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BISPHERICAL CONSTRAINED LENS ANTENNAS

INTRODUCTION

The suitability of a spherical reflector for use as a wide-angle scanning antenna is
well established [1, 2]. However its usefulness as a simultaneous-multiple-beam antenna
is limited due to blockage by the feed structure. McFarland and Ajioka [31 reported on
a spherical constrained lens, consisting of a feed surface behind two surfaces of equal radii,
which can be used as a multiple-beam antenna with true time delay and no feed blockage.
For the present report an investigation has been made of a generalized bispherical con-
strained lens, with the radii of its two surfaces being allowed to vary. This additional
degree of freedom allows flexibility in designing a multiple-beam antenna.

For a specified radiating aperture and specified radii of lens surfaces, an optimum
feed location which minimizes the maximum phase excursion on the aperture will be
determined analytically. The effect of different antenna parameters on the aperture phase
errors will be considered in detail. For a specified radiating aperture and allowable maxi-
mum phase error, it will be shown that a lens with smaller focal length F (axial distance
F between the feed and pickup surfaces) than that of the equal-radius lens can be obtained
by increasing the radius of curvature of the radiating surface, resulting in a more compact
lens.

BISPHERICAL CONSTRAINED LENS

The geometry of a bispherical constrained lens is shown in Fig. 1. The lens consists
of a spherical feed surface (Sl) and spherical pickup and radiating surfaces (S2 and S3 )
of radii R and Ro respectively. Since the antenna should be spherically symmetric for
wide-angle scanning, the antenna elements on S2 and S3 have one-to-one correspondence
and are connected by transmission lines of equal length. Each radiator on the feed sur-
face illuminates a different portion of the antenna and corresponds to a separate beam
direction; beams can be generated singly or in any combination.

Phase Errors

A feed element is assumed to be at a point P, at a distance F from the surface S2
(F = Oip). Consider a typical ray path PQGE, where Q is an orbitrary point on the inner
lens surface and can be specified by X or 0 (0 = angle OCQ), which are related as X =
R sin 0. Similarly, G is the corresponding point on the outer surface S3, which is also
specified by the angle 0 (since, to make the antenna spherically symmetric, the angle
BE 'G is also I made equal to 0 ). The point G is at a radial distance of Ro sin 0 from the
lens axis. The total path length from the point P to the aperture plane at E is

Manuscript submitted March 20, 1978.
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Fig. 1- Geometry of a bispherical constrained lens

3TH
LINES

d = PQ + QG + GE, (1)

where

PQ = o/F2 + 2R-(R- F) (1 -cos 0),

QG = transmission line length = a constant,

and

GE = Ro cos 0.

Because the transmission line lengths OB and QO are equal, the path-length difference
between an axial ray path POBE' and a nonaxial ray path PQGE is

e = PQ + GE - (PO +BE'). (2)

Substituting for PQ and GE from (1) and noting that P0 = F and BE'= R 0, one finds that
the phase error in wavelengths is

(e/ X) = (RI X) -f'2 + 2 (1 - f)(1 - cos 0) - f - ro (1 - cos 0) , (3)

where f = FIR, ro = RO/R, and X is the wavelength.
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In the case of a spherical reflector it has been noted [1] that the total phase excur-
sion over a prescribed aperture is least when the phase error at the edge of the aperture
is zero. The same is true in the present case, as the lens is spherically symmetric and the
phase errors are due to spherical aberration. Using this fact, one can find an optimum
feed position (distance F) for specified values of R and R0 , an optimum value for Ro for
given values of F and R, or an optimum value of R for specified values of F and Ro. In
other words an optimum relationship exists between F, R, and Ro which minimizes the
maximum phase error for a specified aperture. Let the radiating aperture be specified by
its diameter D or by an angle 0a such that D = 2Ro sin Oa. The optimum relationship is
obtained by equating the phase error, given by (3), to zero when 0 = Oa and solving for
f, and one obtains

r2 sin2 (0Oa/2)
Of= (4)

1 +ro

A special case of ro = 1 (or Ro = R) corresponds to a lens discussed by McFarland
and Ajioka [3]. As mentioned earlier, this is a bispherical lens that is equivalent to a
spherical reflector. The optimum focal length obtained from (4) for ro = 1 is

F R cos2 = (R + R2 - sin2 0a ) (5)

which agrees exactly with that of a spherical reflector [11].

The optimum relationship given by (4) is shown in Fig. 2 for different values of
sin 0a. As f is increased, ro decreases and becomes zero for f = 1. As f is increased further,
ro becomes negative. What this means is that the radiating surface is concave for f < 1
and convex for f > 1.

2.5- ,,,,,SIN 0a = 0.3

2.0~ - SIN 0°a = 0.7

1.5 \\ IN °a = 0.5

1.0 
r=R. /R

0.5

-10_

Fig. 2 - Optimum relation between ro and f for
different values of 0,

Figure 3 shows the path-length error (and hence phase error) normalized to the width
of the radiating aperture D and for the specific value sin 00 = 0.4 with R as a parameter.
In obtaining Fig. 3, the optimum value of f for the specified sin 0, (or 0a) and ro is first
determined from (4) and substituted in (3) to determine the path-length error. For proper
interpretation of the results in Fig. 3, the radiating aperture is assumed to be a constant,
which means Ro is assumed to be a constant, since D = 2Ro sin 00. Different values of
ro are obtained by changing R, the radius of curvature of the inner surface of the lens.
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A point on the radiating aperture can be specified by the radial distance Ro sin 0 from
the lens axis or simply by an angle 0. In Fig. 3 the angle 0 is plotted along the horizon-
tal axis. It may be noted from Fig. 3 that for a given radiating aperture the phase errors
will decrease as the radius of curvature R of the inner surface is increased.

0.006 -_ R =0.5 R.

NORMALIZED / -
PATH-LENGTH 0.004 -

ERROR 0.003 - R=R \
i/D 0.002 -

0 2 4 6 8 10 12 14 16 18 2 22 24

ANGLE OF POINT ON APERTURE 0 (DEGREESI

Fig. 3 - Normalized phase errors over a given
radiating aperture D (D = 2RO sin 00, with 0a =
sin" 0.4 = 23.50 ) for different values of R,
plotted as a function of 0, where 0 i specifies
the radial distance Ro sin 0 from the lens axis

Maximum Phase Error on the Aperture

In any antenna design a constraint is usually imposed on allowable maximum phase
error. Hence it is of interest to find the maximum phase error on the aperture for speci-
fied lens parameters F, R, and Ro.

In (3) a point on the aperture is specified by an angle 0. To find the maximum
phase error on the aperture, one should first find the angle 0 = Om at which the phase
error is maximum and then substitute that value in (3). To find the value of 0 = Om for
which e is maximum, one has to take a derivative of e with respect to 0 and equate it to
zero:

de |=R f1 f r sin Om = °

=0 =m \f2 + 2(1 - fl (1 -cosOm), )

The solution Om = 0 actually corresponds to a minimum phase error at the center of
the aperture. The other solution is the proper answer, which can be shown to be

cos Om 1 - 2 2 (6)
20 2(1 -f)

Substituting cos Om for cos 0 in (3) and simplifying, one obtains the maximum phase
error on the aperture as

ema R [2 r + r 2 1 (7)max ro2(1 -f)
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For any specified value of Oa, ro can be eliminated from (7) by using the optimum
relation given by (4). Then emax will be a function of focal length f only. Figure 4 shows
the maximum phase error normalized to the width of the radiating aperture as a function
of f for different values of normalized aperture diameter D/2RO (= sin Oa). The special
case of ro 1 is indicated by the dashed line. For a specified radiating aperture and a
maximum allowable phase error, Fig. 4 shows that a number of solutions are possible
with different combinations of feed location f and sin O, including the special case ot
ro corresponding to a spherical reflector. Compared to this special case, the phase errors
can be made smaller by increasing f (decreasing ro or increasing R), and the phase errors
will be larger for smaller f for a specified sin 0a. These observations are true for f < 1.

R- R.R
0.014 \

0.012-

0.0080008 \62\5\a= sin 0a=0.8

NORMALIZED \5I\ \ \
MAXIMUM 0.006

PHASE ERROR 4

,.ma/D 0.0024~ 03\WX. FEED LOCATION f=F/R
0.002

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

0 0.2 0.4 0.6 0.8 ib0
-0.002

-0.004

Fig. 4 - Maximum phase error as a function of feed
location for different apertures D/2RO (= sin oa)

For f > 1 (negative ro) the magnitude of the phase error increases with f and reaches
a maximum at f = 2 (Appendix) and decreases slowly as f is increased further for any given
sin 0a. Since the phase errors are smaller for f > 1, it may appear to be the proper choice
in designing a lens as a multiple-beam antenna. But choosing f > 1 results in large effec-
tive FID, which means that the feed elements must be more directive and the lens less
practical, since the size of the lens increases with F/D for a given D. Therefore we will
not dwell much on the lenses with f > 1 except for the special case of f = 2, which lens
has some unique features making it more practical for certain special purposes as discussed
in Ref. 4. This special case has come to be known as the R-KR lens [5]. Even though
the phase errors are maximum for f = 2 in the range 1 < f < oo, as shown in the appen-
dix, the errors are tolerable for many practical cases and the lens has a symmetry which
allows placing the feed and pickup elements on the same spherical surface but on the
opposite sides. This allows the use of inactive pickup elements as feed elements, elim-
inating the need for an additional set of feed elements. In the case of a two-dimensional
lens, it has circular symmetry which allows 3600 scanning [4].

Since the details concerning the R-KR lens are fairly well documented, we will not
spend much time discussing it. However, it may be of interest that the optimum ro is
(1/2) cos2 (0a/4) for f = 2, as shown in the appendix, which agrees with the result derived
in a patent by Thies [51. Insufficient design data are given in Ref. 4 except for a state-
ment that 11ro - 1.9 for 0a = 600. The value obtained by using this approximate rela-
tionship results in 50% greater maximum phase error than results from the value obtained
by using the correct relationship. In addition the maximum phase error on the aperture
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for an R-KR lens is given in the appendix. This result is not available in the existing
literature and should make the R-KR lens simpler to design.

DESIGN EXAMPLES

The main purpose of this report is to show that the additional degree of freedom
that is introduced allows the designer to have a number of options available for specified
requirements on scanning range and the allowable phase errors. It is beyond the scope
of this report to pinpoint the option which is more suitable or practical for specified re-
quirements. However some general observations should help the designer in choosing the
antenna parameters which make it more suitable for his requirements.

One observation, made earlier, is that for a given radiating aperture the phase errors
can be reduced by increasing the radius of curvature of the inner lens surface. Figure 5
shows that for a specified radiating aperture and specified phase errors, increasing the
radius of curvature (or decreasing 0a) of the radiating surface results in a smaller feed
structure and smaller effective FID ratio, which makes it more practical and compact. In
Fig. 5, four lens geometries, each with different 0a (sin Oa = 0.3, 0.4, 0.5, and 0.7) are
illustrated. The radiating aperture D and the maximum allowable phase errors are the
same for all the four cases. The maximum allowable phase error is assumed to be 0.002D
(which corresponds to a phase error of 0.12X for an aperture of 60 wavelengths, or for a
beamwidth of about 1 degree). The corresponding values of f are determined using Fig. 4.
The fourth case in Fig. 5 corresponds to a R-KR lens (f = 2). When f and Oa are known,
the corresponding values of ro are determined using (4) or Fig. 2. With note of the re-
lationship D = 2Ro sin Oa, all the lens dimensions are normalized to the radiating aperture
D and are drawn to scale in Fig. 5. Points C1 , C2, C3 , and C4 are the centers of curvature
of the four inner surfaces.

/\4_ 3 2

/ 2 4 Fig. 5 - Geometries of lenses for a specified D and
/ // a specified ema,/D = 0.002 and for (case 1) sin a=

C\ l / 0.3, (case 2) sin 00 =0.4, (case 3) sin 0a = 0.5, or
\ //3 / (case 4) sin 0a = 0.7
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From Fig. 5 it is evident that case 1, with the smallest 0a, results in a lens which has
the smallest effective FID and is the most compact, possibly making it more practical.
However two other considerations will also have an influence on choosing Oa. The first
is that 0a cannot be made smaller than that value which makes ro >2. In such a case, if
the interelement spacing on the inner lens surface is X/2, the spacing on the radiating
surface will be greater than a wavelength, which may result in grating lobes. The second
consideration is that multiple beams are produced by illuminating a different area on the
lens for different beams, meaning that for a given coverage of multiple beams the radiating
aperture will be larger for smaller 0a. These conflicting considerations should be taken
into account in any practical design.

As illustrated in Fig. 5, for a specified phase error and radiating aperture, making 0a
larger necessitates an increase in the size of the inner lens surface and an increase in FID,
resulting in a lens which is less practical. The lens with a larger 0a can be made more
compact if the space between the inner lens surface and the feed surface is filled with
dielectric material, as demonstrated in two-dimensional R-KR lens design [4] and as illus-
trated in Fig. 6 for a case of f < 1. The example shown in Fig. 6 corresponds to case 3
of Fig. 5 (sin 0, = 0.5, and, by using a relative dielectric constant of n = 1/ro = 1.96, the
physical aperture of the radiating surface and pickup surface are made equal. The physi-
cal length between the feeds and the inner lens surface is also decreased by a factor of
n. Comparing the case 3 of Fig. 5 with that of Fig. 6, it may be noted that the lens
shown in Fig. 6 is more compact. However dielectric loading increases antenna weight.
Therefore this approach may be practical only when the weight of the antenna is not a
main concern.

-RADIATING SURFACE

- - PICKUP SURFACE

n' /<-FILLED WITH A
\, / DIELECTRIC

FEED SURFACE

Fig. 6 - Geometry of a dielectric-
loaded lens
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Appendix

VALUES OF f AND ro FOR MAXIMUM PHASE ERRORS WHEN f > 1

Figure 4 shows the maximum phase error normalized to the radiating aperture as a
function of focal length f for different values of sin Oa. For f > 1 the maximum phase
error on the aperture increases first with f and reaches a negative peak and decreases as f
is increased further. The purpose of this appendix is to find the value of f for which the
maximum phase error on the aperture reaches a negative peak.

From (7) the maximum phase error normalized to the radiating aperture is

emax 1 [1f f2rol= _ ~~~~f +
D 2 sin O 2ro '2 (1 - f) (Al)

For any specified aperture radius (sin Oa) there is an optimum relationship between
ro and f as given by Eq. (4). Use of that equation can elimate either f or ro from (Al).
Eliminating f is found to be more convenient. The value of ro = rom for which emax/D
reaches a negative peak can be found by eliminating f from (Al) and taking a derivative
of emaxiD with respect to ro and equating it to zero.. After considerable algebriac and
trigonometric manipulation, it can be shown that

rom .2co52( ). (A2)

Substituting this rom value for ro in (4), one can obtain the value f = fm for which the
emax/D reaches a negative peak, which is

fm = 2. (A3)

The corresponding phase error can be shown to be

emax/D I f=2 = - [sin4(Oa/4)]/sin Oa. (A4)
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