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EFFECT OF POTENTIAL SCATTERING ON THE LOW-TEMPERATURE
SPIN-FLUCTUATION RESISTIVITY

INTRODUCTION

The application of many-body techniques to explain the electronic properties of the
nearly ferromagnetic metals Rh, Pd, and Pt and their alloys has greatly increased our
understanding of these materials. Many of their electronic properties (such as magnetic
susceptibility, specific heat, and electrical resistivity) can be accounted for by a model
which explicitly includes a strong intra-atomic Coulomb interaction between the d-band
electrons of opposite spin. For example, early theoretical work predicted that the intra-
atomic Coulomb interaction would enhance the spin fluctuations in the d band of these
materials and that an enhanced T2 term in the electrical resistivity at low temperatures
would result [1-3] from conduction electrons scattering from these exchange-enhanced
spin fluctuations. The good quantitative agreement between theory [3] and the experi-
mental work [2] on the PdNi system seemed to confirm the validity of the model. How-
ever the model also predicted that the addition of Rh to the PdNi system would lead to
a further enhancement of the T2 term, but recent experimental work [4-6] showed that
this was not the case. One possible reason for the discrepancy between the prediction
of the model and the results of the experiment is that the model has neglected the effect
of the increased potential scattering that occurs as a result of the Rh addition. It is the
effect of this potential scattering on the T2 term in the spin fluctuation resistivity that
we discuss in this report.

The strength of the exchange enhancement in these nearly ferromagnetic materials
is reflected by the Stoner enhancement factor, which is defined as S = x/xg, where x is
the experimentally determined static paramagnetic susceptibility and x is the ‘‘bare
band’ susceptibility determined from the density of states. In the random phase approxi-
mation the Stoner enhancement factor is given [7] by S = 1/[1 -~ UN(Ep)], where U is
a parameter which is a measure of the strength of the intra-atomic Coulomb interaction
between the d-band electrons of opposite spin and N(Ep) is the density of states at the
Fermi level (Ef) per spin state per atom.

Of the nearly ferromagnetic metals Pd, Pt, and Rh and their alloys with each other,
the alloy Pd-5%Rh has the highest magnetic susceptibility. The increase in the suscepti-
bility of this alloy over that of pure Pd is thought [8] to be the result of the combina-
tion of two features: an increase in the density of states at the Fermi level and a local
enhancement of the susceptibility associated with the Rh sites. Thus the alloy is expected
to have a higher Stoner enhancement factor than Pd, since both the average interaction
parameter U and the density of states are greater for the alloy. As a result of the in-
creased enhancement Pd-5%Rh might well be expected to act as a superenhanced Pd,
exhibiting strong spin-fluctuation effects. For example the low-temperature T2 term of
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the electrical resistivity of this alloy would be expected to be greater than that of Pd.
Also, the addition of a dilute amount of Ni to a Pd-56%Rh alloy would be expected to
yield even larger local-enhancement effects than were found [2] for the addition of Ni
to Pd. However the experimentally determined T2 coefficient of Pd-5%Rh is not larger
than that of Pd; it is in fact negative [9]. Also, the addition of Ni to this alloy does not
produce a larger increase in the T2 term than does the addition of Ni to Pd; it produces
only a comparable increase [4-6].

One possible reason suggested [5] for a reduced T2 term in the Pd-Rh system is
that the large amount of potential scattering that comes from the Rh atoms may dampen
the spin fluctuations and thereby reduce the magnitude of the T2 contribution from spin
fluctuations. However there appears to have been no previous calculation of the effect
that potential scattering will have on the T2 term of a uniformly-exchange-enhanced
system.

In the following section we present such a calculation. First we use the model of
Mills and Lederer [1] to obtain an expression for the T2 term that appears in the low-
temperature resistivity when conduction electrons scatter from spin fluctuations. In this
model, s-band conduction electrons scatter from spin fluctuations in the d band via the
s-d exchange interaction, and the coefficient of the T2 term depends directly on the
energy-momentum distribution of the spin fluctuations. The effect of potential scattering
on this T2 coefficient is then calculated by using a distribution function which reflects
the effect of potential scattering. For most phenomena one could use the dynamic sus-
ceptibility result of Fulde and Luther [10] to obtain a satisfactory distribution function.
However, since the calculation of the coefficient of the T2 term in the electrical resistivity
involves a strong weighting of the high-momentum end of the distribution function, and
since their result is valid only when the value of the momentum g is much less than the
Fermi momentum of the d band, qp, it seems unlikely that the Fulde and Luther result
would give a realistic T2 coefficient. We therefore determine a more realistic distribution
function which interpolates between (a) the Fulde and Luther distribution function (valid
in the presence of potential scattering when g << gp) and (b) the RPA distribution func-
tion [11] (valid for all ¢ in the limit of no potential scattering). Using this interpolated
distribution function (expected to be valid for all ranges of g in the presence of potential
scattering), we calculate the effect of potential scattering upon the T2 term in the spin-
fluctuation resistivity for a uniformly-exchange-enhanced system.

Finally we consider a system consisting of a locally enhanced impurity in an exchange-
enhanced host. Using the distribution function we determined for the host along with the
local enhancement model of Lederer and Mills [3], we calculate the effect of potential
scattering in the host on the additional T2 contribution which results from the locally en-
hanced impurities.

METHOD AND RESULTS

To calculate the effect of potential scattering on the spin-fluctuation resistivity at
low temperatures, we start with the Mills and Lederer [1] expression for the contribution
to the resistivity that occurs when the conduction electrons scatter from spin fluctuations
in the d band. This resistivity can be written [12] in the form
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Rl o0 2kp
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where &, is the energy of the conduction electrons, g and w are respectively the momen-
tum and energy change that occurs when the conduction electrons are scattered via the
s-d exchange interaction from the spin fluctuation (the units of ¢ and w being chosen
such that # = 1), A(q, w) is the spectral density function giving the momentum and
energy distribution of the spin fluctuations, n(w) is the Bose factor and is a measure of
the excitation level of the fluctuation, f(&}) is the Fermi-Dirac function, F(q) is the
form factor [7] associated with the Wannier functions for the d band, 2y is the Fermi
wave-vector of the conduction electrons, kp is the Boltzman constant, and pg is a pa-
rameter [12] which contains the density of states of the conduction electrons and the
strength of the s-d interaction.

The temperature dependence at low temperatures is obtained by noting that as w
becomes larger than the thermal energy (kgT), the Bose factor goes to zero exponentially.
As a result the spectral density function need be considered only for values of w < kgT.
In this region the spectral density function divided by w is independent of w, so the w
integration can be performed without any further knowledge of the functional form of
the spectral density function. After integrating over w and &;, we find that the low-
temperature resistivity is given by

2

2 kp [2r | A(q, w)

p = [% Po — f ¢® —5— IF(g)ldg | T2, T - 0. (1)
kp

We note that the high-g end of the spectral density function is strongly weighted because
of the g3 factor in the integrand.

For the case of a homogeneous system the spectral density function is obtained di-
rectly from the imaginary part of the dynamic susceptibility x(g, «) by using the relation

A(gq, w) = 2Im x(q, w). (2)

In the following we will consider the spectral density function for both a uniformly-
exchange-enhanced system and a locally-exchange-enhanced system.

Uniformly Enhanced System

To find the effect of potential scattering on the magnitude of the coefficient of the
T2 term which occurs in the spin-fluctuation resistivity of a uniformly-exchange-enhanced
system, one finds a dynamic susceptibility appropriate for the system and uses Eqgs. (1)
and (2) to evaluate the T2 coefficient. A dynamic susceptibility for a uniformly-exchange-
enhanced system has been derived by Fulde and Luther [10] in their calculation of the
effect of potential scattering on the specific heat. They calculated x (g, w) in the presence
of randomly distributed scattering centers which have a spherically symmetric potential.
Their result is given by

TINA
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1~ Uxplg, @)

x(q, w) = (3)

in which

utiug - 1
U F g v 1
u+iug -1 |’ (4)
u +iug +1

1 +%(u+iu0)ln

Xo(q, w) = N(Ef)

1 +§iuoln

where u = (w/Ep)/(2q/qF) and ug = 1/(qR), with £ being the mean free path of the d-band
electrons. Their result is valid for all values of £ and for (q/qF)2 << u<< qg/qp. The
Fulde and Luther dynamic susceptibility cannot be used directly to calculate the T2 coef-
ficient in the spin-fluctuation resistivity, because the g3 weighting of the spectral density
function in Eq. (1) (which did not occur in the specific heat calculation) will almost cer-
tainly guarantee a substantial contribution from the region beyond which their result is
valid.

To circumvent this problem, we evolve an expréssion for the dynamic susceptibility
which should be valid for the entire range of ¢ for a system with potential scattering. We
do this by comparing the Fulde and Luther expression (Eq. (4)) with the following well-
known expression [11] for the dynamic susceptibility of an unenhanced system in which
there is no potential scattering:

1 1-(u-v)?
Re Xo(g, @) = N(Ep) |5 + —g—— In

u-v-1| 1-(utv)® N |u+v—1j|
u-v+l 8v utv+l

and (5)

1-(u-v)2 - 2
Im Xo(g, ) = 7N(Ep) {—(gv—v) 9(1—(u—v)2) - % 6(1—(u+v)2)} :

where v = q/2qp and 0(x) is the step function, which is unity when the argument is posi-
tive and is zero when the argument is negative. By noting that x4(g, w) given in Eq. (5)
is valid for all ¢ and w for systems in which potential scattering can be neglected and by
noting that Eq. (4) is valid for small ¢ and w for systems in which potential scattering
cannot be neglected, we evolve the following interpolating expression for the dynamic
susceptibility:

v3 % + g(u,uo,v) + g(U, uO’_v)
Xo(q, w) = N(Ep) {1 * 2ug T 06} u+ iy - 1
)

1 - iugln <m

where
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g(u, ug,v) = Reh(u,ug,v) + i6(Im h(u, ug,v)) Imh(u, ug, v)
and

P 1—(u+iu0—v)2 u+iuyg - v -1

(u, uo, ) = 8v In u+iug - v+ 1)

Our confidence in Eq. (6) as a reasonable expression for x,(g, w) for a system with
potential scattering is based on four aspects of its behavior: It reduces to Eq. (4) in the
range for which Eq. (4) is valid (402 << u << 2v and all values of £); it reduces to Eq. (5)
in the range for which Eq. (5) is valid (all values of v and u and in the limit € = o0); it
varies smoothly between the regions of validity of Egs. (4) and (5); and it is in good
agreement with a result that was derived by deGennes [13]. His derivation of the dy-
namic susceptibility was for an unenhanced system with potential scattering but was for
the special case of w = 0. In comparing our interpolation for the case of «w = 0 with the
results of deGennes, we find that even for the case of a large amount of potential scat-
tering (2qp = 5) the maximum difference is about 2%, and, as the potential scattering is
decreased, this difference becomes smaller and the two results both approach the static
limit of Eq. (5).

We can now use the model to evaluate the effect of potential scattering on the
spectral density function of a uniformly-exchange-enhanced system (Egs. (2), (3), and
(6)). In Fig. 1 we show A(q, Z:)/N(EF) (the spectral density function divided by the den-
sity of states at the Fermi level) for a range of § = q/qp, for a fixed energy ratio of
@ = 0.001 (& = w/ER), and for Stoner enhancement factor of 10.

The two solid curves which peak on the left show this spectral density function for
two extreme cases: there is no potential scattering (2 = o0), and the potential scattering
is so large (2qp = 5) that the mean free path is close to an interatomic spacing. As can
be seen, the main effect of the potential scattering is to broaden and shift the peak of
the spin-fluctuation distribution to a higher momentum.

The effect of potential scattering on the T2 coefficient in the spin-fluctuation resis-
tivity is found by inserting our spectral density function into Eq. (1). Because of the g3
weighting of the spectral density function, the main contribution to the T2 term comes
from the tail of the spectral density function. This may be seen (in Fig. 1) by comparing
the weighted spectral density function §3|F(§)I24(g, &3)/ON(E ) with the unweighted
spectral density function.

Since the T2 coefficient is directly proportional to the integral over § of the weighted
spectral density function, the effect of potential scattering is found by evaluating this
integral for various values of £ and comparing the results. We will present these results in
terms of the fractional change in the T2 coefficient, which is defined by

ACy _ Cy(®) — Cy(=)
Cuy Cy()

b

where C;(2) is the T2 coefficient of the uniformly-exchange-enhanced system. In this
calculation we follow the work of Schriempf et al. [14] by taking 2 = qz/2 and by using
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Fig. 1—The spectral density function [A(q] @)] scaled by the
density of states N(Ey) plotted as a function of the ratio (§)
of spin-fluctuation momentum to the Fermi momentum, for
an energy ratio @ fixed at 0.001 and for a Stoner enhancement
factor S of 10. The two curves which peak on the left show
the spectral density function for the case of an infinite mean
free path (£ = ©°) and for the case of an extremely large amount
of potential scattering (2qf = 5). The two curves which peak
near the center show the weighted spectral density function
for the same two cases. The form factor F(q) has been ap-
proximated by using the Pd form factor of Ref. 14. The coef-
ficient of the T2 term in the spin-fluctuation resistivity is pro-
portional to the integral over § of the weighted spectral density
function.
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L}
for F(q) the approximation given by them for Pd. IHowever we note that the result is -
largely insensitive to the choices for F(q) and k. (For example, if F(g) is not allowed -
to fall off from unity at high g, the results shown will decrease by less than 6%. If kp -
is doubled, the results will decrease by less than 8%. If kp << qp, a large increase over o
the results shown can occur, but in this case Cy;(£) will be orders of magnitude smaller o

and not of much interest.) Our results are shown by the lower curve in Fig. 2, where
ACy/Cy is plotted as a function of the mean-free-path parameter Lqp.

The result of the model calculation is to predict that in most cases the increase in
the T2 coefficient from the effect of potential scattering will be only a small fraction of
the T2 coefficient. For an alloy such as Pd-5%Rh (where the mean-free-path parameter
QqF is estimated to be between 100 and 200), the T2 term is increased by only about 2%.

Locally Enhanced System

An analogous calculation can be made for a locally-exchange-enhanced system. An
example of such a system is an exchange-enhanced host containing an impurity which
locally enhances the susceptibility around the impurity site, although not sufficiently to
form a local moment. The local enhancement increases the spin fluctuations around the
impurity site, and as a consequence of the conduction electrons scattering from these local

0.8

0.7

Fig. 2—A semilog plot of the fractional 06

increase of the T2 coefficient of the
electrical resistivity as a function of the
mean free path ({) of the d-band elec-
trons. The lower curve shows this in-
crease for a uniformly enhanced sys-
tem with a Stoner enhancement factor
of 10. In locally enhanced systems
there is an additional T2 term that re-
sults from the local enhancement. The
upper curve shows the fractional in-
crease in this T2 coefficient as a func-
tion of the mean free path. For the
case shown the locally enhanced system
is assumed to have a uniform back-
ground with a Stoner enhancement fac-
tor of 10.
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spin fluctuations an additional contribution to the T2 term in the resistivity results. The
spectral density function for such a system is given in the model of Lederer and Milis [3]
as

2
B X“(g, w)
A(Q) w) = 2 ImX(q, (.O) + 2¢6U Im [m} ’

where ¢ is the impurity concentration, §U is the increase in the intra-atomic exchange
interaction in the impurity cell, and ¥ (w) is the average over ¢ of the host susceptibility
x(q, w):

— 3 Q.
X(w) = 3 f q2X(q, w) dq’
Qz 0

where @, is the radius of the Brillouin zone boundary (assumed spherical). The first term
is just Ap(q, w), the spectral density function of the exchange-enhanced host. The second
term is then the contribution to the spectral density function from the localized spin fluc-
tuations at the impurity sites, and we therefore write the spectral density function as

Alg, w) = Aylg, w) + Af(g, w).
For a large local enhancement and small w the second term can be approximated [3] as
Af(g, @) ~ 2¢(8U)” [Re x(g; 0)1° Im [X(w)]
where o = [1 — 6U Re x(0)] 1 is the local-enhancement factor.

To find the T2 coefficient for the locally enhanced system, we proceed as in the
uniform-enhancement case and evaluate Eq. (1). In the local-enhancement case how-
ever the spectral density function has the additional contribution A;(q, w), which will
result in an additional contribution C;(£) to the T2 coefficient. The dependence of
C;(2) on the mean free path of the host is a direct result of the fact that A;(q, w) is a
function of the dynamic susceptibility of the host, which as we have seen is a function of
2. We use the previously given results (Egs. (3) and (6)) for x(g, w) of the host and cal-
culate the fractional increase of the impurity contribution to the T2 coefficient:

ACp  Ci(®) — Cf(>)
c; C;(Q) )

The results of this calculation are shown by the upper curve in Fig. 2, where AC;/Cy is
plotted as a function of the mean-free-path parameter £qp.

In this calculation we have assumed the entire change in the spectral density func-
tion from potential scattering is the result of the change in Im }(w). This assumption
will not be valid if the local-enhancement factor « is large, i.e., 8 U Re x(0) ~ 1. For in this
case the small change that occurs in Re X(0) as a result of potential scattering will signifi-
cantly increase . For this reason the upper curve of Fig. 2 should be viewed as a lower bound
for the model.

8
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Also, in this calculation we have taken @, = 2gp, have taken the Stoner enhance-
ment factor S = 10, and have again used the form factor for Pd [14]. However the re-
sults are largely insensitive to these choices. For example, @, = g increases the result
by less than 7%, S = 20 increases the result by less than 25%, and F(q) = 1 decreases the
result by less than 25%.

CONCLUSIONS

It was pointed out in the introduction that although the PdgsRhy system might be
expected to act as a superenhanced Pd, measurements [4-6] of the T2 term in the spin-
fluctuation resistivity of the (PdggRhg); -, Ni, system did not show an enhancement over
that of the Pd; _, Ni, system. Since a major difference between the two systems is the
large increase in potential scattering that results upon the addition of the Rh, it has been
generally speculated that this scattering was affecting the spin fluctuations and causing a
decrease in the spin-fluctuation resistivity at low temperatures. Although potential scat-
tering does indeed reduce the peak of the distribution of the spin fluctuations, the main
effect of the potential scattering is to shift the distribution toward the high-g spin fluctua-
tions. Since the increase in the high-g spin fluctuations has a stronger effect on the spin
fluctuation resistivity than the decrease in the low-g spin fluctuations, the net effect of
the potential scattering on the spin fluctuation distribution is therefore to increase the 72
coefficients in both the uniform-enhancement and local-enhancement models. Our calcula-
tion predicts that the increase in the T2 term in the spin fluctuation resistivity of the
PdgsRhy host will be about 2% as a result of the potential scattering and that the in-
crease in the additional T2 contribution which results from the addition of Ni to this
host will also be about 2% as a result of the potential scattering in the host. Thus the
explanation of the unexpected values of the T2 coefficients observed [4-6] in the
(PdgsRhg)q - . Ni system must reside in other mechanisms.
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