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SYNTHESIS OF MCJ CODES

INTRODUCTION

It has become increasingly important to employ an effective mechanism for error con-
trol in the initial design or redesign of communication systems, both for channel protection
and for end-to-end use. The most efficient codes for these applications are the maximum
distance separable (MDS) codes, and the intent here is to present constructive techniques
for the implementation of Massey-Costello-Justesen (MCJ) codes, an important class of MDS
codes.

SYNTHESIS

The purpose of this study was to improve our understanding of constructive techniques
for the engineering implementation of systematic block codes in the Hamming metric, in
particular the MCJ codes [1]. The MCJ codes of immediate interest are of code length a
prime number p. Most prime number alphabet sizes commensurate with record communica-
tion requirements and with reliable computer to computer communication requirements
appear to be satisfied by primes p < 104,

The procedures discussed here are quite general, but the description is given in terms
of a specific example using the prime number p = 37 in the finite field GF (37). This is the
smallest prime number that can contain a full numeralphabet including the 26 letters, 10
numerals, and a spacing symbol. These MCJ prime number length codes have superior
error-correcting properties because they are MDS codes, can be decoded in a straightfor-
ward manner using well-defined algebraic techniques including the theory of algebraic and
geometric invariants not in general available to Bose-Chandhuri-Hocqueuhem (BCH) code
structures, and can be chosen to closely match communication circuit and user requirements
over real channels.

As BCH codes are defined by generating polynomials with distinct roots, and as the
most useful forms of MCJ codes are generated by a repeated root, the usual BCH synthesis
techniques prove to be inadequate for these codes. However, many decoding techniques
usually associated with BCH codes can be used to decode MCJ codes [2-4].

Note especially that the MCJ codes imply the removal of the usual restriction on
cyclic codes that the code length n and the characteristic p be relatively prime, usually
indicated by (n, g) = 1, where g = p™ . This gives the MCJ codes a slight coding advantage
over the other optimal or MDS codes, the Reed-Solomon (RS) codes.

To demonstrate the general principles involved, the code to be discussed has generating
polynomial g(x) = (x - ¢)* ~ * and will be described in the cyclic case where the constant
¢ = 1, the code length n = 37, and the number of information symbols k = 31.

Manuscript submitted January 11, 1980.
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The starting point here is with the Vandermonde matrix, which in the multiple root
case is a generalization of the Pascal triangle. This matrix V{(c) for ¢ = 1 gives the powers
(x - 1)), 0 <i< 36. Figure 1 emphasizes its relationship to the system function S, as it
evolves.

Figure 2 shows the location of the basis vectors for the row space that defines all the
code vectors of the (37, 31) code. The code generator matrix G4 (x) is developed from
multiples (x - ¢)* g(x) instead of x’g(x) as in the usual synthesis of cyclic codes. To be noted
specifically in Fig. 2 are powers (x - 1)/, 31 <i < 86, which when read as vertical vectors
from left to right also are the truncated powers of (x + 1)/, 0 <j < 36, and which are in the
form ogla matrix H{ (x) whose rows are generated by (x - 1)ih(x), and h(x) = (x - 1)"/g(x) =
(- 1), .

The matrix Sy in Fig. 3 contains the reduced echelon [I, P] as derived by elementary
row operations on G; of Fig. 2. The transmit system matrix Sp = S is shown in Fig. 4,
which defines the systematic MCJ code. The decoding receive system matrix Sp! shown in
Fig. 5 satisfies SOS()l = I, where I is the 37 X 37 identity matrix. The matrix generates syn-
dromes exactly as in Fig. 2 of reference [1], but physically in an entirely different manner,
even though both are implementations of (x + 1). It is interesting to note that the physical
realization of the preceding encoders and decoders, when implemented by linear (or non-
linear) sequence generators, is more naturally described by the canonical form given by Bose
and Chaudhuri in their original paper [3], than by Peterson and Weldon [4] . However, the
Massey virtual encoder [1] is best described by Figs. 4 and 5 of this report.

Several different equivalent definitions for MCJ codes are possible as approached by
different points of view, but no attempt is made here to exhaust these possibilities. Finally,
although the MCJ codes will effectively correct random errors, they also have inherent burst
error correction capabilities.

An important consideration in the synthesis of block codes is the inclusion of fail-safe
error correction procedures in the decoding algorithm so that catastrophic error correction
or error propagation is minimized. The following theorem is included as one way of accom-
plishing this; however, the most productive test is outlined in paragraph 4.0 of the decoding
algorithm.

Theorem: If the homogeneous matrix of coefficients is of rank r, the nonhomogeneous
matrix or system of coefficients is consistent provided that the rank of this augmented
matrix is also r.

Consistency tests in the decoding procedure are pursued under five hypotheses as
follows:

H,: Four or more errors
H3: Three errors

H,: Two errors

H1: One error

H,: Zero errors.
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Fig. 2 — Basis vectors for (37, 31) code
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Fig. 4 — Transmit system matrix



NRL REPORT 8393

«—\

P

- N e

- NN\

515 35 33 15 25 34
0
1717171

3 610 15 21 28
1

36 35 34 3332313

K

1
36 3327 17 218 27 2

1

36 31 16 18 22 7 19 22

-1

Fig. 5 — Receive system matrix



BECK

The specific purpose here [2] is to distinguish between cases where < ¢ errors occur,
and cases where > t errors occur and correction should not be attempted.

CORRECTION PROCEDURE

Preliminary definitions:

Let

d =n-k+1=2t+1

m, =20

m =1

n = p™ =p = code length

k = number of information digits

n - k = number of parity digits

t = maximum number of correctable errors
Transmitted signal

f(x) = fo+fix++f,_p_ 2" *- 1+ +f x"-1
Noise signal

e(x) = ey+ex+. . +e, , x" R la 4e L x"-1
Received signal

r(x) = f(x)+e(x);

rx) = r0+r1x+...+rn_k_1x""k‘1 +...+rn_1x"‘1.
The syndrome

s(x) = sO+slx+...+sn_k_1x""k'1;

glx) = (x-c)P k.

Specific Example

The following procedure is adequate for the decoding of any MCJ code described here
and uses a specific example in the Galois field GF(p) with p = 37, and the following param-
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eters:c=1,n=387,k=31,n- k=17,and t = 3, which will correct up to three character
errors. The block diagram to be followed is given in Fig. 6.

The received signal sequence is entered into the box r(x), following which the
syndromes s; are calculated in the syndrome former, more explicitly detailed in Fig. 7.
The modified syndromes S; in Fig. 6 are calculated [5] as shown in Fig. 8 as a matrix
multiplication derived as follows:*

i i

8= 2. %jfj!c’sj, 1<i<p-k
j=1

S0=s0

Where also

t-j )

S;= Y yxi 0<i<p-k
r=1

Then define, forj=0,1, 2, ..., t - 1, the Newton matrix N;_;, and the Prony matrix P _j:

So S, S, AR P
Sy Sg S3 s,
_ S, S3 Sy S
N,_; = .
Seojo1 Secj Sejer ot Sae-j-1y
- -
xOOyO 0 0 cee 0
Mo
0 x,%, 0 o0 0
P, .=
t-J mo
0 0 X9 ¥ = 0
Mo
B 0 O 0 ese xt_j_ lyt__j__ ?._

¥ An error in Eq. (32) in Ref. 1 is corrected here.
9
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rix) i

Fig. 8 — Matrix multiplication for deriving
modified syndromes

10

ouT
o—o r(x) " Oy
TEST
s (r) 1.NO ERRORS
2.>t ERRORS
S(r) y(x;.8)
[Nt-g] S (o) o(x) x| (o)
Fig. 6 — Decoding procedure
s HOH s 53 2
INHIBIT
(o
Fig. 7 — Syndrome former
1.0 0 0 0 O
c 1 1 1 1 1
0 0 2 614 30| .
(503152533435) 00 0 63 2 -(808182838455)
0O 0 0 024 18
0 0 00 0 9
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For mg = 0, and noting that 00 = 1, the various matrices are related by
N, =V, P,_ .Vl

J t-j t-jit-j

where the distinct root Vandermonde matrix V,_ j is defined as follows:

= -
1 1 1 LRI |
%o X X9 Tt Xyj-1
2 2 2
X0 1 X9 Xp_j-1
V,_; =
t-j-1 t—j-1 t-j-1 ... t-j-1
) X1 X9 Xp j-1

DECODING ALGORITHM

The procedures in the following decoding algorithm are summarized in Fig. 9.

Step 1:
1.0 Define:
-8, 8, S, 5, -8 S,
Ag = |-54 8y S ; Ay = |8 -84 8§ ;
-85 S3 8, Sy -85 84
So 81 53 So 51 S
Ap = |8y S -S| A= M| = |8 s, s
S, S -8, S, 83 S,

11
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Forj=0
035y t 0,5 ~ 0,5, = -5
T038, * 0,5, - 0,55 = S,
-0;S, + 0,5; - 0,5, = —S5
-0, + O,x - 01x2 +x3=0
Forj=1
0280 - 0181 = =5,
05, = 0,5, 5
0, - ox +x*=0
Forj=12
=0;5p = =5
-0, +x =0

Fig. 9 — Algebraic method for locating error positions in code

11 IfAO =A1 =A2 =A3 = 0, go to step 2.
1.2 If Ao = Oand atleast one A; #0,i =1, 2, 3; inconsistent, do not correct.

1.3 If Ay # 0, then find

A3 A2 Al
= = = 2 3 _
—03=—3;0g=—3;-0;=——;and -05 +0,x~ 0,x° +x° =0.
AO AO 0
Step 2:
2.0 Define:
-8, S, Sy -8, Sy Sy
By = ; B, = 5 By =
-S3 S, S; -S4 S, S,

12
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2.1 If By = B; =By = 0, go to step 3.

2.2 If By = 0 and at least one B; # 0, i = 1, 2; inconsistent, do not correct.
2.3 If By # 0, then find

Bl

P = . — v2=
Sl ~——]_L}0,anda2 gx +x 0.

ba|bu
9

o

02=

Step 3:
3.0 Define:
C,=1-8;15Cy=18; 1.
3.1 If CO = C1 = 0; no errors.
32 IfCy= 0 and C1 # 0; inconsistent, do not correct.
3.3 If C # 0, then find
Cl

-0, = —Cj;;and—a1 +x=0.

Step 4:

4.0 Substitute b in the appropriate equation, 0 < b <p - 1, for x, as shown in Fig. 10 (the
well-known Chien search), and find the error locations x¢, X1, Xg, ..., X4 ;_ 1. Go to
step 5. If the number of error locations does not equal the degree ¢ - j of the proper
equation, more than ¢ - j errors may have occurred; inconsistent, do not correct.

4.1 Alternate Step 4: Solve appropriate equations by algebraic techniques, indicated in Fig.
11, to find error locations.

Step 5:
5.0 Define:
1 1 1
| Vg [=fxy x; %,
x5 x2 2

13
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(—05 0, —0; 1) C

{0 —0, 10)C

(-0, 100 C
1171111 11111111111111111111111111111111T"1:1
012 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
014 916 2536 12 27 7 26 1033 21 11 3 34 30 28 28 3034 3 11 21331026 7 27 1236 2516 9 4 1
018127 271431103126 1362614 6 826292314 81129312311 13611 6 27 6 23 10 10 29 36

Fig. 10 — Chien search shown in matrix form

p:H0.Cid
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Forj=0
3 2 =
ayx +3.31x +3a2x+a3—0
H= (aOa2 - af)x2 + (a0a3 - a1az)x + (a1a3 - ag)
_ .2
(CREN a,)?ﬁo
—(a0a3 - a1a2) * [(ama3 —a1a2)2 - 4(a032 —a%)(ala3 —az)] %
x = - :
_ a2
2(3032 a1)
Giving x4, X
2 2 3 3
A [(aoa2-a1)x— (aoaz—a1)x1] +D [x-xz:l =0
_42)3 -
(@ga, -ay)” A + D = ay
3 x ¥ p =
(—x1(aoaz—a%)) At{-x,)" D = a3
a, b2
a3 6
A —
b1 b2
€, <
L Ax3=— py?
by a,
¢y a3
D:
bl b2
¢ &
Forj=1
= _ Y
x=19(g, £ (03 - 40,)%)
Forj=2

x=0,

Fig. 11 — Algebraic technique for finding error locations

15
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The error values are:

Sy 1 1
S; % %
2 .2
S, x7 X3
y =
0 Vg
1 8, 1
X S; %
x(2> S, x%
y, =
1 | Vgl
1 1 8§,
Xo %3 8
X x% S2
Ve EA
5.1 Define:
1 1
[ Vol =
X0 %
The error values are:
Sy 1
S1 xy
y =
0 [V,
1 8,
). = Xy Sy
. 1V,

16
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5.2 Define:
AAERIY
The error value is:
[Sg |
Yo © o
v,

Step 6:

6.0 As a final step, the fully corrected text, together with the corrected parities, is once
more entered into the syndrome former for final verification. The new syndrome
will now be zero, indicating either the message has been successfully corrected, or
miscorrected to another codeword. All other errors at distances greater than d will have
been detected in previous inconsistency checks. The complete procedure is outlined in
Fig. 6.

SIMPLIFIED SYNTHESIS

In practical code synthesis, the steps shown in Figs. 1, 2, and 3 may be bypassed by
first defining S3! , which is always in the simple binomial coefficient form of Fig. 5, and
then finding its inverse system matrix Sy, as in Fig. 4, by any conventional means. Further,
the system matrix S; may be independently found by noting that most of the parity entries
are sequential states of a simple nonlinear generator whase coefficients are given by the
expansion of (x - 1)8; and the initial segment given directly by the expansion of (x - 1)i,
i=0,1,..6.

CONCLUSIONS

Several alternatives have been considered for software or hardware implementation of
MCJ codes for communication system error protection. It was emphasized that MCJ codes
provide improved flexibility over existing procedures in matching an error control code to
a given user alphabet size while maintaining optimal performance. Techniques will be pre-
sented in the near future, similar to those given here, for synthesis and decoding of Reed-
Solomon type codes also over the Galois ground field.
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