functions pr ('), P. (v) and p,3 (V)
9

Each pr(v) = a vI- (1 -v)i
.1=l

a1 terms additional additional

Term for aJ terms a, terms
for for

aE (0,1/4] a e (1/4,1/21 a E (1/2,1]

v9-V) 2 -

v
8

(1-v) 2 9 8 -

v 70_01 20 16 24

V 6(1- V)4 34 60 24
v 5 (1-v) 5 42 102 -

v_4(1-V)6 34 60 24
v 3(1-V)7 20 16 24
v 2( 1-v)_ 9 8

v(l-v)9 2 - ,

to complete or form the function pr 3 (V) which corresponds to the cases N = 0, 1 or 2 (i.e.,
a E (1/2, 1]). Another way to interpret Table Cl is that column 1 consists of all probabilities for which
N = 0 column 2 consists of all probabilities for which N = I and column 3 consists of all probabilities
for which N = 2. Table C2 lists the power functions 1 - A3, I - 12 and I - 3 in a manner similar to
Table C1. The power function 1- / consists of sums of terms of the form

a vx(1-v)Y tr(l- )S

where x + y = 8 and r + s = 2; xy = 0,1,2, .. .,8and rs = 0,1, 2

The function prt(V) has range [0, .173], p,2 (v) has range [0, .430] and Pr3(V) has range [0, .523].
Their curves are plotted in Fig. Cl. The power curve I -,A, I - 132 and I -_ j3 are plotted in Fig. C2
where v = .10. Figure C2 indicates that the power of the test behaves as it is supposed to for most of
its range. The more dissimilar the values of v and t the higher the power of the test. Figure Cl illus-
trates the beginnings of the conjectured behavior for Pr(v) as m increases and a becomes small. The
case a E II, should be of particular interested to the reader in relationship to the conclusions reached
in the text section of this report.
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Table C2 - Individual Terms for the
Power Functions 1-13I, 1-132 and 1 -13.

a terms additional additional
Term ~~for a terms a terms

0 Term for for for

a E (0, 1/4] a E (1/4,1/2] a E (1/2, 1]

v8 t(1- t) 2
v8 (1- t)2 1
v7(1- v)t 2 0
v7 (1- v)t(l ) 8 8
v 7 (1- v)(I1- t) 2 8 0

v6 (1- v)2 t2 0 0

v6 (1 V)2 t(1 -t) 12 8 24

V6
(1- V)

2
(1 - t)

2 24 4 0

v5 (1- v)3 t 2 0 8 0
v5(1- v)3 t(1 - t) 8 48 0
V5 (1 - V)

3
(1 -t)

2 8 47 0
v4

(1- v)
4

t
2 2 8 24

v4 (1- v)
4
t(1 - t) 26 8 2

V_4(I- V)4( -_ t)2 2 8 24

v3 (1- v) 5
t
2 8 47 0

v3 (1- v)
5
t(1 - t) 8 48 0

V 3 (I V)5 (I - t)280__________________ ~0 8 0

v_2_(I V)6t2 24 4 0
v 2 (1 V) 6 t(1 -t) 12 8 24

V 2(1- V)6 (1 - t)2 0 0

v(l- V) 7 t2 8 0

v( - v)7 t(1 - t) 8 8
V( - V)7(- t)2 o0 -

(1- V)8 t2 1 -

(1 - v)8 t(1- t) 2 -
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Fig. Cl - Functions p,(v) for the case m 2
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Fig. C2 - Power functions (m = 2, v = .1)
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