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AN IMPROVED ALGORITHM FOR ADAPTIVE PROCESSING -

INTRODUCTION

A discrete form of a least-mean-square (LMS) algorithm based on the method of
steepest descent was given by Widrow et al. [1] as a means of determining the weight
vectors for minimizing interference entering an adaptive array. Their algorithm hegories.
unstable for fast adaptation, and this report will show that a modification to their algo- -
rithm provides unconditional stability and better performance even for slow adaptation. .

DISCUSSION
The steepest-descent algorithm was given in Ref. 1 as

W@ + 1) = W(j) - 2k, E() X(J),

where W(j + 1) is the weight vector to be used on the (J

is the 1+h 'IhpTl'l' data cnmn]o k ig a scalar constant. a

1) input data sa.rﬁblé X(j')
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on the jth data sample and 1s glven by

E() = d() - WT () X(7),

in which d(j) is the jth sample of the desired signal and WT is the transpose of‘}‘Wﬁ‘

In general X(j) and W(j) are multidimensional vector quantities. A form o
tion is given in Ref, 2 for the case of an Applebaum-Howells implementation

W,-u+1)=W,-(j)( ~1)+(5)E(J) v (), 2)

*

where 7 is the filter smoothmg constant, G is the gain term, V;(j} is the mput fro
ith array element, with V being the conjugate of V;, and :

£(j) = P(j) -2 W; (7} Vi (),
=1

in which P(j} is the pilot signal,

To simplify the analysis, we consider the special case of a single adaptive loopw -
sidelobe-canceler configuration {3] as shown in Fig. 1. In Fig. 1 the main input is ob-
tained from a radar antenna and the auxiliary input is obtained from an omnidirectional
antenna whose gain is normally greater than the sidelobe level of the radar antenna. With- '
out loss in generality the pilot signal is taken as the main input, since the adaptatl‘

Manuscrlpt submitted November 8, 1976,
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Fig. 1 — A hasgic sidelobe-canceler loop

criterion (LMS) is unchanged. The single sidelobe canceler corresponds to Fig. 8 in Ref, 1,
with the error gignal defined ag

E(ty = V. (1) = V,,, ()} - W{8) V. (1),
where V,(t} Is the residue signal, ¥, {tJ is the radarchannel signal, which is taken as the
desired signal response in Ref. 1, W({} is a2 weight signal, V,, (¢} is the auxiliary-channel
signal, and all functions correspond to complex modulation functions. The sidelobe-

canceler interpretation is also discussed in Ref. 4. From (2} the adaptation algorithm
for the sidelobe canceler becomes

W(j + 1) = KW() + G(1 - K) E() V, (). {3a)
with
E(jy = Vi () - WY V, (), {3b)
wheare
i
K=1-—=1-2fyp,

in which f3;p is the integrating-filter 3-dB bandwidth noymatlized to the sampling fre-
queney f..
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From (3a} it is seen that the next weight W(j + 1} is derived in terms of the present :
weight and present value of E(f) V (/). The welght W(j + 1) is then used with the next
auxiiiary signal input to deiermine the residue. For fasi 100ps, I'I'u + .l.) derived u'u;u the
present data is not the proper weight for the new input data. The effect is to:intreduce.
a phase shift, not present in actual loops, which causes loop instability. To ayo o
instability and to provide better cancellation performance and more realistic 100
tion, a preferred algorithm is ::

W) = KW(j - 1) + G(1 - K) E() V (),

with ‘
E() = Vi G) - WG) Va0). )

In this algorithm the weight applied to V,(j) is derived in terms of present inp valuis
In effect the weight is taken prior to the delay in Fig. 7 of Ref. 1 rather than

Thus the weight is proper for the current data input rather than for the mput
sample interval earlier.

STARILITY CONSIDERATIONS
The steepest-descent algorithm given by (3) is
W@ + 1) = KW() + G(1 - K) [V, () - W() V(D] V' ().

For a step input with V,(j) equal to a constant and also equal to V,, (j) so that th ‘signals
are perfectly correlated, (5) may be written as o

Wi + 1Y = WiN I _ AV 4+ A
IYU v <y Lid U/ ‘J.-I- dl! . JL,
where

A =G(1-K) |V, ()12

Letting W(1) equal 0, it is found from several iterations of (6) that the generag_;j;él

A (1 -axN-1)

W(N) =
1-x

where
x=K-G(1-K) |V,
For stability it is required that |x| < 1 or

IG(1 - K) |V, |2-K| < 1.
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Substituting the value
1
E=1 -;E 1-—2ﬂf3dB
in (&) leads to

{(1+CYiIV.12 ¢
- P H

S
Vol Tlagp ~ £

e
=

Also, the weight will not ring in amplitude for A less than unity.
A stability condition derived for the sidelobe canceler version of {1} is found to be
11+ 2k |V, 121 < 1,

ndmon glven by equation {27} in Ref. 1, with EVQFE} in

co
e
]

us

which agrees with the stability

our case being equal to the unt

Computer simulations were run to demonstrate the instability associated with use of
(3} and are shown in Figs. 2a and 2b. In these simulations G equals 160 and [V, 12 equals
2. From {9) the stability condition for the specified values of G and |V, 12 is

faqr < 0.00158. {10}

£0
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Fig. 22 — Response of the steepest-descent algorithm
when faup = 0.00155
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Fig. 2b — Response of the steepest-descent algo-
rithm when fy,5 = 0.00162

Figure 2a shows a dampled oscillation occurring for fy45 equal to 0.00155, and Fig. 2b -
shows instability occurring for /5,5 equal to 0.00162, with the weight phase alte:matmg ‘
between 0 and 180 degrees and the weight magnitude growing unbounded.

For the improved algorithm the general weight term of (4) for a step mp
stant value and V,, equal to V, may be shown to be

_C(-DN) mi
W) = —5—5 a1
where
K
C=1+a
and
A
D=173

Since D is less than unity, W(N) is unconditionally stable. In Fig. 3 the response to a
step input is plotted using the improved algorithm for the same value of fagp (0.00162) -
which caused unstable operation of the steepest-descent algorithm (Fig. 2b). There is

no overshoot or ringing in Fig. 3, since the response is unconditionally stable:
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Fig. 3 — Besponse of the improved algorithm
when fo,, = 0.06162

SIMULATION OF RANDOM INPUTS

Computer simulations were run using independent samples of a Gaussian random pro-
cess having a mean of § and z variance equal to 2. Sucesssive samples were corvelated by
taking a sliding-window average of two samples and renormalizing so that the resultant
power remained equal to 2. The same samples were then applied to the main and auxiliary
channels of the sidelobe canceler., The steepest-descent algorithm and the improved algo-
rithm were compared for an input step of random values which were the same for each
simulation. In these stimulations a constant target signal was infroduced in the radar chan-
nel at sample number 2560 at a clutter-to-signal level of 20 4B,

The steepest-descent and improved algorithms are shown in Figs. 4a and 4b for fgyp
equal to 0.00025, which corresponds to an effective loop bandwidth (Bg) to jammmer band-
width (B} ratio of ¢.1. Bp is defined as

BE = {1 + GEVgEZ}fgdB-

Comparison of Figs. 4a and 4b shows that the steepest-descent algorithm gives more points
of lower cancellation (under the 40-dB line for exampile} than the improved algorithm gives,
This is attributed to the ringing in the steepest-descent algorithm which is present even for
the dlower loop adaptation. Ringing will oceur, as previously mentioned, when A of (7}

is greater than 1. Thus use of the relation

A=G(1-K) V(2 <1

and of the loop parameters G = 100 and fayg = 0.00025 leads to the requirement for
ringing that

V() | > 2.52,
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Fig. 4a — Response of the steepest-descent algo-
rithm when f3;p = 0.00025
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Fig. 4b — Response of the improved algorithm
when fa‘dB = (0,00025

Since V,(j) is a Gaussian random variable with a mean of 0 and a variani
2, [V4(j}| is Rayleigh and the probability of |V,(j)| being greater than 2.52 is- -

Pr(IV, ()] > 2.52) = ¢(2:52%)/4 = 0,20,

Hence there is a 20% probability of causing ringing in this slow-loop simulati@n :
of this ringing is to cause degraded cancellation of jamming signals which is du

+lhin Al asidle s
LilE dlgurLiuilill.
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In Figs. ba and bb the steepest-descent and improved algorithm results are shown for
fagr = 0.00124, or correspondingly Bg/B; = 0.5, and poor performance is seen to result
for the steepest-descent algorithm whereas good performance is obtained with the improved
algorithm. For the case of foup = 0.0025, or Bp/B; = 1, the steepest-descent algorithm
gives unstable loop performance and (Fig. 6) the improved algorithm gives stable perfor-

mance.

AVERAGE JAMMING POWER/RESIDUE POWER (dB)
30
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Fig. 5a — Response of the steepest-descent aigo-
rithm when fp p = 0.00124
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Fig, bb — Resgponsge of the improved algorithm
when f,» = 0.00124
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Fig. 8 — Response of the improved algorithm
when f3,p = 0.0025

SUMMARY

A comparison of aigorithms was shown for a single loop in a sideiobe-cancé]er@appiica—
tion as an illustration. The concept generalizes to any adaptive processing which minimizes
the mean-square error. The generalization of (4) for M multiple loops is given for the ith
weight by .

W) = KWj - 1) + G(1 - K) EG) Vi (), (2

with

EG) = V,,0) - z W) V,0).
n=1

A simplified version of this algorithm is given by
Wii) = KW - 1) + G(1 ~ K) BG) V()),
with
M

E() = V() - W) Vi) - Z W, - 1)V, ().

n=1
rﬁﬁ:

In this simplified algorithm each weight is found in a closed-loop fashion, as in the smgi:ie-:.'
loop case, while the other weights are frozen. The actual residue signal resultmg from
this algorithm is then taken to be




