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THE GRAVITY-CAPILLARY WAVE INTERACTION
APPLIED TO WIND-GENERATED, SHORT-GRAVITY WAVES

INTRODUCTION

The second-order, gravity-capillary wave interaction elucidated by Valenzuela and
Laing [1] has recently been found to play a major role in the equilibration of short-gravity
waves in a wind-wave tank [2]. The exact equations for the interaction require the numex-
ical evaluation of several integrals and thus do not lend themselves easily to the development
of a simple, intuitive model of the interaction. Furthermore, the exact theory is developed
for irrotational waves and includes no wind-speed dependence except in the form of the
directional-wave spectrum.

In this report, the gravity-capillary wave interaction is reexamined for the special case
where one component of the resonant triad is in the short-gravity-wave range, Wind-speed
effects are included in an ad hoc manner by forcing the dispersion relation to conform to
that found in microwave scattering experiments [3]. When a k4 capillary wave spectrum is
used, the result is a simple, analytical expression for the energy transfer which agrees well
with numerical calculations in the no-wind case. The expression shows that the interaction
may be envisioned as one between a short-gravity wave and a capillary wave whose group
speed equals the phase speed of the gravity wave. The interaction dies out for long-gravity
waves, having a k5/2 dependence in the no-wind case.

GENERAL THEORY

Valenzuela and Laing developed the theory from the well-known equations for velocity
potential and surface deviation in which they included surface tension. These two functions
were expanded to third order in wave slope, and each order was considered a Fourier series.
From the solutions of differential equations for different orders, they computed the energy
transfer up to fourth-order terms. Their results, corrected by a factor of two in the energy
transfer, are (symbol definitions follow):

aS(k =2 k j ‘ '
C08) [T N sy @ DS~ 2 (kg 0) S (kg ) -
PG Rl S A RIS 3738

ot o 1
ki w3 G) "2 )] ks () ()
Fptor S(ky,03)S (kg ,05) t dRy + 2 i J;T T S(ky,0)) S(kg,0l))) -
()} N k1w3 .
@S(kl,a({))S(k3,a3) * frgoon S(kz,ag))S(k?,,aS)} dk, (1)
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where upper and lower signs in Eq. (4) go with those in Eq. (3).
The following additional definitions apply in the above equations:

ki is the wave number of ith wave,

w; =+/gk; + Tki3 is the angular frequency of ith wave,
a; is the angle of ith wave with symmetry axis,

S (k;,0;) is the wave-number spectrum of ith wave in cm?. Multiplied by
p ww%/ki this gives the energy spectrum (p,, = density of water),

k; = k;/k,,,
g = 980 cm/s2,
T = 74 cm3/s2,

— _ -1
k, =+/e&T = 364cm™1,

The sum over j in Eq. (1) accounts for the ambiguity in o, and o due to the sign ambiguity
in B resulting from Eq. (4).

WIND-DRIVEN, SHORT-GRAVITY WAVE THEORY
We now apply these results to the case in which the subscript 3 refers to a short-gravity

wave. In this case, only difference interactions exist; i.e., Eq. (3) can be satisfied only for the
lower signs. Furthermore, to include wind-speed effects in the dispersion relation, we write

&, = VR TR + k10, = 0 + kU, ®)

where, following Plant and Wright [3],

ol = £a_ Ux 0.277
Ul =0 =/ pooai™\1" 2% | - (6)

Here p, and p , are the densities of air and water, U, is the surface water velocity at an air
friction velocity ux, and 2, is the roughness length at u,. These parameters have all been
determined experimentally.

The assumption that k4 refers to a short-gravity wave requires that k, and k, refer to
the capillary-wave range. Thus,

ghy > Tk , gk, <Tk} , and gk, <TkS . 0
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This implies that kg /R, = K3/K{ is small and that w30/w10 =/Kg /K? . Thus (‘*’30/‘*’10)2
< Kg /K . In the following development, we shall drop terms which are higher than first order
in kg /Kl.
The resonance condition, Eq. (3), may be written
k

2 =k tk

U = /THS U, —JTkE - k-
VeEkg + Ky Uy = \/TES + k *U; —+/TkS — k,*U, .

The geometry of this interaction is shown in Fig. 1. Equations (7) and (8) lead immediately
to the following relations:

3?
(8)

ky = ky + kg cosf 9

and

3Tk%k3 cos 3
2/Tk3

V&k3 *+ kgUjscosoy = + kU, cosag 10)

Fig. 1 — Geometry of the gravity-capillary wave
. interaction applied to a short-gravity wave
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where we have used the fact that U; = U,. Solving for cos 3, we obtain

2k [ c30 + (U —Uy)cos ag]
3(4)10

cosf} = (11)

where c5, = \V&lkg is the gravity-wave phase speed in the absence of wind. Equation (11),
then, replaces Eq. (4) when k4 refers to a short-gravity wave. Note that the sign ambiguity
still exists for S.

We must now simplify Eq. (1). First note that difference interactions require that
s, =—ands, =+ Thus Dk+ 1: = 0 and T(+) = 0, so that only the first integral in Eq. (1)

contributes. Let us concentrate first on Dy k which we shall simply call D. Substituting
Egs. (8) and (9) into Eq. (2) and using Eq. ](7) yields

D =

— 12w,k (b, +E R, +k ot Bl b R
2 wgk, (kg +kgcosf) — wak,(ky 3¢0sp) ) + o7 + g
(12)
w% k%kscosﬁ . (By + kgcosP)kqkgcosf
k3 | w1 wy *+ w3
or
.2
iwakqycosB [k ky + kgcosf
D=+ 30— | = b ) (13)
wq wq + (O]
Thus, to first order in k5/K,,
. 2,2
iwskycosp
D=+—21" (14)
Wy

The expression for the energy transfer may be written to this same order as

2
2. TE

oS(kg,x =
3 3) 2[
0 Jj=1

kg . .
%, S(ky 00)) S(ky o)) —

.

[w?’ (1—— )S(kp 1 ) - _(1——cosﬁ) S(kl,a(l)) + (15)

Wy

3S(k,o{))
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3S(kq o)
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1 %
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or
aS(kg,Olg) = 2 _ k3 2 ;
—5 = 2[0 ng ) 72—1—8 (ky o)y +
wg w3 k3 .
a} (;3—1 - E{cosﬁ\) S(kl,a({))S(k3,a3) +
wakqcosf aS(k,a(j))
= s | Stkg,g) + (16)
1 kl
V 2w3zkgcosf 3S(kq &)
S(kq, . dk; .
wlkl da a(])( 3 3) 1
1

Since all terms inside the braces are of order kg /rc1 or higher, we need to evaluate T -)
only to lowest order:

e 47rw1k§c0526 [3w10 + 3k1Ulcosa({)

3lsing! 3wqg + 2k1Ulcosa({)] , leospl < 1. (17)

When lcosl = 1, T(-) = 0, Thus, the lower limit of the integral in Eq. (16) may be replaced
by &, the value of k, when cosf = 1. From Eq. (11),

3\/Tkl /2+ Ulcosoz3 = \/glkg * U3cosoz3. (18)

The wind-speed dependence of the term in brackets in Eq. (17) is very weak. For conditions
of practical interest, it varies from about 1 to 1.3. Thus we shall evaluate it at %, for
o = 0 and denote it as 4. Then,

4ATW, kScos?B e 3Tk, + 8U;
3langl  Vhere &SGR+ 20,

(19)

T(‘) =

EVALUATION FOR k™4 CAPILLARY-WAVE SPECTRA

Capillary-wave spectra measured in wind-wave tanks fall off approximately as %% and
have an angular dependence close to cos?a [4). Thus we now assume that

S(k,0) = Cluy )b *cos?a (20)



NRL REPORT 8289

for the capillary waves. Then, if Eq. (11) is used to evaluate w4 /w,, Eq. (16) yields

08(kg.03) 2["" 2 4A7rw1ki’cos § Czk cos a(’)
k

ot 3lsinBl k? ~ S(k3,03)

1 771

(21)

7C‘°3k300560052a({) + kgw3CU; cos O‘(J)(COSO% 3/ZCOSBCOSOZ({))

2 V/2C03 kg cosBeosald) sinal)
w, kS dk,y

or

0S(kg,03) [T 2 AmC?w, kycosBeostal)

ot K, ng 3kf15 |sing!

8AMCwgkgcos3f | TcosZall) )i i

3k% |sing] 2 + 24/2 cosu {l)sma(fl) S(kg,0g) — (22)

BATCw3ky U, cos?BeosZall) (cosa — 3/2cosfeosa)) )S (kg ,a5) l
3(.01k1|81nﬁ| 1'

Fig. 1 shows that oy =g * 8 which accounts for the sum over j in the above equations.

Two cases are of particular importance, namely, when o3 = 0, and when an integral over
Qg is performed. For ag = 0, we note that oy = % 8 so that the sum over j causes the term
involving sin oz({) to drop out. Then we have
dS(k3,0) f“’ 16A7rC2w1k3cosﬁﬁ dkq
R S L A S —
ot B, 3k® [sinl (23)

Bk% Ising| 3w kq Isingl

~ 56ATCwgkgcosd®f dky > 8AmCwgksUjcostf(2 — 3cos2f)dk,
S(k5,0) f +/
ki

Note that Egs. (11) and (18) indicate that

cosf = /k/k,; ,andsinf = \/1—Fk/k; . (24)

If we use this and let U; = U which is independent of k,, Eq. (23) becomes

7
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3S(k3,0) 16A7r02k3k, T2 f dk1
k!

ot 3 VE

16A7C2k R Us[‘” dky

8 /L —h
3 klk1¢k1 3
(25)
S(k.0) 56A7er3k3kl5/2/°° dk,q .
’ 4 L — b
3 3 klkl\/kl k|
8A7er3k3k, B 3k e
wk5/2\/k w, k12 /R, —F, 1l -

Now, the only troublesome integral is the last one which contains w; in the denominator.
Using Eq. (24), we may write

witk™82 = A T2 + 12y 1]t (26)
As k, goes from k, to oo, the term in brackets goes from [TY/2 + Uk; 1721-1 o 712 while k4

goes rapldly from k to zero. Thus, the main contribution of the term in brackets will be
near k;, so we approxunate w, by

w, = K32 [TH2 1y k127, (27)

1

Once again note that no approximation is involved if the wind speed is zero.

The integrals in Eq. (25 )are now easily evaluated to give

a—S%&Q = 11.9TY2AC%k ;712 + 11.0AC2k k74U, —
(28)
-1 B.14ACwskgk?/2U
S(k3,0)| 57.5ACw kR _ T2+ U 12 s]
If the wind speed is zero, this equation becomes
QS(—:}& = 205C2T4g" 712,32 — 129CTg 1/2k5/28(k,,0) . (29)

This expression has been compared with the original theory by using a computer program
developed by Valenzuela and Laing [1]; we used S(k3,0) = 0. 0064k' for kg = 0.364 cm”
and zero otherwise. The results are given in Table 1.
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Table 1 — Comparison of Energy Fluxes Predicted by Original Theory and by Eq. (29)

kg 3S(k4,0)/3t (Eq. 1) 3S(k4,0)/dt (Eq. 29)
(cm™1) (cm?) (cm?) '
0.364 —4.86 X 1072 —5.71 X 1072
0.728 -1.60 X 102 —2.02 X 1072
1.09 —-8.09 X 1073 -1.10 X 1072
1.46 ~4.96 X 1073 ~7.10 X 1073
1.82 -3.40 X 1073 -5.10 X 1073

Now let us consider the second case mentioned above, that of integrating the energy
transfer given by Eq. (22) over o . We assume the following form for S(k4,o5) in conformity
with wave-tank experiments:

S(ky)cos?ay ,  logl < w2,
S(kg.05) = (30)
0 , logl > w/2.

Furthermore, in order to simplify the integrations over o, , we assume that . = 0 in all dis-
persion relations so that all dependence on o is in the spectral form. In view of the ad hoc
manner in which wind speed is being incorporated in the theory, this approximation is
probably satisfactory. As usual, the approximation becomes exact for zero wind speed.

The integrals over oy are now straightforward if one recalls that ai =0y + B and
o2 = ag — B. We obtain

0S(kz) 2 0 /2 “Awlcoszﬁdkl
—3 - - S(k,oz)da=87r02kf——.———
ot mot) o 888 3 by k8 Isingl

[ 28mCwgks| = A(1 + 2 cos?B) cos®Bdk,
- (31)
3
ky

Stkg) { %2 Tsing]

S(ky)

| 47Ceoqk ® AU; (1 + 2 cos2p) cos2B(2 — 3 cosp)dk
373 1 1
| 3 k, w1 kq Isingl :
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Then, letting U, = U, and using Eq. (26) for w, in the last integral and Eq. (24) for
sin B and cos 8, we obtain

3S(k3) T dRry
= 8ATC2R,T!/2k e *t
at 3 ! A AN

1

8ATC e, U k3 k—ﬁ_qkklfk—_
& 1Vl l

l

stk )I 28ATCwsks k32 dr, . s %512k, a2
et — === ——— +
3 3 A N A Rk —F (32)
l 1

8ATCwgzkyU, T kydk, 3 (7 ki'%dr,
. B = 2 — +
3[T1/2 + Uk,~1/2] A AV T kk5{2\/k1 k,
1

1

) " k2dk, , kP 2dk,
4./ - - 9/2 -
kl kl kl kll \/kl kl
k 1 kl
Finally, evaluating the integrals and combining numerical values where possible, we have

3S(k3)
at

= 21.6T1/2AC%k k;T/2 + 19.4AC%k R[4 U, -

§

-3/2
13.4ACwgkgk; 32U, (33)
T2 4+ @7 kl—1/2
8

S(kg)[92.2ACwzk k' —

This expression has been checked against a direct numerical integration of Eq. (31) for
C = 0.01 and the exact value of A. The results are given in Table 2. For zero wind speed,
Eq. (33) becomes

aS(k3)

s = 369C2T4gT/2k/2 — g01CTg M 2RE/2 (34)

10
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Table 2 — Comparison of Energy Fluxes Predicted by Egs. (31) and (33)

ky U 3S(k3)/3t (Eq. 31) 0S(k3)/3t (Eq. 33)

(ecm~1) | (cm/s) (cm*) (cm®)
0.11 15 |2.96 X107 —(1.93 X 10™ 2)S(k )| 8.81 X 107° —(2.35 X 1072)S(k )
0.11 60 |1.84X10°8—-(3.28X 1072 )S(k )| 2.71 X 1078 - (4.11 X 1072)S(k ;)
1.15 15 | 6.87 X 107 — (7.06)S(k3) 9.53 X 107° — (7.75)S(k,)
1.15 60 |2.73X 1074 - (11.2)S(k3) 451X 1074 - (13.9)S(k3)

SUMMARY AND DISCUSSION

We have assumed that k; < 3.64 cm™! and derived a simplified form for the gravity-
capillary wave interaction. For the zero wind-speed case, this assumption is sufficient to
reduce the form of the interaction to the simple analytical expressions given in Eqgs. (29) and
(84). The first term in each expression is several orders of magnitude smaller than the
second so that energy is always drained from the short-gravity wave.

To include wind-speed effects in the problem, the dispersion relation was modified as
given in Eq. (5). This procedure is by no means ngorously justified but is an attempt to
include the predominant effect of air flow in the problem, considering that a rigorous analy-
sis of wave-wave interactions in a shear flow is extremely complex and currently evades
elucidation.

Three additional approximations were necessary to simplify solutions for a wind-
dependent dispersion relation. Two of these are given in Egs. (19) and (27); the third con-
sisted of setting cos a; equal to one in all dispersion relations. Such dispersion relations are
good approximations for small angles where wave heights and energy transfers are large. The
results of these manipulations are given in Egs. (28) and (33). Table 2 shows that the first
two terms in these equations are very small. Furthermore, the last terms in the equations
are less than about 10% of the third terms. Thus, a rather good approximation to the gravity-
capillary interaction for an arbitrary wind speed may be written

08(k3,0) 3
5 = ~57.5wgkyk;S(ky,008(%,.0), (35)
3S(k3)

5 = ~92.2w3kgk3S(k3)S(R)) (36)

where
3\/Tkl /2 + Us = \/g/k3 + U3. (37)

To this extent, then, the gravity-capillary wave interaction for short-gravity waves may be
considered to be an interaction between a short-gravity wave and a capillary wave whose
group speed equals the gravity-wave phase speed.

11
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