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DRIFT (NET DISPLACEMENT) PRODUCED BY DENSITY
PERTURBATIONS IN STRATIFIED FLUIDS

INTRODUCTION

Darwin [1] has shown that interesting and important consequences result from in-
vestigation of the movement of material particles in motions of the classical inviscid fluid.
(Truesdell and Toupin [2] give additional information on some of the problems considered
by Darwin.) A main result he derives is the equality between the mass of fluid occupying
the "drift-volume" and the hydrodynamic or virtual mass associated with the body's mo-
tion. In this context Darwin uses drift to designate the net displacement of a material
particle and drift-volume as the volume of fluid enclosed between the initial and final lo-
cations of material surfaces which originally are perpendicular to the body's motion when
the body is at infinite distance. The utility of the concept of drift was further demonstrated
when Lighthill [3,4] employed the concept in a determination of secondary flows induced
by weak shear flows past rigid bodies.

In the next section we reduce the evaluation of the drift field to simple quadratures
for a class of two-dimensional initial-value problems involving the "collapse" of a localized
density perturbation of finite amplitude in an incompressible, viscous, stratified fluid. (We
can apply our analysis to the inviscid case if we assume that the initially localized distur-
bance propagates to infinity, leaving the finite portions of the fluid in static equilibrium.)
Our reduction is made possible by the severe constraints imposed by gravity on the static-
equilibrium configurations of a stratified fluid and the condition of incompressibility. We
note that Darwin and Lighthill find in some cases the particle displacements as a function
of time, whereas our method merely yields the net displacements of particles from their
initial positions. Motivated by the connection [1] between drift and hydrodynamic mass
for homogeneous fluids, we obtain relationships between the drift field and the initial den-
sity perturbation, the "degree of homogeneity" of this perturbation. and the initial potential
energy of the disturbance.

The initial-value problem we consider has application to interesting phenomena which
arise in nature. Most prominent perhaps is the collapse of the turbulent, mixed wake cre-
ated by the motion of a self-propelled body through stratified fluid [5,6]. Similar phe-
nomena are the collapse of mixed regions produced in the ocean by instabilities of internal
waves [7] and, as Mei [8] pointed out, the eventual flattening of a buoyant plume in the
atmosphere. Analytical attempts [8-10] to describe the collapse process use two-dimensional
initial-value problems of the type we consider but involve restrictions on the size of the
density perturbation. More relevant are the numerical algorithms developed by Wessel [11],
Padmanabhan et al. [12], and Young and Hirt [13] for the solution of problems of pre-
cisely the type we consider. Our results may offer a means for partially testing numercial
schemes of this sort.

We introduce in the next section a quantity called the degree of homogeneity to de-
scribe the initial density perturbation. This quantity plays a central role in the dynamics
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of the collapse process; yet our present understanding of density perturbations arising as
the end result of a burst of turbulent mixing in a stratified fluid does not permit its cal-
culation from basic principles. We demonstrate the possible importance of the drift field
as an experimental tool by showing in the third section that limited information on the
drift field, easily obtained experimentally, provides an estimate of the degree of homogeneity.

Our methods are easily extended to more general situations. For example there is an
axisymmetric analog to the problem we consider. Also, our results apply to fluids with a
constitutive relation much more general than that of Navier and Stokes. We feel however
that to seek utmost generality would detract from the presentation.

THE DIRECT PROBLEM

We consider the motion of an incompressible, viscous, stratified fluid of uniform depth
satisfying the equations

Vu 0 (1)

dpdp = 0, (2)

du
P dt VP + pg +V T (3)

for all times t > 0. We designate the fluid velocity by u, the density by p, the pressure
by p, the constant gravitational field by g, and the viscous stress tensor by T. The time
derivative in (2) and (3) is the material derivative. We suppose the fluid unbounded in
the horizontal with a rigid flat bottom boundary. We shall regard the atmosphere above
the fluid as also being a stratified viscous fluid; however no direct use of its governing
equations will be necessary. Gravity then is the sole external force. We use coordinate
frames x, y, z to specify the positions of particles at times t > 0 and X, Y, Z to specify
their initial positions (at t = 0); we take the frames to coincide with y and Y directed
vertically upward.

We assume that at t = 0 we have in the fluid an initial density of the form (Fig. 1)

p(X, Y, 0) = Pe(Y) + 8p(X, Y) (4)

and an initial velocity field u (X, Y, 0) independent of Z. We further suppose the initial
disturbance has the symmetries

WpX, Y) = bP(-X, Y), (5a)

6p(X, Y) = - 6p(X, -Y), (5b)

u(X, Y, 0)= u(-X, Y, 0) (5c)

2
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P (XYo)

Fig. 1 - The initial density variation along a vertical
and associated quantities. The initial density p(X,Y,0)
is the sum of an equilibrium stratification Pe(Y) and
a perturbation 5p.

and that it vanishes as IXI - °. Thus Pe(Y) represents a static-equilibrium stratification
prevailing at large horizontal distances from the localized disturbance. We can allow a
localized disturbance in the atmosphere as well but require that it be symmetric in X.

As time progresses, gravity restores the deformed isopychnals to an appropriate level,
and a complex motion, involving the generation and propagation of internal waves, ensues.
The form of the initial disturbance indicates that the motion will be two dimensional, in-
dependent of Z, and symmetric with respect to the y axis. We therefore suppress any
reference to z and examine the behavior in an xy plane. Particles initially at X, Y will
move to new locations given by

X(X, Y, t) = X + (X, Y, t), (6a)

y(X, Y. t) = Y + 77(X' Y. 0), (6b)

where t and i1 specify the displacement field of particles from their original positions. Ul-
timately, owing to the action of the viscous stresses, all motion will cease and particle
locations will be given by
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x*(X, Y) = X + N*(X, Y), (7a)

y*(X, Y) = Y + r*(X, Y), (7b)

where the asterisk denotes the limit as t - o-. We follow Darwin [1] and refer to the net
displacement field t*, 77* as the drift field.

We deal in this section with the direct problem of calculating the drift field from the
initial data. Due to the symmetry of the motion, we have t*(O, Y) = 0. Actually our
analysis can be carried out for cases in which none of the symmetries of (5) apply. How-
ever we would then be unable to determine t*(0, Y) by our methods. It is to avoid such
indeterminateness that we impose conditions (5a) and (5c). Condition (5b) is again for
convenience. We believe the situation we consider adequately demonstrates the essentials
of the method; moreover it seems a reasonable representation of many physical situations.

We shall assume that the initial density p(X, Y, 0) increases with depth in the fluid
along any vertical and thereby exclude for convenience the occurence of homogeneous
layers. We introduce the degree of homogeneity :(X, Y) to describe the initial density
perturbation. It is defined as

j(X, Y) 6P(XI Y) 8
Pe (0) - Pe(Y) (8)

in terms of which the initial density may be expressed as

p(X, Y, 0) = IB Pe(0) + (1 - 3) Pe(Y)

One consequence of our restriction on p(X, Y, 0) is that 3 < 1. We note that as 3 1
in a region, the initial density p(X, Y, 0) approaches a uniform distribution given by pe(O).

The Vertical Component of Drift

We now obtain a determining condition for the vertical component of drift. From
(2) we conclude that following a particle we must have

p(X + #, Y + 17, t) = Pe(Y) + 5p(X, Y). (9)

All motion subsides as t - co, and the fluid assumes a static-equilibrium configuration in
which the density p* can depend only on vertical location y* = Y + 7?*. Taking the limit
in (9), we get

p*(Y + 07*) = Pe(M ) + 5p(X, Y). (10)
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We also have that in a viscous fluid a localized disturbance is unable to affect the equilib-
rium state of the fluid at sufficiently large distances from the disturbance. Consequently

lim 17*0,
IXI-=

and a similar limit of (10) yields

P*(Y) Pe(), (11)

which merely asserts that Pe is the density stratification ultimately achieved. Using (11)
in (10), we obtain

Pe(Y + 1*) = Pe(Y) + 5p(X, Y) (12)

as the condition which yields the vertical drift component in terms of the initial data. We
note that in regions where 8p vanishes, (12) indicates that 77* must vanish.

Equation (12) represents an implicit relationship for 17*. We assume for analytical
convenience that Pe varies linearly over the vertical extent of the initial density perturba-
tion 5p. Although more general cases are amenable to analytical treatment, the case of a
linear variation provides a good local approximation to many stratifications arising in
practice. Equation (12) now yields

M1 *(X Y)= - d-e 8p, (13)
rdY/

and (8) simplifies to

O7 *(X, Y) = - (X, Y)Y. (14)

These relationships demonstrate the intimate relationship between the vertical drift, the
initial density perturbation, and the degree of homogeneity.

An additional physical quantity of interest is the initial potential energy of the dis-
turbance. In the absence of any initial kinetic energy the potential energy represents the
sole source of energy for whatever motion occurs during t > 0. Calculation (Appendix
A) of the initial potential energy density 6P(X, Y, 0) for a particle initially at X, Y
yields

1 dPe *2
5P (XIY, y°)=-2 g dY 7*2 . (15)

Thus knowledge of the vertical drift determines the initial potential energy.

5
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The Horizontal Component of Drift

We now show how the horizontal drift t* can be evaluated from 17*. Conservation
of mass in the Lagrangian description and the constancy of the particle density lead [14]
to a(X, ) _1

a(X, Y)-

for the Jacobian of the transformation in (6). Passage to the limit t-a (and assuming the
interchangeability of this limit with the process of differentiation) yields, when written
out,

g1 + a at a at= a (16)
__ a ax ax ay a

Since 17* is presumed known, (16) represents a linear partial differential equation of the
first order for t*(X, Y).

We solve (16) for t* by using the method of characteristics [15] to recast (16) as an
initial-value problem involving ordinary differential equations. The equations for the char-
acteristics are

do* an* (17a)

dX ay*
d =1 + aa , (17b)

dY _ an* (17c)
do a

where a is a parameter identifying points on a characteristic. From the symmetry of our
original initial-value problem we have

*(0, Y) = 0 (18)

as initial data for the solution of (17). We have therefore reduced the determination of
* to simple quadrature.

A physical interpretation for the characteristics is easily deduced. The characteristics
in the XY plane are found by solving

dY dY/(dX)
dX du da 
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which, using (17), we can write as

dY _= a (Y+( +q =dYY+7
dX ax (Y+ 7q*) (Y 7*) dX

Thus the characteristics are those curves Y(X) for which Y + 17* has a fixed value. We
know that Y + 17* = y* gives the final vertical location of a particle initially at X, Y.
Since the ultimate state of the fluid is one of static equilibrium with isopychnals horizon-
tal, the initial locus of particles having the same y* must consist of material particles of
the same density. We conclude that the characteristics are those curves specifying the
initial forms of the isopychnals.

We have demonstrated in principle then an explicit method for the evaluation of the
drift field from the initial data. One possible application of our results may be as a check
on various numerical algorithms [11,13], devised for the solution of initial-value problems
involving localized disturbances in a stratified fluid. Comparison of the drift fields ob-
tained by the two techniques may indicate whether serious errors accumulate in the nu-
merical algorithms.

Special Examples

To make more explicit the actual form of the drift field, we consider the special
initial stratification

P(X, Y, 0) = Pe(Y) + bp(X, Y), (19a)

5 p(X, Y) = d p, Y :(R), (19b)
dY

[(R) = go exp[- (R/R0 ) j. (19c)

Here go, R0, -y, and -dpedY are specified positive constants with R = (X2 + y2)112. The
degree of homogeneity f3(R) seems, at least intuitively, a reasonable form for describing
some density perturbations arising in practice [5]. We shall regard the free surface as
being defined by one of the above isopychnals, with Y > R0, and take the fluid to have
infinite depth.

We find from (19) that the initial form Y(X, p) of an isopychnal of density p, which
is a characteristic curve in the XY plane, is given by

Y d P -1_p (20)

7



J.M. BERGIN

and its level at large IXI is given by

Y(o, p)- lim Y(X,P)= X ) [P - Pe(MO)] (21)
IXI--=\Y

Using (21) in (20), we can write (20) as

Y = L(~~~~~~_P) ~~(22)
1 - O(R)

This isopychnal intersects the Y axis at Y(0, p), which satisfies

Y(c, P) = Y(O P) {1 - o[Y(O p)]} * (23)

These relations allow us to identify an isopychnal, or characteristic, by specifying either
p, Y(oo, p), or Y(0, p).

We get the vertical component of drift from (14) and (19) to be

X7* = - O(R)Y, (24)

which, interestingly, depends linearly on the parameter go. The horizontal component of
drift results from integration of (17) along the characteristic curves. We found the most
convenient method for calculating t*(X, Y) to be as follows. We specify Y(0, p) to iden-
tify a unique characteristic given by (22) and (23). We parameterize each point (X, Y) on
the characteristic by its radial distance R. Then, using (24) in (17) and (18), we obtain

X(R) O(R) (1 - yRo'Y y2 Ry 2 )
*(XI Y) = J -dX(R). (25)

1 - (R) (1 - yR-'7 Y2Ra 2)

We see that the horizontal drift depends nonlinearly on all the parameters go, ty, and Ro.

Numerical calculations were performed for the case of a Gaussian degree of homo-
geneity with go = 0.5 and y = 2. Due to the symmetries involved we can confine our-
selves to the first quadrant (X > 0, Y > 0). The results are exhibited in Fig. 2. Figure
2(a) shows the initial form of the isopychnals. It is clear that the density perturbation is
confined to a region near the origin whose radial dimension is approximately 3Ro.

Figure 2(b) portrays the drift field as lines connecting the original locations of par-
ticles with their final locations. The right portion of the figure shows the drift field for
particles originally on the vertical line X/RO = 3. Final positions are below or at the same
level as original positions. Particles at the top of the figure are displaced downward and
to the left, and particles at the bottom of the figure are displaced downward and to the

8
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right. Elementary estimates indicate 17* effectively vanishes for X/Ro > 3. The resulting
smallness of the integrand in (25) indicates that t* effectively becomes independent of X
for X/Ro > 3. The drift field for points to the right of X/Ro = 3 can be obtained by
moving the displayed drift field for X/Ro = 3 to the right an appropriate distance.

A different view of the drift field is afforded by exhibiting the final locus achieved
by material particles lying on some specified initial locus. Figure 2(c) shows the final loci
of particles whose initial loci were circles. The radii of the circles ranged from 0.1RO to
2Ro in steps of 0.1RO; these radii are associated with the displayed curves from bottom to
top respectively.

An interesting special case of (19) arises when ,y - cc* We then have

/(R)= go, R < R0, (26a)

= 0, R > R 0, (26b)

dpe
5p(X, Y)= - dY Y, R < R0 , (26c)

= 0,R > R0 , (26d)

dpe
p(X, Y, 0) = Pe(0) + Y- (1 - /O)Y, R < R0, (26e)

dpe
= Pe(0) + dp Y, R > R0, (26f)

which gives a uniform degree of homogeneity /0 within a circular region. We assume
0 < 0 < 1; results for 0( = 1 can be obtained as a limiting case. Density perturbations
of this type are nearly achievable in practice [16]. Moreover this type of perturbation
has been used in linearized inviscid analyses of the collapse [9,10] and in numerical in-
vestigations [11-131. (Reference 12 presents an approximation to the collapse in which
motions outside the region containing the density perturbation are neglected. Bell and
Dugan [17] question the correctness of the numerical results obtained.) We consider
the fluid to have a finite depth, large enough to span the vertical extent of the perturbation.

We conclude from (26) that the isopychnals initially are horizontal both inside and
outside the circle R = Ro. An isopychnal of density p, which intersects the Y axis at
Y(0, p), has by (26) the constant level Y(0, p) inside the circular region and has the con-
stant level Y(oo, p) = (1 - /0) Y(0, p) outside the region. The "limiting," or highest,
isopychnal of density PL inside the circle has Y(0, PL) = Ro, and the level of this iso-
pychnal outside the circle is YL = (1 - /3o) Ro. Those isopychnals outside the circle with
YL < Y(oo, p) < Ro have no continuation into the interior of the circle, and isopychnals
with I Y(-o, p)l > Ro are initially undeformed and at the constant level Y = Y(-, p). The
situation is shown in Fig. 3a.

9
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Equations (14) and (26) yield

71* = -/0 Y, R < R0 ,

(27b)

and the use of (27) in (17) gives differential equations which are directly integrable for
t*. The singular nature of the present problem requires that we apply (17) to four dis-
tinct regions (of the first quadrant) which we designate as

I: R < RON

II: R>Ro,0< Y< YL,

III: R > RO, YL < Y < RO,

IV: Y >R 0 ,X>0.

Furthermore we require that the isopychnals be continuous connected curves in the final
state achieved by the fluid. We then find from (17), (18), and (27) that

t* = 90 (1 - No)-1 X in I,
1/2

= (1 _ -0)/ 2 ((1 _ 00 ) 2R2 - y2)

= - (R2 - y2) 1/2 in III,

1/2
(28a)

in II, (28b)

(28c)

= 0 in IV. (28d)

The drift field for the case of go = 0.5 is shown in Fig. 3b.

Consider now an initial circular locus of material particles described by

x2 + y2 = r2 (29)

with r < RO. The final location of a particle at X, Y on this locus is, from (27) and (28),

x* = (1 - /o3,1 X,

y* = (1 - No) Y.

These equations allow us to express X, Y in terms of x*, y*; and (29) then can be written
as

11
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TTYPICAL INITIALLY
UNPERTURBED ISOPYCHNAL

LIMITING ISOPYCHNAL
WITH NO CONTINUATION

- - _ _ -\ INTO THE INTERIOR OF
THE CIRCLE

TYPICAL ISOPYCHNAL WITH
RAISED LEVEL IN THE
INTERIOR OF THE CIRCLE

0
X/R,

(a) Initial forms of the isopychnals

X/Ro

(b) Drift field indicated by lines connecting initial positions
of particles with final positions

Fig. 3 - Results for the drift field for a constant degree of homogeneity O 0.5 inside
the circle R/Ro = 1. The circle shows the boundary of the initial density perturbation.

r~l-:0x* 2 r Y 2
L1 -go )X+* (1-p0) =1

Thus a circle of material particles (with r < Ro) in the initial state becomes an ellipse in
the final state with a vertical half-dimension of (1 - / 0)r and a half-width of (1 - 30)f 1 r.
These results extend some results of Hartman and Lewis [9] to finite-amplitude density
perturbations and apply to the more general situation of a viscous fluid whose depth may
be finite. It is interesting to note that Dugan, Warn-Varnas, and Piacsek [18] obtained
the correct expression for the half-width using an approximate argument based on energetics.
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THE INVERSE PROBLEM

In the inverse problem we desire to infer the nature of the initial localized density
perturbation from such knowledge of the drift field as might be obtained through simple
experimental procedure. For example, dye techniques may be used when the density per-
turbation arises from a brief period of turbulent mixing (as shown by the figures in Ref.
19). We believe our results for this inverse problem may have useful applications in the
experimental study of density perturbations caused by the turbulent mixing of stratified
fluid [1-13].

We point out that when a specific model, such as (19), for the density perturbation
is assumed, the parameters in the model can easily be estimated. If the boundary of the
initial density perturbation is known as well as the final configuration of this boundary,
then a trial-and-error procedure using different values for the parameters can be employed
to calculate the final configuration of the boundary until agreement is obtained with the
measured configuration. We shall now give some results which do not require such spe-
cific knowledge of the analytical form of the initial density perturbation.

A General Procedure

We suppose the initial density perturbation is confined to a finite region and that for
simplicity the density perturbation and the initial velocity field satisfy the symmetries of
(5). The only restriction on Pe(Y) is that it increase with depth. We also assume that by
measurement we know the half-width V(Y) of the boundary C (Fig. 4) outside of which
the initial density perturbation vanishes and the final location B'C' of particles initially on
the vertical line BC outside C .

Since 5p vanishes outside C, we have by (12) that 17* vanishes outside C as well.
From (16) we conclude that t* = t*(Y) outside C . Thus isopychnals outside C are hor-
izontal in the initial and final states and at the same level. We consider a segment AB of
an initial isopychnal at level Y outside C . The initial form of this isopychnal we describe
by Yj(X; Y). In the final state the segment AB will be located at A'B'. The area enclosed
by the initial material curve ABCD must, because of incompressibility, equal the area en-
closed by A'B'C'D. Equivalently, the area enclosed by ABA' must equal the area enclosed
by BB'C'C.

The area of ABA' is

£(Y) 9(Y)

[Yi(X; Y) - Y] dX = _| *(X, Yi) dX,

where 17* denotes the vertical drift for a particle initially located on AB. This area must
equal that of BB'C'C, which yields

13
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k(y)

71 *(X, Yi) dX =1 t*(Y) dY,
0

where t* denotes the horizontal drift of particles initially on BC. We can write this re-
sult as

Y

<q( YP>= 1 f ~*Y (30)

with <17*> being the average vertical drift for the isopychnal initially at level Y outside
C.

The right side of (30) is presumed known by measurement. We see that relatively
simple measurements provide the average vertical drift and therefore provide the average
initial height Y - < 71*(X, Yi)> within e for each isopychnal. This knowledge provides
immediately an "equivalent," initial density perturbation which produces the same drift
field outside d as does the actual density perturbation.

A BOUNDARY

Y

A'

D
x

B B'

C'C

Fig. 4 - Initial and final configurations of a material curve. Boundary C is
the boundary of the region outside of which the initial density perturbation
vanishes. ABCD gives the initial location of the material curve, and A'B'C'D
gives the final location.
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By employing the same methods, but taking account of behavior in all four quad-
rants of the plane, we can determine <71*(X, Yi)> for situations in which 5p(X, Y) does
not possess any of the symmetries supposed here.

A Special Result

We now consider situations in which it may be supposed that the degree of homo-
geneity has the form 1 = 1(R). We further suppose that 13(R) decreases with R and van-
ishes as R - o-. We assume that the density Pe(Y) varies linearly over the vertical extent
of the initial density perturbation and that the initial velocity field satisfies the symmetry
of (5). We see from (8) that 5p with 13 = 13(R) satisfies the symmetries of (5). Thus the
results of the section on the direct problem are available to us.

We now suppose that we know from measurements that some initial circular locus
of particles described by

x2 + y2 = R2

has the elliptical locus

(X* 

(- a) + b ) = 1 (31)

in the final state achieved by the fluid. These two loci consist of the same material par-
ticles, and each locus must in view of incompressibility enclose the same area; consequently

ab = R.0 * (32)

We know that y*(0, RO) = Ro[1 - 1(Ro)] and that (31) gives y*(0, RO) = b. Therefore

b = Ro[1 -1(Ro)],

a = R0 /[1 - P(Ro)],

where use has been made of (32).

We have x*(Ro, 0) = Ro + t*(Ro' °);
(33), we get

t*(Ro, 0) =

but (31) gives x*(RO, 0) = a, so that, using

O(Ro)
11 ) R 0.
1 - O'(Ro) °-

(34)

15
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However, the characteristic equations in (17) applied to the characteristic Y = 0 yield an
alternative expression for t*(Ro, 0), which, when equated with (34) provides

° (R) R (Ro)J 1 -1(R) 1-13(R 0 ) Ro * (35)
0

The integrand in (35) decreases with R; thus (35) can be satisfied only if 13(R) has a con-
stant value 10 = 1(Ro) for R < Ro. Equation (33) allows 10 to be written as

10 = 1 - (bla) 12

in terms of parameters describing the final, elliptical locus. The initial density perturba-
tion, by (13) and (14), takes the form

5P=-go dp Y

within the circle of radius Ro.

These results may enable experimentalists to easily make estimates of the degree of
homogeneity and density perturbation produced by localized turbulent mixing in a strat-
ified fluid.

CONCLUSION

Our results extend to stratified media the importance and utility of the drift field,
first indicated by Darwin and further demonstrated by Lighthill in their studies of par-
ticle trajectories in a homogeneous, inviscid fluid. We have demonstrated that the drift,
or net displacement, field can be calculated exactly for certain localized two-dimensional
disturbances in an incompressible viscous stratified fluid. For analytical convenience we
restricted the direct problem to a static-equilibrium density field which varies linearly
over the vertical extent of the initial density perturbation. We showed the drift field in
this case is directly related to the initial density perturbation, to its degree of homogene-
ity, and to the potential energy of the disturbance. Inverse results of possible use in ex-
perimental investigations were found whereby simple measurements of the drift field and
shape of the region containing the initial density perturbation provide knowledge about
the initial density perturbation.
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Appendix A

CALCULATION OF THE INITIAL POTENTIAL ENERGY OF THE DISTURBANCE

Consider the particle initially located at X, Y. The density of this particle is
p(X, Y, 0), and at time t the buoyancy force per unit volume (per unit area in the XY
plane and per unit length normal to this plane) experienced by this particle is [p(X, Y, 0)
- Pe(Y + 71)] g. The potential energy per unit volume 5P(X, Y, t) arising from the work
done on the particle by this force satisfies

d
dt(6P)= - [p(X, Y, 0) Pe(Y +1 7 )] g u (Al)

= [p(X, Y, 0)- Pe(Y + 0] g dt'

where d-7 gives the vertical velocity of the particle.

We can write (Al) as

dt (5P) d [p(X, Y, 0)- Pe(Y + 17')] g d17'}

Integrating this equation from t to infinity, we obtain

77*

6P(X, Y,t) = - f [p(X, Y, 0) - Pe(Y + 7')] g dr', (A2)

17

where we have set 5P(X, Y, 00) = 0. Thus 5P represents the increase in potential energy
of a particle over its value in the final equilibrium configuration.

From (A2) and the fact that 71(X, Y, 0) = 0 we get

5P(XI Y, 0) = f [p(X, Y, 0) - Pe(Y + a?')] g dq'
0

But, using (4) and (12), we can write this as

?7*

5P(X, Y, 0) = -f [Pe(Y + 17*) - Pe(Y + 77')] g dr1 '. (A3)

0
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Equation (A3) implies that knowledge of the equilibrium stratification and the vertical
drift 71* determines the initial potential energy of the disturbance.

For the special case in which Pe varies linearly over the vertical extent of the initial
disturbance we have

dPe
Pe(Y +17*V-Pe(Y +17) =dY (7*17'X),

which, when substituted in (A3), gives

5P(X, Y, 0) 2 g (dY) 27* (15)
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