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PRECISE ANALYSIS OF AN OPTIMAL PERTURBATION
ESTIMATION AND CONTROL PROBLEM

1. INTRODUCTION

There is considerable interest in state-estimation problems in which a state variable evolves
according to linear dynamics with additive Gaussian white noise and in which linear state measurements
are available which are also corrupted by additive Gaussian white noise. There is also interest in associ-
ated control problems in which the control enters the dynamics linearly and in which the objective is to
find a feedback control law, which specifies the current control as a function of the currently available
state measurements, that minimizes the prior expected value of a quadratic performance criterion.
These cases are important partly because they are the forms resulting from first-order descriptions of
noise-induced perturbations from nominal behavior in a wider class of state-estimation and optimal-
control problems.

If the description of these perturbations is carried out to one higher order of accuracy, the effect is
typically to introduce quadratic terms in the dynamics and state measurements and cubic terms in the
performance criterion of the control problem. The resulting estimation and control problems can often
be rescaled so that the state, control, and measurement perturbations are of order unity, and the
coeflicients of the added higher-degree terms become the relatively small quantities.

A formal analysis has been made [1] of a class of estimation and optimal-control problems with
this latter type of structure. The results had the formal appearance of giving approximations to the con-
ditional probability density of the current state, given the currently available measurements, for the
state estimation problem, and to the control generated by an optimal control law, in the control prob-
lem, which were accurate to first order in the small coefficients. Similar formal results were obtained in
Ref. 2 for the corresponding "smoothing problem," i.e., an approximation to the conditional density of
the current state given future as well as past measurements. Approximations of this sort are of interest
because they show how the solutions start to change as the problems begin to depart from the familiar
linear-quadratic-Gaussian form. And if such an estimation or control problem arises from the sort of
higher-order perturbation analysis described above, this degree of accuracy in the solution is all that is
formally consistent with that of the problem formulation anyway. Also, the first-order approximation to
the conditional state probability density in all cases has the interesting property of being (at least in for-
mal appearance) the first-order Edgeworth expansion of that density. Questions naturally arise about
the validity of this formalism, however, namely as to the exact sense of the first-order accuracy and the
range of conditions under which this accuracy holds.

Some mathematically precise answers to such questions are developed in this report for the sim-
plest nontrivial case of a scalar discrete-time problem in which the only higher-degree term present is a
product of the state and noise variables in the dynamics (state-dependent process noise). In particular,
limits are established on the error in the first-order formal approximation to the conditional state den-
sity, for all but a set of realizations of negligible prior probability, which are sufficiently strong to
guarantee that the corresponding formal first-order approximation to the optimal control is indeed accu-
rate to first order in the perturbation parameters. Furthermore, the number of epochs in the estimation
and control problems can go to infinity as the perturbation parameters approach zero, while the validity
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of these results is maintained. In order to establish the accuracy of the optimal control approximation,
it was found necessary to establish limits on both the size and the fluctuation of the error in the condi-
tional state density approximation for the corresponding estimation problem, the latter limit being in
the form of modified Lipschitz conditions.

Because of their limited scope, these results are more exploratory than definitive. The hope is
that they can serve as a guide to what sort of results could be achieved and what some of the
phenomena are that might be encountered in a more general investigation. Even in the limited context
here, rather elaborate constructions seemed to be required in the analysis, and the proofs become
highly computational. One difficulty, for example, is that the conditional state probability density actu-
ally diverges for very large values of its argument. Presumably, some corresponding pathology would
also arise in the continuous-time version of this state-estimation problem. Thus it might be useful to
devote some effort to developing more sophisticated and elegant concepts and methods for dealing with
the phenomena encountered here before proceeding with this sort of mathematically precise analysis in
more general contexts.

2. THE STATE-ESTIMATION PROBLEM

We consider a discrete-time state estimation problem in which a real, scalar state variable x
evolves according to the transition equation

Xim=fix;i+u+ A+, x)w; i=0,..., N—1, )

where f;, u;, and ¢; are known parameters and the w; are independent zero-mean normal random vari-
ables with variance var (w;) = g;. At each epoch except i = 0, a noisy measurement of the current state
is received, and

z,-=x,-+n,-; i=1...,N; (2)

where the #; are independent zero-mean normal random variables, independent of the w;, such that var
(n;) = r;. The initial value x of the state is, a priori, a normal random variable, independent of the w;
and n;, with mean X, and variance vo. It is assumed that there are positive constants F, Q, and R such
that

1>|fl =2 F i=0, ..., N—1,
lg;l < OF%; i=0, , N—=1;
R<v<(;
and
RLInl<Q; i=1, , N.
The quantity 4, defined as
h=max{ly,[:i=0, ..., N—1},

is treated as a perturbation variable in the ensuing analysis. In other words, for fixed values of the
other parameters in the system of Egs. (1) and (2), results are obtained as functions of 4 for all ¥,
sequences with this maximum magnitude, 4 generally being considered a relatively small quantity. A
further restriction is assumed for the parameters of the unperturbed problem; this is described in a later
section. For convenience, we also denote the sequences



NRL REPORT 8406
Z,'= {21, vy Zi}; i= l, ceny N

and

with Z, denoting the empty sequence.

The basic objective here is to establish error bounds for certain approximations of the conditional
probability density functions of the state

p(x1/Z), i=0,..., N—1
and
p/Z); i=1, ..., N
In the unperturbed problem corresponding to Egs. (1) and (2), h=¢, =0, i=0, ..., N — 1; and it is

well known that these conditional state densities are all normal. Their means and variances are given
by a simple case of the standard Kalman-Bucy filter, the variance eguations for which are listed here for
later reference:

w1 =fipi+gq; i=0,..., N—1 (variance of p(x,1/Z)); . (3)
ili . ,
D= 'u—; i=1, ..., N; py= vy (variance of p(x;/Z))). (4)
mitor

For nonzero values of A, however, these densities do not even exist in general for large values of their
arguments. For example, it is shown in Appendix A that if ¢y and g, are nonzero, then le(l/ll'o) does

not exist, in the sense that

lim———Pr ——-—e<x1 L-f-e
e—0 lllo

Hence it is only reasonable to seek approximations to such probability densities within wide but
bounded ranges, which leads to the somewhat elaborate approximation concepts considered here.

3. ESTIMATION EQUATION SYSTEM I FROM FIRST-ORDEL FORMAL ANALYSIS

A formal analysis similar to that described in Ref. 1 suggests that the above conditiona! state den-
sities can be approximated to first order in A, in some reasonable sense, as those corresponding to

[2
<r/z>~:‘“’_7 [+ 45, =30 )
'H—X'H/Z il = N 3 Ni+1 U t
My
and
_2
Pics, (/Z) = L= 11+ 30, (P = 30), )

Vi
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according to the well-known formula for the transformation of probability densities, where x4, X,
mi+1, Vi, Mi+1, and m; are the functions of Z; specified by the following equations, called Equation Sys-
tem I for future reference:

X1 = fi% + u;; @)
mi = f2vi+q (1 + 4, %)% (8)
3/2 -
- _ v 4 3y (1 + 4, %) . ©)
Ni+1 Mty Ni f;zﬁ s
3
&= mi I - 5 - .
X=x + (z;—x) + rim; [(z; — xD)* = (m, + r)); %o as given, 10)
m;+r m; + r;
. 2
m;r; Nmirm; (z;— xi.) .
v = ———— |1+ . v, as given; (11)
i m; + r, (mi+ r,-)2 ] 0 g
and
r 3/2
n; = ' n; 3 mo=0. (12)
m; + I

3.1 Further Restrictions Assumed for the Unperturbed Problem

In terms of the unperturbed problem parameters, let

b=k mf“x {F‘i: b 1}
and

a= % min {wi, b
i

for some constant k > 1, and let G;(h, k) denote the set of sequence pairs (Z;, Y,_;) for which, for all
{Wo, ..., wn_1} with max {ly;l} = A,

Condition 1: |nj|, Inj.| < 3h\/5;
Condition 2: |v;|, |m;| € la, b);
Condition 3: |x/|, |%| < In (1/h);

and

— X))’

(z;
Condition 4: /L < 81n (1/h)

m; *r;

for j=1,...,iand i= 1, ..., N. Itis further assumed that the unperturbed problem parameters X,

Vg, {fj, g, rix5J=0,..., N— 1} are such that there exist a k > 1 giving @ and b as above and posi-
tive numbers # and c, such that for every # < handevery i=1,..., N, (Z;, Y_) € G, (h, k) if

max{lxo ~ Xol, [n |, [wol, max {lw;|, |nl}} < evIn(1/h)

J=1,..., i~1
and
max{|y;}: j=0, ...,i— 1} < cIn (1/h).
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In this case, it follows easily from the independence of x,, the w;, and the n; and from the inequality
2
_1

€

2
P < . .
r{lx| < ¢} il t >0 (13)

for a standardized normal random variable x that, a priori,

o2

No?h2?

Pri(Z, i—1) € ,‘:'=1,...,N> L A—
(2 Vi) € G b2 1 o In (/7

where
a? = maxivy, g, max {g., r.}),
I=1,...,
if lul < cin(/h) fori=0...., N —1. This bound is significant because, even if the nuniher of

epochs N grows in perturbed problems vwith decreasing 4 as

N =+/In (1/h),

3

so that /17”% N = oo, this prior probability, and hence also that of (Z;, Y;_;) € G, fori= 1, ..., N
approaches unity in the limit as # — 0.

As a verification that the ensuing analysis does not take place in a vacuum, it is shown in Appen-
dix B that the preceding assumption is indeed valid for the specific case in which

)?0= 0,
Vg = 1,
fi= 12 i=0, ..., N—1,
g = rig1 =1
with k = 12, h = e™°, and ¢ = 0.02.
3.2 Lipschitz Conditions
For future use it is helpful to define
X,‘='T),‘v,*3/2; i = ,...,N (14)
and
A,'.'::'T],'.??I,}/z; l=0, Ceey N; (15)

which are first-order approximations for one half the third central moments of the conditional probabil-
ity distributions of x; if, respectively, Z,_, and Z; are given. Equation System I can also be expressed
in terms of these variables if we use Eq. (15) to replace n,” by A;" in Eqs. (10) and (11) and replace
Eqgs. (9) and (12) by

A= N+3fvgu, (0 + 4, %) (16)
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and
3
Ui

m,-+ri

. 3
r,)\; (Z,'_X,'.) . -

A= AT Ap=0. 17
m; (m; + r,)? 0 (a7

Lemma 1: In the context of the previous sections there exists an #* > 0 such that if # < A* and
if, forany i= 0, ..., N, (Z;, Y,_)) and (Z;, Y,_;)’' € G, differ in at most one component, whose values
are denoted respectively by p and p’, then

|5€i [(Z,', Yi——])] - )‘Z',-[(Z,-, Yi_l),]l < T; |P - PI|, (18)

WV(Z, Yie)) = vl(Z, YD) LT, hlp—pl, (19)
and

N Z, Yol = Nz, Yo' T S TRk e = p'l, (20)
where I'; is defined by the recursion

4b? 2 6b% 4b 31, 1 6b .
Fk+1—1+R+ +R(1+3Q)+ R 2+R 1+3Q+R]1‘k,
k=0, .., N=—1, Ty=0.

Proof: The conclusion is trivially true for i = 0. Assume it is true for epoch i Then it is pri-
marily a matter of computation to express X;., v+, and A;; as explicit functions of %;, v;, A;, #;, and
z4+1 via Egs. (7), (8), (10), (11), (16), and (17), obtain the partial derivatives, apply the results in
Appendix C for Lipschitz conditions of composite functions, and use the inequalities involved in the
definition of G;,; and the fact that the definitions of G; and G,,, imply that every initial segment of a
sequence pair in G;4; at epoch i is an element of G; to show that inequalities (18) to (20) hold under
the conditions of Lemma 1 for epoch i+1 with

,+1—1+ib—+ 2+ ](If,|3+3q,)+6— 4p? 1+ |f,|+3i]
Iy Fitt riy1 iy riyy
TR [FENE P Ll |
r,+1 l+1

at least if 4 is less than each of some finite set of positive values which are needed to imply various
computational inequalities but are independent of i. Using the inequalities for |g;|, |£|, and || in
the problem formulation, we can then show that the conclusion of Lemma 1 holds at epoch i+1 for 4*
equal to the minimum of this finite set and 4 of the preceding section, which is a positive constant
independent of i. Hence, Lemma 1 follows by induction on /. O

4. APPROXIMATION OF CONDITIONAL STATE DENSITY

In order to develop an induction argument, we next consider a generic epoch i < N — 1, delete
the subscripts of -

N Xi Ui Soo Wi X Vi My, Zigrs 4 ¢, Dy M,



NRL REPORT 8406

the last four to be defined shortly, suppress conditioning on Z; in the rotation, and denote
12

4

2
%%J”ZJ%

v

n+%nm—an

and
2
alt) =27 e? [px_;. () =P s (!)],
e Jv

if the density p,_; exists at 1.
Vv

4.1 Assumptions at Epoch i

For the purposes of Sections 4.2 and 4.3, the following four conditions are assumed for epoch i :

Assumption 1: For all tsuch that |t] < M, where Lh'l/8 <M< —l—h_'/“, p ._. (1) exists (at least
4 X=X

4 7

as a Radon-Nikodym derivative of the probability distribution function of )i/—_x, which itself is clearly
v

well-defined since only Borel-measurable functions of Gaussian random variables ever appear here),
and

la(2)] < Qh2el’! where @ < n=V4,

bk

-t

X =X >t]<ke 2 k=241, forallt>%h"/8.

Vv

Assumption 3:(Z;, Y;_)) € G;and (Z; * z, Y;_, * u) € G, where *denotes concatenation.

Assumption 2: Pr {

Assumption 4: 1f (Z;, Y,_,)' € G, and differs from (Z;, Y,.;) in at most one component, whose
values are denoted respectively by p’ and p, then

la (s, p) = alt, p)| < e (Ch* + Dh2lp — p'l) if It] < M
and
la (s, p) — als, p)| < emaxllelIsh (cpd + Dh2ls — ¢]) if Is], |t] < M,
where C < h™V4and D < h~ V4

4.2 Linear Transformation

Applying the well-known formulas for the transformation of the probability density for a function

1
of a random variable toc —— (y — ), where
Im VY

y=fx+u,
y=ss+u,
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and
m = f2 v,
we can show that its density exists at ¢ for [¢| < M and that there

p,_; () =p,; ().
Vm Vv

Hence,

,2
a(t) =27 eTp‘y__i () -
m

1+ %n(ﬂ— t)l Aa(r).

Lemma 2: In the preceding context, Assumptions 1, 2, and 4 of Section 4.1 hold with x, X, v, «,
and Y,_; replaced respectively by y, 7, v, a, and Y;_; * u, where (Z;, Y,_, * u)' must be such that (Z;,
Y,’—])’ E G,'.

Proof: Assumptions 1 and 2 are established by the preceding remark and a few simple algebraic
manipulations. Assumption 4 follows from the fact that « is independent of u, from Assumption 4 for
a, and from the fact that a = «.

4.3 Addition of Process Noise

Now let
y=x+(1+|1;x)w;w=—? (21)
and define the random variable
s =22 X
N
where
My = g
m= =v+q+yx)?; g=—.
S S
Then, since |¢%| < 1 by the assumptions of Section 4.1,
s=t+-\/z(1+t[/52) 1+ ‘I’M~z w,
m 1+yx
where o is a normal (0,1) random variable and
p(t) =5 2 1+ 2L (8 = 3¢%) +af L (22)
 2me? 3€3 €

for |t] < € M, where e =-\/::1. Let
o=~/ L A+y0)?
m
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r= I+—l-%_%tw,
g=01r

and
L=eM

(23)

(24)

At this point, we also assume that ¢; # 0, soa > 0. If ¢; = 0, Lemmas 3 to 5, to be proved later in

this section, are trivially true.

Since s = t + g, it follows that for any A > 0
Pr{s€lg, 6 + A)) = Pr{(t + g) €l6, 6 + A) and || > L)
+Pr{(t + g) € (0,6 + A) and I¢] < L}.
We partition the first event in Eq. (25) at

kLJO (E. U F),

where
E ={tg:(t+g) €16,6+A) and t€ (L — (k + DA, — L — kA)}
and
Fo={tg: (t+¢g) €10,6 +A) and 1€ [L + kA, L + (k + 1)4)}.
Now,
E. Cltg:t€ 4, g € B},
where
A=(L—(k+ 1A, —L — kAl
and
B=[0+L+kA 06+L+(k+2A4),
S0

Pr{E} < Prlg € B/t € a} - Pr{r € 4).

For nonzero ¢, the density p,/,(€) exists such that
2

T g2 2
204(1 + ¢1)
—  ifr = i’ ¢AMT;
Py €) = 127021 + ¢1)2 o Sl1+ux
. 1
0 ift=—.
¢

For a given £, this density is maximized over all ¢ if
a(l+ ¢1)?=¢2

in which case

1
P ) = e

(25)
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Hence, since all the events and probability measures are well-defined,
PrigeB/red) = |  PrlgeB/1) dP(i/1€)
c
<Joes [2A ma;( Pe (X)) dP(1/1€4)

r 2
< JIEA \[271-
2A

r J—
J dP(i/t€Ad) = Do

dP(t/t€A) if6 > —L + 1, by construction of B

Therefore, PriE) < 2 prlred) if 0> —L + 1
. B S ame 1V tez '
Similarly,
Pr{F,) < \/gA_ Pr{r€lL + kA, L+ (k + DA)) if 6 < L — 1.

For |9] < L — 1, it follows from the definitions of E, and F; that

Pr{S €[9,0 + A) and |¢| > L} = Pr{ U (E, VU F)}

©o

Z f{Ec} + Pr{F}]

—\F_.—Z[Prte(—L—(k+l)A —L—kAl)

+ Pr{tE[L +kA, L+ (k+1)A))]

[Pr{r € u (—L—-(k+1)A, —L—kAl}

\ _\/—_
+ Pr{t € kgo [L+ kA, L+ (k+1)A)}]

(since the k-indexed intervals are all disjoint)

= \/% Pr{l¢] > L) by construction

< % Pr{|¢t] > L}.

It is shown in Appendix D that this inequality implies that the measure on the real line induced by the
quasi-distribution function

F,(0,L)=Pr{s <6 and |¢t| > L)

is absolutely continuous with respect to Lebesgue measure, so that FS(G,Z) has at least a Radon-
Nikodym derivative p;(9,L), and such a derivative exists with
< p,0,L) < Pr{lt] > L}
for 8] < L — 1. Using the usual abbreviations for probability density notation, we have
_g

p(sL) < Prilt] > L} < 20m* Ve @M — 1) + (M) +f; & 5/2_; d¢, (26)

10
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where & denotes the tail of the standard normal distribution, since

1] > L < Xﬁf‘l)M
It is well known that for A7 > 0
_iz M2
1 e 2
O (M) = ,
JM V2 V2
and it follows from repeated integration by parts that

£ M?

f;g%—z dE=(M+2e 2.

Using these inequalities in Eq. (26), we can show that

_M?
T 2 120K eM+ 1
L)< £ 2
Pel) < T |Tw-1 M2
SN
e 2 ) Lagizo a2 _ 1,2 A
_ e 20 h 5 (Is1? = M2 +2M = 21sD) 5 1 > (s2= M)~ 5]
N M—l] i S vy
2 41sl
e 2] -1 - - N Y R N
e 20h 2[(M+Is| 2) (M—|sl) 5 1 5 (M2=sh) |5
e M—1] +|M 2+ e .

With M > % Y& it follows for sufficiently small positive # and for |s| < eM — 6/In(1/h) that

——+|SI

p(s, L) < \/_ [QhZ —8in(1/h) 4 (M? + 3) e—81n(l/h)]

5
——~+ISI
e 2

< —_—
N2

[QA° + A7(1 + 3n)], since M < h~Y4, 27

Since ¢ has a probability density function (in the sense of a Radon-Nikodym derivative of its dis-
tribution function) by assumption for arguments less in magnitude than L, the second event in Eq.
(25) can be evaluated as

o L
A S_UL p (s—or)py, (r,s—oar)d\,
a

where A, denotes Lebesgue measure for the r variable, since s = ¢ +o r and the conditional density of r
given ¢ is well-defined. Hence the results of Appendix D also show that the quasi-distribution function

F, 0,L)=Pr{s <#9and|t| < L}

has a Radon-Nikodyn derivative p; (8, L) such that
oL
psLY=J ° b (s—or)py, (rs—ar)dx, (28)

a

11

3741 SSYTONA
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and therefore that s itself has a probability density in this sense (for arguments of magnitude less than
L—1) such that

ps @) =p, 0, L)+ p, 0,L)
or, in abbreviated notation,
p(s)=p(sL) + p(sL).

The conditional density for r in Eq. (28) is

2

Taa +¢1)? [
—_e "% _ Yvm
p(r/) zwu+¢02’¢ 1+ yx (29)

To approximate this density in Eq. (28), denote
,2
T 20+ x)2

Sx )_ﬁ(l——)z (or zero if x = — 1),

where x now just denotes a real variable. Then, for r # 0,

ey = S NV _r | oo
S(x) el | ll (or zero if x 1D
and
Sx) r ) r )
f(X)=(1+x)2 T+ = -5 T+ +2| (orzeroifx=—1).

For r # 0, these derivatives are continuous for all x, so Taylor’s theorem with remainder implies that
£ = £O) + x7'G) + 3 X £"0),

for some @ in the union of intervals [x,0] U [0,x], where [0,x], is regarded as empty if x < 0, etc.
For r = 0, this argument still applies if |x] < 1.

Therefore, for |s| < |-1—|, using ¢ (s — or) to play the role of x we get
F_Z
2

oy (r, s—or)=2% N [t+¢ s—0or) (r— 1]

T (s 2+ (s — o8)]?

S —ar
1+¢(s—o0) J—n+¢@—awP

+ = ¢?

|

where # now denotes some value in r,i U Ui,r which might vary with r and 5. Applying Taylor’s
a

- r
1+¢(s—0c8)

r
1+¢u—am]_5 +4’ G0

theorem for a first-order expansion of f(x) likewise gives

"

2

Py (r, s—or) = f/.z—; +¢

s—or
1+¢ (s —08)

12
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X amll 46 G

for |s| <

Substituting Eqgs. (22), (30), and (31) in Eq. (28), and changing the variable of integration to u

s — ar, gives the following for |s| < ILI:

r 2_1
—-0'0)]2 1+¢ (S—'O'O)

., where the value of 6 is generally distinct from that of Eq. (30) but in the same range.

¢
_ul (s —u)?
Le le ™ M3 2 s—ul
p(sL) = f_L ool N 1+ 363 (u’ — 3€’u) [1 + du [[—U— - 1” du
_u? (s —u)?
202 (1 + ¢8)? 2,2
4 A $°u
+ 1+ (u? - 3€u)
f"- Vome? |Varo? (1 + ¢8)? 3e3 ] l 2

S — U

s —w)?
2
e 20

€

4
x$—=" 1 _§5)]—2_=
[U(l+¢ﬂ)] [0'(1+¢B)

S — U

u?

: I
e

+2]du+f_La[:] -\/5;5—2

s—u)2

S—u

X | &=—=— + ¢u

dx,, 32)

V2ma?

where 8 and y € [u, 0] U [0, 4] and vary
(32) and using the fact that o2 + €2 = 1 by

20'2 (1 + ¢y)? _
V2me? (1 + ¢y)? o (1+¢y)

with v and s. Completing squares in the exponents of Eq.

definition gives, after some manipulation,

(%)

S

2

p(sL)—J2—11+—¢ I, + E 33)
where
(u — €25)? '
L e_ 202¢2 . 3 ) s — u 2
I, = f—L ﬁ 1+ 3 (u’ — 3€‘u) 1+ du —0_— - 1|} du, (34)
u2 (s — u)?
L 2¢? T 202 (1 + 6p)2
I, = ¢ 1+ =L (u® ~ 3€?
e e (1 + ¢B)° [ 3 1T ")]
4 2
_sS— 4 | _s|—_S=—u 2
xl[o-(1+¢>[3)] 5[0(1+¢B) +2]“d“’ (35)

13
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W.W. WILLMAN

and

u? (s — u)? G -w?
20?2 e 202 (1 + ¢y)2

2
L g 2" |, s—u u
E= + du -1 —| dx,. (36)
f"‘ V2we?r | V2mo? V2ma?r (1 + ¢y)? [|o(1 + ¢y) “
Approximation of I
Let ¢t now denote a new variable of integration in Eq. (34) such that
_ 2
j_ =€
o€
5§—X
Thenu =€ (ot +€s), =os + €t, and
,2
l; S .
I, = f—L—es —\/-2—7'[1 +cg+ eyt + 02[2 + c3 B+ C4t4 + ¢5 P+ C6t6]dt, 37
where
3
co = €2 '—"3£+¢02 s’—em+oe)s+ ﬂ:’:—[eztrzs6— (14202 s*+ 357,

c1 = €o[ne+ 32— )¢pls?— o (n + pe) — _@g_zg_'_ [(60*— 852+ 2)s° + (80:2— 2)s*— 65],

c;= ea?+¢e?(1-30)]s + -93—25- [€2(150%~ 1002+ 1)s*— 3202 - 1) 252+ 30°7],

c3= -‘;— (no? + 3¢e?) + %d)na'ez[(lOo-“ — 1002 + 2)s° + (402 - 3)s],

ch= %—cbnea'z[(lSo"‘ — 2002 + 3)s? + 202 — 3],
cs = % dnoe2(2 — 302)s, and

= ld, 4.2

6 3 no €°.

We now restrict s so that |s| < L also, which implies les] < L, so applying standard results for
moments of normal densities to Eq. (37) we obtain

2
=1+ ET (ne + 362 (s*— 3s) + R, — R,, (38)

where
R, = 9_;25 [0262(s5 — 125% + 2752 — 6) + 3(1 — 30257

14
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and
_2
¢ e ? 5
R,= 1+ 17| dt,
2 JA V2T EO G ]
and where 4 denotes |—o, _LU_ Sy L ; GS, °°].

Since 0 < o < 1,0< € < 1, and 02 + €2 = 1 by their definitions, it is easy to show that o-2e? < 1/4

and, after some manipulation, that

bne (s +2)°

IRl < 12

for any s. Applying inequality (E2) of Appendix E then gives
one 26

< | Slsl
12 e's! for all s.

IRl <
1 84

Using the definition of ¢ and the bounds assumed for v, X, and m;,, we get

4
b2

2
=| | o

IRl <

— €S

Denoting :—Iic—r_—eﬁ by 7 and L by u for convenience, we have forall{ = 0

Isl<L-t=>u>ZTL+5r>0
€ (o
and

r<-LL-L <.
€ a

Hence, integrating by parts gives

2 2
1 AL e 5
R2=ﬁ (1+c0+c2+3c4+15c6)[J_me 2 dt+J# e ? dt]
T 1 _ul _z?
+(ci+2c5+8cs)|e 2 —e 2]+ (c3+ 3cs+ 15¢c)|ue 2 —7e 2

_u? _z? _u? _r?
+ (c3+ des)|u?e 2 —712e 2|+ (c4+ Sc)lu’e 2 —7le 2
_e? _r? _u? _u?
+C5y,4€ 2 gde 2 +c’6,u5e 2 e 2.

Denoting % L+ i{; by B, we obtain the bound
(62
_B

2
IR,| < i\/?_— 206 BS + s B+ 2 (cq + Scg) B® + (o5 + 4cs) B2
o

15
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42 (e + 3cy + 150 B + %(1 + co+ ¢y + 3cq + 15¢9)],

since

[

_u?

2

u

f: e 2 du< e

1
n

Since only values of B that are large compared to In (1/4#) will be of concern here, it follows from the
sizes of ¢ through c¢ that this last bound for |R,| varies essentially as

B2

2 e 2

T B

for sufficiently small positive h. Since
_B?
B> 3\/1n(17hi->~.\/Zf—i < o<l
w B N 2mr €’

then
3 3
IR, < _h < L els!

V2w 2
for B > 3/In(1/#) and h < —l;. This bound on B is implied by the condition

(41)

Is| < L — 6/In(1/R),

because if (—i— <1 then B > lL (of order h~V*); otherwise B > %(L -~ IsD.

2’ 2
Applying the triangle inequality and Eqgs. (38), (40), and (41), we get

2
1= {1+ S e + 390D (52— 39| < % h2els! (42)

for sufficiently small positive A.

Bound on |1,

Forh < b4, M < 4\/175 and |%] < L by assumption. Since L < M, it follows that

4h
8] < b

and
lul < L = |pul < %\/Z

under these conditions. Hence for sufficiently small positive A,
(s — u)?

- 2 -
s — ) 22(1 + %\/Z)z

) 2
e 204(1 + ¢B8) e

<
Vomo i1 + 9B)2 \/27702(1 _ %JE )2

(43)

16
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if 8 € [4,0] U [0,u], and from Eq. (35),

2 (s — u)?
2021 + 1\/E>2
TARS f Jz 1+ 25 = 3u)
we? _\/ 2 2 €
2nat(l — —-\/_)
4 2
x [2[5-"—“ + 6| 2=4 + 2| v?au (44)
a a

Completing the square in the exponent of Eq. (44) and using the fact that 2+ o2 = 1, we get

52

1+%-\/—[7 6_2(]+%01\/;+%02h)

1
1~5Vh \/277(1 + %azﬁ +%o-2h)

:

17,] <

_ w-u)?
rl e pi%

X J—L

4
+6

2

s—u +2

S—U

u? du, 45)

2mv

’1 + —3127(u3—3u)

where

els

1+%0'2\/E

2 1+%\/FI

andy =

|
I

1+l02\/ﬁ

2+ L um 3

3

2+%\/Fl
Now, fors 2 0Oand k > 0,

2l3+oNh

2+%\/F”
s < 6 +2lk=> s<

o NH (2+%\/F) oh 2+%\//7]

1
1+—%—a2\/z

< 2k

= s5il —
2+%\/ﬁ

52 52

< — = +ks.
1+%02\/F 2+%\/F

= —

2

17
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Sincec? < 1,

S2

1+%02\/Z

2
<—s—+k|s|

2k
< __$
|S| 2

vh

2

2+%\/ﬁ

for both positive and negative s for all sufficiently small positive 4. Using this result for kK = 1/8 in Eq.
(45) leads to the bound

_s? s _ (u=n)?
22 e 2 sl ® g 4202
Il < B
1_3_\/71' N - V4rels?
( - At P 5
x {1+ —’3L'l“—3—3€ﬂ] HSG“ +6 SU“ +2| % du (46)
€ €

for sufficiently small positive A, since

1 2(1/8)
< < — < 2207
Is| < L = |s]| a7 = |s| N

Since |n| < 3m/b by assumption, the integral in Eq. (46) is bounded by

)2
2.2
f°° e o Y E ) B
— 4rok?® o
by the triangle inequality and elementary properties of integrals. Changing the variable of integration in
(46) to

3 2 2
1+ /B[ 2] +3 % +2 du

U L] U
€ € €

u—u

q
m
S

leads to the inequality

st lsl _2
|| < %] 8\/5_]; 3—7_727[1 + hJﬁ[[z+|s|)3+3(z+ls|)]

X [8(t+|s|)"'+ 12(:+|s|)2+2](t+|sl)2dt “n

for sufficiently small positive A, since o and € <1, and since

:u=\/50't+ <3
1+%02\/ﬁ 2+%\/F]
and
2
o +%\/F S
%=\/§et+ )
1+—;—02\/Z 2+%\/F]

18
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—2 < Va2l +1sD

SO

< V2t +1sh)  and

for sufficiently small positive h. Also, for sufficiently small positive #, thé bound of (47) is smaller
than

12

e 2
2T
by inequality (E2) of Appendix E, and by inequality (E1) of that appendix and standard results for nor-
mal moments, the integral in this expression is less than

_sty |s|

e’ 82 JO [512(:5+ s%) + 192(+*+ 5% + 8(:2 + sD)] dr

6y Lis|
25658 + 965* + 452 + 4132 < 256(|s|+2)¢ < m(256)4(7 ) o8
e

Substituting back into inequality (47) and using the definition of |¢|, we get

52
1 8 (256)(117649) , 2 |e 2| |
— ¢ L < |~ s
> ¢* I 9(8\/2_) X bh | =|e (48)
for sufficiently small positive A.
Bound on E
From Eq. (36)
_u? _ (s—u)?
rl ul e 2 | 27
E = — d\,
J‘La €| V2me? | V2mo?
u2 __ (s—w)?
202(1+¢y)2 _ 2
e s—u
+ —~ 1t udi,. (49)
d)f \/2'rre2 \/2770'2(1+¢y)2 [ o (1+¢y) ]

By assumption ‘a[—u—H < Qh2el“e for lu]l < L. By the triangle inequality for integrals, the first of the
€

two terms in Eq. (49) is bounded in magnitude by

_wr | _Gmw?
Qn? J ., elulel 822£22 € 20'22 du.
TE 2mo
Completing the square in the exponent gives this bound as
2 g __(u__ezsz_zze)z ‘(u_ezs:ZZE)z
2 2 -5 40 20% £ L 20%e
| L e e )
Since the integral of a normal density over a finite interval is less than unity, this bound clearly implies
_u _(s—u)?
S aH S PNy PP X il (50)
-L "€ |V2me? | Vool “7 NGz .

19
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The reasoning used to establish inequality (41) likewise shows that

L s—uw)? _ (s—u)?
20 2(1+¢y)? 202(1+1/3h)?
£ € (51)

<
V2wal(1+¢y)? 2
i oY .\/277(72 l+%\/7]

for sufficiently small positive 4. Hence, from the triangle inequality for integrals, the second term in
Eq. (49) is bounded in magnitude by

(s—u)?

u2 1

202(1+ J')Z 2

2043 1+‘/_f "/f'\‘; 2 “S;“] —1]udu. (52)
2me -\/2770'2(1+ Vh)?

Completing the square in the exponent gives the exponential factor in the integrand of Eq. (52) as
[s — e sgn(u))? ]
2[1+—a'2\/-(7+ 1\/—)] _w—i)?
N7 f— LIS
2 ’
-\/;rll + %0’2\/}7 2+ %\/F)] ™

(53)

where
e’[s + € sgn ()]
1+%02\/ﬁ(2+%\/§)

i =—esgn (u) +

and
e2o2(1 + %\/71_)2
1+ %azﬁ(2+%\/ﬁ)

The first factor in brackets in Eq. (53) is bounded by

(st + D2
1+Vh e 20 +Vh)

V2

for sufficiently small positive 4. This bound is equal to

12
—2'3 +|S|
L+ VR e o 1A [e_s2+,s,]eﬂ

Yy =

or
2we 2we

Since s? < ﬁ by assumption, the first two factors in Eq. (53) are bounded uniformly in u by

1
el (1++h)

20
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for sufficiently small positive 4. The last factor in Eq. (53) is bounded by the sum

_w=a)? _u—ay)?

b2 e 22

N T

e

where
f=—€+ 1 €2 (s +¢) 1
1+302\/ﬁ(2+§\/ﬁ)
and
By = e+ e2(s—¢)

1+%azﬁ (2+%\/F)

Hence, the second term in Eq. (49) is bounded in magnitude by

2 (u—ir))?
-} | R

2
14+Vh)? +le 2 e s~ u
201 4 16 — 1 udh
Qh 1—-vh ¢ 27 - 2y o uau
— )2
e e—(uz:Z) s—ul’
+) . o l[ - ] —1]udu. (54)

For either of the two integrals in Eq. (54), let

t=u—f4 sos—u=s—f4 N
N o o o

Since

1 1

e"s

il =Fear?|l + 1 1 + ] ]
1+302\/F(2+T/7) 1+—3-02'\/-/7(2+§\/-/7)

2
_ o (1+ 37’ 1+ ZXLVE @+ 3R
s U 1 1 t + eo 1 1
7 1+ 2 oVh @+ 3Vh) 1+ 3oV @+ Vi)

02[1+l\/7z(2+l\/5)]
L5 3 3 ’
4 1+%02\/71_(2+%\/71_)

so that, for sufficiently small positive A,
lul= Vvt +al <2(sl+ D) +1

21
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and

ST U <2 (s|+ e + 1.

Thus, each of the two integrals in Eq. (54) is bounded in magnitude for such 4 by
2

B(Usl+ [D3+ 12(s] + [¢D*+ Us]| + 1¢D] at

o0 2
U

[64 UsPP+ 122 + 48(s2 + £2) + |s| + |¢]] @,

by inequality (E2) of Appendix E. From standard results for moments of normal distributions, this last

bound is
l4s |3 + 3]4s|? + %|4s| + 48 + 129\/;

Since |4s] < 4M < h~V4, using this bound in Eq. (54) we can show that the second term in Eq. (49)
is bounded in magnitude by
—Z s

01/429
6hh\/-2—7;

for sufficiently small positive A. With inequality (50), this also means that

2
R I |s| PR

|E| < 2+ 6KVHQ A2 "’T <2 an ers els! (55)

for all / less than some positive value.

Lemma 3: In the context of Eqgs. (21) to (23), there exists an A* > 0 which depends only on the
para a and b of the unperturbed problem, such that if A < A* and if 9] <

2
v
/. — 6VIn(1/h), then p, (9) exists and

My
l2®@)| < [3Q + 5/ F + 6,000,000)] '/,

where

2
a@) =V2mre? [p, 0) — p, )]
and

02

Ds 0) = _\/— 1+ ;7),+1 (0 - 39)].

Proof: From the definitions of €, o, and ¢,
N4 = €, + 3pe’a’,

22
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ml+1

Since |%| < In (I/h) and m = > a by assumption,

6] < = / M In(/h) = ol < M= 9] < = h“/4

= 9] < 2’:/; for sufficiently small # > 0
1+ yx 1
= |g| < [LEEXI_ L
ol < o |~ Tal

The conclusion of the lemma then follows from the results of Egs. (27), (33), (42), (48), and (55) and
the fact that

2, ©) =p, 0, L) +p, L),

because the condition of sufficiently small positive 4 was invoked in the derivation of these results only
a finite number of times and in such a way each time that "sufficiently small" depended only on the
values of a and b in the corresponding unperturbed problem. Thus #* here can be chosen as either the
smallest of these values which is still strictly positive or, if it is smaller, the maximum 4 for which

l —l/4>___.1__
i 2hfa’

which is also positive. O

Lemma 4: In the context of Egs. (21) to (23), there exists an A* > 0 which depends only on
parameters @ and b, such that for every h < h*,

12
Pris > 8) < (k + De 205 ifg > %h“/s and k < h~V'2, where k = 2i

Proof: Let

- fAv
0= - M - 6JIn(1/h)

and let # > 0 be such that h < h=> 6 < and §'>l h~V8(see the proof of Lemma 3). If

Tol 577 8
%h‘l/ 8 < 9 < 9, the conclusion of the lemma follows by subtraction from the integral of p; and a of

Lemma 3 for sufficiently small positive h (the maximum allowable value depending only on parameters

a and b), since _k% < 1. For9 > ;h“/ 8 the event {#: |s| > 6} is contained in the union of
the two events
K

E1= {I: |t| > gm}

and
k k

Ey={tg:lgl >0 —0%T and 1| < 0%},

23
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since s = t + g by construction. Since m 2 v 2 0,
_k_
>y fZ o>

2
1o %+1

)
Pr{E;} < ke 2

_k_
< ok+1'

_k_
lt] > 0% &

X — X

Vv

x—Xx

Vv

Hence,

by Assumption 2 of Section 4.1. Also,

ko
PdE}= [, Prllgl > 0—0%1/1) aP(0),

|I|<9k+l
but
k.
__k—i_ 9 _0k+2 .
Prilg| = 6 — 6%*2/t) = 20| —-————| (& = normal tail as before)
all + ¢t
1 .
xt — 1 T =1
< 20— |if lz] < 6**', since his small enough that § > gh“/s
4h'% + h
_1
<20 ok“] Gf 6 > (1 — 4pV/12 = p)=k-1,

This last condition is satisfied for k < A~Y'? for sufficiently small positive 4 because

0>0> —21;— h~V8 (for sufficiently small positive /)

€1 €L
6 S(k+1)h 12 —(k+1)In(1~-5k12)
>e’>e > e

1 1 1
= l(1=5n12)~k+D] a- 5hﬁ)—(k+l) > (1 — 4412 — p)~k+D

for sufficiently small positive &. Hence,

x P
il 2 e ?
Prilg| > 0 — 0%/} <
0k+1 < = 2
5 e
for h small enough that 8 > 1. For @ > 6, therefore,
L, 1
Pr{E,} < 7€ 2 J , dP(1) < e ?
il <o+t
under these conditions, and
=)

1
-0
Pr{|s| > 0)< Pr{E)} + Pr{E)) < (k + 1) e 2

The lemma follows because A* > 0 can be chosen on the minimum of the positive values # and the
three positive maximum values of / needed for the inequalities used in this proof.3
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Lipschitz Condition for R, P
o

[

From the definitions of ¢, €, and o in terms of v and %, from the Lipschitz conditions of Lemma o

1 for v, %, and A, and from the results of Appendix C it follows from partial differentiation of R}, ~-
rewritten using Eqgs. (14) and (30), as o
[}

L

R,=§%%Lﬂéuh—uﬁ+2ht—®+3u—3ahﬁL
Vv

with respect to €, o, ¢, A, and s (using the magnitude bounds for n and v assumed in Section 4.1) that

IR\ (s, p) — Ri(s', p)| < % e2maxllsl IS /In(1/h) h? |s—s'] (56)
and
IR, (s, p) — Ry(s, p"| < % elsl In(17n) h2lp — p'l (57)

for sufficiently small positive 4, where the arguments of R are given in the context of Assumption 4 of
Lemma 2, because e!*! dominates any polynomial in x for large enough x.

Lipschirz Condition for I,

From Eq. (35),
_u?

B cL e 2?
lz_J"L V2me? {

2

S—u +2

o (1 +¢B)

ul

u? du

4_ s—u
o1+ ¢8)

4 2
m e s aas s—u _ s—u
P e T “)[[o(l +¢B)] Slo(l + oB) ”] "“’ 8

where B(u, s) € [0, u]l Ulu, 0]. It is clear from the computations for Eq. (47) that the second
integral in Eq. (58) is bounded in magnitude by
2
M

in(/R) he ?

for sufficiently small positive h if |s| < L. Completing the square in the exponent gives the first
integral in Eq. (58) as

+Isl

_5_2 a0 (246)s? (u—T1)2 . )
e 2 ¢l e 14020 (2+6) e— W 5 s—u S—u
——| = 5|———| + 2t du, 59
2 J—L '\/1+O’29(2+9) ﬁfn’y u 0'(1+9) 0'(1+9) “ ( )
where
- €’s
u =

l+c%Q2+09)

_ e202(1 + 9)?
1+0% Q2+6)°
0(s, u,p) =) B(s, u) (sold| <k inthe context of interest here).

and

If the variable of integration in Eq. (59) is changed to

u—1u

X = ,
N
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then
_ €’s + er(l +ou)x (60)
1+ 02uQ+éu)  V1+a2uQ2+ du)
and
s—u  _ as — €x (61)
c(l+op) (U+¢p) N+0uQ+éun)] V1+o2uQ+op)’
with

wis, x)=Bls, u(x)] (sod=u). (62)

The partial derivative of this integral (denoted now as 7) with respect to ¢ can be expressed by
Leibnitz’s rule. The resulting integral can then be bounded (by standard results for normal moments)
as

1000 x (polynomial in s, ¢),

since 52 < —1% WV 2. which implies that |e®s| < 2. Then by the definitions of the variables in terms of

X and v, by the Lipschitz conditions established in Lemma 1 for X and v, and by the results of Appendix
C, it follows by routine manipulation that

IT() — T < %\/ln(l/}ﬁ el o — p'l,

with p and p’ used in the content of Section 4.1, for sufficiently small positive A, since e!s! dominates
any polynomial in s for large enough s.

For the case of fixed p and varying s, denote the integrand of 7 by H. The triangle in-
equality for integrals gives (for s; < s,, and |s(|, |s,] < L — 6/In(1/h))
oH
g“ sy — Sz|] dx

Qﬂu e (s) — u(s)| + max [
I‘L4
+ L de‘, (63)

oun s€lsy,s,)

rLs
T(s))—T(s9)| < max
I7( ) ( 2)| = JLl [;L(S),sdsl,sz][

where [L,, L,] is the common x range of integration for s; and s,, and where H is regarded as a func-
tion of both s and u as determined by substituting Egs. (59), (60), (62), and the change of integration
variable to x in Eq. (59). Applying the sort of computations involving Eq. (47) to Eq. (59) we can
show that for |s;], |s,| < L — 6/In(1/A) the last two integrals in Eq. (63) are bounded in magnitude
by h? for sufficiently small positive 4. Also,

sy, x) — w(sy, x)| < 4(x| + max(ls,], Is3]))

by the triangle inequality, the established bounds on €, o, |¢|, and the fact that |8(s, u)| < |ul.
Using these inequalities, standard results for the moments of normal densities, and the fact that |s| <

%h‘l/ 4and |¢]| < %\/5 h allows the expression of inequality (63) to be bounded, after some manipu-
lation, by

7}" ln(l/h; eZmaxHSl|,|s2|] (h + ,Sl — Szl)
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for sufficiently small positive 4. Since the indexing of s; and s, is arbitrary here, this also holds for
53 < sy. Thus, by the results in Appendix C for Lipschitz conditions for products of functions, and by
the Lipschitz conditions for ¢ that can be obtained from those for X and v,

%dﬂlz] (51, p) — l%dﬂh} (s2.0)| < 3 VI(T7R) ™ (13 4 p20s = i) (64)
and
[%¢212](s,,p) - [%tﬁzlz](s,p') < % In(1/A) 2! (h3 + h2lp — p']) (65)

for sufficiently small positive 4, where p and p' are as in Property 4 of Lemma 2.

Lipschitz Condition for E

From Eq. (36), E = E, + E,, where

_wr b _G-w?
Ll fule2 e ¥
E = - dx, (66)
= alf dwe?| V2wa?
and
ul (s —u)?
-7 EPSLYUNY] 2
cl[u] e 2 o 20214y s —u ]
E = -_ - 1 le)\,,. (67)
=9 ), a[G \/2_7762[ a1+ ¢y)2 || o (1 + éy)
Completing the square in the exponent of Eq. (66) gives
52 _ (u—es)?
e 2 L o W u
= - d}\". (68)
2 V2w ot V2rale? *|e
Denoting the integral in Eq. (68) by E gives, for fixed (Z;, Yi—1),
1lL—5 -8 1 L—52 %2—
E(s)— E I Gl B A G A O A R ()
|E(Sl) - E(S2)| = L l m C!(Sl + O'O)d)\g l[__L N m o \§, [o ol
= -

by a change of the variable of integration in Eq. (68) to § = i 63 — | for s = s; and s = 5,. Assum-

ing without loss of generality that s; < s, and |s;| < Is3l, the right-hand side of Eq. (69) is bounded
by

1 L—sz _g? . AfL—g —ﬂ;
for e - e o (s + a8 |dN
Ji[———sll N la(s; + 00) —al(s; + a8)|dr, + JllA—Sz] NS la (s; + a8)|dr,

27

GITITSSYTIOND



W.W. WILLMAN

'L"f‘“l g2i

4 e

+ — + o6)ldr
fu_ Tor |22+ oDldr,

o

for |s;], syl < L, because 0 € € < 1.

€

For the case of interest where |s,|, |s;] < L — 6/In(1/h), the last two integrals in this bound are
clearly less than A for sufficiently small positive 4 because of the magnitude bounds of a. By the
Lipschitz conditions assumed for a in Section 4.1, the first integral is bounded by

_e _82 4 2]
(-] 2 o0 2
(CH* + Di?ls; = ;D)  _ fﬁ——;— 2 49 < (Ch* + Dh? s, — sy)) ¥ [ ﬁ—ﬁ;— a9
)k
oo 2
< 2¢* (Ch® + Dh? |Sl - Szl) e2|51| fo e_\/2—_1r— de

< 2¢4 (CH? + Dh|s) — s5)) ey

Combining results gives, for sufficiently small positive 4,
|E(s)) — E(sp)] < eIl Il (o8 0 4 1) 43 4 204 DR2 ls; — s,
and, by applying the results of Appendix C, ,

|E; (s) — E (s < g2l Il 908 0 4 )13 + 2e4 D2 Is; — s5l1, (70)
for |sy| and |s,] < L — 6V/In(1/h).

For a fixed s such that |s| < L — 6/In(1/h) and p and p’ as in Assumption 4 of Section 4.1,
changing the variable of integration in Eq. (68) gives

2
_ Lk-» 7
E@—-E)=1° ° £ a(s +06,p)dr
| E(p) "] 5—(—%—9\/71;0‘“ ad,p)d\,

2
Lk %
_fll(_i—s) o a(s +0'0,p)dr,| » (71)

o 7

where 6 = 1 (% = 5) in the first integral and ;_1—,(6—11, — s) in the second, and o' is the value of o

[0 €
generated by (Z,Y;_{)' etc. Under these conditions, the regions not common to both integration
ranges again contribute a term smaller in magnitude than k3 for sufficiently small positive &. The rest
is bounded by

92
,>0 , 2 o
j;1<0 Tom |a(s + 00,p) — als +a'9,p")|d\,
8
<[ &l2cn+Dn(lp—p'l+ 18l lo — a'D|e?s!-e2¥lap,
- 27 )
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by the triangle inequality and the Lipschitz conditions assumed for «. From the Lipschitz conditions
established in Lemma 1 for ¥ and v, the results of Appendix C can be used to show that | — o’| is of
order hlp — p'|. This last integral can then be bounded as in the derivation of Eq. (70) by

4e*(Ch® + Dhlp — p'])e?!s!
for sufficiently small positive A, so

|E@) — E@"| <€ [(4e4C + 1)A* + 4e*Dh? | p — p'|]e2|‘|

and
|Ei(s,p) — E\(s,p)] < [(4e4c + 1)h3 + 5¢*Dh? | p — p'I]ezls'. (72)
Since | <I>y | < /& for sufficiently small positive A, it follows from Eq. (67) that
_u? _(s=w)?
L 2% T w21 +Vh)?
Bl <lelf | e Ie £ +lud)\. (73)
2 f“L Vel | V2na(1-Vh 0'(1 \/_) lulax,
Since 0 < o, € £ 1, completing the square in the exponent gives the bound
NENG 2
V1+vVh e 2° ’- e e
E,| < + 1Huln,, 74
IEal < o] 1-vh V2m L V2mve2 a’(l \/—) lul, (74
where
7= €ls
1+o%h
and
- a?(1+Vh)
1+o%h -~

Letting § = eﬂ and § =

LEEY

and changing the variable of integration in inequality (74) gives

_ {6 (:v)2

s2 52
ITgE ST
|E2|<|¢| 1+\/— : \/_" fL N L( )’[[o'(l vh)

Since € < 1 and since |a(8)| < Q A% in this range for Is| < L,

and
- ELl . _L6-9?
|E2!<|¢|"1+ﬁ \/% e Qh?f_w—\/_z—;— '0'(1+J’)[[s b1 +1llolde. (79
Changing the variable of integration in Eq. (75) to
]
7
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we get

1+h

_s exp{—-—1'2+ les + o | ——F+ Tl]
B < lpla| LYV 500 2 oo L 2 L+ o™V
2 1-vh \/27rJ—°° V2
2
1+vVh 1++h
X [1+ os te m]T] ]LS‘FO’ m T\dT. (76)

By use of the fact that o2 + €2 = 1, the magnitude of the polynomial factor in the integral of Eq. (76)
can be bounded by

Tl + 2520 ] + Zlsle? + Is] + 2l

and the nonquadratic exponential term by |s| + 2|r| for sufficiently small positive A, so the integral is
bounded by
—L(‘r - 152
els! fw LI (Is]® + 4s?r + S|s|v2 + 2|s| + 4r)dr
0 V27

< elsl|s13+ 7)s) + 4(s2 + 1)\/2 < elsl(|s] + 2)3

by standard results for normal moments. In this case, another bound for this integral is 3e2|‘|, by ine-
quality (E1) of Appendix E. Hence, for |s|< L and sufficiently small positive #,

—i+2|s|
E| < 2€ ©
and
_s?
: 2
|E,] < 6043 97_2-— ells!, (77
ar

Lemma 5: In the context of Egs. (21) to (23), there exists an 4" >.0 depending only on the
parameters a and b of the unperturbed problem, such that if # < &°,

2 ©.p) — @©,p)| < e?/(Ch® + D2lp — p')
and
l@@,p) —3©,p)] < e2mxlbl o'} (Tp3 + Drlo — 0'])
’ .2
for all § and  with magnitude < £y, M — 6.‘ / lnll’, where a is as in Lemma 3 and p and

mi+
p' are as in Assumption 4 of Section 4.1, and where

C =60 + 4+ 4¢*°C + 3/4/In(i/h)

and

D= %Vlnil?hi + L + 5e*D.
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s —
Proof: From Eq. 27), V2w e? p(s, L) < % h3 e2ls! under these conditions. Since p(s) =

p(s, L) + p(s, L), the lemma follows from the definition of @ in Lemma 3 and Eq. (33) and the
application of the triangle inequality to the results of Egs. (41), (56), (57), (64), (65), (70), (72), and
(77), because the condition of sufficiently small positive # was only used a finite number of times in
these derivations, each time in a way that depended only on the parameters a and 5. O

Because of the way the random variable s is defined in terms of the random variable y of Eq.
(21), Lemmas 3 to 5 establish the equivalent of Assumptions 1, 2, and 4 of Section 4.1 for y, with the

m: [ —
counterparts of ¥, v, k, C, D, and M being X, jl"ﬂ k + 1, C, D (as defined in Lemma 5), and

2

i

2
fitv

miy

-6 In

|-

4.4 Measurement Update at Epoch i+ 1

In this subsection, the unsubscripted variable x refers to x;;, instead of x;, n refers to n,3,, and
the subscripts are also deleted for m;41, ris1, Xiv1, Xi+1> Vis1, and m4q. It is assumed that Assumptions
1, 2, and 3 of Section 4.1 hold at epoch i + 1 conditioned only on (Z;, y,—, * u), with X, v, k, and
(Z;, Yi_;) replaced by x* m, k + 1, and (Z;, Y;_; » u) in the notation everywhere. In this context
z = Xx + ny, so defining

X — X
= X __ 78
t= ,-———r, ( )
Ri+1
- 7
T \/7’ (9)

— r
o-—-\/ pt (80)
m
e——-\/ et (81)

g=or, (82)
and
s=t+g (83)
implies that
ol +el=1, 84
1.
e
= , 85
z— x*
=2 86
S (86)
_(s—0)?
e @®7)
(s/t) = —F—=—=,
F N 2ma?
and
,2
e‘? M
- 3_ 2.2
p() = NG 1+ 553 (£ = 3¢’ + a

—’” (88)
€
31
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e last for |z| < eM in the current notation. It follows from Eq. (86) that conditioning on s (in addi
tion to Z,) is equivalent to conditioning on z. Hence, if

6= 7 (89)

for any choice of parameters f and », then
Vo py(s, T4 0) p,(t + 0v)
p(s)

by the Bayes rule whenever these densities are defined. If, for a given value of s (or 2), the parameter
values

p®/s) = , (90)

1= €s + o (s - 1] -(91)
and
v = c%2(1 + olns)? (92)
are selected, then
1+ 6y =eles + ow), (93)
where
o =¢€les + o0). (94)

Also, the results of Section 4.3 can be specialized to the case of Eqgs. (78), (82), (83), (85), and (88) to
give

52

_ e’ 1 3c3_
p(s) = i [1 + 3 M€ (s — 3s5) + 8(s) 95)
for |s| < eM — 6/In(1/h), for sufficiently small positive A, with

18] < 3Q h%!s! (since I, = 0 now) ' (96)

in the context of the current notation. Substituting Eqs. (88), (92), (93), and (95) in Eq. (90), we
obtain :

w2

e_T[I + %L[(es + ow)}— 3s + ow)]l + ales + ow)t (1 + c?ens)

p@/s) = . C))

3

if |s] < eM — 6/In(Q/A) and |¢| = |t + Vv 8| < eM. Since ¢ and v are specified from s by Egs. (91)
and (92) now, it follows from the triangle inequality and limits assumed for |n| that these two condi-
tions are met if

V2w |1+

ne3(s3 — 3s) + ,B(s)]

Is| < V8In(1/h) (98)
and
o] < M — 3vIn(/h) ' (99)

for sufficiently small positive A. From the definitions of s and G, it is clear that condition (98) is
already implicit in the assumptions here.

Inituitively, it is helpful to note at this point that s is basically the normalized "innovation" vari-

able for the updating step of a Kalman-Bucy filter and 6 is the normalized error in the resulting esti-
mate of x.
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Now let f denote the function

F@) = Ltasy Tyl0rose et o
- Von

Substituting Eq. (100) in Eq. (97) and rearranging terms, we get

1 ?l;—n[(és + ow)} — 3(es + ow)]

p@/s) = floen) I - T -

1+ 37)53(53 -35)+B()els! 1+ ?ne3(s3 — 3s5) + B(s) el!
2

—-w2—+|es+o-w|

2
+ Li/qz——ﬂ)— ales + ow) T € -
m 1+ ?n(s3 —3s) + B(s)el!

for conditions (98) and (99) and sufficiently small positive A, with
la(es + ow)l < QA?
and
1B(s)| < 302

Also, fand its first two derivatives are continuous for all {, so Taylor’s theorem with remainder can be

applied to fat{ = 0 to give
02

floen) = -\/f (1-cenlos@>—1) +e(s2— 1)8]) + liﬂ— f'(oen),

M€ [0,7)] U [y, 01,

by the use of oen to play the role of { and substitution from Eq. (94) fdr w. Using Eq. (102) in Eq.

(101) and substituting the expression for f”, we get

92
p@/s)= f 1+——1L(03 30)+{l-—o-en[0's(02—-1)+e(s —1)0]}
é—7(9+aeyﬁ)2 2 2 2y
3(s)els! ag'en
X [Ey+ Ey+B(s)es' |+ T+ T, + N [ >

X [1— 1’3-[53 (s*~3s)— (es+ow)+3es—ogw)l+E + E,—B(s) e"'}

2
——"—'2-—— + les+owl

x {[(0 + ceyn)? — 110 + c%sn)y — 2050 + oeym)) + (1 + E3)E4-€T,

where
y@®) =050 +e(s2—1)

33
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2

1’3Le3 (s3 = 3s) + B(s) el
E1 =

1+ %1753 (s’ = 35) + B(s) els!

%nﬁ (s* = 3s5) + B(s) e/
E,= 113- ] - [3(es + ow) — (€5 + ow)?],
1+ ?ne3 (s = 35) + B(s) els!

olens — %né‘ (53— 3s) — B(s)els!
E3 = »
1+ %né (s* = 3s) + B(s) !

Ey=ales + ow),
= %L[(es + ow)d — (e5 + 08)* — 3(es + ow) + 3(es + a0)],
and
T,= —72—[0's(02 — 1) +e(s?>— D013 (s* — 35) — (e5 + ow)? + 3(es + ow)].
Under conditions (98) and (99), it follows from the triangle inequality and Egs. (84) and (94) that
les + ool < M < %h"ll“

and

les + cw| < eV/1/2 In(1/h) + o |6]

for sufficiently small positive 4. "Using these inequalit.\.s and the fact that, for{ > —1,

1
m—(l D)=

T [ Icl]

¢
"1‘=|1+g ¢

and that o and € < 1,and oe < /2, leads to the following sequence of conclusions for sufficiently
small positive 4 and condition (99):

|Eil < 1000426 In® (1/h),

|E,| < 1000 A2 1n3(1/h),

|E;| < 3n11 + 81n(1/K)W8In(1/R),
|Esl = la| < Qr?,

|E; + Ey— B(s)el!| < 20Q h2e/B0h),
Iyl < 12In (t/R)(I6] + 1),

lyoen! </,

’

©® + yoen) > 02— 3K > 02— |o|,

and

14
O =Tl
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16 + yoenl < 18]l +Vh < l8] + 1,

(14 a2sn) < 1+ 6m/bIn(1/h) < 2,

11+ o2sn] < 1+ 6mbIn(l/h) < 2,

T, < 3n2b (Is| + 161)° < n2blle] + 2v2In(/ )8,

and
T, < 45n2b(|s| + loD* Islle| < 45h2b (6] + 2v/2In(1/h))S.

Also, the last term in Eq. (103),

—921+|es+o-w|
(1+ Ey) E, 5——nr,
3) E4 e
_w?

is bounded in magnitude by 2Q h%e 2 el?l ¢¥120(VA) for sufficiently small positive # under these con-
ditions. But

w? 92 1/4

et 8y,
e 2 <e ?

rETRTYIRY —5-+lel
so another bound is e¥B3! WM O p2 e 2 These inequalities and the fact that polynomials are ulti-
mately bounded by exponentials lead to the following conclusion, after some manipulation.

Lemma 6: In the context of the notation of this subsection and the assumptions described at its
beginning, there exists an A* > 0 depending only on the parameters a and b of the unperturbed prob-
lem, such that if # < h*,

Ix\/_;f‘ < M - 3VIn(1/h),
and
%‘ < V&in(i/n),
then p ff;ﬁ ’_H(O, z) exists and
_e ~& 4ol

< e\/l4ln(1/h) Q +1) » €

2
1+3% @3- ——
63— 30) 5=

e
*| — . 9, _
o *| =37, @, 2) o

This form of the lemma follows by the construction of 6 in Eq. (89) and from the fact that the
choices of ¢ and » as in Egs. (91) and (92) make the variables here correspond to those defined by
Equation System 1.

Lemma 7: In the context of the notation and assumptions described at the beginning of this sub-

section, if it is also true that Assumption 4 of Section 4.1 holds for { and ¢’, any two values of a single
component of (Z;, Y,_; = u;) and (Z;, Y,_; » u;)', then there exists an A* > 0 such that if h < h*
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|" = J~‘I < M - 3vInQ/R),
14

-
and
%| < V8In(l/h),
then
la*®@, ) — a*@', O] < e2maxtle. '} (Cp3 + Dh2le — ')
for |6') < M — 3VIn(1/h)
and

la*@, £) —a*@, )] < 2% (Ch3 + D2t - '),

where a * is as defined in Lemma 6 and
C = ¢V14In(l/h) (c+1

and
D= e\/14ln(1/h) D +1).
Proof: The results of Section 4.3 can be specialized to the context of Eq. (95) to give
1BG, ©) — B(s, ¢ < 2261 (Ch* + D¢ - ¢'])
and
|B(Sl, C) - B(Sz, C)' < e2max[|sl|, |32|) (Eh3 + 5h2|s1 - S2|)
for
C=de'C+1+ % VIn(i/R)
and

D=5¢D+1+ %\/ln(l/h).

From the Lipschitz conditions already assumed for o and the fact that
@) = al) ekl
and
BE) =B&) e,
it follows from the results of Appendix C that
la, ) —a, ) < el (ch® + Dr2ly - ¢'))
la(e, ) —a(, Ol < emUlLED [Cpd+ (D + Q) h? Ig - €]
IB&, O —BE, ] < ekl (Ch* + Dr2lr — ¢'D
B, ) = BE, DI < emULIED [Chd + (D +3Q) h2le - ¢'l]

for the conditions of interest here. The lemma is then established by repeated application of the results
of Appendix C to the composite expression of Eq. (103) for p(8/s), using the definition of # and s in
terms of the variables of interest, various inequalities developed earlier in this subsection, and the fact
that
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[(es + ow) — Les +08)| < h~/In(A/h),

8 [es + cw(@)] =6 x 0(n),

and a¢
P

for p 2 1. a

max {{? et} = [1l
(>0 e

To establish probability bounds for extreme values of the estimate error, suppose first that y is a
value such that

y>z—x*>0,
and for small A > 0 consider
Pr{x — x* > y/x + n € [z, z + A)}.
From the definition of conditional probability, this probability is bounded by

Prix —x*>y and x+n € [z, z+ A)}
Prix+ne€lz z+A) and 2z+A—y < x— x* <y}~

Since x and n are independent (given only Z; and Y;), and since n is normal (0, r), the numerator of
this last expression is bounded above by

_(x*+y—z-a)?
2r

e o0
S e

and the denominator is bounded below by
_*4y—2)?

e 2r x*+y
A T— Lz+A—(x’+y) dp (x).

Hence,
_Aly—z+x*)
e " Prix—=x*>y}

—_y* <
Pr{ix—x* > y/ (x+n) € [z, z+A]} < 1= Prix—x"> ) —Prix—x* < 2G—x")—y + 4] °

Taking the limit as A — 0 gives

~ Pr{x—x* > y} (104)
1—-Pr{x—x*>y}=Pr{x—x* < 2(z—x*) -y}
For Pr{x— x* < —y/z}, this construction shows that the inequality is at least as great as (104). Simi-
larly, for y < z—x* <0,

Pr{ix—x*>y/z} <

Pr{x —x* > y}
1-Prix—x*>y} = Pr{x—x*> 2(z— x*) — y}
and there is at least as great an inequality for Pr{x —x*> —y/z}. Combining these results for
y > 3]z~ x*| gives

Pr{x—x* < y/z} <

Pr{lx—x*|>y/z} < Pr{lx—x*| > y} , (105)
1-Pr Ix—x*|>%y

where all probabilities are also conditioned on Z; (not shown in the notation).
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From Equation System I,
3/2
x—x*=(x=%) + G=x*) =6y + =— + A7
Vm+r  (m+r)?

(s2-1),

where, as before in this subsection,

n=1n%1,
z—x*
s = ,
m+r
and
xX—X
6= .
NG

For y 2 0, therefore,
6] >y = Ix—x*| 2 Wy -Vm|s+n(s?-1)|
= |x—x*| > wa — 3VbIn(/h),
for sufficiently small positive h, because_of the bounds assumed for |m|, In|, and |s|. Hence, for

sufficiently small positive # and y > -sln 1/ h),

ol >y = lx—x*iz‘%y\/z. (106)

By assumption, |z — x*| < +/8b1n (1/4), so for sufficiently small positive A,
_1
y > -é—h 8 = ‘#—> 3|z — x*|.

In this case, inequality (105) can be applied to (106) to give

.
_L[ﬁ il
Pr{le] > y/z} < k1l f 2% (107)
_l[.&zg B
1-(k+1)e 21

by use of the inequality established in Lemma 4. Furthermore, for sufficiently small positive h,

i< %\/—_m arm 1

=2 Iny > -—In8+ —In(l/h) > (2i +2) 1n[la’1]

| 8
y> -
8
" 2i+2
-y > —]
a
24 2i42
-> -%b— > () ¥+ (since k = 2i + 1)
1
_1]y%a]kn 1 5
2b ~o Y
=> p e
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and

|
I<—2~\/11’1(1/h) -\/B

33—
a

= Iny >—1n8+%1n(1/h) > In

=y > 3.\/2 [41n(2i+2)])%+?
1

e
2| 6b

1 + 2i+2)[In4+1nln (2i +2)]
y>§h‘l/8 .

= ¢ > (k+Dk+2)

1| yla|k+1
2| 6b

[4
—_ —_— >
=>1-(k+1) 1 =21 +2

k+1 <k+2

== 1
_lei )

1— (k+1)e 216

Hence, using Eq. (107) and the definitions of 6 and s, we establish the following lemma.

Lemma 8: In the context of the notation and assumptions adopted at the beginning of this subsec-
tion, there exists an A* > 0 depending only on the parameters @ and b of the unperturbed problem,

such that if # < h* and the epoch index i is less than —;—\lln (1/h), then

2
Pr[

1 %+2
In summary, the results of this subsection establish counterparts to Assumptions 1, 2, and 4 of

X=Xl y/Z,~+1l <Gk+2e?2  forally > %h“/s.

Vv

Section 4.1 at epoch i + 1 if i < %\/ln a’n.

4.5 Implications for a Sequence of Epochs

If an error is multiplied by a factor not exceeding a constant H in magnitude at each epoch, and
an additional error not exceeding H in magnitude is added, it can easily be shown by induction on N
that the accumulated error after N epochs is less than

(H+ 1DV

if the initial error is zero. Hence, if
N <3y /Biln(l/h), 8 a constant,

H < e\/Bln(l/h) -1,

and
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then
lln(l/h)
(H + l)N < eN\/Bln(l/h) < e?
< h—l/2
1 1
< = V4 1
<3 h for h < 356"

Theorem 1: Given the restrictions imposed on the unperturbed problem in Section 3.1, if the
number of epochs N is such that

N < % VI (7R,
and if (Z;, Yi_;) € G, (where i €{0, 1, ..., N}), then Assumptions 1, 2, and 4 of Section 4.1 hold

for epoch i in the problem with perturbations, if # is smaller than some strictly positive value #* which
depends only on the parameters a, b, and F of the unperturbed problem (and not on the epoch index).

Proof (induction on i): These assumptions are clearly true at epoch 0, with
M= % W V4 Qo= Cy= Dy=0, and h* = 2732, Assumption 2 follows for A < 2732, by the in-

equality for normal tails,

The induction step can be established by noting that x;,; can be constructed from x; as the composition
of the two transformations

y=x+ 1+¢;x)w

and
X1 =Sy +u,

where w = %, a normal [O, %] random variable. Since (Z; »zy, Yi_; * &) € Gy
== (Z,, Yi_y) Gl G,, if it is assumed thzllt Assump-tions 1, 2, and 4 of Section 4.1 hold with

Q,; < 4,

C < A,
and

D, < A4,

it follows from Lemmas 2 through 5, applied to these two transformations in turn, that it holds at
epoch i + 1 with conditioning only on Z;, for corresponding constants

Q = 34, + b + 6,000,000,
F

C = (6 + 494, + VIn(/h),

D = 5¢*4;, + VIn(1/h),
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and
M=F. % M, — 6/In (i/h)

if 4 is smaller than some strictly positive quantity that does not depend on i, since

_1
i< %\/ln(ﬂh;-}» i< lh 12

2
for suﬂ"lcienltly small positive h. Also, the parameter k = 2/ + 1 changes to 2i +2 here. If
M> % —E, Lemmas 6 through 8 imply that the hypothesis also holds at epoch i + 1, with condition-

ing on Z,,, for

My =M - 3Vin(/h) = E % M, — 9vIn(1/h),

9i+1 = e\/14ln(1/h) (ﬁ +1),

Gy = e\/l4ln(l/h) (C + 1,

and

Di+l = e\/14ln(l/h) (5 +1).

Thus, for sufficiently small positive 4, a corresponding bound A4, is

Ay = ein(1/h) “, + 1).

By the remarks at the beginning of this subsection, therefore, Q;, C;, and D; do not exceed % hV4,

for sufficiently small positive 4 and i < —;-\/ In(1/#), and it is also clear that such a positive upper limit

for h exists, so that M, > —‘lf Y8 for M, = % h V4 and i < %\/ln(l/h). Since the condition of

sufficiently small positive 4 was used in this proof only a finite number of times, in a way which did not
depend on the index i of the induction step, and depended only on the parameters a, b, and F (some-
times via Lemmas 3 through 8), the induction step is verified. O

4.6 Moment Error Bounds

In this subsection it is assumed that (Zy, Yy_;) € Gy, and the first four central moments of

pxi_ii !
/Z;
ND

if they exist, are denoted by X;, o7, 29;, and vy, respectively for epoch i < N. For a given epoch i, with

i < %\/m arn

and
1 N i 1 ’

we suppress the epoch subscript and the conditioning on Z; in the notation, and note that (Z;, Y;_;) €
G,.
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Lemma 9: In the current context, there exists an #* > 0 such that for # < h*and n=1,2,3,4
f t"dP,_;(1) < h.
M
\/_

v

Lok
—=t
> t] < ke ¥ ,k=2i+1for|t] > M, it follows from the construc-

Proof: Since Pr [ x\/';x

tion of the Lebesgue integral and the monotonicity of ¢” on [M, o) that
__,2/k
OsfM " dP,_z (z)<kf dr,
v
where k = 2i + 1 < 1/2v/In(I/#). Changing the integration variable to u = tV* gives
_u?
fM "dpP,_; (1) < sz " k=l o 2 gy

v
Integration by parts gives this last bound as
2 1.k _ul?
+1- M o0 L
k? {Mn ke ? + [(n + 1Dk — 2] fMl/k k=3 o 2 gy},
Hence, it is easy to show by induction on k that
lM2/k
fM o dPx—x (1) < K2(MVk 4+ 2)k(ntD=2 ;72

For sufficiently small positive &, k < 1/2In(1/h), M > 1/4n~ Y%, and

l —_—
2 21 @h3) 2 n (/) =2In4

MYk > (4h‘/3) Vin(n) = , YInUB) 4 Vin (/h) > 2,

in which case
- _lefk _lMﬂk
fM " dP,_, (1) < k2 ok(n+D) pantl g 2 < k2ekn+D) pqn+l 72
Ay
The natural logarithm of this last bound is 2 In k + k(n+1) + (n+1) In M — -%—M’”‘, which is less

than

2 In WIn (UM + (n+1) Win (7R + = ln a/m]— L [ lw—*“m W

under these conditions. For sufficiently small positive A, this expression is dominated by the last (nega-
tive) term, which can be rewritten as
(1/h)
- = e4\/1n Q/n)
8
and can clearly be made less than — 3 In (1/4) by taking 4 to be a small enough positive value. Since
this is the logarithm of the bound of interest,

* 3
f, rdp s @ <n

v

for all A < h*for some A* > 0. O

42



NRL REPORT 8406

In the case of the first central moment,

= = X=X
E(x)—xéx+\f;E[\/;,

where E denotes expectation (conditioned on Z;) and X and v are as generated by Equation System 1.
Thus,

x=%=v [ wP,_; ()
- \/Ff_z ti(t)dt—fA p(t)dr +f_}; tB(t)dx, +f,1 thx;)-((t)], (108)

where

_2

) =% i 1+ 2 -30] (the approximation)
NprS 3 ’
A= (=00, M] U [M o),

and

B(1) = Pz (1) = p (¢) (the error function).

N
Also, there are no moment existence problems because of Lemma 9. From the results of earlier sub-
sections,
2
20 hle ¢
N < =——F=—
B N7

for [¢| < M and sufficiently small positive & The first integral in Eq. (108) is zero, so from this ine-
quality and that established for |n| when (Z;, Y,_,) € G,

-2
o 2
- _ = e 4 2
Ix — x|l < Vb 2f%h_l/8m[t+h\/3(t +39)] dt
-2
oo 4 o0
+aqnt [T 1= ar+ [ 1ap_ ()] (109)
P NA MR

The first integral in Eq. (109) can be made less than h* for sufficiently small positive 4 by standard
results for normal tails, and the second integral is 7~ V2. By Lemma 9, therefore,

- %| < Vb [%+3 . (110)
With respect to the conditional distribution given Z;,
2
E(x—x)2Ac2=(x-3%)?+ vE{x\/_—v-x] (111)
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and
2

Y N0
[ g

v

xX—X
Iy -

Using Lemma 9 with » = 2 and the same type of reasoning as for the first central moment, we can
show that this last expression is

1 + error, where lerror| < (4/2 Q + 3) A2

For sufficiently small positive 4, (x — %)? is of order h*, and so
lo2—v| < b(4V/2 Q + 3) . (112)

il

Ex-%PA26=3E—-%)2E(x—-%)?-2x-x)?+ "2 L«{[x_J__x

1 4
ol
N

Repeating the above analysis using > and n = 3 we get

- [T opwa- [ as0a+ [ o a+ [ A, 0.

v

By the preceding results,

Q
16\/7_r

[
’

29 = 2v¥2q + error, |error| < %2 +3

where 7 is as generated by Eqilation System I. By the definition of X, therefore,

80 . 3
t3

N~ b¥2 p? (113)

0 —x] <

for sufficiently small positive A.

Again expressing x — X as (x — %) + (¥ — X),
EG—-%*8 y=Elx—3)*+4F—-X%) (x — %)+ 6(x — %)? (x — X)?
+4F—-%) F-X)1+ -4 (114)

From the preceding results for lower moments and the fact that |n| < 34/b under the present condi-
tions, the only term in Eq. (114) that is significant to order A is

EG-0t=v [ tdr,_. @)

v

= 3v2 + error, |error] < b%h

by a similar analysis. So
ly = 3v?| < b2h (115)

for sufficiently small positive A.
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Lipschitz Conditions
If for a given epoch i i < N, (Z, ¥._))' € G, differs from the initial segment (Z,,¥_,) of

(Zy,Yy-1) in only one component, for which the respective values are denoted as p’ and p, it follows
from Eq. (108) and the analysis in this subsection that

316) ~ 8,60 =@ |1 + [, 86 ) v | -V [+ [ gy n ], (116

where 8; = x — % and v(p) denotes v[(Z,,Y,_))'], etc ., with |le;| and |e;| < 343 for sufficiently small
positive 4. Rearranging terms in Eq. (116) gives

51(6) = 8,6") = Vv (o) [(el —e)+ [, 1BGp) ~ B(p)] dx,]

+ [x() — 2" Mv() - Vvl 117

Since
,2

e

)
B(tp) = Ner altp)

by definition, it follows from the Lipschitz conditions established by Lemma 1 and Theorem 1 for v and
a (using also the results of Appendix C in the case of v) and from inequality (110) that

2
w Syt
’ 3 3 2. — ' €
8160 = 8161 < VB |68 +2 " 1(Ch + Dilp — p'D) £t
40 r |, ,
+ - 11
Hm s zﬁ]""’ o' (118)

for sufficiently small positive 4. Performing the integration in (118) then gives, for sufficiently small

positive A,
2+.\/z]<:] h+ 2+.\/Z
- ™
Since C and D are less than A~ V4,

8:G) — 8,0 < QH Y4 B+ Qh~ V4 K2|p - p'| (120)
for sufficiently small positive A.

181(0) =8, | < Vb|6+ €2 Vbe? hp—p'l.  (119)

D+1

From Eq. (111) and the fact that (x — ¥)2 < %h3 for sufficiently small positive A,

521000~ 8,00 = v@)|es + [ 28p) an ] = ve s+ 7 2800 ax,

, lesl < B, where 8, = 02 — v.

with |€3

Rearranging terms, using the triangle inequality, and using the magnitude bounds and Lipschitz condi-
tions established for a, we obtain

2
2

820 = 8,601 < v(o) |21+ [ 2 = latp) — alep)la,
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la(tp)l dr,] Iv(p) — v(p"|

sl [0

t2
L4204
< bl2md + f“ t2(Ch® + Dh%p — p']) e’ dt
—oo N2
+lr+0 P& dil Th3lp ~ p’
f_m T lo — o'l

for sufficiently small positive A. Evaluating the integrals in this last inequality, we get

18,(0) — 8,000 < 5+ S\EI(Ch3+Dh2Ip —p'|)]
22| -

in this case. Also, for sufficiently small positive A,
8,0 — 8,000 < QH VYR + QHVHR? Jp—p'l,
because C and D are both less than A~ V4,

bl2n3 + e?

+Th|h + Qe

(121)

(122)

Since, as before, the condition of sufficiently small positive # was invoked only a finite number of
times in their derivation, Eqs. (110), (112), (113), (115), (119), and (121) can be summarized in the

following result.

Lemma 10: There exists an A* >‘ 0 such that if # € h* and if (Z,Y,_)) and (Z,Y,_))' € G,

differ in at most one component with respective values denoted as p and p' for i < N <

then the first four central moments, X;, o 2, 20,, and vy, of

by, -3,
Vi

exist and

1% - 5| < VB[

+3| 12,
T 0, h
' '0',2_ V[l < b(m91+3)h2,

Iol_xll < b3/2 —§—01+3 h2,
N

ly; — 3v?| <b?h,

18,(0) —8,("] < \/E6+e22+-\/; Cln+ 22+\/—%- D;+1}r?|p—p'l,
and
18,(0) — 8,007 | < b|2 + €? 5+&\/_%- Gl + |be?|5 + —72T— D+ 1| R lp—p'l,
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where %, v;, and X; = v¥2m; are as generated by Equation System I and
81 = },’ - 5&,‘
and

82=O'i2'— V.

5. ADEQUACY FOR OPTIMAL CONTROL APPROXIMATION

One common use of state-estimation results is in the implementation of optimal control laws. It
is shown in this section that the error bounds established in the previous section are strong enough to
guarantee that the control values computed in such a way according to a certain first-order formal
analysis (to be described shortly) are indeed within order # of being the optimal values, except perhaps
for a set of realizations of small probability, when we minimize the expected value of a quadratic per-
formance criterion with the dynamics of Eq. (1) — #; being the control variable — and with the state
measurements of Eq. (2). Also, the set of realizations for which this control accuracy does not hold is
shown to be contained in another set of realizations for which the prior probability goes to zero as h
does and it is always known to the controller from available data whenever the current initial segment
of a realization is such that the realization cannot be in this set.

5.1 Control Problem Formulation

The particular control problem considered here is that of minimizing the performance criterion
J=HY st + S Liaxt+sud | (123)
= 3sNxN+lzo 7a,-x,+b,«u,- ,

where E denotes prior expected value and the x; are determined by Eq. (1), with the u, now regarded as
control variables. Also sy =0 and, for i=0,.., N-1, 4 2 a;, 20 and & =2 B > 0. The control
variables are generated from the available data by a Borel-measurable control law U, i.e.,

U: (Z,Y-) —uw, i=0,..., N—1. + o (129)

Thus, the convention used here is that the controller receives the measurement z at each epoch i

before having to decide the value of the control ;. Also, we let ¢ denote the set of admissible control
laws, i.e., those having the functional dependence indicated by expression (124) such that these func-
tions are Borel measurable (so that all quantities determined thereby are well-defined random vari-
ables).

A particular control law U, € ¢ is called optimal if and only if

J(Up) = inf {J(U) : U € ¢).

This infimum clearly exists because J is necessarily nonnegative by its definition and J is obviously
finite under the trivial (and admissible) control law which always gives »; = 0. For a given epoch i and
data value (Z;,Y,_;), a control 4 is called optimal if and only if there exists a U € ¢ such that U is
optimal and ; = U(Z;, Y._,) .

Also, it is convenient to define the sequence of optimal value functions V;, i=0, ..., N, such
that
Vi(Z,Y_) = z‘féﬁ Eg,y._, |5 swxi + P 3 (a;x?+ bju?) (125)

Jui
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when (Z;,Y,_,) is such that this expectation exists, where u; denotes U(Z;, Yj-_l). Heuristically, V; is
the usual conditional expected cost-to-go function at epoch i, given the currently available data but
before the control y; is used.

5.2 Equation System II for State Estimation
For the purpose of analyzing this control problem, it is more convenient to adopt a somewhat

different system of equations for generating approximate moments of the conditional state distribution,
even though this requires some effort to establish some relationships between the two equation sys-

tems. This other system, denoted Equation System II, is the following for i =10, ..., N —1:
2
I ¥
b= |——| vii + ey s 4= 10, (126)
i+l F ri Tit1
211 Vit €i+1 At
Riv1=fi%+ w + u + + (ef1 = i1 — ris);
i+1 i i it+1 il + ) il + riel ri?H i+ i+ i+
.90 - .i"o" (127)
and
, 3
i+1
M1 = | ——=—| U\ + 3fimaw); Ao=0, (128)
Hiv1 + i

where w41 and p; are as defined by Eqgs. (3) and (4), and where
vie = frd + g% (129)
and
€i+1= Ziy1 — Si% — u;. (130)

In this system, the u;, p;, and \; are actually just predetermined parameter sequences; only the d; and
X; are random variables a priori. This system is constructed to give the following first-order approxima-
tions to the variables generated by Equation System I, in the form of Egs. (7), (8), (10), (11), (16),
and (17):

X=X,
b+ 24, = v,
A=\,

and

M + 2V,' = m.

In the present context, of course, the u; values are not generally a known sequence a priori,
because the control law is allowed to generate them by feedback from the state measurements. Because
of the nonanticipative nature of this feedback, however, all previous control values are known at each
epoch, so the state estimation results of Section 4 can clearly be applied to this case as well if we take
N = iat each epoch i.

5.3 Formally First-Order Optimal Control Law

The analysis of Ref. 1 can be applied here to give approximations to an optimal contro!l law and
the value functions which are formally accurate to first order in 4. In this particular case the approxi-
mation for the control law reduces to
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. S fiX; + bigy
==, =0, ..., N—1, 131
“ Sivpt b : (130
where #; denotes the control generated by this law at epoch i, X;(Z;, Y,) as generated by Egs. (126) to
(130), and the other parameters are defined by the recursions

SRS .
= —————— " . 2
S =a + T sy as given; (132)
5 1 D, :
o 2 Dkl _ Pkt . -0
Ve = Ji b + Sie; + |1 P Yi+1]s ov=0, (133)
and
2
b
di = JebiPis) + S+ + |1 - ol Yiw1] d¥is dn=0; (134)
b + S k41
withk=N—1, N—2, ..., 0 and with p,,, as defined earlier by Egs. (3) and (4).
The corresponding approximation to the optimal value functions is given by
Ji(Z, YD) = % sG&2+ p +2d) + % + yid + %”’Ih (135)
where n; now denotes the value defined by the recursion fork=N—-1, ..., 0)
feoesitn
M= Mes1 + Ser1le + oty g =0, (136)

y
by + S N

To allow for later modifications, this is taken as the definition of J; only for (Z;, Y;_,) € G;, in which
case the expectations in Eq. (125) for V; certainly exist. Hence, we can also define the error functions
¢, for such (Z,,Y;_,) as

€(Z,Y ) =VI(Z,Y_) - J(Z, Y, i=0, ..., N. (137)

The objective in this section is to show that, except possibly for the unlikely set of realizations
mentioned earlier, the control % (Z;,Y,_;) differs from the optimal control by less than #¥*, or more
precisely, that if there is a control law U; such that

|\U\(Z, Y1) — 4(Z, Yol > B34,
then there exists a control law U; € U such that
|UL(Z,Y,2y) — 8(Z, )| < hY4
and
J(U,) < J(UY.

The derivation of the result in this latter form does not require the actual existence or uniqueness of an
optimal control law.

5.4 Relations between Equation Systems I and II

Equation System II can_be constructed if we regard d; as one half of v — p;, then expand Equation
System I (in the form using X; and X, in place of 7, and n,') formally to first order in A, with the quan-
tities ¥;, \;, A;, and d; being of order A, and finally relabel %, and \; as X; and A, to distinguish them
from their exact values. If the realization through an epoch i is such that (Z,, Y_1) € G;, therefore, it
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is a straightforward but tedious matter to use Taylor’s theorem with remainder, Conditions (1) to (4)
of Section 3.1 for (Z;, Y,_;) € G;, and the fact that A~V'® can be made arbitrarily large compared to
In(1/ k) if we take h sufficiently small, to establish the following result by induction on the index j of
these four conditions in Section 3.1.

Lemma 11: There exists an #* > 0 depending only on the parameters a, b, and F of the unper-
_turbed problem, such that if # < A*and (Z;, Y,_,) € G, for some epoch i, then
%] < e,
| d, | < p1916
|5€,- -%l < F; h,
lp; + 24, — ;| < FR?,
and
|)\ i A jl < F}hz
forj=0, ..., i — 1, where F; grows slowly enough with j that F; < A~V4if

J<i<g —312—\/ln(1/h5.

The last conclusion here also uses the inequalities noted at the beginning of Section 4.5. Further-
more, applying the inequalities of Lemma 1 and the results in Appendix C enables us to obtain the fol-
lowing additional inequalities during the course of the same induction.

Lemma 12: There exists an h* > 0 whose value depends only on the parameters a, b, and F,
such that if & < h* and if (Z;, Y._y) and (Z, Y,_))' € G, differ in at most one component, whose
values are denoted here as p and p’, then

[1%0) - %) - [%6) — %691 < Fr?lp - p'|
and
1 6) = 24,(0)1 = I;(0") — 24,11 < Fyh?lp — /|

forj=0, ..., i— 1, where F; is the same as in Lemma 11.

Again, the computational details of the proof are too lengthy and routine to be given here. As
before, the notation %, (p") is an abbreviation for %;,{(Z;, Y;_1)], etc., where (Z;, Y,_)" is the obvious
initial segment at epoch j of (Z;, Y;_;)'. These results can now be combined with those of Lemmas 1
and 10 to conclude the following results for Equation System II:

Lemma 13: There exists an h* > 0 whose value depends only on the parameters a, b, and F of
the unperturbed estimation problem, such that if # < A*and if (Z;, y,_|) and (Z;, Y,_;)’ € G, differ in
at most one component, whose values are denoted here as p and p’ respectively, and if

i< %\/lnil/hi, then

le;l < Vb + Q V9 In(1/h) < n~V8,
1+ 5.\/Z] nA,
T

lo? — p; — 2d,] < (1 + 56/2) 74,

IXA',"_Eil <
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1+ 91;\/2] H'A,
ka

ly; — 3p2l < b*h + 66 (W74 + K78y < p¥*

6+ 2L\/Z Ci] h?
mw
14+ F + 2\/? D,-] hlp — p'l,

llo 2(p) — 24, ()] — [0 2(") — 24, (p"N1] < 261 +V2C)) K?
+ (1+ F +2bv2 D) hlp —p'l,
ld:(p) — di(p] < h¥*]p — p'l,

N =61 <

and

for either realization, and

_.|..

and
|%:(0) — %,(0N] < lp — p'l.
Proof: To establish the first inequality, f;_;X;_; is added and subtracted from the definition of e; to
give (fori = 1)
e, = (z — fist%ioy — ) — fio (Ko — X))
Thus, from the triangle inequality and Eq. (7),

‘e," < |Z,~ - X,'.I + lfi—lll)%i—l - ii—l'-

SinCe (Z,‘, Y,'-]) or (Z,', Y,’—]), € G,',
|z, = x"| < /m; + r;V/8In(1/h) < Vb + Q V8 In(/h)

by definition and |%,_; — %_1] < #”/® by Lemma 11 for sufficiently small positive 4. So, since |f;| < 1
and 7% < /(b + Q) In(1/h) for sufficiently small positive 4,

le;|l < Vb +0Q V91In(1/h)

for sufficiently small positive A.

The next four inequalities can clearly be verified from the triangle inequality and the results of
Lemmas 10 and 11 by similar constructions. Likewise, the next two (Lipschitz) inequalities of this
lemma follow from Lemmas 10 and 12; and the next to the last inequality from Lemmas 1 and 12,
since T'; < h~Y* by the recursion for I'; and the remarks at the beginning of Section 4.5.

For the last inequality, it follows from Eq. (127) that, for k=0, ..., i — 1,
3ACk+1 - 5"k+1 = f(ka - )Ack') + ';% (e —e') + _(u_-zi—ir_)z— we —v'e’) + —r)%(ez - 6”2),

where X, 'denotes X, [(Z;, y,—1)'], etc., and where the obvious subscripts of the other quantities are
omitted. From the definition of e,

- ~ r
xk+1_xk=/{,u+r

(% — %) + ;lj_—; CARES Y
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+ (u irr)z we—e)+e'w—v)Hl+ %(6 +e') (e —e).

Repeated application of the triangle inequality and the inequalities already established show that the last
two terms in this expression have magnitudes less than v |p — p'| for sufficiently small positive A if
% — %] < |p —p'l, since (Z;, Yiiy) and (Z,, Y,_)) € G.. Hence, again by the triangle inequality,
if li‘/\ - .i”/\-’| < lp - p’|, then
p
utr

%41 = Ria] [—&— + RNh
mwtr

|1 — S | <

+ 2\/F] lp — p'l if p does not denote z,
and

lp — p'| if p denotes z;41.

Since |f| < 1, w > 0, and r > 0,
|)A‘k+1_5(l\i+1| < iP_P'|

in either case for all & < ﬁ, where # is some strictly positive number not depending on the index k.
Since the desired inequality is trivially true for k = 0, it holds for all k < i — 1 by induction. O

5.5 Some Loose Bounds

Before proceeding further, it is helpful to establish some relatively loose bounds on the value
function and, when it exists, the optimal control at a generic epoch /.

Lower Bound on Value Function

If the problem is altered so that the controller is given exact knowledge of the current state as
well as the noisy measurements thereof at and after epoch /+1 and is allowed to use this extra data in
the control law in a Borel-measurable way, this can only expand the class of admissible control laws.
Hence, minimizing over this expanded class cannot raise the conditional expected cost-to-go at epoch /.

For epoch k > i + 1, define H, (Z,, Y,_y, x;+1, ..., X;) as the optimal expected cost-to-go at
epoch k in the altered problem, i.e.,

N=1
H, (Z., Y\, Xis1, ., x) = inf is,,x,,2 + 3 i(ajxj2 + bud)|,
e T2 & 2

where u; is generated from Z;, Y,_;, x;41, ..., Xx; by the control law U, the expectation is conditioned
on the same data, and € 2 £ is the new class of admissible control laws just described. From the form
of the dynamics of Eq. (1), H, depends only on x;.. Now suppose that

1 1
Hir =5 &t +axg + 5B
Then, by the standard principle of optimality of dynamic programming,

He = inf E;, %(ax2+buz) + %g x+u+ Q+u,)wl?

talfx+ut Qv wl + %B ,

52



NRL REPORT 8406

where the k subscripts have been suppressed. Evaluating the expectations gives

H, = inj{%(ax2+bu2) + -;—g[(|f):c+u)2 +qQ+yx)0+a(fx+u) + %B .

The infimum can be attained by the use of

u-—m

b+g

which gives (with additional k subscripts deleted)

H.(x) = l[ax2 +gfix?+ gq(1+y¢x)?— % + B8l +afx
L +2q¥

2

aQ
+a|x? + +
g+ax’ x b+g

B+gq—

2

Since Hy (xy) = %SN x3 for i = N—1, it follows by reverse induction on i that

1 1
H, (x)= 7 8i+1 x? + a4 x + 5B/+l ’

where g;41, a1, and B, are determined by the reverse recursions

Seb g1 .
+ Zta;, gv=-s
8 b+ 8ert Sk+1 9k ¥k ks BN = SN
Jiba g4
= ekl s ay=0;
ay b+ Beet 8k+1 Gk ¢g ay
and
=B+ @i B
Bi=Br+1+ 8+1 @ — Be+ gen ; By=

—

(138)

(139

(140)

For a general u; followed thereafter by use of an optimal control law, a lower bound on the conditional

expected cost-to-go at epoch i is therefore
%[bi ui2 + ai()_ci2+a'i2)] + E[H (x40 /Z;, Uiy » wl.

Suppressing / subscripts, this expectation is

L{%g,-ﬂ i +u+ QHpx)wl? + aqfix +u+ Q+ox)wl + % Biv1/Z;, U,.l.

Evaluating this expectation as the composition of a marginal and a conditional given x, we get

2 g [UF+02 4 qUHUR? + (4 quDo] + y,a1 (FHu) + TBis.

This conditional expected cost-to-go can be rewritten as

1 _ 1 _ 1 S840 7
E(bi'*'giﬂ)(ui_ui)z + Egi(xiz'*'a'iz) toixi+ 5 1B+ mj
where
4= Ji&i+1% + g
' b + g4

and «;,8,,8;, and g, are given by Egs. (138) to (140).
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By construction, this is a lower bound on the conditional expected cost-to-go at epoch i in the original
problem for any control u;, even if it is followed by use of an optimal control law at epochs
i+1, ...,N Also, by construction and the definition of the value function V;, u; can be chosen as y;
( a function of Z; and Y;_,, actually ) to give

2 2
S &0

(142)
b + g

Bi+

VA(Z,Y-) 2 %gi(iiz +of) +ax + %

for all (Z;,Y;_,) € G;, where X; and o? are the conditional mean and variance of x; defined earlier, which
have been shown to exist for realizations such that (Z;,Y,_;)€G;, where Y,_; is now the sequence
(14o(Zo), 0 (21, YY), ..., 01, (Zi_1, Yiop)}.

Upper Bound on Value Function

Returning to the original control problem, we now consider the obviously admissible control law
which gives
—1ii, (as defined in Eq. 131); k < i
u ifk=1i (143)

Zrta
B+ 1fick LS 4l
b + g1

and, for k > i + 1, denote the corresponding conditional expected cost-to-go by

n=1
Tk (Zk, Yk—l) =F ;%—s,,x,,z + Ek %(a,-sz + bjujz)/Zk, Yk—l
J-

when (Z,,Y,_,) is such that this expectation exists. For k 2 i + 1,

u = —c, O + n) — 8,

with
o = 8k+1fk
b + g
and
X p+1
By =
k b + &+

so, dropping obvious subscripts,
Xu=UF—-cx—8—cn+ A+ y¢yx)w

For k > i + 1 and (Z,,Y,—)) € G, let X, temporarily denote E (x,/Z;, Y,_;) under the control law of
Eq. (143). By the statistical independence of the process and measurement noise variables,

EGuii/Zix) = (F—¢)x — 8,
SO
ECoi/Z) = (f— ¢) X — 8 = X411, (144)
where the dependenée on Y,_; is suppressed in the notation. Also,
EO2/%.Z) = (f — c)?x2— B(f — )x + 82+ o + (1 + ¥x) gp,
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so from Eq. (144) and noise independence
o= — e +yiglal + cIr(l +yX)%, (145)
where o 2 now denotes the conditional variance of x; given Z.
By definition,
1
T(Z,Y) = T (Z, Vo) + 5 Erz,v,, {aexd + belc Coc + ) + 8,13
for k 2 i + 1, or with notational abbreviations,
Tk = Tk+1 + %{ak()_ckz + 0',%) + bk [Ckz(fk2 + 0'/% + rk) + 2Ck6k)—ck + 8/3]} (146)
Now suppose that

1 — - 1
Tin = 78k+1(xk2+1 + o) + agXis + 7(Bk+l + €xs1), (147)

where gy+1, a4+, and B4 are given by Egs. (138) to (140) and £, is given by the recursion
S8t
bj + gj+1

Since this supposition is true at k = N — 1, T, is given by Eq. (147) for all k > i + 1, as can be
shown by backwards induction on k with the use of Eq. (146).

Ei=€in + ; Env=0. (148)

The conditional expected cost-to-go at epoch i using an arbitrary u;, but the control law of Eq.
(143) thereafter, is therefore

1 1 - - 1
Eiz.v._, 7(aixi2 + bu?) + 78i+1(xi§-1 + k) +apiXg + E(EH-I +€i41)

%[‘1:'(2'2 +a?) + bull + %&'H(’_Ci?n + o) + X + %(BHI + éiv1) (149)
by idempotence of expectation, at least for (Z;,Y,_;) € G; and sufficiently small positive 4, when these
moments are known to exist. Also,

X1 = S + up + (1 +9,x) w,
so

Xi+1= [iX%; + y;

and
ohi= (P +qudao?+ (1 +¢,%)g,

where X; and o2 now have their former meaning. By definition, this conditional expected cost-to-go is
an upper bound on V;(Z,,Y,_;) for any u;. Using Eq. (141) therefore gives, for sufficiently small posi-
tive A,

ViZu ) < 5+ gn) (4= T) + 4G +0D) +a,

2,2 2
S 8T

(150)
b+ gin

1
+7/3i+§i+1+

for all (Z,,Y,—;) € G, where X; and o/ are functions of (Z,Y,_;),and i < N — 1.
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Limits on Optimal Control

With u; = % in the upper bound (150), the principle of optimality and the lower bound on V;
preceding Eq. (141) imply that 4; = u can be bettered (in the sense of achieving a lower conditional
expected cost-to-go) unless

(b + giv) (=)< £,
at least for (Z;,Y,~;) € G, and for sufficiently small positive 4. Since
£rvq = Nz'l f1c281c2+1"k ,
Playy SR e ¥ /8]

this condition implies that (v — #;)? < %ln(l/h) for sufficiently small positive 4 and
1

N < 3—2—\/lni17h5 if the recursion (138) for g, is backward stable. This is clearly true for small
enough positive h, since
b
2 k 2
= |Rl——| + + ay.
& = |fk Be + 8ot b i 8+1 + ax

Also, comparing these parameters with the J (Z;, U,_,) parameters gives

Jiebk Jicb
(& — ) =
b + ge1 ) | b + Sk

(so g = s > 0) and

1] (8s1 — Skt1) + &+1 G WA (Gv—sv) =0

Jicbi
Gy — i) = |——} ¢ - )
Yk — bk b+ Zomn Yi+1 — Pi+1
Jibid i+
+ — —_
ax Y G+ 2000) (b + 5000 (8k+1 = Sk+1)
2
Tk+1
S R Yerr; lyn—én) = 0.
[mk+1+’k+1 G Vi Yer1, yy— oy

Hence, for sufficiently small positive A, g1 — Spe1l < #¥2 and |y ;1 — ¢21] < Vh. Using & to
denote the apparent approximately optimal control as before, i.e.,
_ Jismi kit i

b + siv1

ﬁ,’=

it follows easily that, for small enough A > 0,
Iﬁi - a,‘ < h—l/Z‘ 'i‘i - i,l + h3/2 .i:,' + '\/Z.
From Lemma 10, therefore,
1

|i}i— il_,| < 2h +'\/—}; < 2‘\[}7 if I.i,' < —-\/—Z_ and (Zi,)/,‘_l) e Gi:

or equivalently for sufficiently small positive h, by the definition of G;. This means that under these
conditions »; cannot be optimal (i.e., can be bettered by some other value) unless

‘u,'_ ﬁ,‘ < '\lln (l/hj.
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The preceding results can be summarized as follows.

Lemma 14: For any ¢ > 0, there exists an A* > 0 such that if & < A* if the number N of
epochs in the control problem of Section 5.1 is such that

N < % Vin (7,
and if (Z;, Y,_)) € G, for some i€ {0,1, ..., M, then
1 - -, 1 S8 0f
0< V(Z,Y-) - 2 8i (xi2 +od)+ a;x; + 2 B; + b,_-l:g,: < €ivn

where X, (Z;,Y,_)) and o? (Z;,Y,_;) are the conditional mean and variance of x; given Z;, and where g;,
a;, B;, and £, are defined by Eqgs. (138) to (140) and (148). Also, for any U € ¢, if

then there exists a ¥ € R such that W, (Z;, Y, u) < W, [Z,, Y,_y, U(Z,, Y,_,)], where the
expected cost-to-go W, is defined as
(akxkz + bkukz)

’

N=1
(Z. Y _ 24 ax?+ byl 1
W, (Z,,Y,_l,lf) (ljlégE/zi,yi_l l%(ﬁnxn + a;x? + bu?) + k-%»l 5

withuyy = U(Z, Yo fork=i+1, ..., N— 1.

Bound On |€i+1 |

At this point it is convenient to extend the definition of J;,; for all arguments (Z;,,,Y;) for which
the initial segment (Z;, Y,_;) € G;. If (Z;41, Y;) € G4y, Ji41 is defined as

N=1
Jis1 (Zi1, Y) = ’1{% svxXg+ X % (axxd + bkukz)/ZiH:Yi]' (151)
k=i+1

where

Ji8k+1 Zk + 04
B b + &+1
Using the result of Eq. (105) in the derivation of Eq. (149) shows that this extension of J;,, is well
defined. In this case, J;;; is defined as the conditional expected cost-to-go using an admissible but pos-

sibly nonoptimal control law, namely the one used to establish Eq. (149). Hence, V,,; is well defined
by Eq. (125) for such (Z;;,,Y;) € G,, and the definition of €,,; can be extended to this case as

= fork > i+ 1. (152)

€iv1 (Zi41, 1)) = Vip (Z4,Y) — J(Z4, 7). (153)
Since Eq. (149) is valid in this case as well,
0 < Ji1 (Zi, Y) = Vigy (Zip1, Vo) = — €141 (Ziy 1, 1) < €14 (154)

for sufficiently small positive handany i =0, ..., N— 1. If N S% Vin (178, (Z;, Y._)) € G, and
(Z;41, ;) € G,. In this case, therefore,

leo1 (Zon Y| < %m a/n) (155)

for sufficiently small positive h.
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5.6 Principle of Optimality for Generic Epoch i

Applying the standard principle of optimality of dynamic programming to the optimal value func-
tion of Eq. (125), we get

Vi(Z;, Y_) =inf E[%(a,xiz + but) + Vi lZ, « zy(w), Yoy « ul},
U

where the expectation is over x;, w;, and »;,; and is conditioned on Z; and Y;_; * u, and where z,,;(u)
denotes the quantity fix; + v + (1 + ¢;x;) w, + n41.

Furthermore, if (Z;, Y,_;) € G, the expectation in this expression exists and Eq. (153) can be
used to give

Vi(Z,, Y)) = inf E [Ji+1[Zi * 2 (W), Yiog » ul

U xpwpnig)/ Zp Yooy u
+ €,'.+.1[Z,' * ZH.l(u), )/,'_1 * u] + %(a,-x,-z + biuz) . (156)

Also, the infimum in Eq. (156) can be restricted to the set
Az, Yop = {u: lu— 2,(2,Y-)| < VIn(/R)},
in this case by virtue of Lemma 14, which, since (Z;, Y;_;) € G, is contained in the set
{u:lu] < 21n(1/h)}
for sufficiently small positive 4, by Eq. (131).

If Ji(Z,, Yi_,) is defined as in Eq. (135) for all (Z, Y._;), then it coincides with J; if
(Z;, Y_)) € G,. For (Z;, Yi_)) € G bt (Z;, Y))¥ G,\y, however,

- 1 _ " _
J1—Ji1 = 7[&41()‘;11 + o) = 51 GA + per + 240 )] + aip Xy

2 2
Ji+1 &32 Oin
biy1 + 842

It is straightforward to verify that (Z;, Y._;) € G, and |y, — &%;(Z;, Y,—1)| < V/In(1/h) imply that
(Zis1, Y) € Gy & (Ziy — x51)? < 8(mypq + rip1) In(1/h).
Therefore, Eq. (156) can be replaced, for (Z;, Y,_;) € G; and for all sufficiently small positive A, by

A 1
— i1 Xiy1 — Vir1 dip1 + 5 Biv1+&ivn + — Ni+1]- (157)

V(zZ, Yiy) = inf ) [E['7i+l(zi *Ziyp, Yoy 1)

ued; (2, Y,

+en(Z vz, Yiop v u) + %(aixiz + bu?))

+ [ U@ v p, Yoy v )= T41 (2, v p, Yoy » ] aP,, )], (158)

where the first expectation and the probability measure PZ;+1 are conditional on Z;, Y,_;, and u as in Eq.
(156), and

I={p:(o— x%1)? > 8(myy + rip) In(1/A)}.
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It is a fairly straxghtforward but tedious matter to conclude that the integral term in Eq. (158) is smaller
in magnitude than 4> for any u € A4;(Z;, Y,_,) and sufficiently small positive A by the use of Eq. (157),
previously established error bounds, and inequality (105) for large values of [p — x%; |. As a result, it

follows from further straightforward manipulation that
Vi(Z,, YD) = P(Z;, Yi_) + Py(i) + P3(Z;, Y,)
+ P4(Z,-, Yi—l) + inf )HO(Zi: Yi—‘l» U) (159)

u€AZ, Y,

for (Z;, Y,_y) € G, h sufficiently small,i < N—1< 31-2—\/ In(1/h),

where
1 1 Ik
- i+1
P = “2' xiz(ai + f:‘25i+1) + 2 Ni+1 T Si+1Pi+1 + (f;'zpi + g + i) l—rl_;] si+1]
i+
P19 pis1 |
A i+19Y i i+1
+ %S + 2|l 541 + | = ¥ iSi+1
Miv1 + iy Tit+
2
Ti+1
+ (i1 + 5i41) ’ qy;
Mir1 + I
2
Ti+1 2541 Dit1 Di+i
+ 2| Gy + sie1) . , (160)
! " ol i+t i Miv1t ripy Tit1

and where P,, P;, and P, are rather complicated expressions, for which it follows from the inequalities
of Lemmas 11 to 13, the results of Appendix C, and the backwards stability of Eq. (132) that P, is
independent of (Z;, Y,_;),

|P,| < 74, |Ps| < B2, (161)

and, if (Z,, Y,_,)’' € G, differs from (Z;, ¥,_;) in only one component, whose values in (Z;, Y,_;) and
(Z;, Y,_;)' are denoted by p and p' respectively,

|P4G) — Pa(p))| < H716(h3 + h2p — p']), (162)
and where
Hy(Z;, Yy, u) = %(bi + $i41) u? + [sit1./% + gy + C(Z, Y-)lu
+8i(Zi’ ),i—l) u): (163)
with
r; 2
C(Z, Yy = (g, +2 ad | = %)
! Tit1 Pin M1+ rivg il
A - . _ _
+ r = ——{flo?— b — & — %)+ g, 2%+, & + o D]} (164)
i+1
and
8,-(Z,-, Y}—], u) = E/Zi,yi_l,-u[Ei.H(Z,' * ZH.](U), Y;'—l * U)] (165)

Applying the inequalities of Lemma 13 and the results in Appendix C on composite Lipschitz condi-
tions to Eq. (164) we can show, after some routine manipulation, that for sufficiently small positive A,

IC(Z,Y,_)| < B2 (166)
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and
IC(Z, Y-l — CUZ, YD1 < 78 (B3 + h2lp — p']) (167)

if (Z;,Y,—1) and (Z;,Y,_,)’ are both in G; and differ in only one component, whose values are denoted p
and p' respectively.

From this point on it is assumed for simplicity that there exists a Borel-measurable uy(Z;,Y,_;) for
all (Z,Y,_)),i=0, ...,N— 1, such that

u (Z,Yi_y) = inf Hy(Z;,Y,_y,u).
U

If such a minimizing u" does not always exist, the ensuing results can still be obtained by a standard
limiting procedure. With this assumption and the definition

S fi%(Z, Y ) + ¢y + C(Z,Y,y)

(Z,Y,_) = — b+ st , (168)
it follows with considerable computation from Egs. (135), (137), (159), and (163) that
€,‘(Z,', Yi—]) = PQ(I) + P3(Z,‘, Y[—]) + P4(Z,',Y,'_1) + % (SH-I + b,')(u,'._ 17,')2
1
C(Z,Y )|+ =C(Z,Y_))
_ SnSR(Z, Y )C (2 V) A ‘
Siv1 + b siv1 1 b
+8,|Z, Yier,17(Z, Yioy) (169)

for all (Z,,Y,_)) € G, .
It is also convenient to establish the following results for future use.
Lemma 15: There exist an #° > 0 and a ¢ > 0 ( independent of 4 and epoch index i) such that if

h<h,
i<KN-1< %m
(Z,Y-y) € G,
|5z, v-0| < ek,
|4z, %0 < ek
< VIn(7h),

. 2
[ Zir1— X1 (Z, Yoy » ui)] < 8(myyy + 1y In(1/ 1),

u, — ,(Z,Y,_y)

and
h—1/16 < K < h—1/8,
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then

‘iﬁl(zi * Ziy, Yiog» uii <K
and

div1(Z; * zi41, Yiey » ui‘ < Kh.

Proof: This is a routine matter of substituting inequalities already established for the various vari-
ables and the definition of G; into Equation Systems I and II and using the triangle inequality. The
desired result then follows from the fact that /¢ > In(1/A) for sufficiently small #ife > 0. O

Lemma 16: There exists an h°> 0 such that if n < A, i< N-1< -31—2\/lni17h5, and
(Z,,Y_y) and (Z;,Y,_})' € G, differ in only one component, whose respective values are p and p', then

|76 - @0| < 192+ o = 'l

Si+1
b + si41
Lemma 13 and Eq. (167) to Eq. (168) and use the triangle inequality. O

Proof: Since |f;| and i are both strictly less than unity, this' lemma follows if we apply

Lemma 17 There exists an h°> 0 such that if h < A% i S N—1< 312—\/1n(17h5, and
(Z,Y,_1) € G, then

\a,(z,., Y_) - iz, Y )| < %W.

Proof: From Egs. (131), (168), and (166),

|C| < h3/2
= »
b + si+1 b + 541

in this case for sufficiently small positive #. Since b; > B > 0 and s;4; 2 0, their sum is less than
hVY4for h < B™*. O
Definition: For bK > 0, i =0, ... ,N, m;(K) is the subset of (Z;,Y,_) € G;(h) such that
1%(Z, Y- )| < K
and
1d,(Z;,Y,-)| < Kh

for j =0, ...,i where (Z;,Y;_;) denotes the indicated initial segment of (Z;,Y,_).

The control law U is now considered as an approximation to an optimal control law, where
o if (Z;,Y—1) € 7, (h~Y19)

U(Zi»Yi—l) =1 Ji8i—1zi + a iy

otherwise.
b + g
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It is shown next in Theorem 2 that (Z;,Y;_;) remains in  (h~/18) with high prior probability for small
h, it will be shown in Section 5.7 that #; is a first-order approximation to an optimal control in this case.

Theorem 2: If the total number of epochs N always satisfies the inequality
N < /InIn(1/h)

and the control law U is used, then, a priori,
lim Pr{(Z, Y,_) € m; (V1) i=0,..., N(W}=1,
h—0

assuming of course that the parameters a, b, F, sy, 4, and B of the unperturbed problem do not vary
with N.

Proof: For the problem at hand, let ¢ and h be the positive constants cited in the conditions of
~ Section 3.1, and assume that ¢ < 2 without loss of generality. Let (9,:i=0,..., N— 1} be the
sequence defined by

2
0i1=0,; 0g=1h 21
and let ; denote In #;. Now suppose that
max{lxo = Zol, Iwol, lnyl, _max {lwl, |ml}} < ¢ (170)

and max{lyl:j=0,...,i-1) <cw.y for some i with h< h. By construction,
1<6,<6;<...,s0wy< In(1/h), since the logarithm is monotonic. Therefore, by the conditions
of Section 3.1 on the unperturbed problem,

(Z, Y_) € G,-[—l——]
-1

if h is also chosen as less than A. In light of the; previously established inequalities, a strictly positive 4,
exists such that if # < h,, then

whenever (Z;, Y;—1) € Gy (h) and k < %\/ln(l/ h). Hence if h = 51—- is further chosen to be less
0
then Ay, then
Iu,'(Zj, Y’,—l)' < 211'19,_1 <c ;.

Since w; > w;_; by construction, it follows from an obvious induction on i/ that

(Zn’ Yn—l) € GN 01

N

whenever inequality (170) holds. From its definition A, < hy=> Gyn(hy) 2 Gy(hy). So, since
6y > 6o = 1/h by construction,

(Zy, Yy-1) € Gy(h)
for all A less than some strictly positive value A*, if N < % VIn(1/#) and
max{lxo = %ol, lwol, lnyl, _ max ~ {lwil, Inl}} < evIn@/h).
Also, h* > 0 can be chosen so that Lemma 11 holds under these conditions, too, in which case
(Zy, Y,1) € wy(n~V16).
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From the bound in Section 3.1, the prior probability P of this event not occurring is bounded above by

1]¢ 2
N —7[-0_— p_Nlny

2

a?

o2

N

.....

where o2 = max{vo, qo, v, . lma;\(l 1 {g;, r}} and y and p denote 1/h and %, for brevity. Since

_Nlny

1 c 2
o? 7[”‘""‘ K
N
To establish that P approaches zero as 4 does, as long as N < +/In In(1/#), it therefore suffices to show
that the limit of the exponential factor

P <

2

N@y)inp = [;c p N Iny

is zero as y — oo, Clearly N(y) can be taken as equal to vIn Iny for this purpose. The logarithm of
the subtrahend in this quantity is

2 ln;c— +Ininy—-InpVininy,

which can be made arbitrarily large for any ¢ and o by making y large enough. Also, the ratio of the
minuend to the subtrahend is
[ ] I "Ny |
The logarithm of the last factor is
InN + Nlnp — Iny < In(VInlny) + Inp+/In Iny — Iny,

which goes to —oo as y— oo, Since the other factors are constant, the entire ratio goes to zero as
v — oo, Therefore,

lim P(#) = 0.
h~0

Since (Zy, Yy-1) € Sy(h~V16) => (Z;, Yi_;) € m;(h"V1%) for all i € {0, ..., N}, by construction,
the theorem follows. O

5.7 Induction Argument

In this section, an induction argument is developed which demonstrates as a corollary that the
control #; generated by control law U is optimal to order 4 for realizations in 7; (h~Y16) for sufficiently
small 4. For a generic epoch i < N — 1, the induction hypothesis is that, for some #* > 0 which does
not depend on the epoch index i, if

h < hY
N < 3—12\/1ni1/h5,

Qiy1 € [HV16, p V3],

and (Zyy, Y)), (Zy; Y))' € w4y (O differ in only one component, whose values are denoted as p
and p' respectively,
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then
lei+1©) — €41 ) < Ky V2 (02 + B2 p ~ p'); HVI6 Ky < B8,
Here, €,.1(p) is shorthand for €,,; [(Z;,,, ¥})], etc.

Lemma 18: If the preceding induction hypothesis holds, then there exists an # > 0 (independent
of h*) such that if & < h, Q= £ Qyyy, € as in Lemma 15, (Z, Y,_)) and (Z, Y_;)' € =, (Q) and
differ in only one component, whose respective values are p and p’ respectively, and if

|ui - ai (P)I, lui'— &l(ol)l < Vlnzl; hjl

then

18, @, u) — 8,(", u)|< % + 4K, K Y2+ 1021/ k) Cpy| 43

+ K B u — u') + QK B~V + 10231/ ) D) W2 o — p'l.

Proof: Let
Zi+1 — 2)

=l 5= f% () +y
mit () + riyy o I

and
241 — 22 - ~ {7 '
h= —F—————=x, Z,=fi% )+ u.
2 N ma ') + Ty o l
By definition, then

8 (o, u) — 8, (o",u)) = E , tein [Z;) * G+ tn/mi ) + 1), Yoy () = u}

"WZe) Y @)y

- E ,{5i+1 [Z,) « G+ N miy () + ris1), Yoy (") * ui’]}-

1 Z0). Y,y 0,

By construction, #; = s(p) and ¢, = 5(p’) in the context of Section 4.4, so by Eq. (96) and integration
of Eq. (95) over |s| < eM; — 6/In(i/h),

2,4
Pr{ly| > VE (R} < TL\/ﬁh’S_; j=12

for sufficiently small # > 0 (because M, > %h‘l/ 8), this probability being conditioned on (Z;, Y,_,) €

G, (h) and on u,. This result does not depend on any restrictions on u;. For sufficiently small positive
h, therefore, given such (Z;,Y,_1),

3
Pr{ltll m > 8\/1n(1/h)} < 411'1,(11/"1) ’

and

3
Prllta] V) F 7 > SRR < oA lnh(l/h)'
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By inequality (155), le;4] < %ln(l/h) in such cases (for sufficiently small positive #). Since the con-

ditional density of ¢, and ¢, exist otherwise? it follows from the triangle inequality and the use of ¢ to
denote both variables of integration that

) V8 in(1/n)
8(p, u) — 80" u")| < §h3 +f_m lei1 [Z » Gi+ Wm+7), Y « ulpr /p.u (1)
€2 s G+ Nm + 1), Y e ullp e dN, am

where some obvious epoch subscripts are suppressed in the notation. By construction, Pijp'u (), j=1,

2, are independent of the value of u, so the integrand of Eq. (171) can be rewritten as the absolute
value of

€1lZ » @+ m+7r), Y «ullp(t/p) — p(t/p)]
+p/pNeinZx G+ m+71), Y xul —e, (2« Gy+nm'+7), YV «u'l). (172)

The first term in this expression is bounded in magnitude by

2
—'7+2|l|
e

1 '
Eln(l/h)(C'H] h3+ Dy h?lp — p'l) I

from inequality (155), Lemma 1, and the proof of Theorem 1. By construction,

|t1| < ‘\/8 lnil;h; - |Zi+1 - x,'.+1 (‘))l < \/8[m,'+](‘)) + ri+1]1n(1/h)

and

ol < VBIn(I/h) @ |z4y = x5 @) < /8 Tmyy @) + riy] In(i/A).
By hypothesis and Lemma 15, therefore,
(Zi() * zi1, Vi @) » 4] € 7, (Q)
and
[Z; ") * zi11, Yimy () * 4] € 7 (Q))

for such z,;. Hence, by the induction hypothesis and the triangle inequality, the other term in (172) is
bounded in magnitude by

p/pNKi V2[4 + R2(p — p'l + |2, — 25| + |t Wm — V' | + lu — u'])]
for sufficiently small positive 4. Also,

|El - E2| = |f: [% (@) — %] + u; — ui,| < |)~Ci(.0) - fi(P')l + |“i - ui'l

and, by the proof of Lemma 1,

e m@ = mG) | T,
Nm) = m @) = | s | < 2 e =P

where I';y, < h V4 if i < —315\/ In(1/#). Combining these results and substituting the bound for (172)

in the integral of inequality (171) we obtain the conclusion of this lemma for sufficiently small positive
h after some routine computation. O
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Lemma 19: If the preceding induction hypothesis holds and (Z, Yi_;) € m(Q), with Q; as in
Lemma 18, then there exists an # > 0 such thatif # < &

- -~ Ki+1 3/2
lu’(Z;, Y- — (2, Y-l < 4-\ / b+ Si+1) h

for all (Z;, Y,_)) € m;(Q).

Prooﬁ Since (Z,', ),i—l) E ’ﬂ',(g QH—I) % (Z,', )/i—l) G G,‘, |ﬁ, - ﬁ,i < '\lln(l/h) and ‘ui._ ﬁ,l <
VIn(1/h) by Lemma 14 if h* is chosen to be less than the value needed in that lemma. So it follows
from Lemma 18 that

18,1472, Yi_D1—81i(Z;, Y-pll < 5K h V2R + m2lu — @) (173)

for all sufficiently small positive A.

+ 2 h¥2. Then, dropping epoch subscripts,

sit1+ b b;
/10K 2
s+b+ b

1 32 10K | 6 =10 2 1% 2
>2(s+b)h[ s+b|u u|+b|u il

Now assume that |y — &;| >

h3/2 Iu* - ﬁl

%(s+b) w* — i) > -;—(s+b)

1 32 10 K 10K 32, 2 [.e_ -
>2(s+b)h[ b s+bh +blu il

1
*t3

s+ b

b

10 X

23/2 * _ =
s+b HY2 lu al

> -;—(s+b) h

> SKnV2(m3 + h? lu* — al).

By inequality (173) and the triangle inequality, therefore, under this assumption

8,‘(1‘2,') - 8,~(u,-.) < %(SH'I + bl) (u,-.— ﬁi)z. (174)
Let
For the values of Z; and Y,..; under consideration here,

i1, = arg min {H;(u)}
u

by construction. Also, for a general u,

1 Skt t C)
Hy () = 2 syt b

+ —;‘(S,-.H +b) (= @) (176)

Therefore, deleting epoch subscripts,

1 (s + ¢+ C)?
2 s+ b

1 (sfx+¢+C)?
2 s+ b

%(s +B) (- )2 > 8(@) — 8(u*) = H(u*) + + 8™ > 8(d)

= H(u*) +8W*) > — +8@)
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= Hy(u*) > Hy(i1) by Eqgs. (175) and (176)).

Combining this result with inequality (174) and Eq. (159) shows that

’ M + l h3/2,
Sit1+ b b;

because the reverse inequality implies that u, is nonoptimal (strictly less optimal than &, in fact).
Since K11 = h~V16 by assumption, the lemma follows for all # less than some sufficiently small posi-
tive value. O

|u,»'—- 17," <

Lemma 20: If the preceding induction hypothesis holds and (Z;, Y,_;) € #,(Q,), with O, as in
Lemma 18, then EA > 0, such that if # < A,

| ((Z;, YD1 = 4’ [(Z, YD1 < b+ |p—p'l.

Proof: By the triangle inequality,
[ @) — "N < 1470) — 5 + 13,0) — 7" | + 7,0 — 1 ().

The lemma then follows by Lemmas 16 and 19. &

Lemma 21: 1f the preceding induction hypothesis holds and (Z;, Y,_;) and (Z;, ¥,_))' € =,(Q)

3

with O; as in Lemma 18, differ in only one component, whose respective values are p and p' respec- -

tively, then

8.0p, ' @)1 = 8,15 = G| < | + SKiwrh 2+ 1n?

1 .
7] C;+1]h3 v

+ BK o h 2+ 102(1/ k) Diydi? o — gl

Proof> From Lemma 14, |u"(p) — #;(p)| < VIn(i/#) and
lu"(") — 2,6 < VIn A7R)

for sufficiently small positive h. Substituting u (o) for u and 4, (p") for u' in the inequality of Lemma
18, and using Lemma 20 and the triangle inequality, ‘we can establish the lemma. O

Theorem 3: There exists an A* > 0 which depends only on the barameters a, b, F, Sy, A, and B
of the unperturbed problem, such that if

h < h*
N < 3%\/ln(l/h;;

0=€0i;i=0, ..., N-1,
and
Oy = h7V%

where ¢ is the constant required by Lemma 15, and (Z, ¥,_)) and (Z, Y,_;)’ € 7;(Q;) and differ in
only one component, whose values are denoted here by p and p’ respectively, forany i € {0, ..., M

b

then
le; () —€; )| < K i V2 (W3 + W2 lp — p']),
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where K| is determined by the recursion
K; = 8K;11; Ky=hV'e.

Proof (reverse induction on i): By definition, given the premises

Va(Zy, Yy_y) = % SN E(xl\zl/zf;/r Yn-1)

= %SN(EKI'*'O'[ZV)

and

IN(Zy, Yyoy) = %SN()‘C,?, + py + 2dy),
since (Zy, Yy_1) € m,(Qn) = (Z,, Yn_1) € Gy.
Thus,

ex(Zy, Yy_)) = % sy [y + x3) (xy — %N) — oy + (o'l%l - 2dy)},

and the conclusion of the theorem follows directly by application of the triangle inequality and the in-
equalities of Lemmas 11 and 13, if A*is sufficiently small.

If the theorem holds at epoch i+1, then the initial segments (Z;, Y,_,) and (Z;, Y,_,)' are both in
G; (h). Since the maximum value of sufficiently small positive 4 required for inequalities (161), (162),
(166), and (167) and those of Lemmas 11, 13, 19, and 21 depend only on the parameters a, b, F, and
B of the unperturbed problem, #* > 0 in this theorem can always be chosen as the minimum of these
values. Substituting these inequalities into Eq. (169) and using the results in Appendix C for Lipschitz
conditions of composite functions, we can show that this theorem holds at epoch i, as long as N is small
enough that the recursion generating K; does not make K; > #~Y8 for Ky = h~V16. But

K, < Ko= 8Nh_l/16,

SO

InK, < Nin8 + %ln(l/h) < %ln(l/h)

for sufficiently small A* > O and # < h* or

K, < h V8
in exponential form. O
Corollary: Given the premises of the theorem,
|ui.(Zi; )/1—-—1) - ai(Zi’ Y;_l)i < h5/4
if h* is sufficiently small.
Proof: By the triangle inequality,
|u,'._ ﬁ,' < Iu;— ﬁ,l + Iﬁ, - fl,‘l.

Since (Z;, Y,-)) € w,(Q) = (Z;, Y,_)) € G,, the corollary follows by Lemmas 17 and 19. O
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Even if a strictly optimal control law does not exist, it can still be similarly established via a limit-
ing procedure that if under the premises of Theorem 3
\U(Z, Yi-)) — 82, Y,-)| > hY*

for any admissible control law U, then there exists a ¥ € R such that
Wz, Y, u) < W, 1Z, Y, U(Z, Y.)]

where W is as defined in Lemma 14. Hence the admissible control law U’, constructed from U by
replacing U (Z;, Y,_;) with &;(Z;, Y,_,), is such that

J(U) < J().

6. CONCLUSIONS

One is often interested in systems which are controllable but unstable in open-loop operation (i.e.,
with ; = 0). Strictly speaking, this situation is not covered here because |£l < 1in Eq. (1). Thisis
not really a limitation, however, because such a problem could always be reformulated in terms of devi-
ations from a stabilizing control law of the form

uy=-¢z, 0< fi—¢ <1,
in which case the dynamics of Eq. (1) become
x=i—c)x+ i+ A+¢;x)w—cn,
where

17,'= u,'+ C; Z;

now plays the role of the control variable. The analysis could then proceed as before, but with some
extra terms appearing. This extra generality was not included because the analysis was already very
complicated and was only intended to be exploratory.

Other interesting extensions of the results here, or similar ones, would be to the multivariable
and continuous-time contexts and to steady-state behavior in infinite-time problems. As a first step
toward analyzing the continuous-time case, one might consider adapting the approach used here to a
discretized problem of the type described in Ref. 1, where there is a time-increment parameter A (i.e.,
the time between successive epochs) which is small compared to the perturbation parameter h. The
results obtained would at least have a formal bearing on the limiting contnuous-time problem, and
might be suggestive for conducting a mathematically precise analysis of it. This sort of procedure,
however, seems to require the use of a third-order Taylor series expansion in carrying out the propaga-
tion step of Section 4.3, and with the sort of constructions used here, it did not produce any useful
results in the updating step of Section 4.4.
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Appendix A
NONEXISTENCE OF PROBABILITY DENSITY

For simplicity, we consider only the particular case of a single transition where
y=x+ 00+ o,

with x and w independent zero-mean unit-variance normal random variables, and show that the proba-
bility density of y diverges at —1/h. From the constructions of Section 4.3 and their role in the overall
estimation problem, the same reasoning can be applied to more general examples.

If the new random variable w is defined as
w= (14 hx)o,
then
y=x+w

and, except at (x,w) = (—1/4,0),

_x? w2

2 2(14h)?

pOow) = p(x) p(w/x) = —emr

Hence, for positive € < —1—,

3h
1l—¢ —w—-L+e
Pr[—% —e<y< —% +e] > fhh f lh p(x,w) dx dw.
—weg e
For each value of w in this region of integration,
1 ), 1w
1 —7 w+71-+e +? —e
>l 1
pOow) /l21rh(w Fe)
. 1 1 2
Since2e S W ——¢ = <2andw+—+e<—2~,
h w—€ h h
— 1
N
pLow) = 2eh | (w+e)

in this region. Substituting this bound in the preceding integral and changing the variable of integration
over w to

u=w-+e
gives
4
11 e Jw (Vhdu
Pr[yE PR h+€}>1rhe x g5
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_4/;,2
S €
for all positive € less than 1/A. For any fixed # > 0, this lower bound approaches infinity as e — 0.
Hence, the probability density function of y diverges at —1/A.

Thus
1

h

1

3e

Sl 1.,

h h

+ In

1
e Pr{y €
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Appendix B
SPECIFIC CASE

In the context of Section 3.1, assume that inequality (13) holds with k = 12, h= e and ¢ =

1 : that Xo= 0, and vo— 1;and that f;=1/2and g;=r,;y = 1 fori=20,..., N— 1. Assume that

50
h < h. Since h < A, dh [hin(1/h)] = In(1/h) — 1 > 0, so

hin(1/h) < Se7% < 0.04.

Also, p; = ‘M_; T and 4 = %p, + 1. Hence, by an easy induction,
M4 is in the interval (1, 5/4)
p€ /2,1 i=0 ... N=1
g=L -1
2 24’
and
3,
b= 4_k 15

Now assume that Conditions 1 through 4 of Section 3.1 are met at generic epoch / (i.e., that for this
realization (Z;, Y,—;) € G,) and also that |x; — %;| < +/In(1/h) for this realization. We next verify that
this implies the same conditions at epoch i + 1. This is done in two steps. First, Egs. (7) to (9) are

( i1 X )
i—“—, then Egs. (10) to (12)
Mgt iy

are used to establish bounds on %4y, V41, Mi+1, and |x4; — %41, The obvious epoch subscripts are
dropped in the notation.

used to establish bounds for x4y, i1, M1y 1%41 — X401l and

Step 1:

By the triangle inequality and the assumed bounds,

<%|fc|+|ul 0.521n(1/#) < In(1/h).

Ix*| = /% + u

Since .rln € [0, 1] and (1 + %) € (0.96, 1.04), it likewise follows {rom: Eq. (9) that

ol 3h_ 4
< gl xS

4

1 16

< =|3Vb + —
8\/— \/ah

< 3Jbh, since a = 51? and b = 15.
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Since |x; — #| < VIn(1/h) by assumption, it follows from Egs. (1) and (7) that

1 - -
x4 — x*| < 7|xi —xl+ 1 +yxliwl

<

% + (1.04) (0.02)]Jln(17h5 < 0.521WIn(/h),

and therefore that
1z = x*| € |x, — x*| + |v| £ 0.541vIn(1/h)

and
¢)2

z=x*)?_ (z—x")
— = < 81n(1/h).

From Egs. (3) and (8), it follows that

m—u=%(v—p)+2¢w"c+¢25'c2.

Since v — pis in the interval [a — 1, b — %] C [-1, b] and

Wi+ 2t e [wxE Wx +y2xY C —%,

by the inequalities assumed,

_ _1 5 _13
m—u=a+pf, wherea € g 4]andB€[ > 4].

Thus
(m—p) € |-3, 2
Since u € {1, %], m € [1/4, 6] C [a, b] fora = —2—la- and b = 15.
Step 2:

From Eq. (12), Inl| < In*| < 3Vbh

From Eq. (11),

2
I PR S
m+1 (m+1)
Setting the derivative to zero shows that (——KT is maximized when m = 1/3, so
m

Jm 32_\/T
m<[z] 313
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Also, since # < 0.1, and 4 In(1/h) < 0.04,
n*(z — x*) < 3Vbh (0.541)vh In(1/h)
< 3/1.5(0.541)/0.04 < 1.

Hence,

e Nm o
1+ m(l x)] € [1/3, 2].
Since m € [1/4, 6],
[1 6
m
w57

and

v € [—1-—, 2| C [a,b].

15 |
In Eq. (10),
- ) < g (0.54DVIn(I/A) < 0.463InC/T).
Since & < 0.007,
Lint/m > 1,
3
and
(z — x*)? 1
W——="——1l€|-h =hIn(l/h) — H C [-0.007,0.007].
m+1 3

3/2
Also, —(_m”:——l)z is maximized when m = 3, giving % Hence,
(z — x*)?
m+1

. m¥?
(m + 1)?

)

- 1] € [-0.035,0.035].

Therefore, from the triangle inequality and Eq. (10),
% ~ x*| < 0.463In(i/h) + 0.035 < VIn(I/R) for h <e=5,
%] < be*l + 1% — x*| < 0.983VIn(1/A) + 0.035 < VIn(i/R) for h < €5,
and
xie1 = %1 < Ixr = x*| 4 [x* = %| < 0.984In(I/A) + 0.035 < ~In(/A) for b < &5,

The desired result follows by induction on i, because the induction hypothesis holds by definition
fori=1,
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Appendix C
LIPSCHITZ CONDITIONS

If
o |fi(x) - f(WI< 4 +Blx—yl;, xandy€R;; i=1,...,n;
[ lg(x,»,...,x,-l,...,x,,)—g(xl,...,x,-z,...,x,,)|<C,~+D,~|x,-1-x,-2|;

xpand x5 € fi(R); x €£(RY), k # i
and

o nix) A glfix), ..., £,00)]; x€ ‘61 R;;

then
hx) = hQ)=¢glfi), ..., £,]1-glAaG), fAL(), ..., £,0)]
+glfiO), /L), ., L=l O)LAG), ..., f, (O]

+g[f1(y)! vy fn—l(y); fn(x)] - g[fl(y), ceey fn(y)]

By the triangle inequality and the Lipschitz conditions for g :
h
lhG) = hI < Y (G + Dl = £0)D.
i=1
By the Lipschitz conditions on the f;:

n n n
lhG) —h <Y G+ D4+ Blx—y) =3 (C+ D 4) + (3 D,B)lx—yl.
j=1 i=1 Cjml

Furthermore, by the mean value theorem:

o If £ is continuous on R; = la;,5;], then the above Lipschitz condition on f; obtains with 4; = 0
and B; = max {LA 0.
XEeR,

o 1r 32 is continuous on f; ([g;,5,]), then the above Lipschitz conditions on g obtain with C; =

g (xi)
6xi )

0Oand D, = max
x;€ fi(la, 6D

Specific Case (Product) :
S16NHG) = [1G)ALG) = /1) AL = L]+ AHAWAG) = £10)],

SO

/1) 20 = A1) L0 < ol /1G] + 411400 + Byl A1) + B AG DX = yl.
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Appendix D
EXISTENCE AND APPROXIMATION OF RADON-NIKODYM DENSITY

Let R denote the ring of all subsets of real numbers which have the form
i=1

where n is an integer, b, — a; < a positive constant ¢, and
i # j> la,b) N la;, b;) = ¢(the empty set).

Consider the following two measures on R:
® the restricted Lebesgue measure 8, so B{la;, )} = b, — a;; and

® the measure u defined by
#{[ai»bi)} = Fs[min{b,-,L - 1},Z] - F;[maX{ai, 1- L},Z]

for F,(-,I) as in Section 4.3. Hence there exists a kK > 0 such that u{la;,5,)} < k(b — a;)
for all [a;,b;) of the form described above.

By the additivity of measures and the distributive law for R (under set union and intersection),
# < kB on all of R. Also, it is a standard result of measure theory that both measures can be
extended uniquely to the class S(R) of all Borel sets, which extensions we denote by 8 and /.

For any E € S(R), there is clearly a collection of disjoint intervals 4; such that
EC U 4,
i=1
and

A,’ER,[=1, 2,-...

Since u is induced by a probability measure, it is finite, so

i ['U1 A1=Y u(4) (since the 4; are disjoint)
= i=1

< Y kB(4;) (by assumption)
i=1
=k Y B4)= k[;[,u1 A
i=1 =
This must be true for the infimum of all such covers of E, so by the standard construction of the exten-
sions & and 8,

i < kB on all of S(R).

By the construction of the standard completions of & and 8 on the class S(R) of Lebesgue measureable
sets, therefore,

& < kX onall of S(R),
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where & denotes the completion of # and A denotes Lebesgue measure (the completion of 8). This
means that u is absolutely continuous with respect to Lebesgue measure. Thus, by the Radon-
Nikodym theorem, the definition of probability distribution functions, and_the standard construction of
u and @ from the quasi-distribution function F;(:,L), the function F;(x,L) has a measurable Radon-
Nikodym derivative with respect to Lebesgue measure on x for 1 — L < x < L — 1. The same argu-
ment also holds with F,(x,L) in place of F,(x,L) everywhere.

Now, in the context of Eq. (22) and (24) of Section 4.3, let

e=%Pr{|z| > L)

and let f(9) denote some Radon-Nikodym derivative of F,(,L). Hence, for all A > 0 and all
0 (1-LL-1-4),

Pr(s € [9, 6 + A)} = _[;M fd\ < eA.
Since f is measureable, we can define
E={0€ (1—LL-1):10)> 2]
and
m = \(E).

From the construction of Lebesgue measure, for every 8 > 0 there exists a disjoint sequence of inter-
vals [a;, b)) = F; such that

B= .Ul la;,b) D E
-
and
AB) < m+8.
Therefore, integration with respect to Lebesgue measure gives
Jor=fr+f _,7r>%m+5B-E) > 2%m

and
[, r= 3 I 1< 3 (b= a) < elm+).
Hence, € > em foralld > 0. Sincee > 0, m = A(E) = 0.
Nowlet Gs=1{6 € (1— LL —1):f) < —8} for anyd > 0. Then
—8\(Gy) > [, fan =Prls€ Gyand 1] > L} > 0,
so A (Gs) = 0. Combining results, we get
AMoe (1—L, L—1):f0) >2o0rf@) <-8=0
for every 8 > 0. Finally,

0 € (=L L—1):r0) € [0,2]} = Ello €(—L L-1:f0) Q[—%,Z&]]
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and .
Mpe (1=L L—-1):r0)¢l0,2]} <Y x[e €e(1—-L L-1):f0) e’—%, 2e”= 0.
h>1
Since Lebesgue measure is positive,
0< fO® <e=Pr{lt| > L)forallo e 1—L, L—1),

except perhaps for a set 4 of Lebesgue measure zero, in which case another Radon-Nikodym derivative
g can be constructed as

f@)ifedg 4
g0)=10ife c 4,

which satisfies these inequalities for all € (1— L, L — 1).
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_ Appendix E
SOME INEQUALITIES

For x, k, a > 0,
X

inf0, <~}
S PR N (E1)

(x + a)" € [max{a,kn}"e

_x
This is established by noting that (x + a)” e * has the x derivative

X +a

_x
+ n—1 k
(x+a)le p

n—

for all positive x. This derivative is positive if kn > x + a and negative if kn < x + a. Hence the
_X

maximum value of (x + a)"e ¥ for x > 0 occurs at x = max {0, kn — a}. Substituting this value for

X gives

a
=—n
(kn)"ek if kn
(x +a)rek g},

a »
which is equivalent to the desired inequality.
Fort a 2 0,
(t+a)"< 271" + a"), (E2)
because

(t + a)" < [2max{s, a})” < 2"max{t", a"} < 2"(t" + a”).
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