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PRECISE ANALYSIS OF AN OPTIMAL PERTURBATION
ESTIMATION AND CONTROL PROBLEM

1. INTRODUCTION

There is considerable interest in state-estimation problems in which a state variable evolves
according to linear dynamics with additive Gaussian white noise and in which linear state measurements
are available which are also corrupted by additive Gaussian white noise. There is also interest in associ-
ated control problems in which the control enters the dynamics linearly and in which the objective is to
find a feedback control law, which specifies the current control as a function of the currently available
state measurements, that minimizes the prior expected value of a quadratic performance criterion.
These cases are important partly because they are the forms resulting from first-order descriptions of
noise-induced perturbations from nominal behavior in a wider class of state-estimation and optimal-
control problems.

If the description of these perturbations is carried out to one higher order of accuracy, the effect is
typically to introduce quadratic terms in the dynamics and state measurements and cubic terms in the
performance criterion of the control problem. The resulting estimation and control problems can often
be rescaled so that the state, control, and measurement perturbations are of order unity, and the
coefficients of the added higher-degree terms become the relatively small quantities.

A formal analysis has been made [1] of a class of estimation and optimal-control problems with
this latter type of structure. The results had the formal appearance of giving approximations to the con-
ditional probability density of the current state, given the currently available measurements, for the
state estimation problem, and to the control generated by an optimal control law, in the control prob-
lem, which were accurate to first order in the small coefficients. Similar formal results were obtained in
Ref. 2 for the corresponding "smoothing problem," i.e., an approximation to the conditional density of
the current state given future as well as past measurements. Approximations of this sort are of interest
because they show how the solutions start to change as the problems begin to depart from the familiar
linear-quadratic-Gaussian form. And if such an estimation or control problem arises from the sort of
higher-order perturbation analysis described above, this degree of accuracy in the solution is all that is
formally consistent with that of the problem formulation anyway. Also, the first-order approximation to
the conditional state probability density in all cases has the interesting property of being (at least in for-
mal appearance) the first-order Edgeworth expansion of that density. Questions naturally arise about
the validity of this formalism, however, namely as to the exact sense of the first-order accuracy and the
range of conditions under which this accuracy holds.

Some mathematically precise answers to such questions are developed in this report for the sim-
plest nontrivial case of a scalar discrete-time problem in which the only higher-degree term present is a
product of the state and noise variables in the dynamics (state-dependent process noise). In particular,
limits are established on the error in the first-order formal approximation to the conditional state den-
sity, for all but a set of realizations of negligible prior probability, which are sufficiently strong to
guarantee that the corresponding formal first-order approximation to the optimal control is indeed accu-
rate to first order in the perturbation parameters. Furthermore, the number of epochs in the estimation
and control problems can go to infinity as the perturbation parameters approach zero, while the validity
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of these results is maintained. In order to establish the accuracy of the optimal control approximation,
it was found necessary to establish limits on both the size and the fluctuation of the error in the condi-
tional state density approximation for the corresponding estimation problem, the latter limit being in
the form of modified Lipschitz conditions.

Because of their limited scope, these results are more exploratory than definitive. The hope is
that they can serve as a guide to what sort of results could be achieved and what some of the
phenomena are that might be encountered in a more general investigation. Even in the limited context
here, rather elaborate constructions seemed to be required in the analysis, and the proofs become
highly computational. One difficulty, for example, is that the conditional state probability density actu-
ally diverges for very large values of its argument. Presumably, some corresponding pathology would
also arise in the continuous-time version of this state-estimation problem. Thus it might be useful to
devote some effort to developing more sophisticated and elegant concepts and methods for dealing with
the phenomena encountered here before proceeding with this sort of mathematically precise analysis in
more general contexts.

2. THE STATE-ESTIMATION PROBLEM

We consider a discrete-time state estimation problem in which a real, scalar state variable x
evolves according to the transition equation

xi+1 = fix i + u; + (I + tpix j)wj; i = 0, N -., N-1, (1)

where f,, u;, and qi are known parameters and the w, are independent zero-mean normal random vari-
ables with variance var (w,) = qj. At each epoch except i = 0, a noisy measurement of the current state
is received, and

zi = xi + ni; i = 1 ... ,N; (2)

where the ni are independent zero-mean normal random variables, independent of the w,, such that var
(n,) = r,. The initial value x0 of the state is, a priori, a normal random variable, independent of the w,
and ni, with mean xo and variance v0. It is assumed that there are positive constants F, Q, and R such
that

1 > If I > F; i = O.., N-1;

IqjI < QF2; i= 0, . N-1;
R < vo < Q;

and

R < IrI < Q; i=1, N.

The quantity h, defined as

h = max II: i = O.. N-1),

is treated as a perturbation variable in the ensuing analysis. In other words, for fixed values of the
other parameters in the system of Eqs. (1) and (2), results are obtained as functions of h for all 0i
sequences with this maximum magnitude, h generally being considered a relatively small quantity. A
further restriction is assumed for the parameters of the unperturbed problem; this is described in a later
section. For convenience, we also denote the sequences
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Z = {zl, . ,); i = 1, N

and

Y1 = {uo, ui}; i= 0...,N-1,

with Z0 denoting the empty sequence.

The basic objective here is to establish error bounds for certain approximations of the conditional
probability density functions of the state

p(xi+I/Z,); i= 0...,N-I
and

p(xl/Z1); i = 1, . N.

In the unperturbed problem corresponding to Eqs. (1) and (2), h = = 0; i = 0, . N. , - 1; and it is
well known that these conditional state densities are all normal. Their means and variances are given
by a simple case of the standard Kalman-Bucy filter, the variance equations for which are listed. here for
later reference:

Ai+, = fi 2pi + qi; i = 0. N - 1 (variance of p(x 1+l/Zi)); (3)

Pi = ; I = 1, . N; po = vo (variance of p(xl/Z;)). (4)
Ai + ri

For nonzero values of h, however, these densities do not even exist in general for large values of their
arguments. For example, it is shown in Appendix A that if q 0 and q0 are nonzero, then px, (/I/qo) does

not exist, in the sense that

lim 1 Pr I- e < xI < - + elk=
C-0 I 2E I 00 'Po

Hence it is only reasonable to seek approximations to such probability densities within wide but
bounded ranges, which leads to the somewhat elaborate approximation concepts considered here.

3. ESTIMATION EQUATION SYSTEM I FROM FIRST-ORDEPU FORMAL ANALYSIS

A formal analysis similar to that described in Ref. I suggests that the above conditional state den-
sities can be approximated to first order in h, in some reasonable sense, as those corresponding to

e2

Px-; (/j- d [I + - ?7ij+i t- 3t)] (5)

and
f2

Pxi- (/;- [1 3 r jt- 3t), (6)
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according to the well-known formula for the transformation of probability densities, where x,;1 , xi,
mi+1, v;, qi+1, and qj are the functions of Zi specified by the following equations, called Equation Sys-
tem I for future reference:

x,; = f xi + U,; (7)

m,+I = f12 v, + qj (1 + P j Xj)2; (8)

; - t fj21,l 13 2~ + 3qj tpi(1 +I +ij) (9)

_iIvI

Xk = xi + (Z, - xi) + |rI i r, 7 [(zi _ X, 2 -(mi + ri); *co as given; (10)
mi + r, I m + r,

m, r, [ 'h/ 7 rrji (z1 - xi) 12
V = + i + ( + )2 ; v0 as given; (11)

and

Xi= Ij2 ri, J ; no = 0. (12)

3.1 Further Restrictions Assumed for the Unperturbed Problem

In terms of the unperturbed problem parameters, let

b = k max [gi,,p, 1)

and

a = I min (i, pi)

for some constant k > 1, and let Gj(h, k) denote the set of sequence pairs (Z,, YjI) for which, for all
(00 *- . . N-d) with max tIti 1 = h,

Condition 1: 17jl, 1q171 < 3h2f;

Condition 2: lvjl, mjl E ([a, b];

Condition 3: lx;|, I3xj < ln (1/h);

and

Condition 4: (z - x) 2 < 8 In (1/h)
mj + rj

for j = 1, . i. , i and i = 1, ... , N. It is further assumed that the unperturbed problem parameters Ro,
v0, Ifj, qj, rj+ ; j = 0, ... , N - II are such that there exist a k > 1 giving a and b as above and posi-
tive numbers h and c, such that for every h < h and every i = 1, . .. , N, (Z,, Yj_ ) E Gj (h, k) if

max(ixo - col, Inil, Iwol, max {IwJ , InjI1) < c In 1/ h)

and

max{Iu1 : j = 0, i - 1) < c ln (1/h).
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In this case, it follows easily from the independence of x0 , the wj, and the nj and from the inequality
( 2

Pr[ lx |I< < < /;t > 0; (13) .

Ir

for a standardized normal random variable x that, a priori,

C
2

Pr((Z1, Y,_.) e G,: i = 1, ... , - I 1- /2 1 (l/h)'

where

cr2= maxjv0 , q0, max Iqi, r1}},i-I.N

if IuiI < c In (1/h) for i= 0...., N - 1. This bound is significant because, even if the numlber of
epochs N grows in perturbed problems vith decreasing h as

N = ln (1/h),

so that lim N= co, this prior probability, and hence also that of (Zi, Yj->) E G, for i = 1...., N,h-0
approaches unity in the limit as h - 0.

As a verification that the ensuing analysis does not take place in a vacuum, it is shown in Appen-
dix B that the preceding assumption is indeed valid for the specific case in which

io= 0,

Vo= 1,

fi = 1/2 i i=0 . N-1,
qj= ri = 1 J

with k = 12, h = e- 5 , and c = 0.02.

3.2 Lipschitz Conditions

For future use it is helpful to define

Xi = as V ; i 1, . N (14)

and

XAi, =i; 1
3/2; i =0 N; (15)

which are first-order approximations for one half the third central moments of the conditional probabil-
ity distributions of x; if, respectively, Zj_ and Zi are given. Equation System I can also be expressed
in terms of these variables if we use Eq. (15) to replace qi by Xi in Eqs. (10) and (11) and replace
Eqs. (9) and (12) by

A = 13 X + 3ft v; qjti (1 -i ( ii) (16)
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and

i I r; |, I + rmi,, (zmi x* | r; od0(7

Lemma 1: In the context of the previous sections there exists an h* > 0 such that if h < h* and
if, for any i = 0, ... , N, (Z7, YjI) and (Zi, YjI)' E G, differ in at most one component, whose values
are denoted respectively by p and p', then

ixi [(Zv , Y,.1)] - vj[(Z,, Yi. I)'I I < r iP - p', (18)
1Vi [ (Zi, Yj_1) I- v [ (Z;, Yj_ IA I < F i hlp - p '|, (19)

and

IX, [(Zi, YjI)] - X[(Z,, Y,. 1)'II < T, h2 lp - p', (20)

where rT is defined by the recursion

Fk+1 = 1 + 4 + 2 + 2 J(, + 3Q) + -R2 + 4( 12 + | J + -2 +3Q + R |rk;

k= 0..,N-1; 0= 0.

Proof: The conclusion is trivially true for i = 0. Assume it is true for epoch i. Then it is pri-
marily a matter of computation to express xJi+, vi+1 , and Xi+, as explicit functions of x; i, Xi, A i,, and
zj+I via Eqs. (7), (8), (10), (11), (16), and (17), obtain the partial derivatives, apply the results in
Appendix C for Lipschitz conditions of composite functions, and use the inequalities involved in the
definition of Gj+I and the fact that the definitions of G, and G~j~ imply that every initial segment of a
sequence pair in Gj+, at epoch i is an element of G, to show that inequalities (18) to (20) hold under
the conditions of Lemma 1 for epoch i+1 with

IFi+= 1+-+[12+ 2+ 2 (1.A+3q,)+6 b + 4b - il + I1 I+ 3 b
ri+I ri+I ri+1 ri+I ri+I

+ r2 13f l+3qi +6b ||Fi,

at least if h is less than each of some finite set of positive values which are needed to imply various
computational inequalities but are independent of i. Using the inequalities for I qi, If t, and I r+ I in
the problem formulation, we can then show that the conclusion of Lemma 1 holds at epoch i+1 for h*
equal to the minimum of this finite set and h of the preceding section, which is a positive constant
independent of i. Hence, Lemma 1 follows by induction on i. cl

4. APPROXIMATION OF CONDITIONAL STATE DENSITY

In order to develop an induction argument, we next consider a generic epoch i < N - 1, delete
the subscripts of

Al, xi, ui, jin, , Xj, ivji, 1 j, zi+ 1, 0 i, ci, Di, Mi,

6
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the last four to be defined shortly, suppress conditioning on Z7 in the rotation, and denote

P x-x ( t ) e [I + I z7 ( - 3 t) ]

and
2

a (t) = 27T e2 (PX-. (t)- x-i

if the density Px_- exists at t.

4.1 Assumptions at Epoch i

For the purposes of Sections 4.2 and 4.3, the following four conditions are assumed for epoch i:

Assumption : For all tsuch that Itd < M, where h- ml I M h-"/, p 0) exists (at least
4 4

as a Radon-Nikodym derivative of the probability distribution function of which itself is clearly

well-defined since only Borel-measurable functions of Gaussian random variables ever appear here),
and

la(t)I < Qh2el'I, where fl < h-

Assumption 2: Pr | > t < ke 2, k = 2i + 1, for all t > 8h

Assumption 3: (Z7, Y>-1) E G, and (Zi * z, Yj_ * u) E Gj+1, where * denotes concatenation.

Assumption 4: If (Zi, Yjj)' E G, and differs from (Z7, Yi-1) in at most one component, whose
values are denoted respectively by p' and p, then

lIa(t, p) - a(t, p')I < e21'1 (Ch 3 + Dh 2Ip - p'I) if ItI < M

and

I (tp) - a(s, p)I < e2maxI t I Is) (Ch 3 + Dh 21s - tl) if IsI, Itl < M,

where C < h-1/4 and D < h-

4.2 Linear Transformation

Applying the well-known formulas for the transformation of the probability density for a function

of a random variable to (y - 5), where

y = fx + u,

y = fx + u,

7
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and

m = f2v,

we can show that its density exists at t for I t I < M and that there

P17( i = Px-, (W).

Hence,

a~t = e 2 p, (t-+ + 3 (t-t~ O (t).

Lemma 2: In the preceding context, Assumptions 1, 2, and 4 of Section 4.1 hold with x, x, v, a,
and Yj, 1 replaced respectively by y, y, v, a, and Yj1I * u, where (Z7, Yj-1 * u)' must be such that (Z7,
Yj- )' E G,.

Proof: Assumptions 1 and 2 are established by the preceding remark and a few simple algebraic
manipulations. Assumption 4 follows from the fact that ,x is independent of u, from Assumption 4 for
a, and from the fact that , = a.

4.3 Addition of Process Noise

Now let

y = x + (1 + Ax) w; w = Wr (21)f
and define the random variable

5= y-i

where

m= 21 =V+ q(I +t) 2; q j= f2

Then, since IipiI < 1 by the assumptions of Section 4.1,

s=t++/T(1+q (1+ I + tq t

where to is a normal (0,1) random variable and
,2

) e 2E2 [ + 1 (t3 - 3E2 t) +a (22)
11E 3E3 alI

for Iti < E M, wheree = . Let

r = V (I+ 2,

8
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r= | 1 + V't tlx (23)
1 +x 

g = a r, (24)

and

L = EM.

At this point, we also assume that qj • 0, so 0 > 0. If qj = 0, Lemmas 3 to 5, to be proved later in
this section, are trivially true.

Since s = t + g, it follows that for any A > 0

Pr(sE[0, 0 + A)) = Pr((t + g) E[H, 0 + A) and ItI > L)

+ Pr((t + g) E [0,0 + A) and ItI < L). (25)

We partition the first event in Eq. (25) at

where

and

Now,

kUo (Ek U Fk ),

Ek = {tg: (t + g) E [0,0 + A) and tE (-L - (k + 1)A, - L - kA))

Fk = {t,g: (t + g) C [0,0 + A) and tE [L + kA, L + (k + 1) A)).

Ek C {t,g: t E A, g E B),

where

A = (-L - (k + I) A, -L - kA
and

B = [H + L + kA, 0 + L + (k + 2)A),

so

Pr(EkJ < Pr~g E B/t C a) Pr(t C A).

For nonzero (, the density pg,(5t) exists such that
_ 2

e 20u2(1 + 46t)2 ift•', -

Pgit(e) = /21T 2(1 + ot) 2
= 1 + ,tii

0 ift=-.

For a given (, this density is maximized over all t if

a(1 + ct)2=2

in which case

Pg/, t() = 1

9
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Hence, since all the events and probability measures are well-defined,

Pr~gEB/tEAi = Je Pr~gEB/ti dP(t/tEA)

< ' [2A maxpg/,(x)] dP(t/tEA)"tEA 6EB

< JEA / dP(t/tCA) if 0 > -L + 1, by construction of B
2tA Yf 2e

< 2 e dP(t/tEA)= 2A-,27eJ E A J2ir e

Therefore, 2A
Pr{EkJ < Pr~tEA) if 0 >Ž -L + 1.

Similarly,l

Pr(Fk) < 2A Pr[tE[L + kA, L + (k + 1)A)) if 0 < L-1.

For IH I < L - 1, it follows from the definitions of Ek and Fk that

Pr(S C [0, 0 + A) and It I Li = Pri U (Ek U Fk)i

=~ ,[Pr{ Ek I + Pr Fk3]
k=0

2A 07T , [Pr~tE (-L - (k+1)A,-L-kA]i
27ek-0

+ Pr(tE [L + kA, L + (k + 1)A)]

2 [Pr(t C U(-L - (k + 1) A, -L - kA])

+ Pr~t C U [L + kA, L + (k + 1) A))]
k-0

(since the k-indexed intervals are all disjoint)

-2A= 2, Pri I|t I L) by construction

< A Pr(ItI > L).
2

It is shown in Appendix D that this inequality implies that the measure on the real line induced by the
quasi-distribution function

Fs(H,L) = Pr[s < 0 and |It I > L)

is absolutely continuous with respect to Lebesgue measure, so that Fs(a,L) has at least a Radon-
Nikodym derivative PS (0,L), and such a derivative exists with

0 < p5(0,L) < Pr|ItI > L)

for |H I < L - 1. Using the usual abbreviations for probability density notation, we have

Al
_e2

p(s,L) < Pr(It| > L} < 2fh2 qe(M-1) +D(M) + rB ,3 e d(, (26)

10
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where (D denotes the tail of the standard normal distribution, since

ItI > L X > M.

It is well known that for M > 0
Im2

H e 2 1 e 2
b(V(A') = ;d6 < -

2ir M F2ir

and it follows from repeated integration by parts that

oo _ 6 M2

JM 3 e 2 df = (M 2 + 2) e 2

Using these inequalities in Eq. (26), we can show that

M2

P (sL) < I M2-f 2eM+I + M2 + 21

- 2 e t+ ' h2 J e(S12- M2+2M-21sl) +M2 +2+ 1 (s2 -M 2)- 1

=|_ e ++ fAA 2 M-2+ e ,
_ 2'' ~ 2

1je[(M + Isj-2) (Mf-lIsI] (lv +2I

With M > 1 h- 1 8 , it follows for sufficiently small positive h and for Is I < EM - 6ViHY/0 that
4

-5-+Isl
p(s,) < Q2 h2e-81nQh) + (AP + 3) e-81n(1/h)l

-5 +1Is

< R1[Q h['0 + h7(1 + 3h) ], since M < h- (27)

Since t has a probability density function (in the sense of a Radon-Nikodym derivative of its dis-
tribution function) by assumption for arguments less in magnitude than L, the second event in Eq.
(25) can be evaluated as

s+L

f J-L P, (s - o-r) Pr/, (r, s - or) dkr,

where Xr denotes Lebesgue measure for the r variable, since s = t +o-r and the conditional density of r
given t is well-defined. Hence the results of Appendix D also show that the quasi-distribution function

FS (0,L) = Pr {s < 0 and ItI < LI

has a Radon-Nikodyn derivative p, (0, L) such that
s+L

p(sL) = J s-L P, (s - o-r) Pr/, (r, s - o-r) dXr (28)
or

11
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and therefore that s itself has a probability density in this sense (for arguments of magnitude less than
L-1) such that

p5 (0) = p5 (0, L) + p5 (0,L)

or, in abbreviated notation,

p(s) = p(sL) + p(sL).
The conditional density for r in Eq. (28) is

r2

p (r/t) = e 2 (1 + t) 1+tx(9P (rl O = ~~~~~~~~~~~~~(29)

To approximate this density in Eq. (28), denote

_ 2

e 2( + X)2

f(X) = /2r(1 + x) 2 (or zero if x 1),

where x now just denotes a real variable. Then, for r • 0,

f'(x) = f(X) I1 + | _ 1J (or zero if x =-1)

and

f"(x) - [| r '- 5 | r J2 + 2I (or zero if x =-1).

For r X 0, these derivatives are continuous for all x, so Taylor's theorem with remainder implies that

f (x) = f (0) + xf'(x) + 2 X2 f "(0),
2

for some 0 in the union of intervals [x, 01 U [0,x], where [0,x], is regarded as empty if x < 0, etc.
For r = 0, this argument still applies if Ix I < 1.

Therefore, for Is I < I , I using 0 (s - rr) to play the role of x we get

Pr/i (r, s-or) = />;[1 + r (s-Err) (r2 - 1)]

_2r2
1 r 2 l s-r 12 e 211+¢ (S~o)]2

2 f L + +(S- 2o) e[1 + (s-0H)]2

xll r 5 r + 21 (30)ii + (S - _ )J 1 +¢,(5jJ (30)

where 0 now denotes some value in [r, j U i-,rI which might vary with r and s. Applying Taylor's

theorem for a first-order expansion of f (x likewise gives
r2

pr/, (r, s - Err) = e + 2 s -+ 1+ ~ [1 + 0 s - 0)

12
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rI--

,-f( -)
-.t

(31) :-,
e 2[ + (s - opq)]2 r 2 _I

v1 + (s - 0E )]2 1 + X (S -E0-) I

for Isl < I, where the value of 0 is generally distinct from that of Eq. (30) but in the same range.

Substituting Eqs. (22), (30), and (31) in Eq. (28), and changing the variable of integration to u =

s -a r, gives the following for Is I < I-I:

p (s,L) = / j-

U
2

L e 2(2

f-L ~.27E

(S +)22 + 3L (U -3e2U)l I1,2r - 11 3+ I I

I(5 _ U)2 1I e 2(T2 (I + k,3)2 I
121rr2 (1 + <g,)2

+ 37 (u 3
- 3e2u)l I 2U2I

3e~ 12

11 (1+ _ ) ] - 5 | ( ++ 12 + 21 du + f L e |2-|2
Er ~ ~ u , - i i~~~. j , C II ______I u

(S _ U)2

e 2I 2

(s - U)2

e 2r2 (1 + 0) 22 s - u

/2i1r2 (1 + Oy)2 | E (1 + .y)
dXu (32)

where 6 and y C [u, 01 U [0, u] and vary with u and s. Completing squares in the exponents of Eq.
(32) and using the fact that r2 + E

2
= 1 by definition gives, after some manipulation,

e I2
p(s,L) = e/ 2 I + I 02 I2 + E,

where

(U -2s)2

= L + |1 + 3 2 - 3 U) I + Ou (34)

_ U2

rL e 2,E2
12 J. _ L f/2 E2

(s - U)2

e 2cr2 (I t o3)2 1 + 7I

r27T-r2 (1 + I3)2 3e

x |[ S-u ] - 5 [_ su l++ 21 U2du
I E (1 + 0B)i l0 (Il+ 0i3) J

13

+ cku [ [S u f2 _ I ||du

(33)

(u3 - 3E2u)I

(35)



W.W. WILLMAN

and

_ U2 (s - U)
2

(s - U)2

L e2e 2 e 2.u
2 e 2a 2 (1+ by) 2 If S- U ~2 ]

E a~ I I IIdX, 1 . (36)E __ e 2 ii- + U 2 2 (1 + oy)2 Er (I + 0y) | ] ja |

Approximation of 1,

Let t now denote a new variable of integration in Eq. (34) such that

s-x~~~~~~~~ Er2E

Then u = e (at + es), s x = as + E t, and
Er

Le s t 2

1' = j _ E _ fes [1 + cO + clt + c2t2 + c3t3 + c4t4 + c5t5 + c6t6]dt, (37)

where

c = E2 | L+0a2ls3 E(q+4¢E)s+ 13 [E2 O. 2 s6 -(1+ 2c2 )s4 + 3s2],
3 3

cl = Ea [71E + (3a-2- 2)0IS2-cr (r +t0E O71E Or [(6. 4 - 8r2 + 2)s + (8r 2 - 2)s3 - 6s],
3

= 2 + E2(I- 32)]S + kE [E2(15cr 4 - 100r2+ l)s 4 -3(2cr 2 - 1)2s 2 + 3E2 ],
3

= .= (,o2 + 30 E2) + 20- 10cE2[(j0 r4-l12 + 2)s3 + (4o.2 -3)s

C4= = 1 7qe62[(15cr 4
-20c

2 + 3)S2 + 2cr2 - 3],

C5= 23E r- 3E2(2-3a 2)s, and
-1

C6 = 3 Oq7 r4 E2 .

We now restrict s so that Isl < L also, which implies JEsj < L, so applying standard results for
moments of normal densities to Eq. (37) we obtain

11=1 + E- (q + 30o2)(s3 - 3s) + RI - R2 , (38)

where

R = [ [a 2E2 (s6
- 12s4 + 27s 2 - 6) + 3(1 - 3cr2)s2 ]

3

14
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and

R2 = JA .2,/11 n d7

and where A denotes L ESI U L
Since 0 • a ( 1, 0 < E < 1, and a-2 + e2

= 1 by their definitions, it is easy to show that E
2 e 2 • 1/4

and, after some manipulation, that

IRI < 0'" (s + 2)6
12

for any s. Applying inequality (E2) of Appendix E then gives

IR,| < ¢7e 26| elsl for all s. (39)
12 e4

Using the definition of 'f and the bounds assumed for v, i, and m,+i, we get

IRIJ < b121h2. (40)

Denoting s by 7 and L by ,tu for convenience, we have for all 0 > 0
or cr

Isl < L > 'J L + E > 0
E Er

and

T < - L -- < 0.
E Er

Hence, integrating by parts gives

R2 = ( (1 + co +c2 +3c 4 + 15c6) e 2dt + e 2dt

1', -A- 1 2 _ T21

+ (C1 + 2C3 + 8c 5)Ie 2 -e 22j + (C2 + 3c4 + 15c6) /Ae 2 -Te 2J

+ (C3 + 4C5) ,2le - -e 2J + (C4 + c)f 1b3 e -T 3e 2J

+ c5 ~p4e 2 -4e 21 + c6 [5e 2 - 5e 211

Denoting £f L + e - by B, we obtain the boLun1d
E Er

R B2
IR21 < Zer 2C6 B5 + C5 B4 +F 2 (C4 + 5 C 3' -t (r3 +F 4C5) B2

15
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+2 (c2 + 3c4 + 15c6)B + 2 (1 + c0 + c2 + 3c4 + 15c6)j,

since

e 2 du < 1 e 2

Since only values of B that are large compared to In (1/h) will be of concern here, it follows from the
sizes of co through C6 that this last bound for 1R2I varies essentially as

B2

J e2

for sufficiently small positive h. Since

B2

B > 3/InW77h= F e B < h
3 for h < -,

then

IR21 < Do < h_ elsI (41)

for B > 3 Nrin(TIh7 and h < -. This bound on B is implied by the condition
e

IsI < L - 6vi (i7h-,

because if e < 2 then B > -L (of order h-' 4); otherwise B > 2 (L-Is I).
r 2' 2 2

Applying the triangle inequality and Eqs. (38), (40), and (41), we get

II - 1 + .- (hE + 30cr2)(s 3 - < <b- h2elsl (42)

for sufficiently small positive h.

Bound on I121

For h < b-4, M < 1 and I*I < 1 by assumption. Since L < M, it follows that

I+I< 4 h

and

u I < L u Ifu < 3h
3

under these conditions. Hence for sufficiently small positive h,

(s - U)2 (s- U)
2

e 22(j + 4/3)2 e 2(1 + I3)2

r2Ta -2(1 + 08) 2 2To-2(1 - 3 h
V ~~~~3

16
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ifp E [u, 0] U [Ou], and from Eq. (35),

112 1 < 1 + 3n (u3 - 3u0

(44)x 2 1-U1 + 61 S U12 + 2 U
2
dU.

C I e o f E ( a 

Completing the square in the exponent of Eq. (44) and using the fact thate 2+aT2 = I, we get

121 < 3

3

e
2(1 + 2o /h+ Iff2h)

3 9

V27T(1+ 2 (cr2Vih + 1I 2h )
v 3 ~~~~9

xf JLI 2 i + '7 (u3-3u) 2| S-U + 61 s_-u I + U 2 d
--L -,/2-7-rv3E3 o (45)

e2Er2 1+ Irh]
and v =

1+ 3E 2 12+ 3J ] I+ I o. 2 rh2+ +I rh1

Now, for s > 0 and k > 0,

tcrk/7 (2+ jV~) +2~ k < 243 +3 c ) 2 v (2+ 3 -

! 1 a 2 12+ 1 <2k

3 O' ~~~+~ -ofh2+ [h{ + / J

<- _52 + ks.

2[ 1+3 a 23/ 2+ 3fiIJ]

17

where

E2S
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Since a 2- 1,

Is, < 2k =Ish 2[1 3 -- + kIs|

211+ o-2- ( 3J1j 1[h
for both positive and negative s for all sufficiently small positive h. Using
(45) leads to the bound

I2 _ 2 IS1
121-< e e 8

3

this result for k = 1/8 in Eq.

(uU-i)2

C0 0 e 4E21,2

J-OD Vr4;\ 2cr 2

I -3 S_ 14 S U 2 12
x i + "IIU _ 3 Ul 21SU + 61S +2|u du3 j -E3 E J O II J E J 2

for sufficiently small positive h, since

Isl < L i e Isl < E . ( 6 Is Ib u < 2e b8)

Since 1| 1 < 3hal- by assumption, the integral in Eq. (46) is bounded by

(u-ii) 2

00 e 4,20,2

f- 0V7 22 Ii+ h/- U+3 3 |2 S-U+6 SU + 21 U du

by the triangle inequality and elementary properties of integrals. Changing the variable of integration in
(46) to

u-ula= tti-

leads to the inequality

e12 2 8 8t | e~ -/ I|1 + hf2-b[It+ ISsl)3 +3(t+ Isl)||1 21 < e-28 1v2 

x [8(t+ Is1)4 + 12(t+ Is1)2+21(t+ IS1)2 dt

for sufficiently small positive h, since a- and E • 1, and since

U = a- t +
E

S-U = VEt +
or

ES

a-l+ I hS

1+av2h/ 2 + 1 V

18

(46)

and

(47)

I+ 1 �,2 -\I-h 2+ 1 rh-
3 1 3 1
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so u- F2(ItI+ Is) and Su -r2-(ItI+IsI)
E a

for sufficiently small positive h. Also, for sufficiently small positive h, the bound of (47) is smaller
than

Se2 + S1 j2
be 2 8 |-J2C e 2 [512(t 6 +s6 ) + 192(t 4 +s 4 ) + 8(t2 + S2)] dt

by inequality (E2) of Appendix E, and by inequality (El) of that appendix and standard results for nor-
mal moments, the integral in this expression is less than

256s6 + 96s4 + 4S2 + 4132 < 256(Is I+2)6 < (256)4(7) e8
e4

Substituting back into inequality (47) and using the definition of lo I, we get

1 2 '2 < |8|(8VM (256)(117649) b h2 e 2 esl (48)

for sufficiently small positive h.

Bound on E

From Eq. (36)

2(s-u)2 1
E L lul e- 2c e~ 2(,2 d

E =2 E2 aF27r eI2

U2 (Su)2

L ul e 2E2 e 2o2(1+4y)
2 s-u 2

+a e , 2#a 2(l+4y) 2- 1 u d o". (49)

By assumption | < nh 2elul'' for lul u L. By the triangle inequality for integrals, the first of the

two terms in Eq. (49) is bounded in magnitude by

__ I2 (S-U)2

f h 2 JrL eulel e e 2ra2 du.
-_L v25;E ;2 7 

Completing the square in the exponent gives this bound as

S2 O'2 _ (U-e2 s-a 2 E)2 (U-E2 S +U2 E)2

2e 2 2C 0 e 20,
2
e

2 fs CL 2ef2 2
f h 2 e 2 L r -i du +e 2 Jo- 2

Since the integral of a normal density over a finite interval is less than unity, this bound clearly implies

_ U2 _ (S-U)2

fLaiL 2l e a 2 Ix 2 X u 2flh 2
2 elsle (50)

19
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The reasoning used to establish inequality (41) likewise shows that
(s-U) 2 (S-U)2

e 20r2(1+4y) 2 e 2a2(1+1137h )2

0/21r2 (1+yt )2 <

for sufficiently small positive h. Hence, from the triangle inequality
Eq. (49) is bounded in magnitude by

2,Q h I +fh- X- Lell

U2

e 2 

(s- U)2
2a 2 (1 + I yjh ) 2

3

m (51)

for integrals, the second term in

|||S-U |2_1 ludu.
I 0 l1i , (52)

Completing the square in the exponent gives the exponential factor in the integrand of Eq. 52) as

Is - e sgn(u)]2

2[1 + 1 c2/i (7+ 1 jh)]
e 3 3

u = -E sgn (u) + E2 [s + E sgn (u)I

I 3 32h(2+ 3 )

and

E2 cr2 ( 1 + 1 fh)2
3

1 + Icr2.17r(2+ 3a-V)
3 3

The first factor in brackets in Eq. (53) is bounded by

1 + ohl e 2(1 + rhs)

for sufficiently small positive h. This bound is equal to

2 + Isi

2 2 or 1+ a -eS2+Is le 2

Since 52 < 1 by assumption,the first two factors in Eq. (53) are bounded uniformly in u by

e 16 (1 + Vih) t e 2 JeS,

20

where

(53)
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for sufficiently small positive h. The last factor in Eq. (53) is bounded by the sum
(u - Fj,~)
( ) 2;

e f2l 2v +

(u -2)2

e 2P

-57v '
where

j= -E + e2 (s + E)

1 + 3 a2 h- (2 + h )

and

E2 (s - E )
1 + I cr2fh (2 + 3 h-)

Hence, the second term in Eq. (49) is bounded in magnitude by

(U-t h )2

r- -) 2e-W -,[-i 2Q h3 (1 + h )3 e 16
1 -V

|| _-U 1 _ I uduII2 1

(U- t2)2 [

+ f- e r2-v ||S-u T I Iudu . (54)

For either of the two integrals in Eq. (54), let

u-u s-u _

t = -Irv , so a

Since

s-u + - t.
ao ao

u = T Ea 2 1 +

s-u __

Er 1, 1

3

2a (1 + 3h)2
3

.a24h(2+ h14;)
3

so that, for sufficiently small positive h,

lul = I'it + ul < 2(1sl + Itl) + I

21

U2 = E +

+
e2s

1 + Ia2-4 (2+ I)

t + Ea-
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and

S- U < 2 (IsI + ItI) + 1.
Er

Thus, each of the two integrals in Eq. (54) is bounded in magnitude for such h by

t2

fb >, [8(IsI + ItI)3 + 12(IsI + ItI)2 + (IsI + ItI)] dt

,2

< C e [64 (Is1 + ItI3 ) + 48(s2 + t2) + IsI + Itl] dt,

by inequality (E2) of Appendix E. From standard results for moments of normal distributions, this last
bound is

14s13 + 3I4s12 + 1-14sI + 48 + 1295/T.

Since 14s I < 4M <- h-114 , using this bound in Eq. (54) we can show that the second term in Eq. (49)
is bounded in magnitude by

S +Is,

6fl hV4 h2 e f2-7

for sufficiently small positive h. With inequality (50), this also means that

_2 +Is, .yeS2
IEI < (2 + 6h 1/ 4)fQh 2 e < 5 f h2 |e e (55)

for all h less than some positive value.

Lemma 3: In the context of Eqs. (21) to (23), there exists an h* > 0 which depends only on the
parametr a and b of the unperturbed problem, such that if h < h* and if 1a I (

| iI f M - 6V/ii1Xhi, then p5 (0) exists and

la O) I < [30 + b (1/FP + 6, 000, 000)] elI

where
O

a- (H) =f7 e 2 [p5 (O)_p (O)

and
92

j 5(o)= er2 [I + (; 30)
, r 3

Proof: From the definitions of e, a, and 0,

= e3,q, + 30E 2 r2 .

22
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Since II < in (1/h) and m = M1 > a by assumption,

101• f77V< 6X M/ 101 < M= 11< 1 h1/4loI m,± 4nlh 0I< >1 
Mi+1 4~~~~~~~~~~

=> Io I < 2hoI; for sufficiently small h > 0

=>0 < I9 = 0. 0 I 
tp-.flH - loIq 

The conclusion of the lemma then follows from the results of Eqs. (27), (33), (42), (48), and (55) and
the fact that

p5 (0) = p5 (0, L) + p (0, L),

because the condition of sufficiently small positive h was invoked in the derivation of these results only
a finite number of times and in such a way each time that "sufficiently small" depended only on the
values of a and b in the corresponding unperturbed problem. Thus h* here can be chosen as either the
smallest of these values which is still strictly positive or, if it is smaller, the maximum h for which

1 1/4 > 1

which is also positive. l

Lemma 4: In the context of Eqs. (21) to (23), there exists an h* > 0 which depends only on
parameters a and b, such that for every h < h*,

_1 2

Pr(s > 0) < (k + 1)e 20 k+I if o > 1 h-'I8 and k < h-1112, where k = 2i.
4

Proof: Let

o = gM-6V1h

1~~~~~
and let h > 0 be such that h h 0 0 < -I- andO > 8 h-1/8 (see the proof of Lemma 3). If

I~~I ~ 8

4 h-1 8 < 0 < 0, the conclusion of the lemma follows by subtraction from the integral of p- and a- of

Lemma 3 for sufficiently small positive h (the maximum allowable value depending only on parameters

a and b), since k+< • 1. For 0 > 0 > 8 h- /8 , the event to: IsI >, 0 is contained in the union of

the two events
k

E,= (t: ItI > 0 k+11

and
k k

E2 = {tg: 1g I 0 .- 0k+1 and ItI <, k+1}

23
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since s = t + g by construction. Since m > v > 0,
k j k k

It k+I X -X > k'+6 'H+ 

Hence,

Pr{Ej) < ke 2

by Assumption 2 of Section 4.1. Also,
k

Pr{E2 = f k Pr{ Ig I >O - 0k+1 /t) dP (t),
11|<( k+l

but

I'k 1
k I - I

Pr(IgI >0- Ok+2/t) = 20 911 J (4' = normal tail as before)

ok1 if_
24 I | k+1, since h is small enough that 0 > h-h/8

4h 1 2 + h

2440 k+ I (if 0 > (1 - 4h -1 2
-h

This last condition is satisfied for k < h-1/12 for sufficiently small positive h because

0 > 0 > 8 h- 8 (for sufficiently small positive h)
8

> e6 > e5(k+ )h 12> e-(k+)In(- 5 h 12)

- eln[(-5h 12)-k+l)J > (1 - 5h 12)7(k+1) > (1 - 4h 12 - h)-(

for sufficiently small positive h. Hence,

k _ ~~~~~~I 9 k+lk ~~~~~~~~~~~~~~2
Pr{IgI >0- ok+1/ti < 2 e k+

k 2 e~~ 1
J§; 2 1 o k2 ]

0 k + I < - e 2

for h small enough that 0 > 1. For 0 > 0, therefore,

Pr(E21 < I e 2 dP ( < eC
|, | Hk+l

under these conditions, and

Pr{|s| > oi• Pr{Eji + Pr{E2i < (k + 1) e 2

The lemma follows because h* > 0 can be chosen on the minimum of the positive values h and the
three positive maximum values of h needed for the inequalities used in this proof.El

24
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Lipschitz Condition for RI

From the definitions of X, E, and a- in terms of v and xk, from the Lipschitz conditions of Lemma
1 for v, k, and X, and from the results of Appendix C it follows from partial differentiation of RI,
rewritten using Eqs. (14) and (30), as

R= PE [Er3E2(s6
- 12s4 + 2752 - 6) + 3(1 - 3ao2 ) A,

3v /

with respect to E, a-, /, X, and s (using the magnitude bounds for '7 and v assumed in Section 4.1) that

IR 1(s, p) - RI(S', p)1 1 1 e2maxl(Is d.I sIll h2 Is-S'I (56)
4

and

IRI(s, p) - RI(s, p')I < I e21Is v/lH(i777h h2lp - p'I (57)
4

for sufficiently small positive h, where the arguments of RI are given in the context of Assumption 4 of
Lemma 2, because elIx dominates any polynomial in x for large enough x.

Lipschitz Condition for 12

From Eq. (35),
U2

'2 L e 2,E- 2 5 u 5[f + 2d

C-L 22 (I + - 51a (1+ U j + 21 U2 du

U
2

+ jq 3 e~2 (U 5- 3E 2u3) II( U 5 5 S( ±U + 2} du, (58)3E3 J-L /210 ll(I + 0a) 01 [(I +¢,)| |(8
where 6 (u, s) E [0, uI U [u, 0]. It is clear from the computations for Eq. (47) that the second
integral in Eq. (58) is bounded in magnitude by

_ 2 + Is,

lJin(1/h h e 2

for sufficiently small positive h if Isl < L. Completing the square in the exponent gives the first
integral in Eq. (58) as2 O'[ u29(2+9) s2 ( [ U-1i[ 22

e 2 C L e +o(+) Ie 2~11~j u[- 0
e2i *JX L e+a- 2 0(2 I[ 2irv J (S | e | ( 5 ) J -5 [ (Sl - + 21 du, (59)

where

E2S

1 + a-20(2 + 0)

E2a-2(1 + 0)2V ia 2 (20'and
I + 0a20 (2 + 0)I

0(s, u, p) = ¢(p) /3(s, u) (so 10I < a/h in the context of interest here).

If the variable of integration in Eq. (59) is changed to

u-u
_v-

25
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then

u = e25 + ga(1+t¢>,)x (60)
1 + O- 2<, (2 + OAM) -1 1+oa- 0A(2 + Ol)

and

s-u _ a-s ____,__(61)_

a(I + OA) (1 + O) [1 + a-2A(2 + OA)] 1 +a2¢t(2 + (6)

with

p(s, x)=ja[s, u(x)] (so0 =O). (62)

The partial derivative of this integral (denoted now as I) with respect to X can be expressed by
Leibnitz's rule. The resulting integral can then be bounded (by standard results for normal moments)
as

1000 x (polynomial in s, 0),

since s2 < h- h1/2 which implies that le0"I < 2. Then by the definitions of the variables in terms of
16

x and v, by the Lipschitz conditions established in Lemma 1 for x and v, and by the results of Appendix
C, it follows by routine manipulation that

I T(p) - T(p') I < 1 'x/h7h0 elsI p - p'l,
4

with p and p' used in the content of Section 4.1, for sufficiently small positive h, since e 1sl dominates
any polynomial in s for large enough s.

For the case of fixed p and varying s, denote the integrand of T by H. The triangle in-
equality for integrals gives (for 51 < 52, and IsI, I s2 1 < L - 6&fiW(Ii7 )

IT(sI) - T(S2)1 < fL2 ma 1(!I Ia (sI)-(S2)1 + max -a Is,-s21 dv
I ), ssE 151521 sE fsl~s] as

+ CL Hdx + 4L Hdv, (63)

where [LI, L2] is the common x range of integration for s1 and S2, and where H is regarded as a func-
tion of both s and A as determined by substituting Eqs. (59), (60), (62), and the change of integration
variable to x in Eq. (59). Applying the sort of computations involving Eq. (47) to Eq. (59) we can
show that for IsIl, Is21 < L - 611H17/ the last two integrals in Eq. (63) are bounded in magnitude
by h3 for sufficiently small positive h. Also,

1A (SI, X) - /(S2, X) I < 4(1x I + max(Is I1, Is2))

by the triangle inequality, the established bounds on E, a-, 1¢,1, and the fact that I3(s, u)l < IuI.
Using these inequalities, standard results for the moments of normal densities, and the fact that Is I <

1 h-'I4 and 1 I < 34 ah allows the expression of inequality (63) to be bounded, after some manipu-
4 3
lation, by

1 ____________ 2max(Is II 21)-x/ln( 1/h e mxlI.121(h + ISI - S2 1)
4

26
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for sufficiently small positive h. Since the indexing of s1 and S2 is arbitrary here, this also holds for s>.

52 < sI. Thus, by the results in Appendix C for Lipschitz conditions for products of functions, and by
the Lipschitz conditions for 0 that can be obtained from those for x~ and v,

| 1 c212 (SIl P) - 2 2121 (S2, P) •< 2 n/ e2msxIIsl W 1h21 (h3 +h 2 Is-s 2 1) (64) t121' 2j2
and

[ 2 1 I 2 ((sI p) - f 22I2j(S' • I ln1/h) e21 sl (h3 + h2 IP- 'I) (65)

for sufficiently small positive h, where p and p' are as in Property 4 of Lemma 2.

Lipschitz Condition for E

From Eq. (36), E = El + E2, where
U2 )2(s-

L,= fx ul 2/ e 20 2 u(6El =f~(]~ [ T I (66)

and
U 2 (s - u)2

£2 rL f ul l22 e 2 2 (I I[J + j-)2 I O+X| (67)

Completing the square in the exponent of Eq. (66) gives
52 - (u)(U-f2

e 2 CL e ~~2.a2 2 11
El = 2 fj A ,U|| . (68)

f-flr J-L ~2~7cr2 .ET 1 E

Denoting the integral in Eq. (68) by E gives, for fixed (Z7, Yj_,),

E(S I) - E(s2)1 = [ I11e a(sI + a-0)dX0 - f e 2t L2 a (5 2 + a-0)dX,, (69)

by a change of the variable of integration in Eq. (68) to 0 = -- s for s = SI and s = S2. Assum-

ing without loss of generality that sI < S2 and IsI < Is2 1, the right-hand side of Eq. (69) is bounded
by

C I I( 1 e la(sS + 0r0) -a(S 2 + a-0)Id + J 1C 1 e2 Ir la (sI + a-0) I dX
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+ f j la(s2 + cr) IdXO

for IsI , Is21 < L, because 0 < f ( 1.

For the case of interest where Isil, 1IS21 < L - 6,1/inTmhY, the last two integrals in this bound are
clearly less than h3 for sufficiently small positive h because of the magnitude bounds of a. By the
Lipschitz conditions assumed for a in Section 4.1, the first integral is bounded by

_9e2 _ 92 + 2101

(Ch 3 + Dh 2 Is, - S21) f 2 e2s1 +oe9 dO < (Ch 3 + Dh 2 Is, - S21) e2151 f 2r dO

(0-2)2

< 2e4 (Ch3 + Dh2 Is, -s 2 1) e21511 J0 dO

< 2e4 (Ch3 + Dh 2 1s -s 21) e 21sl

Combining results gives, for sufficiently small positive h,

I-(S I) - T(s2)1 < e2maxllsll S21) [(2e4 C + l)h3 + 2e4Dh2 IsI - 211

and, by applying the results of Appendix C,

1E, (sl) - El (S2)I < e2max(IsslI 1521)[(2e4 C + l)h 3 + 4e4 Dh2 Is, - S21], (70)

for IsI and IS21 < L - 6/Iini0h).

For a fixed s such that IsI < L - 6vr./hi(Yfig and p and p' as in Assumption 4 of Section 4.1,
changing the variable of integration in Eq. (68) gives

I E (p)-E @(') l = ILa (s + a0, p) dX9
O S f

fl10 L _ a a(s + ', p') dX 0 (71)

where 0 = - ( - s) in the first integral and 1 ( u - s) in the second, and a-' is the value of (a
Er E Er~~~~~U El

generated by (Z7,Yi-,)' etc. Under these conditions, the regions not common to both integration
ranges again contribute a term smaller in magnitude than h3 for sufficiently small positive h. The rest
is bounded by

O

2 > ° e 2 (s + Er0, p) - a(S + a-'0,p') dXO

f 2
< e 2 [2 Ch3 + Dh 2( | p - pl + 10 IIO 1- ('d e21sl¢e 210 1dO,

28



NRL REPORT 8406

by the triangle inequality and the Lipschitz conditions assumed for a. From the Lipschitz conditions s
established in Lemma 1 for x and v, the results of Appendix C can be used to show that 1a- - a- is of (,
order hIp - p '. This last integral can then be bounded as in the derivation of Eq. (70) by

4e4 (Ch3 + Dh2Ip - p'l)e2lsl

for sufficiently small positive h, so

IE(p) - E(p') I ( [(4e4C + 1)h3 + 4e4Dh2 | p - pl Ie2I5I

and

IEl(sp) - El(s,p')I < [(4e4C + l)h3 + 5e4Dh2 I p - p'IJe21sl. (72)

Since I 4.y -j I < fh7 for sufficiently small positive h, it follows from Eq. (67) that

u2 (S- u)2

£2 1I (DI L I a(E I e 2e | Fh2(1- )2 | 1 5 -U | u~ dX. (73)v__ __ ___ ___2_ c (1-27 ) 1 1 Iu

Since 0 < a-, E < 1, completing the square in the exponent gives the bound

S2 + I ~-(u- ii)2

I£ 2II~kIi~ 4 : 2~ 2 h L 2~e 2 ~L1ifU 2)I+ l IIuXU, (4

IE"21 < 101 I * rh Le ' U| s | (74)

where

_ 25

1 + cr2 fh
and

a2(1 +4;)
1 + a-2,h;

Letting 0 = u and 0 = u and changing the variable of integration in inequality (74) gives

_ S2 + ,2 ofh L-(9-)2 2
[E2<I A + ef 2e 2 (0)IIV%- +1I0IEe

2 ~~~~~~~~~~~~~~~~~~~~+ I E M;S |(10, I dk

Since E < 1 and since la (0)I < Oh 2el'I9 in this range for Is I < L,

s2 < I16
and

IE21< I0I 1-f K e32 h2f e 25elo (I+4h) S-EJl +lO1 11dO. (7)

Changing the variable of integration in Eq. (75) to

0-0T* = 
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we get

21 < __ expl--T2 +I| 5s+a-| 1 + a- I E
I21 < 101 (1 +4h)/232 h2 e 2 C0 2 +0 ' Ih

x |i+fa-rs + I1 e + h-a IIFsS + 2 IdT (76)X~ ~ + +S+ S+ _ 1 +a -"(6

By use of the fact that a-2 + E2 = 1, the magnitude of the polynomial factor in the integral of Eq. (76)
can be bounded by

Is I' + 2s 21 |I + 5 Is IT 2 + Is I + 2I 1
2 2

and the nonquadratic exponential term by IsI + 2IT I for sufficiently small positive h, so the integral is
bounded by

- I (T - 1j2

e I 0 e2 (IsPl + 4s T + 5|S|T + 21sl + 4T)dT

< elsl]Is13 + 71sl + 4(S2 + 1) .J2/ < elsl(IsI + 2)3

by standard results for normal moments. In this case, another bound for this integral is 3e2151 , by ine-
quality (El) of Appendix E. Hence, for Is I< L and sufficiently small positive h,

-- 2 +21sl
IE21 < 4fl 10 Ih2 e ,2-7

and

S2

E21 < 6Ql h' e I e21sl (77)

Lemma 5: In the context of Eqs. (21) to (23), there exists an h >. 0 depending only on the
parameters a and b of the unperturbed problem, such that if h < h,

|Y(op) - p(op') I < e2I9I (Ch3 + Dh2Ip - p'l)

and

I-(0,p) - a(0',p) I < e2max(l le, lo) (C/h3 + Dh2 -9 o'1)

for all 0 and 0 with magnitude < V M-6Vlt±, where c is as in Lemma 3 and p and

p' are as in Assumption 4 of Section 4.1, and where

C=6Q + 4 + 4e4C + 3/4V1Wi7Y7-
and

D = 3V-ln(1/h) + L + 5e4D.
4
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Proof: From Eq. (27), VS e 2 p(s, L) < - h3 e21s1 under these conditions. Since p(s) = 
2

p(s, L) + p(s, L), the lemma follows from the definition of a in Lemma 3 and Eq. (33) and the >
application of the triangle inequality to the results of Eqs. (41), (56), (57), (64), (65), (70), (72), and
(77), because the condition of sufficiently small positive h was only used a finite number of times in
these derivations, each time in a way that depended only on the parameters a and b. E r

Because of the way the random variable s is defined in terms of the random variable y of Eq.
(21), Lemmas 3 to 5 establish the equivalent of Assumptions 1, 2, and 4 of Section 4.1 for y, with the

counterparts of x, v, k, C, D, and M being x, i 1F k + 1, C, D (as defined in Lemma 5), and

M.ff 6v .

4.4 Measurement Update at Epoch i + 1

In this subsection, the unsubscripted variable x refers to xi+, instead of xi, 'a refers to 71,;4, and
the subscripts are also deleted for mi+l, r,+i, x,;i, j+v, , and nj+1. It is assumed that Assumptions
1, 2, and 3 of Section 4.1 hold at epoch i + 1 conditioned only on (Z,, yi-I * u), with x, v, k, and
(Z,, Yj-1) replaced by x*, m, k + 1, and (Zr, Yj 1 * u) in the notation everywhere. In this context
z = x + ni+1, so defining

x - X

t = (78)

= nj+ I(79)

(a = A m, (80)

e = .i 7, (81)
g = a- Tr, (82)

and

s = t + g (83)

implies that

Ca2 + E2
= 1, (84)

12
2

p _(T) = edd (85)

z- X (86)

(s-t) 2

p(slt) = e (87)
,271Ta-2

and

p2

e 2e |1 + t (3-E't) + at| (88)
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.le last for It I < eM in the current notation. It follows from Eq. (86) that conditioning on s (in addi
tion to Zj) is equivalent to conditioning on z. Hence, if

0 t-k (89)

for any choice of parameters t and v, then

P(OW s) = Ps/t(S +a-/TP (t+OX/i) (90)
p (s)

by the Bayes rule whenever these densities are defined. If, for a given value of s (or z), the parameter
values

t= e2[S + a-2e iq(S2
-1)] (91)

and

v= a 2e 2 (1 + a-2e7QS)2 (92)

are selected, then

t + 0-%1i = e(es + a-W), (93)

where

X = e (es + a-a). (94)

Also, the results of Section 4.3 can be specialized to the case of Eqs. (78), (82), (83), (85), and (88) to
give

S2

p(s) = Add |1 + - - re3(s3- 3s) +P (s)j (95)

for Is I < EM - 6Vin(1ThY, for sufficiently small positive h, with

I,8 I < 3f h2eIsI (since 12 = 0 now) (96)

in the context of the current notation. Substituting Eqs. (88), (92), (93), and (95) in Eq. (90), we
obtain

e 21 + a-C)3
- 3(Es + a-m)I + a(Es + a-c) + a- 2e 1s)

= WS) 'N[2-7T 1 + 1 E3S3' -3s) +, P(S)9
if Is < EM- 6-JH(_11h} and I t I = I t + VP- a < EM. Since t and v are specified from s by Eqs. (91)
and (92) now, it follows from the triangle inequality and limits assumed for I'i I that these two condi-
tions are met if

Is I < 8In(1/h) (98)

and

II < M-3,1fK(Y (99)

for sufficiently small positive h. From the definitions of s and G,, it is clear that condition (98) is
already implicit in the assumptions here.

Inituitively, it is helpful to note at this point that s is basically the normalized "innovation" vari-
able for the updating step of a Kalman-Bucy filter and a is the normalized error in the resulting esti-
mate of x.
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Now let f denote the function
- s~~~~~(I+ CrsC)o G 211

f() 1 + cS e- + e(S2 _ 1)(2 (100)
r-w-

Substituting Eq. (100) in Eq. (97) and rearranging terms, we get rv

1 1+ -J(e s + a-3s3(es + o-s) c:
p (H/s) = f(a-E1) + 

-1+ I 714E3 (S3 3s) +,lA(s) elsl 1+ I ?le 3 (S3-3s) + A (s) el 

-2 +Ies+0,WI

+ 1+-2e a(Es + ) (101)
-v 2 1 + - (s 3- 3s) +IA(S)e'

for conditions (98) and (99) and sufficiently small positive h, with

la (es + o-c0 I < Qlh 2

and

lA(s)lI < 3Qlh2.

Also, f and its first two derivatives are continuous for all (, so Taylor's theorem with remainder can be
applied to f at 4 = 0 to give

o2

f (aerq) = e 2 0,e-q 7[-S (02- + C(S2-)] + 0a2E2712f"a ,(12

by the use of a-el to play the role of ; and substitution from Eq. (94) for c. Using Eq. (102) in Eq.
(101) and substituting the expression for f", we get

-o2

p(Ols)= 1 TII+ 4 a(03-30)+[1-o,,Eq[ars(02-1)+,E(S2_ 01)E

x [E,+E2+Al(s)el-'I]+T,+T2 e 2C2I|| Q2 

x |11- 'q [e3 (s3- 3s) -(es +ar)3+3(es--cu)1+Ej+E2-As()e~s

3~~~~~~~~~~~~~~~~~~~~~~~~~~
-. 2 + leS+0r76 I

X {[(a + aeyj) 2 - 11(1 + a-2 E57s)y - 2a-s(a + o-Ey-)) + (1 + E3)E 4 e , (103)

where

y (0) = a-s + E (s2 - 1)
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[ l f3(s3- 3s) + 1(s) elI
1

1 + -1-)3 (s3- 3s) + j(s)e'

El (773 - 3s) + ji(s) elsl
3

E2 3 D [(fS + uo) - (ES + OCO)3],

3 1 + I 13 (S3 - 3s) +-fi(s)e

E3 =
1+ 3 (SI - 3s) + [i(s) e'sI

E4 =(Es + a),

T. = 23 [(ES + acr)3 - (ES + a-r)3 - 3(Es + o-j) + 3(E s + a-a)],
3

and

T2 = -712 [a-S(a2 _ 1) + E(S2
- 1)a][e3 (S3 - 3s) - (ES + ac) 3 + 3(Es + aw)].

3

Under conditions (98) and (99), it follows from the triangle inequality and Eqs. (84) and (94) that

Es +o-wI < M< 1 h-V4
4

and

|Es + a-wI < evr1/2 In(l/h) + ao-Il

for sufficiently small positive h. Using these inequalite.s and the fact that, for C > -1,

1 - (1- o = lC f 0, O

and

01 1-1'~1 1E _,

and that a- and e < 1, and a-E < v2, leads to the following sequence of conclusions for sufficiently
small positive h and condition (99):

|EI | < 1000 h2 b In' (l/h ),

IE21 < 1000 h2 b In3(1jh),

IE3I < 3h[1 + 8In(O/h) i/81n(1h7,

E41 = I lI < fQh2 ,

|EI + E2- [i(elsl I < 2-CQ h2 e8I-n(1h),

(YI < 12yIna(1- h) (a 34 + 1),
lysr-E-1 < F~h,

IS+~ n, -2 3V , h 2 101,
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0 +ya-Er I < laI + 4; < 10I + 1,

(1 + a-2esE) < 1 + 6h/bil(17W < 2,

Ii + a-2 EsjI < 1 + 6h~b i7(ljh) < 2,

T. < 3h2 b (IsI + 101)5 < h2 b[0 I + 2,r21n(1/h)1 6 ,

and

T2 < 45h2 b(Is| + 101)4 Is|l | < 45h2 b [1Hl + 2V/2ln(1/h)]6 .

Also, the last term in Eq. (103),

- W2 +les+aG)l

2~~~~~~~(1 + E9£ 4e /

is bounded in magnitude by 25ihh2 e 2 e101 e'f2n(11h) for sufficiently small positive h under these con-
ditions. But

_02 _2 +h 1/4

02 +0

so another bound is e 13In (1/h) fl h2 e 2 , These inequalities and the fact that polynomials are ulti-
mately bounded by exponentials lead to the following conclusion, after some manipulation.

Lemma 6: In the context of the notation of this subsection and the assumptions described at its
beginning, there exists an h* > 0 depending only on the parameters a and b of the unperturbed prob-
lem, such that if h < h*,

|X - < MM-3Vi1nF(1i/Jh),

and

Z X < ),8 ln(1/h),

then px-y (0, z) exists and

92 02 

Zi+1 =0, Z)- Fx 3/ z (? - 30)1 < e- 14'n(/h) (W + 1) h2 e 2 +10

This form of the lemma follows by the construction of 0 in Eq. (89) and from the fact that the
choices of t and v as in Eqs. (91) and (92) make the variables here correspond to those defined by
Equation System I.

Lemma 7: In the context of the notation and assumptions described at the beginning of this sub-
section, if it is also true that Assumption 4 of Section 4.1 holds for ; and ;', any two values of a single
component of (Z

1
, Yj_, * u,) and (Z

1
, Yj_, * ui)', then there exists an h* > 0 such that if h < h*,
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X | < M- 3l1n(1/h),

and

Z X < i/8ln(1/h),

then

Ia *(a -a I*(a? 01 < e2max(Ie, IlOI (ch' + bh2l - a'l)
for IO'I < M- 311i17hY

and

la *(0, 0-a*(0, ')1 < e2101 (Ch3 + Dh2 l-'

where a * is as defined in Lemma 6 and

C=eV`4n0 (C + 1)

and

bD eo4In(1/h) (D + 1).

Proof: The results of Section 4.3 can be specialized to the context of Eq. (95) to give

IPB (s, 4) - l (s, C ') I < 22 1,1 (ZCh3 + Dh21 _- 'I )

and

Ile(SI, 0 -;P(S2, ) I < e2max(Isll 1S21) (C/h3 + Dh 2 lsI -S 1)

for

C 4e4 C + 1 + -2/jlhY
2

and

D 5e4D + 1 + - f/ln(71h).
2

From the Lipschitz conditions already assumed for a and the fact that

aQ) = a(() e-'C
and

Q= f(() e- Cl,

it follows from the results of Appendix C that

I& (, 0)- &( ', O)1 < emax(ll6 1'1) [Ch3 + (D + 3) h2 - 'I]

O (6, O- p W, ;) I <. e-ax(16 1, If) [eCh3+( (+ 30) h 21e-6,j]
for the conditions of interest here. The lemma is then established by repeated application of the results
of Appendix C to the composite expression of Eq. (103) for p (Ols), using the definition of 0 and s in
terms of the variables of interest, various inequalities developed earlier in this subsection, and the fact
that
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(Es + aco) - :(Es +ao-)I < h Iln1/ih,

k-s + a-c(0)] = x 0(h),
and a;

max (P e-) = for p > 1. El

To establish probability bounds for extreme values of the estimate error, suppose first that y is a
value such that

y > z - x*> 0,
and for small A > 0 consider

Pr(x - x' > y/x + n E [z, z + A)).
From the definition of conditional probability, this probability is bounded by

Pr(x-x*>y and x+n E [z, z+A))
Pr(x + n E [z, z +A) and 2z + A-y S x-x* S y)

Since x and n are independent (given only Zj and Yj), and since n is normal (0, r), the numerator of
this last expression is bounded above by

(X,+y - Z-A)2

Ae 2r dP(x)

and the denominator is bounded below by
(X +y - z)2

Ae 2r dP (x)
.flr Jf2z+* Ax.+y) dP x.

Hence,

Prtx-x*> y /(x +n) E [z, z +A]) e ' Pr (x -x* > A1-Pr(x-x* >y)-Pr(x-x* < 2(z-x*) y+A)
Taking the limit as A - 0 gives

Pr~~x~x*>y/z1 (IPr(x -x* >yA
Pr(x-x > y/Z) S 1-Pr x-x* > A)- Prx-x < 2 (z-x )-Y A (104)

For Pr~x - x* <- y/z), this construction shows that the inequality is at least as great as (104). Simi-
larly, for y < z-x* < 0,

Pr~x -x* < y/z < Pr(x -x* >yAP -- S1Pr(x-x > y) - Prx -x* > 2 (z-x*)- y)
and there is at least as great an inequality for Prx-x* >-y/z). Combining these results for
y > 3Iz-x*I gives

Pr{x-x*l >y/z I < Pr Ix-x*I >YA (105)
w-Phex-x* p> a oi

where all probabilities are also conditioned on Zj (not shown in the notation).
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From Equation System I,

x-x* = (x-x) + (Cx-X) = a-f- +

where, as before in this subsection,

'1 = 'li i+1'

z -x
X-X*nm+rd

and

ms + rim312
-,I-m+ (m+r)

(S2 1)

0 x-.

For y > 0, therefore,

lo I> Y =. Ix-x* I> YsrV -- sM Is+n(s'- 01)

-- I |x-x*I > yla - 3Mb ln (1/ih),
for sufficiently small positive h, because of the bounds assumed for I m l, Jq 1, and Is I. Hence, for

sufficiently small positive h and y > b In (/h),

10 I > y -> Ix - x* I >- 1 .2

By assumption, Iz - x*I < 18b In (l/h), so for sufficiently small positive h,

Y > I h 8 > Y~a > 3 1z-xl.
8 2

In this case, inequality (105) can be applied to (106) to give

Pr{I01>y/zl( k+1 -~~~~~~I jyak1
Pr(1 I9 > Y /Z) < | 1 |e- 2 12b1

Ii I 
2a Ik+I1

1-(k+1)e 2 6b

by use of the inequality established in Lemma 4. Furthermore, for sufficiently small positive h,

(106)

(107)

i < 2 Jln (l/h)
2

Y > I hi118
8

|+ In y > -In 8 + 1 In(l/h) > (2i + 2) In 1 2b1~~n y ~ 8 Ia

4> y > 2b
a

2 2i+2
a> (y2) 2i+3

2b

, II =2a I k+l

-¢- e 2 2b -<

(since k = 2i + 1)

2
_ I k+2

e 2
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and

l |+ ~Iny >- In 8+ 8In(I/ h) > In 3 -f|+(2i+ 2) [In4+ In n(2i+2)]

y > 3_V/T [4 ln(2i+2)]2i+2c

1~~~~~~~

I Iy2.1 k + I

a 2 l6b | (k + 1) (k + 2)

2 1 6b11

18-n(k + 1) nk + 1 > 1- + 

_> ~ k + I k + 2.
Iyay2ak

1-(k+1)e 2 6 bJ

Hence, using Eq. (107) and the definitions of 0 and s, we establish the following lemma.

Lemma 8: In the context of the notation and assumptions adopted at the beginning of this subsec-
tion, there exists an h* > 0 depending only on the parameters a and b of the unperturbed problem,

such that if h < h/ and the epoch index i is less than 2 a tn (1//i, then
2

2

Pr( X i > YlZj+ll < (k + 2) e 2 for ally > 8 h-1/8.

In summary, the results of this subsection establish counterparts to Assumptions 1, 2, and 4 of

Section 4.1 at epoch i + 1 if i < - Fln (1/i).
2

4.5 Implications for a Sequence of Epochs

If an error is multiplied by a factor not exceeding a constant H in magnitude at each epoch, and
an additional error not exceeding H in magnitude is added, it can easily be shown by induction on N
that the accumulated error after N epochs is less than

(H + 1)N

if the initial error is zero. Hence, if

N <, 1 ,~n~llh)~, P a constant,
2 J6

and

H < e-'#_ln(1/h) - 1,
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then

(H + 1)N ( e n 2 In(e/h)

< hi1/2

< h-I/4 for h< 1

Theorem 1: Given the restrictions imposed on the unperturbed problem in Section 3.1, if the
number of epochs N is such that

N < 8 JNri`T-l/)
8

and if (Z7, Y-I1) E G1 (where i E (0, 1, ... , NJ), then Assumptions 1, 2, and 4 of Section 4.1 hold
for epoch i in the problem with perturbations, if h is smaller than some strictly positive value h* which
depends only on the parameters a, b, and F of the unperturbed problem (and not on the epoch index).

Proof (induction on i): These assumptions are clearly true at epoch 0, with

M O h-//4, Clo = Co = Do= 0, and h* = 232. Assumption 2 follows for h < 2-32, by the in-
4

equality for normal tails,

12 T2

T o dt < eA for T > O.

The induction step can be established by noting that xi+, can be constructed from xi as the composition
of the two transformations

y = xi + (1 + tpix,)w

and

xi+, = Jiy + ui,

where w - -, a normal l 0, -2 | random variable. Since (Z7 * zi+i, Yj½ * ui) E Gj+1

D (Z7, Yj, 1) E G,, if it is assumed that Assumptions 1, 2, and 4 of Section 4.1 hold with

Ci < Ai,

Cj < A i,

and

Di < A ,

it follows from Lemmas 2 through 5, applied to these two transformations in turn, that it holds at
epoch i + 1 with conditioning only on Z,, for corresponding constants

0 = 3Ai + b# 12+ 6,000, o000

C = (6 + 4e4 )Ai + jlnT17/h,

D = 5e4Ai + ax
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and

if h is smaller than some strictly positive quantity that does not depend on i, since

i < 8 2iM~h - i < 2 h 12

for sufficiently small positive h. Also, the parameter k = 2i + 1 changes to 2i + 2 here. If

M> I h 8, Lemmas 6 through 8 imply that the hypothesis also holds at epoch i + 1, with condition-
4

ing on Zi+l, for

M,+,= M - 3711n(1/hj= FV/a M, - 97IihY,

l,+l= e' (Q + 1),
C+ = e'1'4101/ (C + 1)

and

Di+= Iev141(1/h) (D + 1)
Thus, for sufficiently small positive h, a corresponding bound A,+, is

Ai+, = e4Jfn(1/h) (A, + 1).

By the remarks at the beginning of this subsection, therefore, Cli, Ci, and Di do not exceed 4 h-1/4,

for sufficiently small positive h and i < - Vii170, and it is also clear that such a positive upper limit
8

for h exists, so that M, > 1 h- /8 for Mo- 1 /i1/4 and i < - N/hinii10. Since the condition of
4 4 8

sufficiently small positive h was used in this proof only a finite number of times, in a way which did not
depend on the index i of the induction step, and depended only on the parameters a, b, and F (some-
times via Lemmas 3 through 8), the induction step is verified. El

4.6 Moment Error Bounds

In this subsection it is assumed that (ZN, YN-I) E GN, and the first four central moments of

PXj -- iXj Z

if they exist, are denoted by xi, C-,?, 20,, and y, respectively for epoch i < N. For a given epoch i, with

8

and

4 h-118 : Mj < 4 h-

we suppress the epoch subscript and the conditioning on Zj in the notation, and note that (Zj, Yj_1) E
G,.
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Lemma 9: In the current context, there exists an h* > 0 such that for h ( h* and n = 1, 2, 3, 4

M tn dPx-x (t) < h/3

Proof: Since Pr ( X 1 *X > tJ < ke 2 , k = 2i + 1 for ItI > M, it follows from the construc-

tion of the Lebesgue integral and the monotonicity of tn on [M, °°) that

0 < fM tn dPX- (t) < k fM t e 2 dt,

where k = 2i + 1 < 1/2r1n(1/i). Changing the integration variable to u = tI/k gives

fM tn dPx- (t) < k2 f l/k U(n+l)k-I e 2 du.

Integration by parts gives this last bound as

n+1_2 IM21k U2 _

k {M k e 2 + [(n + )k - 21 fJlk u(n+l)k- 3 e 2 du).

Hence, it is easy to show by induction on k that

JM t dPX- (t < k f(Mllk + 2 )k(n+1)-2 e 2

For sufficiently small positive h, k < 1/2 7IhTiiiih, M > 1/4h-1'8, and

2 _ 2 In (4h1 1 8 ) f1 In (/h)-2 In 4

MIl/k > (4/lls/8) dn(llh) = e iln(1/h) = e Jin (1eh) > 2,

in which case

co00 _ MVk _AM21kJ tn dP - (t) < k2
2 k(n+1) Mn+1 e 2 < k2ek(n+l) Mn+1 e 2

. 1

The natural logarithm of this last bound is 2 In k + k(n+1) + (n+1) In M - 2 M21k, which is less
2

than

2 In Wln (l/h)] + (n+l) /ln (l//h) + I In (1//i)]- 8 | h
2 h

under these conditions. For sufficiently small positive h, this expression is dominated by the last (nega-
tive) term, which can be rewritten as

(1/h)
1 4drm (1/h)

8

and can clearly be made less than - 3 In (1/h) by taking h to be a small enough positive value. Since
this is the logarithm of the bound of interest,

tn dPx- (t) < h3

for all h < h*forsome h* > 0. El
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In the case of the first central moment,

E(x) = _ xA +v;r E X-J1

where E denotes expectation (conditioned on Z7) and k and v are as generated by Equation System I.
Thus,

x-x =C X |v tdPx_-j Wt

E-| Jptd-A Aptd~mptdf tP_(t)I (108)

where

t2

= e [1 + 3 (t3 - 3t)] (the approximation),

A = (-°°, MI U [M, °°),

and

,8(t) = pj (t) -p (t) (the error function).

Also, there are no moment existence problems because of Lemma 9. From the results of earlier sub-
sections,

1(t) I< 2Cl /2 e4

for It I < M and sufficiently small positive h. The first integral in Eq. (108) is zero, so from this ine-
quality and that established for 171I when (Z7, Y-,1) E Gj,

t2

I- [t + h4V/ (t4 + 3t2 )] dt

_t2

+4Ql/hL f t e dt+M t dP,. (t) (109)

The first integral in Eq. (109) can be made less than h3 for sufficiently small positive h by standard
results for normal tails, and the second integral is .r-1/2. By Lemma 9, therefore,

lX-.iI < [4 4i + 3) h2- (110)

With respect to the conditional distribution given Zj,

-X)2 A a-2 (X2+vE{XXJ (111)
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and

X xf _1 2 dpX_ t

-|f t2p(t) dt-SA t2p(t) dt + |M t2p (t) dt + fA t2 dPx(t).
dIA

Using Lemma 9 with n - 2 and the same type of reasoning as for the first central moment, we can
show that this last expression is

1 + error, where lerrorl < (4V2- Cl + 3) h2.

For sufficiently small positive h, (x - R)2 is of order h4, and so

1cr2 - vI < b(4v12Ql +3)h2. (112)

By the preceding results,

E(x -)3 A 20 - 3(i -x) 2E(x -. R)2 - 2(* -X)2 + V3/2 E|| XxlJ|

- V3/2 X- SxCJ

Repeating the above analysis using t3 and n - 3 we get

20 - 2v3/ 2,q + error, lerrorl < b3/2(16 -/= + 3Js

where 71 is as generated by Equation System I. By the definition of A, therefore,

lo-AI < [s + 31 b312h2 (113)

for sufficiently small positive h.

Again expressing x - x as (x - *) + (*c - x),

E(x -xi)4 A y E[(x - *)4 + 4 *- x) (x -*) + 6(x - *)2 (* - X)2]

+ 4(5~ - *) (* --3~)3 + (-C -i)4. (114)

From the preceding results for lower moments and the fact that 17 I < 3&IT under the present condi-
tions, the only term in Eq. (114) that is significant to order h is

E(x - k*)4= v2f| t4 dPX_ (t)

= 3v2 + error, lerrorl < b2h

by a similar analysis. So

Iy - 3V21 < b2 h (115)

for sufficiently small positive h.
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Lipschitz Conditions

If for a given epoch i, i ( N, (Z., Y.,)' E G. differs from the initial segment (Zi, Y,_.) of
(ZN, YN-I) in only one component, for which the respective values are denoted as p' and p, it follows
from Eq. (108) and the analysis in this subsection that

8,(P)-sI(P ) |f I + |M t,6(t, p) dXt] | 2 + |-M tt P)d,,(116)
where 81 x - * and v(p') denotes v[(Z,,Y_- 1)'], etc ., with le I and IE21 < 3h3 for sufficiently small
positive h. Rearranging terms in Eq. (116) gives

81(P)0-8i(P) |- (El-e2) + | tiLa(tsp) - (tp')I dX1J

+ [x (p') - * (p')I [I/vV - VTvi. (117)

Since

t2

/tp) - e a (t, p)

by definition, it follows from the Lipschitz conditions established by Lemma 1 and Theorem 1 for v and
a (using also the results of Appendix C in the case of v) and from inequality (110) that

-- +2t
2

I8I(p) - 8I(p')I < [ 6h3 + 2 t(Ch3 + Dh2Ip-P'I) e dt

+ 1-4-+ 31 1 I; h31p - p I (118)

for sufficiently small positive h. Performing the integration in (118) then gives, for sufficiently small
positive h,

I8d(p)-81(P')I < 46+e212+..V/TJCJ h3+[ e2(2+. /TJ D+ i] h/21p-p'I. (119)

Since C and D are less than h-i/4,

18(p) - 81(p')I < (2h-1/4) h3 + (2h-1/4) h21p -p'I (120)

for sufficiently small positive h.

From Eq. (111) and the fact that (x - *)2 < 2 h3 for sufficiently small positive h,
2

82(P) - 82(P ) = V(P)4E3 + fM t2p(tp) dXt - V(p')|e 4 + |'M t2 3(tp') dX,

with IE31, IE4 1 < h/3, where 82= a-2 - V.

Rearranging terms, using the triangle inequality, and using the magnitude bounds and Lipschitz condi-
tions established for a, we obtain

t2
182(P) - 82(o) I < vp[23+fM t 2

,- Ia- p - a (t,,) I dXtJ
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+ h' + 2 M t2 a(tp)I dX'] Iv(p) - v(p')

t--+21:11

< b|2h3 + I t2(Ch3 + DOi2 p _ P,') e 2 dt|

+ |h + Q t2 e dt| r/ 3 1p-p'l

for sufficiently small positive h. Evaluating the integrals in this last inequality, we get

182(P) - 82(P')I < b[2h3 + e2(5 + 8 . ;2T (Ch/3 + Dh2 1p - pJ

+ rh3/h + fle12 + I| P- p' (121)

in this case. Also, for sufficiently small positive h,

182(P) - 82(P')I < (2h-1/4)h3 + (2h-1/4)h2 Ip-p'I, (122)

because C and D are both less than h-1/4.

Since, as before, the condition of sufficiently small positive h was invoked only a finite number of
times in their derivation, Eqs. (110), (112), (113), (115), (119), and (121) can be summarized in the
following result.

Lemma 10: There exists an h* > 0 such that if h / h* , and if (Z,,Y-,) and (Zi,Y1,1)' E G1

differ in at most one component with respective values denoted as p and p' for i ( N < I vrln (1/h),
8

then the first four central moments, x,, cr7i 201, and yv of

Px, -
exist and

1 RI- 21 < lb- Irv Ql + 31 h2

Ia-I- vi < b(4 F2flj+3)h2 ,

10i - TI < b3/2 I Q; 0 1+31 h2

jvi - 3vi2 I <b 22h,

18 f(P)-8 (P')| < b4-6 + e212+V/2J Ci] h/3 + [4;e2f2+5/TlDj+l h2j P-p'l,

and

182(P) - 82(P')I < b42 + e2(5 + 8 _ JCi1h3 + rbe2(5 + /JD,+ 1i h2 P-P'|
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where Xj, vj, and Xi = vi3 2-i are as generated by Equation System I and

and

82 a-2_ Vi.

5. ADEQUACY FOR OPTIMAL CONTROL APPROXIMATION

One common use of state-estimation results is in the implementation of optimal control laws. It
is shown in this section that the error bounds established in the previous section are strong enough to
guarantee that the control values computed in such a way according to a certain first-order formal
analysis (to be described shortly) are indeed within order h of being the optimal values, except perhaps
for a set of realizations of small probability, when we minimize the expected value of a quadratic per-
formance criterion with the dynamics of Eq. (1) - u, being the control variable - and with the state
measurements of Eq. (2). Also, the set of realizations for which this control accuracy does not hold is
shown to be contained in another set of realizations for which the prior probability goes to zero as h
does and it is always known to the controller from available data whenever the current initial segment
of a realization is such that the realization cannot be in this set.

5.1 Control Problem Formulation

The particular control problem considered here is that of minimizing the performance criterion

J =E1 2 sN xz + 2(aX2 + bi u 2)] (123)

where E denotes prior expected value and the xi are determined by Eq. (1), with the ui now regarded as
control variables. Also sN > 0 and, for i = 0, . . , N-1, A > a, >0 and b, > B > 0. The control
variables are generated from the available data by a Borel-measurable control law U, i.e.,

U: (Zi,Y_1) - us, i = 0,..., N-1. (124)

Thus, the convention used here is that the controller receives the measurement z, at each epoch i
before having to decide the value of the control ui. Also, we let e denote the set of admissible control
laws, i.e., those having the functional dependence indicated by expression (124) such that these func-
tions are Borel measurable (so that all quantities determined thereby are well-defined random vari-
ables).

A particular control law U0 E e is called optimal if and only if

J(Uo) - inf {J(U) : U E {).

This infimum clearly exists because J is necessarily nonnegative by its definition and J is obviously
finite under the trivial (and admissible) control law which always gives ui = 0. For a given epoch i and
data value (Z,, YjI), a control u, is called optimal if and only if there exists a U E e such that U is
optimal and u, = U(Z,, Y-1~)

Also, it is convenient to define the sequence of optimal value functions Vj, i = 0, ... , N, such
that

Vi (ZiYi-) = inf i (ajx2+bu2) (125)UEf 2N -,2
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when (Zi,,Yj 1) is such that this expectation exists, where uj denotes U(Zj, Yj- ). Heuristically, V1 is
the usual conditional expected cost-to-go function at epoch i, given the currently available data but
before the control u, is used.

5.2 Equation System II for State Estimation

For the purpose of analyzing this control problem, it is more convenient to adopt a somewhat
different system of equations for generating approximate moments of the conditional state distribution,
even though this requires some effort to establish some relationships between the two equation sys-
tems. This other system, denoted Equation System II, is the following for i = 0, ... , N - 1:

I ri+1 12+
|= 1+ + | I Vi + i+1 ej+I ; do= 0; (126)

2r,+l Pi+, e,+1 + X 1 I- 2
A +I = fi A + u, + ui +I i2 +/i1. L,1A+1 + r,+1J .2(e+i- 

Xok o; (127)

and

| rI |+ (tXi + 3fipiqioi); Xo - 0, (128)

where A+I and pi are as defined by Eqs. (3) and (4), and where

= f,2 d; + q,~pxk (129)

and

ei+I= zi+l-fj - ui. (130)

In this system, the A,, pi, and Xi are actually just predetermined parameter sequences; only the di and
Xj are random variables a priori. This system is constructed to give the following first-order approxima-
tions to the variables generated by Equation System I, in the form of Eqs. (7), (8), (10), (11), (16),
and (17):

pj + 2d, v,

and

,Uj + 2 v i mi.

In the present context, of course, the uj values are not generally a known sequence a priori,
because the control law is allowed to generate them by feedback from the state measurements. Because
of the nonanticipative nature of this feedback, however, all previous control values are known at each
epoch, so the state estimation results of Section 4 can clearly be applied to this case as well if we take
N = i at each epoch i.

5.3 Formally First-Order Optimal Control Law

The analysis of Ref. 1 can be applied here to give approximations to an optimal control law and
the value functions which are formally accurate to first order in h. In this particular case the approxi-
mation for the control law reduces to
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_ = -i = + i ., N -1; (131)
si+1 + bj :

where fi, denotes the control generated by this law at epoch i, k,(Z,, Y1) as generated by Eqs. (126) to
(130), and the other parameters are defined by the recursions

fk~bk 5k+l1
Sk = ak + sN as given; (132)

bk1 + Pk+ 1 2
[ 2Sk1 

Yk = bk +s + rk- -+ Yk+lj; YN = 0; (133)

and

Ok = fb S+ + I k+i + |1- -| Yk+1I qkWk; ON = 0; (134)
bk + Sk+1 Irk+1 I I

with k = N - 1, N -2, . 0. , 0 and with Pk+l as defined earlier by Eqs. (3) and (4).

The corresponding approximation to the optimal value functions is given by

Jj(Zj YiJ) = - s(Xj2 + pi + 2d,) + Oi.4i + yid, + 2 (135)
2'2

where 77i now denotes the value defined by the recursion (for k = N-1, . 0)

Nk = nk+1 + Sk+lqk + bk + I N = 0. (136)

To allow for later modifications, this is taken as the definition of Jj only for (Z,, Yi-1) E G,, in which
case the expectations in Eq. (125) for V; certainly exist. Hence, we can also define the error functions
E i for such (Zi, Yj-1 ) as

Ei(Z,, Y- 1) = V1(Z,, Yj 1) - J,(Z,, Y1'>), i = 0, N. (137)

The objective in this section is to show that, except possibly for the unlikely set of realizations
mentioned earlier, the control CiU (Z,, Yj 1) differs from the optimal control by less than h/'4, or more
precisely, that if there is a control law U1 such that

IU, (Z;,I Yi- 1) - f (Z;,I Yj_1) I> hS4

then there exists a control law U2 E U such that

I U2(Zi, Yi- )-uj (Zi, Yi-i) I < h/i/4

and

J(U2) ( J(Ul).
The derivation of the result in this latter form does not require the actual existence or uniqueness of an
optimal control law.

5.4 Relations between Equation Systems I and II

Equation System 11 can be constructed if we regard di as one half of v - pi, then expand Equation
System I (in the form using Xi and X, in place of 7i and 'q7) formally to first order in h, with the quan-
tities A/i1 , X , X 7, and di being of order h, and finally relabel .j and ,j as Xi and X to distinguish them
from their exact values. If the realization through an epoch i is such that (Z7, Yj-1) E G,, therefore, it
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is a straightforward but tedious matter to use Taylor's theorem with remainder, Conditions (1) to (4)
of Section 3.1 for (Z,, YjI) E G,, and the fact that h-/116 can be made arbitrarily large compared to
In(//h) if we take h sufficiently small, to establish the following result by induction on the index j of
these four conditions in Section 3.1.

Lemma 11: There exists an h* > 0 depending only on the parameters a, b, and F of the unper-
turbed problem, such that if h <( h* and (Z,, YjI) E Gj for some epoch i, then

1xl< -/16,

jdjj < hl/6

Ixj - 3j I < Fj h2

1p, + 2dj- vj1 Fjh2 ,

and

1Xj - Xj I< F. h2

for] = 0, .. , i - 1, where Fj grows slowly enough with j that Fj < h-1/4 if

j < i < 31 V .- V -
32

The last conclusion here also uses the inequalities noted at the beginning of Section 4.5. Further-
more, applying the inequalities of Lemma 1 and the results in Appendix C enables us to obtain the fol-
lowing additional inequalities during the course of the same induction.

Lemma 12: There exists an h* > 0 whose value depends only on the parameters a, b, and F,
such that if h < hl and if (Zj, Yj_,) and (Zj, Yj_I)' E Gj differ in at most one component, whose
values are denoted here as p and p', then

|[xj(p) - j(p)] - [kj(p') - Rj (p')II < Fjh21p - P'I

and

I[v(P) - 2dj(p)] - [vj(p') - 2dj(p')]I < Fjh2Ip - p'I
for j = 0, ... , i - 1, where Fj is the same as in Lemma 11.

Again, the computational details of the proof are too lengthy and routine to be given here. As
before, the notation Xj(p') is an abbreviation for kcj[(Zj, YjI)'], etc., where (Zj, Yj->)' is the obvious
initial segment at epoch j of (Zj, Yj_1)'. These results can now be combined with those of Lemmas 1
and 10 to conclude the following results for Equation System II:

Lemma 13: There exists an h* > 0 whose value depends only on the parameters a, b, and F of
the unperturbed estimation problem, such that if h < h* and if (Z,, yi-1) and (Zj, YjI)' E Gj differ in
at most one component, whose values are denoted here as p and p' respectively, and if
i < I12 rin(1/h), then

leil < -vr J;7F lnllg < h-"/,

Ii - xI < 1 + 5 /TJ h714

Ia-7- pi - 2d, I < (1 + 5b-2) h74,
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1xi - oil < fI + 9 ITI h7/4

and

ly, - 3p,21 < b2 h + 6b (7/4 + h/7/8) < h3/4

for either realization, and

I[Xj(p) -Xj(p)] -[Xj(p') - i,(P)]I < 4;f6 + 24\F C1J hi3

+ (1 + F2 + 2 / DiJ h2
1p-p'I

I[o-j2(p) - 2d,(p)] - [o-?(p') - 2dj(p')]l < 2b(1 + V.fCj)h3

+ (1 + F, + 2b-J2 Dj) h21p - P'I,
Idi(p) - di(p') I < i3/4I p - p'I,

and

Wx(P -C Xjp) I < I P - P'l

Proof: To establish the first inequality, fji-,jl- is added and subtracted from the definition of e, to
give (for i > 1)

e, = (z, - f-li- ui- 1) - fl I(Qj-I - l).
Thus, from the triangle inequality and Eq. (7),

1 ej I < I zi- xjl + If i I I lI l-Xj- I-Tl I 1.

Since (Zj, Y- 11 ) or (Zj, Yj-1)' E Gj,

Izi-xi'I < fm 1+r/ i8Ii7h < b+Q 8 ln(l//h)
by definition and Ik- -Xi1 1| < h7/8 by Lemma 11 for sufficiently small positive h. So, since If I < 1
and h7/8 < V(b + Q) In(l/h) for sufficiently small positive h,

leiI < b -+Q ,91n(h)

for sufficiently small positive h.

The next four inequalities can clearly be verified from the triangle inequality and the results of
Lemmas 10 and 11 by similar constructions. Likewise, the next two (Lipschitz) inequalities of this
lemma follow from Lemmas 10 and 12; and the next to the last inequality from Lemmas 1 and 12,
since Fi < h-114 by the recursion for Fi and the remarks at the beginning of Section 4.5.

For the last inequality, it follows from Eq. (127) that, for k = 0, . .. , i - 1,

Xk+I X k+1 = f(Xk-Xk ) + + r (e-e') + 2r (Pe- v'e) + A (e2-e 2)tk + r (u +r) 2 r2

where xk 'denotes Xk[(Zk, Yk-1)'], etc., and where the obvious subscripts of the other quantities are
omitted. From the definition of ek+1,

Xk+l - Xk = I r J (.k- Xk ) ++ r (Zk+l - Zk+1 )
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+ ( )2r Ev(e - e') + e'(v - ')] + (e + e') (e-e').

Repeated application of the triangle inequality and the inequalities already established show that the last
two terms in this expression have magnitudes less than WT Ip - p'l for sufficiently small positive h if
1-. k'I < p - p'l, since (Zk, Yk+i) and (Zk, Ykl-) E Gk. Hence, again by the triangle inequality,
if Ikk - Xk I < lp - p'I, then

IXk+l - Xk I < [I< I | + 2-vIh1 p - p'l if p does not denote Zk+1

and

IXk+1 - Xk+Il | + 2,Th7 lp - p'I if p denotes Zk+±.

Since If I < 1, , > 0, and r > 0,

L-k+l - X-+1 I < 'P - P'I

in either case for all h K h, where Ti is some strictly positive number not depending on the index k.
Since the desired inequality is trivially true for k = 0, it holds for all k < i - 1 by induction. D

5.5 Some Loose Bounds

Before proceeding further, it is helpful to establish some relatively loose bounds on the value
function and, when it exists, the optimal control at a generic epoch i.

Lower Bound on Value Function

If the problem is altered so that the controller is given exact knowledge of the current state as
well as the noisy measurements thereof at and after epoch i+1 and is allowed to use this extra data in
the control law in a Borel-measurable way, this can only expand the class of admissible control laws.
Hence, minimizing over this expanded class cannot raise the conditional expected cost-to-go at epoch i.

For epoch k > i + 1, define Hk (Zk, YA-1, xi+,, Xk) as the optimal expected cost-to-go at
epoch k in the altered problem, i.e.,

I " -+(ax 2+ b)
HA, (ZA, Yk-i, xi+,l . . . ,Xk) = inf Ed sx + - (axi bjuj)

where uj is generated from Zj, Yj, xi+,,.. xj by the control law U, the expectation is conditioned
on the same data, and f D ( is the new class of admissible control laws just described. From the form
of the dynamics of Eq. (1), Hk depends only on xA. Now suppose that

Hk+, = 1 gxA+I + aXk+I + 1

Then, by the standard principle of optimality of dynamic programming,

Hk41 = inf El_, I 2(ax 2 +bu') + I g Lfx + u + (1 + )w 2

+a [fx+u+(1+px)wI + 24
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where the k subscripts have been suppressed. Evaluating the expectations gives

Hk = in 2 (ax2+ bu2) + g [(fx + u)2 + q(1 + tx) 2 ] + a (fx + u) + 44.

The infimum can be attained by the use of

U gfx+a
b+g

which gives (with additional k subscripts deleted)

Hk -) i[a2+gf2x2+gq(1+qwx)2 (gfX+a) 2 + 3] + a f

kX 2 Jba g

|bg + q 2J g+a|x2+ |fba + gqtjx+ / 1 |3+q a2-

Since HN (xN) - 2 sN xN for i = N-1, it follows by reverse induction on i that

Hi+,(x) = - g1+1 X2 + a,+, X + I /+I

where g+ 1, aj+i, and Pj+I are determined by the reverse recursions

Abk gk+ 2gk+l qkk+ ak; gN = SN; (138)

fk bka k+ I
ak bk + + gk+1 qk 0k; aN = 0; (139)ak +9k+

and

a 2+
Pk = 3k+1 + gk+j qk - b+ N 0 . (140)

For a general uj followed thereafter by use of an optimal control law, a lower bound on the conditional
expected cost-to-go at epoch i is therefore

2 [ b, uj2 + a,(5, 2 +a? + )1 + E[Hi+I(xi+1) /Zi, Uj, * u;1.

Suppressing i subscripts, this expectation is

I2 g+ [fx + u + (1+px) W]2 + a,+, [fx + u + (1+px) w] + 4/Pi+1 lZi,uJ.

Evaluating this expectation as the composition of a marginal and a conditional given x, we get

2 g,+l [(fI+U)2 + q(1 +) 2 + (f2+0qi2)a-2] + Y,+i(f.*+U) + 1/+

This conditional expected cost-to-go can be rewritten as

1 (bi+gi+l)(U;-Uj) 1 g;(..2+(T j2) a+ a X 1 _ + ___

where

u= - i + (141)

and aj,,/3j,g,, and g+ I are given by Eqs. (138) to (140).
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By construction, this is a lower bound on the conditional expected cost-to-go at epoch i in the original
problem for any control u1, even if it is followed by use of an optimal control law at epochs
i + 1, ... ,N. Also, by construction and the definition of the value function Vj, u, can be chosen as iii
(a function of Zj and Yj-I, actually) to give

IK(Zj,,Y-) > ig.(Xj2+ j-?2)+ ai- + 1 (d + f J (142)

for all (Z,, Y, I) E G,, where iX and a-7 are the conditional mean and variance of xi defined earlier, which
have been shown to exist for realizations such that (Z7, Yj- ) E G,, where Yj,1 is now the sequence
{iio(ZO),I1 (Z1 Yo), Y... iUI, (Zj1, Y1-2)}.

Upper Bound on Value Function

Returning to the original control problem, we now consider the obviously admissible control law
which gives

-Uk (as defined in Eq. 131); k < i

Uk = U/c if k = i (143)

gk+lfkzk + ak+1 k > i + 1
bk + 9k+1

and, for k > i + 1, denote the corresponding conditional expected cost-to-go by

2 + n1 2 2 1
Tk(Zk, Yk-k1) = E 1 2 SnXn I - (ajj + bjUj2)/Zk, Yk-1

when (Zk, Yk/-) is such that this expectation exists. For k > i + 1,

Uk - -Ck(Xk + n/ - 8kc,

with

gk+lfk

C/ - bk + gk+1

and
8k a/k+I

bk + gk+1

so, dropping obvious subscripts,

Xk+l = (f- C) xk -8- cn + (1 + qx) w.

For k > i + 1 and (Z7, Y,- 1) E G., let Xk temporarily denote E (xk//Z,, Yj- ) under the control law of
Eq. (143). By the statistical independence of the process and measurement noise variables,

E(xk+l/Z,,xk) = (f- c)xk -8,

so

E(xk+llZi) = (I - C) Xck - 8 = Xk+/, (144)

where the dependence on Yk/c is suppressed in the notation. Also,

E(xk+1Ixk,Zk) = (f- C)2xk, - 28i(f- c)xk + 82 + C2rk + (1 + qXk)2qk,
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so from Eq. (144) and noise independence

a-/k1= [(f c)2 +4i2 qI ak+ c2r(1 + tp/k)2q, (145)
where a-k now denotes the conditional variance of Xk given Zk.

rr
By definition,

Tk(Zi, Yi_- = Tk+I(Zi, YiJ- + 2 EIZ',,Y-I (akXk + bk/[Ck (Xk + nk) + 8k1]2

for k > i + 1, or with notational abbreviations,

Tc = T/ck++ + I -a/(xirk+ka-) + bk/[Ck2(Xk + (k + rk) + 2Ck/k7ck +8sI). (146)

Now suppose that

1 - 1+1+0.2(17
Tk+I = 29gk+I(x/+1 + d-~1) + ak+1Xck+l + I G3k+l + GO+), (147)

where gk+/, ak+ 1 , and /ck+1 are given by Eqs. (138) to (140) and f k+I is given by the recursion

(a = fj+l + fj gj+ 'i ; 6N = 0 . (148)

Since this supposition is true at k = N - 1, Tk is given by Eq. (147) for all k > i + 1, as can be
shown by backwards induction on k with the use of Eq. (146).

The conditional expected cost-to-go at epoch i using an arbitrary U1, but the control law of Eq.
(143) thereafter, is therefore

E/ZiYjI[| 2 (alxX2 + bju,2) + I g.+l (I2I + a?2 1) + a1 +1 X,+1 + - -3, + )

= 1[a (j2 + a-?) + bi,2] + lg,+I(i21 + a+ I - + 1 + C (149)

by idempotence of expectation, at least for (Zi, Y,._) E G. and sufficiently small positive h, when these
moments are known to exist. Also,

x+,+ = fix, + u, + (I + *,x,) wi,
so

x,+ = i, + U,
and

2 Cf2 + qtp, ?)a-? + (1 + qx) 2 q1,

where X- and a-? now have their former meaning. By definition, this conditional expected cost-to-go is
an upper bound on V1 (Z, Yj_, ) for any Uj. Using Eq. (141) therefore gives, for sufficiently small posi-
tive h,

V,(Z,, Yi) ( 2(b1 + g+ 1) (Us-u,) + I g, (7i2 + a-?) + aix,
2 ~~22 1

for all (Z, Y~1 ) E G1,where + an b+ g+I 1, (150)2 a bf + gi+j a i1N0.

for all (Zj, Yj_ 1) E Gj, where 5Xj and a- 2 are functions of (Z., Y,_ 1), and i < N -1.
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Limits on Optimal Control

With u, = iii in the upper bound (150), the principle of optimality and the lower bound on Vj
preceding Eq. (141) imply that U1 = u can be bettered (in the sense of achieving a lower conditional
expected cost-to-go) unless

(b, + g,+1) (U - iij)2 < f+
at least for (Z,, Yj-I) E G, and for sufficiently small positives. Since

N-I fk7gk/+ I rk

k -i+ bk + 9k+i

this condition implies that (U - i,) 2 < - ln(l/h) for sufficiently small positive h and
2

N < I rl-n(1/h) if the recursion (138) for gk is backward stable. This is clearly true for small
32

enough positive h, since

9/= fk |bk + g/c | /kJ g/cl + a/c

Also, comparing these parameters with the J (Z7, UQj-) parameters gives

(9k Sk)SO b + g |+J bk + +s I (gk+1 - Sk+I) + gk+ 1 q/k O; (gk SN) 0

(so gk >, Sk > 0) and

(v/c - Odu A bkcgc+ (vk+l - 'kk+i
(7k-Ok) =I bk + 9k (k+ 1 ~ l

+ fqLk kp fkb/.k/k+l 1(g9k+1 S k+1)
+ (bk + gk+) (b/ + sk+d) I

I mrc J q+|k Ok Yk+1 ; (vN -ON) O.

Mk/+1 + r/c+1

Hence, for sufficiently small positive h, Ig,+I - sn+ I < h3/2 and lIyv+i - -II < 4f;. Using Lj to
denote the apparent approximately optimal control as before, i.e.,

f 5i+1 X + Oi+1
=i -b, + sj+

it follows easily that, for small enough h > 0,

I- ij I < h-I/21 k - jI + hI3/2 j, + 4;.

From Lemma 10, therefore,

li,- ij I < 2h +4h < 24;h if IcI < -1- and (Z1,Yj- 1) E Gj,

or equivalently for sufficiently small positive h, by the definition of G1. This means that under these
conditions u, cannot be optimal (i.e., can be bettered by some other value) unless

I ui- uj I < V 7 Ql-g
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The preceding results can be summarized as follows.

Lemma 14: For any c > 0, there exists an h/ > 0 such that if h ( h*, if the number N of 2
epochs in the control problem of Section 5.1 is such that

N < I /ln-(-1//ih
3 2

and if (Zj, Yjj) E Gj for some iE (0,1, ... , M, then
(3+f

2g,+1 a-?1 (1 ,

0 < V (Zj' Yi-1) - 1 gj (Xji2 + 0- 12) + a jX; + i + fjg, r1<-2 2+a )a,,+ b, + g,~j 

where 3, (Zj, Yj-1) and a-? (Z;, Yj-1) are the conditional mean and variance of xi given Z,, and where g1,
aj, /3j, and ji+I are defined by Eqs. (138) to (140) and (148). Also, for any U E 6, if

I U(Zj, Y -i) -u (Zji, Yj - i) I > c Vl-n (l/-h),

then there exists a u E R such that Wj (Zj, Yj-1, u) < Wj [Zj, Yjl§, U(Zj, Yj-1)], where the
expected cost-to-go Wj is defined as

N-i1b2l
Wj (Z7, Y}'>_,) = inf/z_ yE X,2 + aix?2 + b1U2) + 2) +

UEe i1 ( ,1 2(kk kY

with uk = U (Zk, Yk-1) for k =i+ 1, ... , N- 1.

Bound On Ej+1 I

At this point it is convenient to extend the definition of J1+j for all arguments (Zi+,, Yi) for which
the initial segment (Z7, Yji-) E Gj. If (Zi+,, Yi) I Gj+1, J,+j is defined as

Ji+1 (Zi+ ,2Y) = Ej4Nj + - (akXk? + bkukI)/Z +ij (151)

where

Uk = fkgk+ + ak( 1 for k > i + 1. (152)
bk + 9k+1

Using the result of Eq. (105) in the derivation of Eq. (149) shows that this extension of J,+I is well
defined. In this case, Ji+j is defined as the conditional expected cost-to-go using an admissible but pos-
sibly nonoptimal control law, namely the one used to establish Eq. (149). Hence, Vj+j is well defined
by Eq. (125) for such (Zi+1, Yi) Q Gj, and the definition of E1j+ can be extended to this case as

,Ei+l (Zi+j, Yj) = Vi+j (Zi+j, Y') -J(Zi+l, Y). (153)

Since Eq. (149) is valid in this case as well,

0 < Ji+I (Zi+ 1, Y) - Vi+I (Zi+, Yi-1) =- i+EI (Zi+, 1'Y) < i+i (154)

for sufficiently small positive h and any i = 0. N - 1. If N < 1 ln (1//i), (Zi, Yj_1) E Gj and
32

(Zi+1 , Yi) q Gj+,. In this case, therefore,

IEj+I (Zi+1,Y,)I < 1 In (1/h) (155)

for sufficiently small positive h.
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5.6 Principle of Optimality for Generic Epoch i

Applying the standard principle of optimality of dynamic programming to the optimal value func-
tion of Eq. (125), we get

Vj(Zj, Y __) = inf E 1(ajxj2 + biu2 ) + Vj+1 [Z, * Z,+1(U), Y>_. * u]J.

where the expectation is over xi, wj, and ni+I and is conditioned on Z7 and Y1> * u, and where z,+±(u)
denotes the quantity fixi + u + (1 + pijxj) wj + ni+1.

Furthermore, if (Zj, YjI) E Gj the expectation in this expression exists and Eq. (153) can be
used to give

Vj (Zj, Yj_1) = inf E {J1+1 [Z7 * Zi+i(U), Y1>I * u]
u xj,wj,nj+j/Zj, Yj_j,u

+ Ei+ I[Z * Zi+I(U), Yi- I* uI + I (a xi2 + biu2)l. (156)
2 '

Also, the infimum in Eq. (156) can be restricted to the set

Aj(Zj, Yj_1) = (u: Iu - Li (Z,, Yj_ 1)I < VIln(1/h)),

in this case by virtue of Lemma 14, which, since (Zj, Yj-1) E Gj, is contained in the set

{u:Iu I < 2 1n(1/h))

for sufficiently small positive h, by Eq. (131).

If Jj(Zj, YjI) is defined as in Eq. (135) for all (Z7, Yj-7), then it coincides with Jj if
(Zj, Yj_,) E GQ. For (Zj, Yj- 1 ) E Gj but (Zi+,, Yi)q G,+1 , however,

Ji+-Ji = 2 [g,+j(1Xj + a-?+ )-s 1+1(4 1 + pi+, + 2d ,)] + a -~j x,+1
2 2

- Oi+ Ci+ -YYi+ + 2I i+l + (i+2 + 13+1 +2 gIi+l - Ti (157)

It is straightforward to verify that (Z7, Yj_1) E Gj and I ui - Li (Z7, Yj_1 ) I < rn(1//i) imply that

(Zi+1, Yi) E Gj+I (Zi+I - xj )2 < 8(mj+I + rj+,) In(l/h).

Therefore, Eq. (156) can be replaced, for (Z7, YjI) E Gj and for all sufficiently small positive h, by

V(i i I) , e- A inf £[J | i+l(Z* z1+1, Y * u)
UEA(Z,,y 1§) I

+ Ei+I(Zi * Zi+1, Yj_ * u) + - (aix1 2 + biu2)]
2

+ f, [J,+I(Zi * p, Yj_ * U)- Ji+l(Zi * p, Yj-I * u)I dPzJ+ (p)} (158)

where the first expectation and the probability measure Pzi+1 are conditional on Zj, Yj-1, and u as in Eq.

(156), and

I = {pX(p _ X,1 )2 > 8(mi+l + rj+1) In(l/h)).
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It is a fairly straightforward but tedious matter to conclude that the integral term in Eq. (158) is smaller
in magnitude than h/3 for any u E Ai (Z7, Yj_ ) and sufficiently small positive h by the use of Eq. (157),
previously established error bounds, and inequality (105) for large values of |P - x7+1 1. As a result, it
follows from further straightforward manipulation that

Vj(Zj, YiJ') = P 1(Zi, Yi-I) + P2 (i) + P3 (Zj, Yi-I)

+ P4(Zj, Yi-1) + inf I Ho(Zi, Yj_>, u) (159)
uE Ai (Z, Y1-1)

for (Z7, Y,.1) E Gj, h sufficiently small,i < N - 1 < 1ln(1/h),
32

where

P1 = 2 _i9(a1 + f2S,+i) + IV+l + si+i i+i + Cf,2p1 + q1 + r2+1 ) |Pi SJ+2

+x if I + 2 p,+lqpi S , + P itpi 2 s

+ (Yi+I + Si+Il) i+i + 12 I qi is

+• 2d(yt+ + ) | rj+ I + 2) r I 2 I p(160+ + s,+1) ,'ii r,~~~1 + S+P+ + Pi+i, (160),ui+I + ri+I ,Aj+I + ri+1 ri+I

and where P2 , P3, and P4 are rather complicated expressions, for which it follows from the inequalities
of Lemmas 11 to 13, the results of Appendix C, and the backwards stability of Eq. (132) that P2 is
independent of (Zj, Yj-I),

IP2 1 < h7/4, IP3 1 < h512 (161)

and, if (Zj, YjI)' E Gj differs from (Zj, YjI) in only one component, whose values in (Zj, Yjj) and
(Z7, YjI)' are denoted by p and p' respectively,

P4(P) -P 4(p') < h- -7/16(/h3 + h2Ip - p'I), (162)

and where

HO(Z7, YjI, u) = 2 (bj + s1+i) u2 + [s1 ifjxU + f +i + C(Zj, Y,~i)Iu

+ 8i(Zi, Yi>I, U), (163)

with

C(Zj, y+1) = SI[p.+ 1 + 2 ri+' I 1 1Xj -

+ j A {f2[a 2 _pi j- (Xi Xj)2] + qi [2x+ J (164)

and

8j(Zj, Yj-1, u) = E/zy1 _,,u[Ej+I(Zj * Z,+1(U), Yi-I 0 U)]. (165)

Applying the inequalities of Lemma 13 and the results in Appendix C on composite Lipschitz condi-
tions to Eq. (164) we can show, after some routine manipulation, that for sufficiently small positive h,

I C(Zj, Yj_I)jI < h 312 (166)
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and

C [(Zj, Yj- 1)]- C [(Z7, Yj)'] I < h-/7/6 ((h3 + h2p - p'j) (167)

if (Z7, Y>1I) and (Z7, Y-1')' are both in G, and differ in only one component, whose values are denoted p
and p' respectively.

From this point on it is assumed for simplicity that there exists a Borel-measurable u0(Z;, Yi-) for
all (Z7, Yj-i), i = 0, . - 1, such that

u; (Zi, Yj- ) = inf Ho (Z, Yj- i, u).
U

If such a minimizing u does not always exist, the ensuing results can still be obtained by a standard
limiting procedure. With this assumption and the definition

A (Z y I) si+I fii (Zi, Y i I) + f i+I + C (Zj, Yj,1 ) (168)
bj + sj+I

it follows with considerable computation from Eqs. (135), (137), (159), and (163) that

E, (Z7,, Yi 1) = P2 (i) + P3((Zi, Yi- 1) + P4(71, Yi- 1) + I (s,+1 + b) (u -uj)2

s,+1f~~(Z,, '> 1 )CZ,, y) C(ZiYi...i)[ki+1 + 4C(Zi, Yi I)I_Si + Ifi xi(Zi Yi -i) C(Zi Yjil - (jY I)~jl 2cZ
sj+I + bj Si+I + b1

+ 8 117, Yi...,jU (Zj, Yj' )I (169)

for all (Z7, Yj' 1) E G1 .

It is also convenient to establish the following results for future use.

Lemma 15: There exist an h > 0 and a C > 0 ( independent of h and epoch index i) such that if

h < h',

32

(Zi, Yj-j) E Gj,

|xj (Zi IYi- 1) < 6K,

|i -(Zj, Yj-.) |< / Kh,

Uj - k (Zi IYi-1)l < V ,nI- 0

[ Zi+I - x, (Zj, Yj.1 * ut)J < 8(mj+I + rj+i)ln(l/h),

and

h-/6 < K < h -1/
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then

|Xi+ I (Zj* zi+I, Y, 1 * Ui I(, K

and

| di+(Zj* zi+l, * uY 1u K/h.

Proof: This is a routine matter of substituting inequalities already established for the various vari-
ables and the definition of G1 into Equation Systems I and II and using the triangle inequality. The
desired result then follows from the fact that h-E > ln(1/h) for sufficiently small h if E > 0. D

Lemma 16: There exists an h > 0 such that if h < h', i < N - 1 < 3 2'n(1//h), and
32

(Z7, Yj_ ) and (Z,, Yj_ )' E Gj differ in only one component, whose respective values are p and p', then

ii| (p) - ii(p') < h1/2 + lp - p'.

Si+1
Proof: Since If I and b are both strictly less than unity, this lemma follows if we apply

13, + sj~
Lemma 13 and Eq. (167) to Eq. (168) and use the triangle inequality. E

Lemma 17: There exists an h* > 0 such that if h ( h*, i < N - 1 < 312isTi7W , and

(Zj, Yj_ 1) e Gi , then

| U (Zi, Yj_ I )- k (Zj X Yi_ d )I|< 2 h

Proof: From Eqs. (131), (168), and (166),

| uj-U l= |Cl < h3/2
bi+ si+l b + si+i'

in this case for sufficiently small positive h. Since b1 >, B > 0 and si+l > 0, their sum is less than
h-//4 for h < B-4. Ew

Definition: For h,K > 0, i = 0, ... ,N, 7rj (K) is the subset of (Zj, Yj_1) E G, (h) such that

1.xj(Zj, j_ )I < K

and

Idj(Zj,Yj_1)I < Kh

for j = 0, ... ,i, where (Zj, Yj_',) denotes the indicated initial segment of (Z,, Yj_ ).

The control law U is now considered as an approximation to an optimal control law, where

[j if (Zi, Yj_ 1) E 7j (h- i/16)

(U(Zj, Yj_ 1) = figi- izi + aj+ 1 terie
+ + otherwise.

13, + g,~ 1
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It is shown next in Theorem 2 that (Zi, Yj_) remains in ri (h-i/l6) with high prior probability for small

h, it will be shown in Section 5.7 that fij is a first-order approximation to an optimal control in this case.

Theorem 2: If the total number of epochs N always satisfies the inequality

N < Vln ln(1/h)

and the control law U is used, then, a priori,

lim Pr((Z7, Yj_ 1) E 7r (h-I//16); i = 0., N(/)} = 1,
h-O+

assuming of course that the parameters a, b, F, sN, A, and B of the unperturbed problem do not vary
with N.

Proof: For the problem at hand, let c and h be the positive constants cited in the conditions of
Section 3.1, and assume that c < 2 without loss of generality. Let (0j: i = 0, ... , N - 1) be the
sequence defined by

oj+I= oc; Ho= 1/h > 1

and let c i denote In 0 j. Now suppose that

max{Ixo-&oI, Iwo!, InN!, max {1wil, ni 1)) < c coo (170)

and max(lujl: j = 0. i - 1) < ccoj_ for some i, with h < h. By construction,
1 < Oo < 01 < ... , so Co < ln(I/h), since the logarithm is monotonic. Therefore, by the conditions
of Section 3.1 on the unperturbed problem,

(Zi, Yj_ 1) E Gi~o 

if h is also chosen as less than h. In light of the previously established inequalities, a strictly positive h,
exists such that if h (/ hI, then

JlkI < 21n(1/h)

whenever (Zk, Yk. 1) E Gk(h) and k < 3 ln(12/h . Hence if h = H is further chosen to be less
32 00

then hl, then

Iu,(Zi, Yj_1) I < 2In 0-I < C coi.

Since wi > wi-I by construction, it follows from an obvious induction on i that

(Zns, Yn,-I) E GN| I I

whene~yer inequality (170) holds. From its definition h2 < h, # GN(h2) GN(hIl). So, since
ON > 00 = l//h by construction,

(ZN, YN-1) E GN(h)

for all h less than some strictly positive value h*, if N < 3 Vln(1//i) and
32

max(Ixo - iol, Iwol, InN1, max (1wil, Inij)) < c ln(l/ih).

Also, h* > 0 can be chosen so that Lemma 11 holds under these conditions, too, in which case

(ZN, Yn-1) E '7rN(h- 1/16),
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From the bound in Section 3. 1, the prior probability P of this event not occurring is bounded above by

(2 | 4IJ N -2 |-|IP Niny

2 2where a- = max(vo, q0 , rN, max {qj, rj1) and y and p denote 1/h and 2, for brevity. Since1=1,..N 1C
N < v/lnln(1//i), another bound is

a 2 2 NlnP-i I p NnyI

To establish that P approaches zero as h does, as long as N < V/ln ln(l/h), it therefore suffices to show
that the limit of the exponential factor

N(v) Inp = [ | N(y) Iny

is zero as y - °°. Clearly N(y) can be taken as equal to -v"IniiHn for this purpose. The logarithm of
the subtrahend in this quantity is

2 In[ or + In lny - In p v inn,

which can be made arbitrarily large for any c and a- by making y large enough. Also, the ratio of the
minuend to the subtrahend is

| c|IP |-N And 
The logarithm of the last factor is

InN + N Inp-Iny < In (-In) + Inp -In -ny,
which goes to -c as vy- -. Since the other factors are constant, the entire ratio goes to zero as
y - cc Therefore,

lim P(h) = 0.
h-O

Since (ZN, YN-1) E SN(h-1"'6 ) _> (Z7, Y}-1) E ir1(h-/ 1 6 ) for all i E (0, ... , N), by construction,
the theorem follows. E1

5.7 Induction Argument

In this section, an induction argument is developed which demonstrates as a corollary that the
control Lj generated by control law U is optimal to order h for realizations in 7ri (h-/i6) for sufficiently
small h. For a generic epoch i ( N - 1, the induction hypothesis is that, for some h* > 0 which does
not depend on the epoch index i, if

h (1 h*,

N < 31 IPUIh'32

Q,+j E [h-1/i6, h-1i/81

and (Zi+i, Y'), (Z,+j Yj)' E iri+l (Qi+i) differ in only one component, whose values are denoted as p
and p' respectively,
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then

IE,+l (P) - E1+I (P')I < K1 I h-1/2 (h3 + h2 Ip -p'l); h-i/i6 ( Kj+I < hii/8*
Here, E-+I(p) is shorthand fore +I [(Zi+ , Yi)1, etc.

Lemma 18: If the preceding induction hypothesis holds, then there exists an h > 0 (independent
of h*) such that if h < h, Qi = { Q,+I, f as in Lemma 15, (Z7, Yj-I) and (Z,, Y,..)' E 7r, (Q.) and
differ in only one component, whose respective values are p and p' respectively, and if

lui -uPi (Pl lui -u k') I < V In~l/h)~,
then

18i (P, U) - 8,(p', u1) I 18 + 4Kj+I h-1/2 + In 2(1/h) Cj+I h3

+ Kj+ h3/'2 u - u'I + (2Kj+1 h-/12 + In2(1/h)D1 +1)h2 Ip - p'I.

Proof: Let

Zi1+ - zItl - Zl- ; F, - f R, (p) + Ui
V1m1 +I (p) + ri+I

and

t2= f j +l- ;)~r Z2 = fj R, (p') + uj .

By definition, then

8, (P,u) - 8 (p',u1 ) = E (E1+l [Zi(P') * (Z + tlVm,+l (P) + rj+j), YjI (P) * uIJ
I l/Zji '), Yjit fI (), Ui

- £ ,tEiE fi [Zi(P ) * (Z2 + t2Jm1+i (P) + r,+i), IY- (p') * u,'].
1AV)j,o) Yj_, io'),uj

By construction, tj = s(p) and t = s(p') in the context of Section 4.4, so by Eq. (96) and integration
of Eq. (95) over Is I < eM ; - 6v/ln(1/i7),

PrItj I > V/8 In(1/h)} < 2hn- g; j= 1, 2;

for sufficiently small h > 0 (because Mj > 1 h-1/8), this probability being conditioned on (Z7, Yj-1) E
4

Gj (h) and on Uj. This result does not depend on any restrictions on uj. For sufficiently small positive
h, therefore, given such (Z,, Yj-1),

Pr{ItII Jm -+I(p) + r,+, > 8f/fn(1/hi) < 4 Inlh)'

and

Pr(1t2 I Vm,+(p') + ril > 8,ln R < 4 In (lh)
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By inequality (155), lEi+ll < I ln(l/h) in such cases (for sufficiently small positive h). Since the con.
2

ditional density of tj and t2 exist otherwise, it follows from the triangle inequality and the use of t to
denote both variables of integration that

dn lnIh)

18(p, u)-8(P',u')I < 8h + Iei+1 [Z * ( + t4;T 7), Y * U]Pl/pu (W)

-,E+l [Z' * (-2 + tVfTY), Y' * U']lP2Ip',u' dx,, (171)

where some obvious epoch subscripts are suppressed in the notation. By construction, pl/p u(t) j = 1,
2, are independent of the value of u, so the integrand of Eq. (171) can be rewritten as the absolute
value of

fE +i [Z * (Zl + tv 7), Y * U] [p (t/p) - (t/p')I
+ p (tlp')+I[Z * (zj + A/m r), Y * U] - E1+I[Z'* (Z2+ Atir), Y' * U']. (172)

The first term in this expression is bounded in magnitude by

-ln(I/h)(Cj+ 1 h3 + Di+, h2 p - PI)

from inequality (155), Lemma 1, and the proof of Theorem 1. By construction,

ItII < f8V InHii0h7 Izi+, - x, (p)I < V8[mi+1 (p) + r,+lln(I/h)
and

It21 < V8 In(l/h) Izi+ - Xil (P')I < V8 [mi+l (p') + r,+ ln(l//).
By hypothesis and Lemma 15, therefore,

[ZV(P) * Zi+, Yj (p) * ui E nr (Qj)

and

[7, (P') * zi+1, Yj-I (p') * u,'I E ri (Qj)

for such zi+. Hence, by the induction hypothesis and the triangle inequality, the other term in (172) is
bounded in magnitude by

p(t/p')KI~ h-1 /2 [4h13 + h/2 (Ip-P' + I- Z21 + It M + Iu- )]

for sufficiently small positive h. Also,

Iz- Z21 = If 1[i(P) - ij(P')] + U, - U,'I < I3i(P) - .x,(P')I + Iui - u,'I

and, by the proof of Lemma 1,

ki~~m (p)- V m (p )r + , m V 2,1
1-1= ~/~+V<~ 24;hpp1

where Fj+j < h-1/4 if i < l3V2 v 77g7. Combining these results and substituting the bound for (172)

in the integral of inequality (171) we obtain the conclusion of this lemma for sufficiently small positive
h after some routine computation. E1
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Lemma 19: If the preceding induction hypothesis holds and (7Z., Yji_) E 7rI(Q), with Qj as in

Lemma 18, then there exists an 1 > 0 such that if h < h

1u1(Zj, Yj- ) - u(z, Yji- I < 4 h3/2

for all (Zj, Y1-I) E iTi(Q 1 ).

Proof: Since (Zj, Y1'I) E iT1 (i Q1+I) > (Z7, Yj-I) E Gj, Ilii - Ljj < ln(1/h) and JIu- Ljj <

V/ln1/ih7) by Lemma 14 if h* is chosen to be less than the value needed in that lemma. So it follows

from Lemma 18 that

181[ui7(Zi, Yj-I)] - 81j[ij(Zj, Yj 1 )] I < 5Kj+Ih-112(h3 + h2 u1 -U iJ) (173)

for all sufficiently small positive h.

Now assume that I Uj-ui I > .2/ + + h312. Then, dropping epoch subscripts,

1 (s + b) (u*-U)2>2 ( +b) IK + 21 3/2 lU*-L~~~>2(s + b) 13 2||usu + 2b lu*-ul|+ 2 2 V s+-b -b

> 2(s + b) h 32 I l
2 it b 13

'(s+1~3) 2 /i-K 1O 3/2 +2 Li]2 ( b si/1~I5iFT + IU*

> 1(s +b) P 1 lK I+ I Is +bi 2h 3/2 1U* ri
2 s +13b 211 bJ~32U~

> 5Kh-/112(h3 + h2 lU - ul ).

By inequality (173) and the triangle inequality, therefore, under this assumption

8, (i,) - 8 (U1) < I (S,+I + b,) (u7- ii1) 2. (174)

Let

H,(Z,, Yj-1, u) = Ho(Zi, Yj, , u) - 8 (Z7, Yj> , u). (175)

For the values of Z, and Yj- under consideration here,

Uj = arg min {H,(u))
U

by construction. Also, for a general u,

H (u) _ 1 (s,-1fix, + k i + C)+2 + (176)
1 2 si+I + 13, +2~(1 1 +b,.u-L 1

Therefore, deleting epoch subscripts,

1 ____-______>_______________- (s + b) (u*-U)2 > 8() - 8(u*) H,(u*) + 1 (sfx + >+ C)+ ()
2 2 ( + b

H, H(u ) + 8(u *) > 1 ___________2_+ 2 s +b
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=> HO(u*) > Ho(u) by Eqs. (175) and (176)).

Combining this result with inequality (174) and Eq. (159) shows that

I. -Ijl ( ffSi,+ T 2
because the reverse inequality implies that ui is nonoptimal (strictly less optimal than Lj, in fact).
Since Kj+j > h- 1 /6 by assumption, the lemma follows for all h less than some sufficiently small posi-
tive value. E

Lemma 20: If the preceding induction hypothesis holds and (Z7, Yj-1) E 7ri(Q,), with Qj as in
Lemma 18, then Eh > 0, such that if h ( h,

lui[ [(Zi, Yj_ 1) I- ui [(Zj, Yj_ 1)'] I < h + lp - p'l

Proof: By the triangle inequality,

Iui(P) - us(P')I < Iui(P) - i, (p)I + Ili,(P) - k (P')I + ILi(P') - U (P')I.
The lemma then follows by Lemmas 16 and 19. El

Lemma 21: If the preceding induction hypothesis holds and (Z7, Yji-) and (Z7, Yjj)' E 7ri(Qj),
with Qj as in Lemma 18, differ in only one component, whose respective values are p and p' respec-
tively, then

I8i[p, Uj (p)] - 8iLP'- U, (P')]| < 18 + 5K+lh-11/2 + In2(-1] Cj+ijh3

+ [3K,+lh-1/2 + In2 (1/h) Dj+1]h2 p - P'I.

Proof: From Lemma 14, Iu,(p) - j(p)I < iln(1/i and

lui'(p') - fj(p')l < vrln _(l_/h)

for sufficiently small positive h. Substituting uj,(p) for u and uj (p') for u' in the inequality of Lemma
18, and using Lemma 20 and the triangle inequality, we can establish the lemma. El

Theorem 3: There exists an h* > 0 which depends only on the parameters a, b, F, SN, A, and B
of the unperturbed problem, such that if

h , h *;

N < I-n; 7;
32

Qj= N+,; i = O.., N-1;
and

QN = 1/8

where ( is the constant required by Lemma 15, and (Z7, Y-1¾) and (Z,, Yj-1)' E 7ri(Q,) and differ in
only one component, whose values are denoted here by p and p' respectively, for any i E {0. ,

then

lEi (p) - E (p') I < Kj h- 1 /2 (13 + h12 |P -P')
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where K, is determined by the recursion

K, = 8Kj+I; KN= 1-1/16

Proof (reverse induction on i): By definition, given the premises

Vn (ZN, YN-I ) = SN E (xN/ ZN, YN-I )

2 1 N(XN + a-N)

and

JN(ZN, YN-1) = 2 SN(X + PN + 2 dN),

since (ZN, YN-I) E ri(QN) - (Zr, YN-I) E GN-

Thus,

EN(ZN, YN-1) - 2'SN[(3N + kN)( N- XN) - PN + (AN- 2 dN)N,

and the conclusion of the theorem follows directly by application of the triangle inequality and the in-
equalities of Lemmas 11 and 13, if h is sufficiently small.

If the theorem holds at epoch i+l, then the initial segments (Z7, Yj_,) and (Z7, Yj_1)' are both in
G1 (h). Since the maximum value of sufficiently small positive h required for inequalities (161), (162),
(166), and (167) and those of Lemmas 11, 13, 19, and 21 depend only on the parameters a, b, F, and
B of the unperturbed problem, h* > 0 in this theorem can always be chosen as the minimum of these
values. Substituting these inequalities into Eq. (169) and using the results in Appendix C for Lipschitz
conditions of composite functions, we can show that this theorem holds at epoch i, as long as N is small
enough that the recursion generating K1 does not make Ki > h-11/8 for KN h- 1/16 But

K, ( KO= 8 N1 -1/16v

so

InKi < N In 8 + I In (1/h) < 1 In (1/h)
16 8

for sufficiently small he > 0 and h ( h*, or

K1 < h-1/8

in exponential form. El

Corollary: Given the premises of the theorem,

I u 1(Zj, Yj_1 ) - j(Z,, Yj_,)I < h1514

if h* is sufficiently small.

Proof: By the triangle inequality,

SYui'( - i, I < Ith - flwbL + ma1iad- U1.
since (Zj, Yj- 1) e ir i(Qj) = (Zj, Yj_ 1) E Gj, the corollary follows by Lemmas 17 and 19. CU
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Even if a strictly optimal control law does not exist, it can still be similarly established via a limit-
ing procedure that if under the premises of Theorem 3

I U(Zi, Yj_ 1) - ij(Z,, Yj_1) I > h5/4

for any admissible control law U, then there exists a u E R such that

Wi(Zi, Yj-1, U) < Wi [Zj, Yj_,, U(Zj, Yj_0,)]

where W is as defined in Lemma 14. Hence the admissible control law U', constructed from U by
replacing U (Z7, Yj_1) with uj(Zi, Yj_1 ), is such that

J(U') ( J(U).

6. CONCLUSIONS

One is often interested in systems which are controllable but unstable in open-loop operation (i.e.,
with u 0). Strictly speaking, this situation is not covered here because If I < 1 in Eq. (1). This is
not really a limitation, however, because such a problem could always be reformulated in terms of devi-
ations from a stabilizing control law of the form

U1 = - C, Z1 , 0 < f - c, < 1,

in which case the dynamics of Eq. (1) become

xj +I = , (-ci) xi + ii, + (I + t ixi) w,- cini,

where

U, = U1 + C, Z1

now plays the role of the control variable. The analysis could then proceed as before, but with some
extra terms appearing. This extra generality was not included because the analysis was already very
complicated and was only intended to be exploratory.

Other interesting extensions of the results here, or similar ones, would be to the multivariable
and continuous-time contexts and to steady-state behavior in infinite-time problems. As a first step
toward analyzing the continuous-time case, one might consider adapting the approach used here to a
discretized problem of the type described in Ref. 1, where there is a time-increment parameter A (i.e.,
the time between successive epochs) which is small compared to the perturbation parameter h. The
results obtained would at least have a formal bearing on the limiting contnuous-time problem, and
might be suggestive for conducting a mathematically precise analysis of it. This sort of procedure,
however, seems to require the use of a third-order Taylor series expansion in carrying out the propaga-
tion step of Section 4.3, and with the sort of constructions used here, it did not produce any useful
results in the updating step of Section 4.4.
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Appendix A
NONEXISTENCE OF PROBABILITY DENSITY

For simplicity, we consider only the particular case of a single transition where

y = x + (1 + /x) co,

with x and co independent zero-mean unit-variance normal random variables, and show that the proba-
bility density of y diverges at -1/h. From the constructions of Section 4.3 and their role in the overall
estimation problem, the same reasoning can be applied to more general examples.

If the new random variable w is defined as

w= (1 + hx)co,

then

y = x + w

and, except at (x, co) = (-1/h, 0),
X2 w2

2 2(1+hx)2
p (x, w) =p (x) p (w/x) = e2 11+hx I

Hence, for positive e < '
313,

1 1C 1< h< + E > J p(Xw) dx dw.

For each value of w in this region of integration,

1 ~~~~11 I[+W+E]+A1 iH12
p (Xw) > |E 2 h ( eW-|

2iT1h3(w +E

Since2e < w < 4E w 2and w+ - + E (2
13 W -E 13 132

p (X W)> 27r h (w + e)

in this region. Substituting this bound in the preceding integral and changing the variable of integration
over w to

U = W +E

gives

]Pr y E -E + E >, e e hu ' '
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Thus

-I y --I - E, - -+Elin-i+n-I
2E I I h 13h + ITh [In| h | 3 1|

for all positive E less than 1/h. For any fixed h > 0, this lower bound approaches infinity as E - 0.
Hence, the probability density function of y diverges at -1/h.
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Appendix B
SPECIFIC CASE

In the context of Section 3.1, assume that inequality (13) holds with k= 12, 1= e- 5 , and c=

I ; that io = 0, and vo = 1; and that f, = 1/2 and qj = r1+l = 1 for i= 0..., N-1. Assume that

h < h. since h < 1, dh [h In(/h)] = In(1/h) - 1 > 0, so

h In (_h_) < 5e-_ < 0.04.

Also, p, - and+1 = Tpi + 1. Hence, by an easy induction,

,+ 1 is in the interval (1, 5/4)1

pi E (1/2, 1) 1 i O0,..., N-1,

a = - = -
2k 24'

and

b =-k= 15.
4

Now assume that Conditions 1 through 4 of Section 3.1 are met at generic epoch i (i.e., that for this
realization (Z7, Yj- 1) E G,) and also that Ixi - |I < Wln(1/h) for this realization. We next verify that
this implies the same conditions at epoch i + 1. This is done in two steps. First, Eqs. (7) to (9) are

used to establish bounds for x1 ;j, mi+1, n Ixji+ - x,!, and + , then Eqs. (10) to (12)

are used to establish bounds on Xj+ , vj+1, 71i+i, and Ixi+I - X+ . The obvious epoch subscripts are
dropped in the notation.

Step 1:

By the triangle inequality and the assumed bounds,

Ix*I = |fx + ul < 1 |xl + IuI < 0.521n(1/h) < In(1/h).

Since V E [0, 1] and (1 + +.x) E (0.96, 1.04), it likewise follows fromn Eq. (9) that
in

1X*1 < I |1,1 + 13h x 4-

1 46 

• 8I 3,1+ 16 h

< 34;/h, since a = 1 and b = 15.
24
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Since Ixi - JI V jn1/ihT by assumption, it follows from Eqs. (1) and (7) that

Ixi+i - xI < I Ixi - xI + 11 + tAllIwI

< | 2 + (1.04) (0.02) ,/lnT1713 < 0.521Vn(1ThV,

and therefore that

iZ - X < I xi - xI + Ivl < 0.541V Iii(7

and

(z _x*)' (z x*) < 8 In (l/h).
m + r m+1

From Eqs. (3) and (8), it follows that

rn-pU (V -p) + 2*i + 02R2.
1

Since v - p is in the interval [a - 1, b - 2] C [-1, b1] and
2

2tpR + tp
2
k
2 E [-2,pji 2*R + tp2i 2 ] C 1- 31

by the inequalities assumed,

m -u = a +,B, wherea E |-4' 41 and/8 E |-2, 41

Thus

(in-m E 3~T T
1

| 4, 4]

Sincep E |1, 4, m E [1/4, 61 C [a, b] for a = and b = 15.

Step 2:

From Eq. (12), Ih I < hi*1 < 3,.hh.

From Eq. (11),

v m+1 [+ (i +1)2 (Z-X*)

Setting the derivative to zero shows that (I 1)2 is maximized when m 1/3, so

______ 112 / < 1/3.
(in + 1)2 4 4V 3
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Also, since h < 0.1, and h In(l/h) < 0.04,

71*(z - x*) < 3V (0.541)11 ln(I/h1)

< 3\f5 (0.541).vO04 < 1.
Hence,

|1 +* ( + 1)2 (z - x*)I E [1/3, 2].

Since m E [1/4, 6],

m 1 6
m+l 5 ' 7

and

v E 1 2) C [a,b].

In Eq. (10),

m+1 lZ x 7I < (--(0.541)Ofn(1/h)i < 0.463x ln(/lh).

Since h < 0.007,

3 In(l/h ) > 1,
3

and

h (z -x*) 2 1 E h, I h In(/h) - h C [-0.007,0.0071.

Also, (M m +)2is maximized when m = 3, giving 16 Hence,

As,3(2 (-- _ x*)2

T71 (m+3 1 )2 [ m(:xl- - E [-0.035,0.035].

Therefore, from the triangle inequality and Eq. (10),

Ix - x*1 < 0.463 3ln(1/h + 0.035 < in(1/h) for h (e- 5 ,

Ixl I Ix*1 + 1x - x*1 < 0.983 ln(1/h3) + 0.035 < -vl1(/3h) for h < e 5 ,
and

Ixi+I - -k ( Ixi+I - xI + Ix -l I < 0.984 Fl n(1/13) + 0.035 < Vi1n jI7jh for h < e-.

The desired result follows by induction on i, because the induction hypothesis holds by definition
for i = 1.
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Appendix C
LIPSCHITZ CONDITIONS

If

* Ifi(x)-fi(y)I KAi+BiIx-yI; xandyER,; i= 1 n
* Ig(xi, X, . X,,)-g(X . X2, ... , xn)I < C, + DiIxji - xi2I

Xi and Xj2 E fj (Rj); xk Efk (R ,), k • i;
and

n
* h1(x) A g fV(x), f(x)]; xE n Rj

then

h (x) - h (y) = g fI(x), . , fn (x)] -g [f (y), f 2 (x), * , fn (x)]

+ g fV (Y), f2 (x), .*.., fn (X)] - g9f1 (Y)If2 (Y), *.., fn (X)]

+ g[fV(y), ... , fn-I(Y), fn(x)] - g[fV(y), ... fn(Y)]-

By the triangle inequality and the Lipschitz conditions for g:

1h1(x) - h(y)I < S (C, + Di If(x) - f1(y)I).
i-i

By the Lipschitz conditions on the fj:

|h (x)-h (Y) I<IC,+ Dj(Ai+ Bjx-y I= I W, + Dj Ai)+
i-I i-I

n(I DiBi)|X-y|
Ii-I

Furthermore, by the mean value theorem:

* If fj' is continuous on Rj = [a,,bI, then the above Lipschitz condition on f, obtains with A, = 0
and B, = max {|fj'(x) I) .

* If -ag is continuous on fj ([a,,bI), then the above Lipschitz conditions on g obtain with C, =
axi fla~g (x,) I

O and D= max 1
xiffj([aj,bjD) 11 axi 

Specific Case (Product):

fA (x)f2(x) - fA(Y)f2(Y) = fA(x)Lf2(x) - fA(Y)] + f2(y) fV(x) - A (Y)],
so

If,(x)f 2(x)-fi(y)f 2(y)I K (A2Ifi(x)I + A If2(y)) + (B2 If (x)I + B. If 2 (y)I)Ix-y-.
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Appendix D
EXISTENCE AND APPROXIMATION OF RADON-NIKODYM DENSITY

Let R denote the ring of all subsets of real numbers which have the form
n
U [aj,b1),

where n is an integer, b, - a1 < a positive constant c, and

i • jo [a,,b,) n [as, bi) q(the empty set).

Consider the following two measures on R:

* the restricted Lebesgue measure 3, so /3( [ai, b1)) = b1 - a,; and

* the measure A defined by

,uf[aibi)) = Fj[min{b,,L - iLL] - F[max(a,, 1 - L}L]
for Fs( ,L) as in Section 4.3. Hence there exists a k > 0 such that A [a1 ,b,)) < k(b, - a,)
for all [a1,b1) of the form described above.

By the additivity of measures and the distributive law for R (under set union and intersection),
A ( kft on all of R. Also, it is a standard result of measure theory that both measures can be
extended uniquely to the class S (R) of all Borel sets, which extensions we denote by / and i.

For any E E S (R), there is clearly a collection of disjoint intervals A, such that
M

E C U Ai

and

A, E R, i = 1, 2,.

Since gu is induced by a probability measure, it is finite, so

i[U AJ] = p ,(Ai) (since the A, are disjoint)

< k (A,) (by assumption)
ill

=k g (Ai) = k[U AJ].

This must be true for the infimum of all such covers of E, so by the standard construction of the exten-
sions A and /3,

( < k/3 on all of S(R).

By the construction of the standard completions of Ai and /3 on the class S (R) of Lebesgue measureable
sets, therefore,

A < kX on all of S(R),
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where i denotes the completion of ii and X denotes Lebesgue measure (the completion of 1). This
means thatch is absolutely continuous with respect to Lebesgue measure. Thus, by the Radon-
Nikodym theorem, the definition of probability distribution functions, and the standard construction of
At and jEE from the quasi-distribution function F, (-,L), the function F, (x,L) 'has a measurable Radon-
Nikodym derivative with respect to Lebesgue measure on x for 1 - L < x < L - 1. The same argu-
ment also holds with F, (x, L) in place of F, (x, L) everywhere.

Now, in the context of Eq. (22) and (24) of Section 4.3, let

E = !Pr[ItI > L)
2

and let f(O) denote some Radon-Nikodym derivative of F, (0,L). Hence, for all A > 0 and all
0 e (1 - L,L - 1 - A),

Pris E [0, 0 + A)) = f£ fdA < e A.

Since f is measureable, we can define

E - (E ( 1- L,L - 1): f(0) > 2e)

and

m - X(E).

From the construction of Lebesgue measure, for every 8 > 0 there exists a disjoint sequence of inter-
vals [a,, bi) = Fi such that

B= U [ai,bi) D E

and

X (B) < m + 8.

Therefore, integration with respect to Lebesgue measure gives

fI f fE f +fiB-E f > 2 em + (B-E) > 2em
and

JIB f IIFE < z (bi - ai) < L- (m +a)

Hence, LE8 > em for all8 > 0. SinceE > 0, m = X(E) = 0.

Now let G8 = (0 E (1- L,L - 1):f(0) < -8) for any 8 > 0. Then

-8X(G 8) > fG fdX = Pris E G8 and ItI > L} > 0,

so X (Ga) = 0. Combining results, we get

X(0 E (1- L, L - 1):f(0) > 2E orf(0) < -81 = 0

for every 8 > 0. Finally,

(a E (1- L, L - 1): f(a) E [0, 2E]= U Ia E (1-L, L-1): f- () | 2E
h>1I 
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and

X{0 E (1-E L, L - 1):f9) E'[0,2e) I a E (1 - L, L - 1): f(0) 4- h 2EJ}=

Since Lebesgue measure is positive,

0 < f(0) < e = Pr|t|I t L) for all 0 E (I- L, L - 1),

except perhaps for a set A of Lebesgue measure zero, in which case another Radon-Nikodym derivative
g can be constructed as

g()= ff(0) if 0VA
wcaf tsn aa(1 if- L A,

which satisfies these inequalities for all 0 E (1L, L -1).
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Appendix E
SOME INEQUALITIES

For x, k, a > 0,

minto, a -h) -

(x + a) ( [max(akn)"e l' ]e ; n = 1, 2, (El)

This is established by noting that (x + a)n e k has the x derivative

(x + a)n-lek In- x + aJ
k

for all positive x. This derivative is positive if kn > x + a and negative if kn < x + a. Hence the
x

maximum value of (x + a)"e . for x > 0 occurs at x = max (O, kn- a). Substituting this value for
x gives

(X + /k < (kn )e e if kn > a

(x + a e- an if kn i- a,

which is equivalent to the desired inequality.

For t, a > 0,

(t + a)n • 2n(tn + an), (E2)

because

(t + a)" • [2max[t, afln < 2"max(tn, an) < 2n(tn+ an)
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