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VOLTAGE-CONTROLLED OSCILLATOR WITH
TIME-DELAY FEEDBACK

INTRODUCTION

A voltage-controlled oscillator (VCO) with time-delay feedback has been desiged as
a frequency-agile, noise-degenerated radar frequency source. This frequency sourceeuses a
solid state VCO with a noise-degenerated negative feedback loop with an intef ero iteras
a frequency discriminator. Because of the periodicity of responses of the interferometer,
the oscillator operation is stable at many frequencies across the band of interest. For this
reason, both low noise from the degeneration and frequency agility from the periodic
response are obtained in one source. This report analyzes the steady state and transient
responses of the frequency source. The steady state solution will provide information
necessary in choosing the loop parameters that set the noise degeneration level. The train-
ient response yields information on loop response time, and thus the switching time needed
for frequency agility.

GENERAL DESCRIPTION

Figure 1 is a block diagram of a voltage-controlled oscillator (VCO) with a tine4elay
feedback loop containing an interferometer and a video amplifier. The interferorneters
output is proportional to the phase difference between the direct and delayed outputs
from the VCO. If the VCO output is given by cos(wt), the interferometer output gte
the high-frequency component is filtered out, is given by

e(t) = sincwt.

V e. I) Wo -K2eCt "d):
~~~~~~~~~~~ C CV0.

L NTERFEROMETER_ 

iPHIi 
VIDEO DETECTOR PHASE
AMPLIFIER PSHIFTER I

I _ S__I__TER

Fig. 1- Voltage-controlled oscillator with time-delay feedback
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Fig. 2 - Interferoneter response with
additional phase shift

Therefore, interferometer output voltage vs frequency is a sine wave, so responses repeat,
spaced by a frequency equal to the inverse of the delay time, as shown in Fig. 2. For a
delay time of 25 ns, the periodicity equals 40 MHz. The whole response curve can be
shifted by adding additional phase shift in the direct path [11. A 90-degree phase shift
will shift the whole response pattern one-fourth of its period (10 MHz). In this manner,
the interferometer can operate with a ±20-MHz pull-in range and still produce a response
every 10 MHz across the band. Because of this periodicity of responses, stable operation
occurs at many frequencies across the band of interest, providing frequency agility.

ANALYSIS

The system shown in Fig. 1 was analyzed, with the input voltage as a step function
of an amplitude v, to study the effectiveness of the time delay feedback. When input
voltage u is zero, the output angular frequency of the VCO is assumed to bec w0 and is
related to time delay r as wo = 2rN/;r, where N is an integer. When this relation holds,
W. becomes one of the stable frequencies, and the output voltage of the interferoneter
will be zero. Now, if input voltage u is applied, the output frequency of the VCG will
change. That change in frequency is given by

Aw = -K2 e,(t)

2
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where eC(t) is the voltage at the VCO input and K2 is the modulation sensitivity, inradians
per volt.

Let ¢(t) represent the phase shift due to this frequency change during a time t.0 The
quantity ¢(t) is given by

¢(t) = - KJ 2 eC(t) dt. (2)

Then, interferometer output voltage e(t), after the high-frequency compopentis, filtered
out, is

e(t) = K, sin[@(t) - 0(t - ()], (3)

where K1 is the phase-detector sensitivity constant in volts per radian.

For [f(t) - (t - r)] < i, which is satisfied near the stable frequency of operation,
one can approximate:.

e(t) K, [O(t) -0(t - 7,)] . i;ae: 0

Taking Laplace transforms of Eqs. (1), (2), and (4) yields

AQ(s) =-K2 Er(s) (

1)(s) = -K2 Ec(s)Is (6)

E(s) = K1 [(s) -+D(s)e-T5]. (7)

In addition, From Fig. 1 we have

EC(s) = + E(s) G(s), (8)
S .0

where G(s) is the transfer function of the video amplifier.

Using Eqs. (5) to (8), we can show that

-K2u V .::: ::
Aa(s)= - 2

KjK 2 G(s)H1-e-Ts] + s

The amplifier in the feedback loop is assumed to be a combination video mrr'
and low-pass filter with combined transfer function

a G
G(s) = - (10)

where G. is the low-frequency gain of the amplifier and a is the 3-dB cutoff ppint.

3
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Substituting Eq. (10) in Eq. (9) gives the normalized response

F~)A2(s) _ 8+ aF(s) :-K2u s2 + sa + A(1 - e-rs) 11)

where A =K 1 K2 GQp.

Steady State Solution

A steady state solution can be obtained easily from Eq. (11), as

Aw(o} = Lim [(t) = Lim sF(s) = 1 (12)

This steady state solution can be used [21 to find the amount of VCO noise degenera-
tion possible with a time-delay feedback system. Let Af0 .. represent the FM noise of
VCO without feedback, The corresponding equivalent noise voltage at the VCO input is
2irAf0 8 ,J(-K 2 ). Let Af be the VCO FM noise with feedback. Then, substituting
u = 27rAtscl(-K 2 ) and Aw(o) = 27rAf in Eq. (12), we obtain

Af = f.j 2 u. 11 (13)
, K2 C1, T + 1 (3

Frorn Eq. (13) it may be noted that the VCO noise is degenerated by a factor of
(K1 K2 Go r + 1), Therefore, to reduce VCO noise, it is necessary that

(j K2 G, T + 1 ) >> 1. (14)

Stability Condition

The condition for stability of the feedback system is discussed in Appendix A and is
given by

"-1 "-2 % t-.'i*j1, !550J

which is identical to Eq. (All).

For the system to be stable and produce noise degeneration, K, K2 GQ, cx, and r
should be chosen such that the conditions in both Eqs. (14) and (15) are satisfied.

Transient Response

Formally, the inverse Laplace transform of Eq. (11) gives the transient response.
However, the inverse transform is not readily available. The following procedure [31 is
used to obtain the transient response. Repeating Eq. (11); we have

4
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s + ah
F(s) = - -- --- -

32 + so + A _ Ae-T3

Letz=s2 + scx+A. Then
F(s) = s + a 1

Z 1 -- A -s
z

If the expansion of the type

=- 1 + x + X2 + ....1 - x

is used, Eq. (17) becomes

F(s) = + a( + A ears + A2 e-2Ts +3
Taking the inverse Laplace transform of Eq. (18) yields

f(t) = f1(t) + Au(t - T)f2(t - T) + A2 U(t - 2r)f 3 (t - 2T) + ...

where

f&(t) = -' F 8 + a 1
L(s2 + sa + A)fl

and u(t) is a unit step function.

The transient response given in Eq. (19) appears to contain an infinite number of
terms. However, for any given finite time t, only a finite number of terns are nonzero.
Also, each individual term has a physical significance related to the time-delay. feedback.
In the time range 0 < t < r, only the first term is nonzero and the rest of thee terms are
zero, so that the first term gives the system response before the VCO output is applied
to the phase detector through the delayed path. In the range r < t < 2r, the signial:
through the delayed path is applied to the phase detector, and the transient ,respdnse; is
represented by the first two terms, since the remaining terms are still zero. Ini general,
for range (M - I)T < t < Mr, the first M terms give the transient response because "the
higher order terms are still zero.

The transient response is not yet complete, because the inverse transform shown in
Eq. (20) is not readily available. A closed form solution for f&(t) is obtained by using the
following procedure. First, consider the inverse Laplace transform,

= S2 + sa + A)n1

This can be written as

5
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Sn(Q= I- F 1 (21)
+ a)n (s + b)n]

a- _ 
1

-±t- 1t ex 4 -A.

awhere a = - - w e - Wj and 1W A - -. it winl be snowrt nauer waa s aL IA.

Therefore, w1 is real

The inverse Laplace transform shown in Eq. (21) is readily available [41. It is given

by

-5 (_ _ ) -½ 2(a+b)t ( 2
l _ (n -I)! a; --b) C n-.A +_b2)t

where In'/A is a modified Bessel function of the first kind. Substituting for a and h from
Eq. (21), we obtain

S (t) = _ _ (_) e 2 J1 _,l (wtt) (22(n -i1) 2w1 JWIt (2

where Jn-½. is the Bessel function of the first kind.

From Eqs. (20) and (21) it may be noted that fn(t), which can be obtained if sn(t)
is known, is given by

C(t) Sn4;tj - s-(+O) + a s'(t) (23)

where s,(t) is the first derivative of s,(t).

By noting s,(+O) = 0 and substituting sn(t) from Eqs. (22) and (23) and simplifying,
we can show that

t 2~at-
0 t = l ( ) e- I L~Jn-3/2 (W1 0 + Jn -I/ 2 W1 t (24)f =( ( ) 2w__ 7 2- 

In terms of spherical Bessel functions j,,, one can show [511 that

ait
fit) = > (._L\ n-i (wt 2 wt' --

( - \) 2w1,) t- i 2wa t 1

Hence, the transient response is given by Eq. (19), with fn(t) as shown in Eq. (25).

6



NRL REPORT 8138

NUMERICAL RESULTS

With Eqs. (19) and (25), the transient response is computed for typical vl*94, of the
system parameters, K1 = 0.2 V/rad, K2 = 3.5 X 108 rad/sV, a = 6.283 X 103'ad/
(corresponds to an amplifier filter bandwidth of 1 kHz), and r = 25 ns. Fii 1 BypboAfiAws
the normalized transient response with the above parameters and for the aIp ',gan

T = 25 ns
a = 6283 RAD/s

Ar 0.2Z75||

CO

0 I0 20 30 40 50 60 70
TIME (ns) : :iE:.

Fig. 3 -Transient responseE

of 60 dE (Go =103), 70 dE (Go = 3.16i2 X 103), SO dB (Go = 104), 85.0823;,dB..(G0o =

1.7952 X 104}, and 90 dE (G = 3.162 X 104}. The corresponding values of Ar2 i
( = K1 K2 Qcxi-2 ) are 0.275, 0.869, 2.75, 7r2 /2, and 8.69. For the system to beaFtabl1e,
AT2 must be less than vr2/2 ( = 4.9348). From Fig. 3, it is evident that for Ar2 >:i
4.9348 the system transient response is oscillatory with increasing amplitude with'tiipe. This
indicates that the system is unstable. For Ar2 = r2 /2, the response is oscillatory with
approximately constant amplitude, indicating that the stability condition giyen by, Eq. (15) is
highly accurate. For Ar2 = 2.75, the transient response is oscillatory, but :; hW:l ;lli loll.
are damped with time, suggesting that the system is stable. As the amplifier jj,ti r. i.. r -z l
making Ar2 smaller, the damped oscillations almost vanish for Ar2 = 0.869, (whida may be
called the critically damped case). For smaller values of Ar 2, the transient responsei decreases
with time (similar to an exponentially decreasing curve) and takes longer torieao +ed state.

These results indicate that a value for Ar 2 t 1 may be a best compromisefor faster
loop response and acceptable damped oscillations. For the critically damped cas,llthe
loop response reaches steady state in a time span of about Sr. For a given value! of' Ar2 ,
the loop response time is smaller for smaller values of r, as showrn in Fig. 4. HoEver,

7
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X IC tokr2 = osss
25 rs~~~IL 0.8 n

w 0.2-
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Fig. 4 - Frequency response with Tr as a Parameter

if the time is normalized with respect to r, the transient responses for both cases are
approximately similar, except that the steady state response is smaller for smaller T. Sinee
A =KI K2 Ga, changing K, and K2 will have the same effect as changng G,, However,
changing ou has approximately thie same effect on the transient response as canging G,&
but the steady state response is independent of ae. For thiese reasons, a should be chosenl
as small as possible, and K1X.KZG shouldi be chlosen as large as possible, for a given T su ch
thiat AT2 = I and KIK2G,-r > 1, which will satisfy the requirements of noise degeneration
and system stabil1ity conditions given by Eqs. 3(14) and (15).

CONCLUSIONS

A voltage-controlled oscillato~r with time-dlelay feedback has been analyzed. By property
choosing system parameters, low noise from the degeneration ancl frequlency agiliy from the
periodie response cans be obstained in one source. The conditions for systeln stability and the
amount of noise degeneration are expressed in terms of system parameters. Effets of differ-
ent parameters anl system stability and noilse degeneration are discussed in detail. It is showvn
tlhat the open-loop gain should be chosen as large as possible for good noise degeneration,
And tkhp handwirfth zhotild hbe nriiusted ftn ms- te ta-ft Cnonffiinn
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Appendix A

STABILITY CRITERION
I. Ii. , . : .

The Nyquist stability criterion is used to find the condition under which the feedback
system is stable and to identify the system parameters on which this condition dleends.
This criterion furnishes a graphical method for determining the stability of a syste.; The
system is stable if a plot of its open-loop transfer function Z(s) for a successionof yvalues
of s, encircling the entire right half of the s-plane in the clockwise direction, makes.a
number of counterclockwise revolutions about the critical point (-1 + jO) ethqualtothe
number of the poles of Z(s) in the right half of the s-plane.

V e. 0t W0_K2ect IC0z, L

_INTERFEROMETER_ :A.

I ~~~DELAY :.

VIDEO I DETECTOR I
AMPLIFIER I SHIFTER I

Fig. Al - Voltage-controlled oscillator with time-delay feedback

For the system in Fig. Al, the open-loop transfer function is given by:

Zhs) - A(l-e-T s) (Al)
s(s + a1)

From Eq. (Al), note that there are no poles in the right half of the s-plane. The only
pole at S = -a is in the left half. Also, there are no poles on the imaginary axisi. Since
Z(s) becomes zero for s e c7 to apply the Nyquist criterion one needs a polar plot of
Z(s) with s = jw and for the range of values -c < ci < - only. As can be noted, a polar
plot for the frequency range -cc to 0 is the mirror image about the horizont;al. ,axis, of
the plot for the frequency range 0 to c. Thus, to evaluate the polar plot of a. trer
function, the only frequency range to be considered is from 0 to Co. By substit:atj,,
s = jco in Eq. (Al) and finding real part ZR (jW) and imaginary part Z(jcW) oft0ransfer
function Z(jc), it can be shown that

A ( sincor 2E

ZR (ico) 2 -n (r- + -2 si112 (A2)

-A r sin(cT/2) sin(wLT/2)1 (AS)Z, Uco) =i ~nCWT + CUT - - (/) -- ;t:(3a2 + C&(w/2

9~~~~~~~~~ EA
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From Eqs. (A2) and (A3), note that there is no simple way of sketching the polar
plot if parameters A, a, and r are not specified. Fortunately, for the system under con-
5ideratinn the range of parameters is such that a simplification is possible. For I r of the
order of 10-4, the first term in the parentheses on the right hand side of Eq. (A2) can be
neglected, except possibly when cr 2Mr. (In that case, both terms will be close to
zero and ZR (1w) will be very small.) Similarly, the second term in the brackets of Eq. (A)
can be neglected, except possibly at or very near WTr Nw. In that case, both terms will be
very small, which in turn makes Z1 small. These approximations and observations are used
only to simplify the procedure in obtaining the polar plot. No approximation is needed in
obtaining the exact condition for stability, as will be shown later. Keeping aside the term
A/(a 2 + W2 ), which is common for both ZR and Z1, it may he noted that ZR varies as
-2 sin2 fwi-1/2) and 7; varigs as -sitn(crl) These two functions are sketched in Fit. A2 as a
function of WT.

Lo 0 S IN (w r

o2 N / k - f- - A "Fig. A2 - Variation of Z. and Z1, except
for the factor A/(a2 + W2O

In the range of parameters of interest, a is of the order of 104 and r is of the order
of 10-8. Therefore, for c a> ir/2, w > a and the factor A/(a2 + 2) Z A/c 2 . Using
these observations and Fig. A2, one can sketch the polar plot of Z(j), which is shown
in Fig. A3 for the range 0 < w < -. For the range - - < c < 0, the polar diagram will
be the mirror image about the ZR axis, and it is not shown. From the sketch in Fig. A3

t Zl

Fig. A3 - Sketch of a polar plot for
Z(jw), for A > Ac

it is clear that if the real part ZR <C -1 ( tZR 1Ž) when Z = 0, the critical point is
encircled counterclockwise by the polar plot. Therefore, the system will be unstable. Since
the magnitude of ZR depends on A, for the system to be stable A should be smaller than
that for which ZR = -1 and Z, = 0O

Next, it is possible to find the value of A corresponding to ZR = -1 and Z, = 0. This
will he done using Eqs. (A2) and (AS), firs without making any approximations. Equating
Z = 0, we obtain from Eq. (AS)

10
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sincT -2 - sin2 -1. (A4)
Ca 2

Equating ZR = -1, we obtain from Eq. (A2)

a2 A W2 (.i sincor - 2sin 2 = -1. (A5)

Substituting from Eq. (A4) for sincar in Eq. (A5) yields

2A 9 9CO7 -.2 (AA9)

From Eqs. (A4) and (AG), we obtain

COT = a ' (A7)
2 .2

or

WC = C = - cos 1 (- V2 A) (A8)

where Wc is the frequency at which ZR = -1 and Z1 = 0, for given values of r7,:.a,.;and A.
Substituting WC from Eq. (AS) for c in Eqs. (A6) and (A7), we obtain

2,1 -a2 COC cos1 (-alv,§2 A)- (A9)

Jlqucatillon ktflf) is the exact stabilitU y uclUiuilon 1jlm whlch can1 be 1w#A1.dAi A4v ~Lato
A = A. that satisfies Eq. (A9) for given values of a and T. The system will then be stable
if the parameters are chosen such that A < AC. However, Eq. (A9) is a transeddental equa-
tion that is difficult to solve and does not provide convenient interpretation. Fortunately,
for the range of system parameters in which we are interested, a2 << 2A, which allows us
to neglect a2 in Eq. (A9) and approximate cos-1 (-a /-) 7 r/2. Then, from Eq. (A9)
we have

AC t- r2 /2r2 (AIo)

and

Therefore, for the system to be stable, the system parameters should be chosen such that

Ar2 < r2/2. (All)

The numerical results presented in this report validate the accuracy of the xima-
tinnq rnnlrl in Irriura Ia Eq. (A11)

11 ': 


