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A SELF-CONSISTENT THEORY OF STEADY-STATE LAMELLAR
SOLIDIFICATION IN BINARY EUTECTIC SYSTEMS

I. INTRODUCTION

It has been known for some time that many
binary eutectic alloys, when solidified unidi~
rectionally, develop a lamellar microstructure
consisting of alternate layers of o and B phase
crystals with the lamellar phases aligned parallel
to the solidification direction. Because of the
fine-scale distribution of these aligned eutectic
structures and their inherent stability at
elevated temperatures, these alloys possess
excellent high—temperature'load—bearing capabilities
and show great promise for supplementing and/or
replacing the conventional nickel-based super alloys
currently being used in naval aircraft engine
components.

Although the feasibility of producing a wide
variety of technically interesting eutectic
systems has been amply demonstrated, no satis-
factory theory has been available for rationally
predicting the characteristic structures produced
by unidirectional solidification.

The first systematic theoretical investigation
of lamellar solidification in binary eutectic

systems was that of Tiller [1]. Tiller went

Manusecript submitted November 13, 1975.
1
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through a rather careful dimensional analysis

and concluded that a freezing rate-lamellar spacing
relation of the form V\Az = const. = C (V being
the freezing rate and A the lamellar spacing)
should apply. His solution, however, was incom-
plete in the sense that unknown shape factors

were involved in the calcula tion of the constant
C. Somewhat later Jackson and Hunt [2] attempted
to eliminate the unknown shape factors in Tiller's
analysis by utilizing an exact solution of the
chemical diffusion equation for a planar solid/
liquid interface. Since, in general, the solid/
liquid interface is non-planar, the Jackson-Hunt
approach was not entirely successful in remedying
the deficiency in Tiller's analysis.

The aforementionéd investigators were severely
hampered in their efforts by the lack of a suitable
method for solving the diffusion equation in a
domain bounded by an arbitrarily shaped solid/liquid
interface. Colin, et al.[S], in an attempt to
resolve this difficulty, proposed a method for
obtaining the required solutions based on eigen-

function expansion techniques. Such methods,



however, usually work well only when the boundaries
coincide with the coordinate lines. When the
boundary is of arbitrary shape, the eigenfunction
expansions tend either to converge very slowly,

or not at all [4]. Therefore, their solution

was not entirely satisfactory.

Strissler and Schneider [5] also investigated
this problem and, with the aid of certain classical
results in potential theory, obtained both an
integral representation for the solution in terms
of an unknown potential, and an integral equation
from which the potential could be determined.

Their approach was superior to that of Colin, et al,
being far more general and less cumbersome, and
yet having none of the attendant difficulties.

Strdssler and Schneider also utilized their
solution to the diffusion equation to investigate
the lamellar eutectic freezing problem, and developed
an iterative scheme for obtaining both the solid/
liquid interface shapes and a definitive freezing
rate-lamellar spacing relation. Although this
work constituted an admirable attempt to rigorously

treat the problem, it fell short in two respects;
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namely, the convergence of the iteration scheme
was not demonstrated, either analytically or
numerically, and the thermodynamic equilibrium
at the a/B/liquid triple point was not accounted
for properly.

It is the purpose of this report to attempt
to remedy these difficulties by carefully recon-
sidering some of the essential physics involved in
steady-state lamellar freezing, and to develop a
theory which is as self-consistent as possible,
thereby providing a first step in understanding
the formation of the characteristic microstructures
produced by directional solidification.

In Sections 2 and 3, the problem is formulated
as a boundary-value problem for the thermal and
solute diffusion equations, and is subsequently
reduced to a system of ordinary nonlinear integro-
differential equations for the shape of the solid/liquid
interface and the solute concentration on the
interface. The analysis makes use of the potential
theoretic methods developed at NRL over the last
several years for solving various free-boundary
problems associated with the diffusion equation
[6,7], and is noteworthy because the quantities

of interest, namely the quantities defined on the



interface, may be determined without calculating
the bulk temperature and solute distributions. In
this respect, the analysis is similar to that of
Strassler and Schneider; however certain of the
resulting integro-differential equations are
somewhat simpler in form than those derived in
the aforementioned study, primarily because no
intermediate potentials are involved.

The behavior of the integro-differential
equations is critically examined in Section 4,
and simplified versions of these equations are
derived by assuming that (1) the solute diffusion
length is large compared to the lamellar spacing
and (2) the interface is approximately isothermal.
In particular, it is shown that:

® The thermodynamic equilibrium require-

ments at the a/B/liquid triple point must

be compatible with constraints imposed by

the diffusion equation in order for

lamellar solutions to exist.

® When lamellar solutions are possible,
the solutions generally admit to a relatively narrow
range of possible crystallographic orientation

relationships between the two solid phases.
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® For a given alloy system, the solutions
to the simplified integro-differential
equations are functions of a single non-
dimensional parameter which is proportional
to V'Xz. This result has the important
ramification that the use of virtually any
subsidiary condition for the selection of
the system operating point must lead to a
relation of the form V'Az = const.

e Lamellar growth may not be possible
when the ratio of thermal gradient to
freezing rate is less than some critical
value which depends on the phase properties
and the volume phase fraction. This result
can be used to explain the lamellar-rod
transition.

In Section 5, various preliminary numerical
results are presented, and, in particular, the
new theory is utilized to assess the effect of
interface curvature on the interfacial solute
concentration distribution. Specifically, it
is shown that the planar interface model can
lead to considerable errors in the calculated
concentration distributions, particularly in

nonsymmetric systems.



Finally, the theory is checked for consistency
with experimental data for a number of alloy systenms,
and the theoretically predicted V- A relations are
compared with those predicted by the Jackson-Hunt

analysis.
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2. MATHEMATICAL FORMULATION

2.1 Formulation of the Boundary-Value Problem

In this section we formulate the boundary
value problem which describes the growth of a
lamellar eutectic solid in its melt under the
influence of an imposed temperature gradient.

The geometry of the system under consideration
is illustrated in Figures 1 and 2.

In systems which do not facet (systems in
which the effects of interfacial molecular attach-
ment kinetics are negligible), the solidification
kinetics are controlled primarily by the rate at
which solute can diffuse into the 1liquid, which
in turn depends on the temperature distribution
at the solid/liquid interface. Quantitative
information pertaining to both the solute and
temperature distributions is therefore required
in order to completely characterize the solidification
process.

Because D_ is generally much smaller than D,
(by several orders of magnitude), where DS and D,
are the chemical diffusivities of the solid and

liquid phases, respectively, solute diffusion in
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the solid may be safely neglected. Hence, the

solute distribution in the solid,T Cq» is independent
of Y and is given simply by cS(X)=ésa(X) (in the «
phase), cs(X)=3SB(X) (in the B phase), where Ssq(x)
and ésB(X) are the solute concentrations on the

solid side of the solid/liquid interface and are

as yet unknown.

The solute distribution in the liquid , ¢, ,
and the temperature distribution in the solid and
liquid, T, on the other hand, are determined by
solving the appropriate diffusion equation. Thus,
assuming that the freezing process proceeds in a
steady-state manner, i.e., assuming that the
prescribed solidification velocity, V, is constant
and that the solid-liquid interface shape, F(X),

is invariant with time, c, can be found by solving

A
c -
Ve + 5’——’ = 0 (in the liquid) (1)

Wik
~<

in the "half-cell"” in Fig. 1, where equation (1)
is the steady-state diffusion equation written in
the moving coordinate system (X, Y). Similarly,

assuming that the ratio of chemical to thermal

+ All concentrations are in units of mass fraction.
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diffusivity, Dx/Dt’ is sufficiently small, an
estimate of the temperature distribution which
is asymptotically valid as D,/D, —> 0 may be

obtained by solving Laplace's equaticn
VT =0 (in the solid and liquid) (2)

in the half-cell.
Finally, in addition to equations (1) and (2),
c, and T must also satisfy the following far-field,

boundary and interface conditions:

fin 52 = e, G
Y- o0

hin 22 =6 L
Vo oo 2Y (far-field conditions), (3b)
lim ¢, = c,

where GS and GI are the far-field temperature

11
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gradients in the solid and liquid, respectively
(only one of which may be prescribed independently),

and c,, 1is the specified bulk composition;

T _

X

=
\

f;} _,

|

,  (X=0,1), (5)

\¥
>

where satisfaction of equation (5) guarantees that
the symmetry and periodicity requirements are met,

and X is the width of the half-cell;

'jaleosev(é—ﬁ‘é, )

g Ze T 27 Cox (62)

% 2 :
(Xe[0,8))

-g® _ VvV p - A
= 5, ros (G~ facg,) (6b)
Se
(Xe (A, A1)

(on the solid/liquid interface)

t £
@ ?x - 7€o¢ Fs (7a)
(X &« [0,8))

.f-

’éyf' = ¢/J Fs

(Xe (a,11)

(7b)

(on the solid/liquid interface),

12



where equations (6) and (7) represent local con-
servation of mass and heat flux, respectively,
across the solid/liqﬁid interface (equation (7)
does not contain a latent heat term, because

the latent heat effect is (0 (Dy/Dy¢) and can
therefore be neglected as Dy/Dy —> 0), g°

and g}f denote the normal derivatives g%‘ and
%% , respectively, evaluated on the liquid
;}de of the solid/liquid interface, 5?5 denotes
gg , evaluated on the solid side of the solid/
liquid interface, 6/ is the solute distribution
in the liquid, evaluated at the solid/liquid

interface, #_ (& = a,B, ) are the thermal

3
conductivities in the appropriate phase,'FE are
the corresponding densities, A is the width of the

a region, and & = tan—l(—F');

A
7-=7;— - (CX_CE)ma: +./(°</€

(Xe [o,a)) (82)

T=Te+ (E,-ca) Mg + g fc (8b)
(Xe @, 21)

(on the solid/liquid interface)

13
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C’.‘ _ Mo 2
st T Cxe * by (Ce— Cg) + by K€
o

(X& Lo,n)) (9a)

Csp = Cpe + %”: (&G-ce)y+bgic 4

(Xe (a,x1) (9b)

(on the solid/liquid interface),

where equations (8) and (9) are the constitutive
equations relating the interface temperature and
concentrations and are obtained from the phase
diagram as modified by curvature effects (equation (8)
provides the coupling between the temperature and
solute distributions), T is the temperature on

the solid/liquid interface; T, is the eutectic

temperature, c., is the eutectic composition;

E

CeR ( € = a,B) are the terminal solid solubilities
(see Fig. 3), m, and n. are the absolute values

of the slopes of the liquidus and solidus lines

evaluated at T is a Gibbs-Thomson coefficient

(a

liquid interfacial free energy, ASfe is the

entropy of fusion per unit volume, bE is a

a

E’ "€

£ = )‘el/asf‘e),- Yy is the appropriate solid/

second Gibbs-Thomson coefficient which is

14



generally small and will be neglected
henceforth, and £ is the solid/liquid interface

curvature (A = F"/(1+F'2)3/2);

%wﬁoct = ﬁﬁ ?/:‘t (on the a/B interface), (10)
where equation (10) represents local conservation
of heat flux across the «/B interface, and ?é (E=o0u,8)
denotes %; , evaluated on the a or B‘side of the

a/B interface;

A A
f2 Coo A = x/&,,(zn/z-f & (Z)dz
f Sol ﬁa SA = .(11a)
¢ A
Ao = ap,+ (/\"A)ﬁg (11b)
[#ud+ Fs(a-2) 16 = A, 6, ,
(12)

TEMP. —=

SOLUTE CONC.—

Fig. 3 — Schematic representation of a binary eutectic
phase diagram

15
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where equations (11) and (12) represent global
conservation of mass and heat flux, respectively;

and, finally,

/22 Sﬁﬁtgx'f %24 Sﬁo@% ‘=>7%6

(13a)
Sir cOS O - Jsz cO5 € = torque terms (13b)
FlAL) = F{A) (13c)
Fro) =FTx) =2 (13d)

J

where equations (13a) and (13b) are statements of
thermodynamic equilibrium at the a/B/liquid triple
point (assuming the solid/liquid interfacial energies
to be isotropic and admiting an as yet unspecified
torque term due to possible anisotropy in the solid/
solid interfacial energy, )”bB), equations (13c)

and 03d) are statements of interface continuity

at the triple point and symmetry, respectively;

and

Oy = lin [TanFl0l
X—>D

. ; — Vi
@/g = //7/’1! [ Fan j/c (K'/'/ .
X—>Ay

16



The system of equations (1)-(13) is a
mathematical statement of the boundary-value problem
which describes the lamellar solidification process.
Of primary interest is the determination of the
interface quantities 31 and %, the volume phase
fractions A/» , and the interface shapes, F(X),
which are compatible with a specified solidification

rate (or lamellar spacing) and thermal gradient.

2.2 Some Comments on the Analysis

Before proceeding any further, it is worthwhile

to comment briefly on several aspects of the analysis.

First, the problem is a free-boundary problem in the
sense that the domains over which equations (1) and
(2) are to be solved are not specified completely at
the outset, because F(X) and A/A are a priori
unknown. Rather, these quantities must be found
in the course of the solution. Such problems are
generally nonlinear and do not usually yield to
classical methods of solution.

Second, even when F(X), V , and X are specified,
the system composed of equations (1), (4)-(6), (9)

)

and (11) does not necessarily admit to a unique

17
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solution. Rather, the concentration fields
associated with this system contain a term of the

form

A
T(v,2) =/,4(z/>\,,v) e B (Y-F2) 45 a0
o
where the function A(Z,\,vV) is indeterminate from
diffusional considerations alone. This is a
rather subtle point and is considered in more
detail in Appendix B. It suffices to say here
that the determination of I(Y,A,V) is intimately
related to the triple-point equilibrium conditions,
equations (13a) and (13b).

Thirdly, as will become apparent later,
multiple families of solutions may exist for a
prescribed lamellar spacing and thermal gradient.
Thus, a one-parameter family of solutions may
exist for fixed values of A , G (or Qf)’ and V,
with each member of the family corresponding to
a different crystallographic orientation relation-
ship between the two solid phases. Moreover,
when A , G (or %3); and the orientation relation-
ship are fixed, a second family of solutions exists

and can be generated simply by varying the freezing

rate, V.

18



It is probable that the solutions belonging
to the second family represent possible physical
states when the correct orientation relationship
is prescribed. 1Indeed, Hunt and Jackson [8], in

their work on transparent organic systems,

demonstrated that a lamellar morphology could be
maintained over a range of freezing rates, even when
the changes in lamellar spacing which would normally
take place were suppressed (this was accomplished
by using thin specimens to grow a fault-free
structure). It has also been observed that a
lamellar morphology can persist when the orientation
relationship is varied (by forcing the lamellae
to curve, for instance), provided that the orientation
relationship does not deviate too far from the
preferred one (see ref. [9] for a comprehensive
summary of these results). Hence, it is conceivable
that solutions belonging to the first family can
also be realized physically.

Finally, it should be noted that the afore-
mentioned experimental results are highly atypical.
In the vast majority of experimental situations,

it is observed that (1) the lamellar spacing is

19
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a single-valued function of the freezing rate,
and (2) a preferred orientation relationship
invariably develops as solidification proceeds.
Therefore, it is evident that the steady-state
theory does not provide complete predictive
capabilitty.

The point of view adoptedin this report is
that the selection of the preferred lamellar spacing
and orientation relationship is essentially a
time-dependent phenomenon, and is therefore outside
the purview of steady-state theory. The most
that a steady-state theory can provide are candidates
for the favored solutions. Only by introducing
additional information via a stability analysis
or a variational principle can the approrpiate steady-state

solution be selected.

20



3. A FORMAL SOLUTION TO THE FREE-BOUNDARY PROBLEM

To solve the free-boundary problem defined
by equations (1)-(13), it is necessary to both
solve the chemical and thermal diffusion equations,
and determine the shape of the solid/liquid inter-~
face. 1It proves convenient to consider each
diffusion process separately in the initial stages
of the analysis,and then introduce the coupling
via the interfacial constitutive relations in the
final stage. Hence, we begin our investigation
by examining the chemical diffusion equation.

3.1 Chemical Diffusion

The solute diffusion portion of the problem
consists of obtaining solutions to equation (1)
which also satisfy the subsidiary conditions
(4)-(6), (9), and (11). The required solutions
will be constructed in this section using a
potential theoretic method very similar to that
described in reference [6].

3.1.1 The potential theoretic method

The potential theoretic method developed
in reference [6] was devised to treat a general

class of free-boundary problems associated with

21
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the diffusion equation and essentially consists
of utilizing the jump properties of the single and
double layer potentials associated with the
diffusion equation to transform the original
boundary-value problem into an equivalent (and
hopefully simplier) problem involving only
the determination of the solid/liquid interface
shape and certain quantities defined on the
interface. Because the procedure yields
integral representations for the bulk solute
concentrations in terms of the interfacial
quantities, the original free-boundary problem
may be regarded as solved once these quantities
are determined. A detailed discussion of this
method is presented below:

Denoting the portion of the half-cell
occupied by the liquid as JQQ and that occupied
by the solid as H, , the potential theoretic

method may be outlined as follows:

22



1. A solution, ¢Q(X, Y), to
equation (1) is constructed throughout the entire
half-cell, ﬁ% L/J?g » such that condition (5) is

satisfied and

im Yy = A P, =0

Y- 4 Y= -0

~ 7 . Bl . A ~_/ o~
[61= A, — 5@ =g -& -8
F—=S5 P—S
vre o, Pedg

i

pos 97 g d7 d 47

vE P, e s

where P is a generic spatial point (X, Y), S is

A

a point on the solid/liquid interface, and é;, and

Patd

A A
'?j are prescribed jumps in g% and its normal

derivative across the interface.

:‘)/ .
2. ¢k is set equal to zero.
~ ot _
This step insures that @ (P) =0 /P e .., and
e S 3
hence guarantees that %; -, and 537 J‘

In addition, this step provides a compatibility

23
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relation in the form of an integral equation
involving a; , 5; , and F(X).

3. A second solution, @, (P), is
constructed such that @, = (D;"' CeatIly,A,V)Where
I(Y, A,V)is given by equation (14). ¢, (P) satisfies
both equation (1) and conditions (4) and (5);
moreover, @,(P) = C, (P) for P&#, , provided
that conditions (6), (9), (11), and the compatibility
relation are satisified.

4. The compatibility equation is used
in conjunction with the relation é,: §;+ Coo 4+ LLFEXN,A,V),
equations (6), (8), (9), (11), (13), and additional
equations arising from thermal diffusion considerations
to form a system of equations from which the quantities
A X, Q; ) %, and F(X) are obtained. These quantities
may then be used to determine the bulk concentration

and temperature distributions, if desired.

3.1.2 Implementation of the potential
theoretic procedure

In this section we shall examine the
properties of the single and double layer potentials
associated with equation (1) in the strip [O, A ],and
then employ these potentials in the procedure just
outlined to obtain explicit expressions for the

solute concentration and the compatibility relation.

24



It is convenient to introduce the following

nondimensional variables:
X':)(//\ ; q‘g = Y/',\,

(15)

f=F/A W= VA/2D, -

Then, in terms of these variables, the appropriate
. . P ¥ .
single and double layer potentials, U [h] (x,y4)

v o
and e [P] (2513) R respectively, are given by

U Lhlay = //m; VP, W) h15) ED_ 16

cos 6(3)

and

W [101(7(, c/) = ’;{k(1,7,7/V/7J a))}f?[j} _31_3; 2

coso)  (16P)

where A(j) and £(j) are the density functions for

the appropriate potential,

g | 5
B Sin 9(} 4 COS &(3) Z— 17

25
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fz(%,'},’?,'lf(i),W) = —%/ﬂ[ﬁco%ﬂ' (y"v(ﬁ)) -2 <_05/r(7¢..7)_{

- 5;;) M [;Lcoshw‘(y—wy) - :2cosrr(7t#§')_1 + ]
_2wly-vEy)

4 wly-vepl + HOgvg) [e, LWLV _ 1}

[~} .
-2
+ A w 2 COSHUTX COS NTF, ( (cwoP+utn™) /
N=1 (18)

- EXp { - @) Py - v ) - w 4-vQ ))}
— (mm)” k exp 2" |y - Vi3 } l »

H(x) denotes the Heaviside unit step function,
and w(x) is a single-valued function of x in the
strip x € [0,1]. A detailed derivation of the
expression for LJ;: [hl Cl;ﬁ) is given in
Appendix A.

The potentials iJZth] (xvy) and
L[::[P] C%qﬁj) are known to have the following
properties:

1. They satisfy the nondimensional

version of equation (1),

vic, + 2wd% =0,
a’v
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at all points in the strip [0,1] except for points
on the surface Y= VX,
2.

4 9 Vi - ' o
52, Ug Lid = L Wa [Pl = ¢, (x=0,1)
./7(, o

Am Uglnloy =o,
Af > 00
Ed ) y

. Vs, v o _ 4 . ~ |
A Up Lhl (2570 = -w,,/”’i’a,‘;?(;) ’
/#—)-'0'0 [A
A W [p] (%,) = A Wy lpl (%,4) =0,

/‘J — 00 /l:{ - -
3. e
3 .,V 4 e
S UG [11(1,5) = Aim o [0] (4,5) = U [n] (),
(-;‘1/‘5) — (X, V(X)) (‘r(y) - (X, V(x)})
(5]« Gce (4:5) « ®s
where ,1

Uy L] (20 = 30 Jk (1.3, Vi), vi(3),w) h(j)(% 19
o
(’7, 5 ) is a generic spatial point; (x, w(x)) is
a point on the surface VvV (x); dgjﬂ is the portion
of the strip [0,1] consisting of the points (x, %)
such that ¢ 7 Vv(X) ; and (95 is the complementary

portion of the strip.
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- T ) T T S
/i f—; Uey [01 (9,50 = =% bt + X (A1),

T Fx

(7,5) —>(x, v(x))

(7,5) ﬁ,,

im 2 Usthl (7,5) = 4 5 ht)+ XS [h](2)
C ’/‘7,(

(y5) == Z, V(%))

(7.5) e Ry

where
d o smot) L + coselyr/2.
=7 2 75
(20)
and where X " Lhl (x) is a well-behaved

function of x.

5.
/ : -V - o — ! VR 1 o g
i W [p1(7 52 = + % P+ WS * L1,
(7,57 —> (X, vu(xs)

(7,5) € &,

fom Wi Lp] (50 = = 2 piay+ W, p1(x)
(; 7,57 =i, v(x))

7,57 € (7

)



where
4
' 7k . ! ()" ~ - ' C/'
i) = — U Y - S 3 Py .
%) [FJ (€)= 210/{”5 {K(ﬂ/a, Vir; 1//;//L(j}} f(?/:;§{§> » (21)

[

6.

od Vg o VI e ]
T War Lpl05) = 2 U [2epeeseliy,'s)

1 Tp) (7,57,

where Y.~ [pliy,s) is continous across V (Xx).
Cﬁ It is now a relatively simple matter to implement
the procedure described in the previous section.

Using the properties of the potentials
UXIn](x ¥) and Ww”’LF] (z,y), it is readily

verified that the solution

S P - . e
@‘(/',“i/) = V/&) /fj 7 (Z. 7 C/(j [*J:e’ FAwl, Cos GJ (}'.,:j) (22)

satisfies all of the conditions set forth in

step 1, provided that
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1
~ o~ /
_jﬁ-//[gzzj) +.2i0 G, (3) cos 6(3) | (-;5‘3(;}/ =0,  (23)
¢
where é; now denotes the nondimensional normal
derivative of é; evaluated on the liquid side
of the interface. Assuming for the moment that
equation (23) is satisfied (it will be shown
shortly that equation (23) is identically satisfied
as a consequence of global mass conservation),
step 2 can now be implemented and the compatibility
relation obtained by setting ég“ = 0 . With

the aid of properties 3 and 5, this results in
ZC )+ Wao 2, (%) - Uz [Ge+2WC cese J(A) =0, (24

' Finally, the interfacial and bulk solute concentrations,
ai(X) and c(;z,}:) respectively, are constructed

as in step 3. Thus, provided that equation (24) and
the nondimensional versions of equations (6) and (11),
i.e.,

_(?;[X/ = 20 CosS(n) /fz. (x) —;{7/) y
(25)

30



4 z
Lo = ﬁ’/f (3143 + /{/é‘;ﬁ/;idj, (252)
£/, £
Sl y0-d)fp o1, (26b)
Z fr
are satisfied, Q}(?&~¥) and aJCx) are given byT
’ (=47
ey )
C, (%) = yf/x Y)+ Coo + [AlGGw)E <ty 79//}
2
(27)
Forag,y ., 7 ro ~ 7,
=W 71 - LS]8, +200C, coso-[(2,3)
[y & 20D gy 4 e
0
and
A o _/(U[/ﬂ// 7‘/7)/
Cox) = S(%) 7+ Coo -r-/4/;)w/6 d3 (28)

t Strictly speaking, A( 3, ) is a function of the
nondimensional half-cell width, as well as % and &
We have chosen here not to display this relationship

explicitly.
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where

J = A/./\ )

f)‘/ (.‘:;:‘“ ) Xe {‘0) (f)

?‘(,'x )=+ fa (29)

Jo ésp , Xe(d,1]
S 3
gaﬂ is the nondimensional normal derivative of the
solute field evaluated at the interface, and
(358 (& =0e,8) 1is given by equation (9).
It only remains to verify the condition expressed
by equation (23) and to obtain integral representations

for equations (24) and (27).

Consider the expression

J ()G 2w Gy (%) o &ix),

Since
7 = L g )
7 iV 3> L4
AT,
by definition and
7

) e o —}{'!o(’—/"-f(p.)}
P sh s s - . P ¥ e
/‘I.”/ ‘/X/ \/ J = <// 'I” r',/ 7 oo 7 /é’d { ‘,—)1 w - // 7

o

by equation (27),
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— C
i = %
,.}e ‘ﬁl

Zeo (f72) —f{ji)dj (30)

'

fZ
=9, - “w Ccvse///;’;t—%’é
Substituting equations (28) and (30) into equation (25)
gives

F0k) = = 2w o560 (G (3] + Con = gx1) 5

hence,

Z (X)+ 2w Cos& (¥ é.j, (/) = 2dcone(x) {;//7/—- Cea)
' (31)

If, now, equation (31) is substituted into the integrand

in equation (23), the result

coa&(j)

7
.’L“ et - - . o - o s 7 '*f/—'
ZLU/[VI(j/‘/' L (B ces &'./7/'_/ ZZ— =

J
fx /(?Sa (3, 43 + IF /ffsﬁ/jif 3} — Ceo = O
A

(by equations (26a))

is obtained, thus confirming equation (23).
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‘Equation (31) is also of use in obtaining the
required integral representations for the solute

field and the compatibility relation from equations

(27) and (24). Thus,

(16)-(19), (21), (26a), and (31),

Co (Z5Y)
the compatibility relation can be written as
¥
Cj/'z; ]/ = Cuo +//‘\/1 (’;g,i, y,][/j), [U) (;//'j) ’7/2
-\1 J
R e o - Ny I S .
*///@ (43, %,45,@) 5 (3) /3
1
! 200 CY~413))
PN A& b 45
+ /4/27/”/5 4 73
2
and
v
L% o " cpa . ppes s 2y Pz
—2 G ”//(1 (4,3 400457 @) G(3) 3
2
1

7 é;/ K223, /0, 4/7),42) .55/ 43 = O,

respectively, where

34

with the aid of equations

(32)

(33)

(34)



2 2 = L Jd
Ka 03y 4G0,0) = £ 2 Koz y, 0.
“ 9 «éjc:’/’ﬁ)

S TOYFG0) ~ Tan 63 s n (243 )

—

A / ok T /’[’/ #(3) ) = cos (243 ) ]

-+ S/"/]A 77/7‘2[ / 7“ 7L4’;-'l (//?/{/1‘{ F// 9

F [cosi, T (Y750 ~cosm(7-3) /

£

. / _ . : - ‘2(‘,() (‘/.E/ _ 7[/;;:‘ /'/\ -
+-T“f/(/"“/xﬂ)/ /Cf 4 -7
/:\? ‘:/ J - .] (3 52 )

[s32]
— Ty (9/5) J ; COBHTX sin-wr 3
A1=1

o ’;{/7— P y 2 2 o, - .
PPt cx/f/w(d/”f%‘w?-)' Iy =73/~ w75,

el L
W) 12

—@*f{"””"?‘f’ﬁ’/f} t GRSy w)

o0
+ [/—2#/[3{-—{(51)] S Cosams conur3
i -

~

o [omig-in ] - exp = (ot g

—) (g/-f‘(’g)) ; ) ,

-
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and

/<3(7f§/'%77[f5)7507 = /;'/(7/?7#///7’)7"‘)) - 1.

The free-boundary problem can now be regarded

as partially solved in the sense that an integral
representation for the solution to equation (1) is
known in terms of the unknown quantities éﬁk/,}[xﬁ
and J , and that a compatibility equation relating
these quantities is available. However, the compati-
bility equation, together with equations (26), (28),
and the interfacial constitutive relations, do not
contain sufficient information to uniquely determine

é;(x/) F(x), and J ; in order to proceed further,

thermal diffusion effects must be considered.

3.2 Thermal Diffusion

The thermal diffusion portion of the problem
consists of obtaining solutions to equation (2)
which also satisfy the subsidiary conditions (3),
(5), (7), (10), and (12). The required solutions
will be constructed in this section using a method

very similar to that used in reference [7].
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3.2.1 The "fictitious source'" method

The method to be employed here is more
classical in nature and is conceptually simpler
than the technique previously described. Essentially,
the method consists of employing fictitious heat
source distributions to introduce arbitrary dis-
continuities in the normal derivatives of the
temperature field across the solid/liquid and a/B
interfaces, and then adjusting the strength of
these discontinuities so as to satisfy conditions
(7) and (10). Specifically, this procedure results
in both an integral representation of the temperature
field in terms of two unknown discontinuity density
functions '%’1, and % ,, and a set of coupled
integral equations for 'y/l and 'V’z. These
relations, together with the interfacial constitutive
relations, provide just the information required to
complete the solution to the entire free~boundary
problem. A systematic outline of the method follows:

1. A solution, U(%,%) , to the

nondimensional version of equation (2),

= O

-V - 3
A C"}.?‘Lf

”

~2og - - Z
Z“f}’+ 9@
o‘,‘ p:

37
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is constructed throughout the strip, &;~L}J?g R
such that the nondimensional version of condition

(5) is satisfied and

- F
.//m 5—4-1 = 7
E A

/(;m' %Ly = GIV/G'S »
-’;L—‘)-r'-w

L‘;’ -

[Z5] =¥,

dn,dse

2

[ ] =

d}’[ i 0(‘6

where * is a nondimensional temperature ( ¥ =T/AGs ),
A<t va

[ %Thxj se and [%%n ]dﬂ denote jumps in the
normal derivative of ¢* across the solid/liquid and
a/B interfaces, respectively, and P’l and '%’2
denote the prescribed values of the aforementioned
jumps.

2. With GS regarded as specified, G,
is obtained in terms of ¥, and Y, so as to

guarantee satisfaction of equation (12).
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3. The normal derivatives of UV~
are evaluated on either side of each interface and
equations (7) and (10) are applied. This step
leads to a set of two coupled integral equations
for the discontinuity functions %7, and y?z,
thus assuring that heat flux is conserved at all
points on each interface.

4. The representation for & and
the integral equations for Vfl and %*2 are used

to provide the remaining information required in

step 4 of the procedure described in Section 3.1.1,

thus completing the solution of the free-boundary
problem.

3.2.2 Implementation of the fictitious
source method

The implementation of the fictitious
source method is facilitated by the introduction
of two particular solutions to equation (36),
Vq"[h](’%,'y) and V,~ [p1 (%) , in the
strip [0, 1]. These solutions are given by

i

[”](11‘1) //<3 (5,34 v(3) # (?)coset’j)
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and
- 00
I

V:c ey [f.] (Z"\ﬁ = /.(4/. (%, Y, ) /'6('[.(.) duzj (38)

R

where A13) and ©(3) are the density functions for
7

the appropriate solution, cq and Cqy are constants,
/(al‘}é,-}) v, vig)) = -EZL (?/ - ﬂ,r(j))

[ - . . ~ :
-2 7 Z/ﬁ&s‘é 7/’/'/"/‘ 'V/j]/ A (’0577—(2-“}):‘]
(39)

Ky ,0) =~ 3 (00 = A st e - Feas -5,

-t

Y S p :
«451’2[§?c094/7771»céj "&7c0577&21122)_7 9
(40)

and ‘U (2) is defined as in Section 3.1.2. The
solutions bQV[AYCZ}yO and V;qupifx;j) also have

a simple physical interpretation; namely, they
represent the temperature fields due to distributions
of heat sources acting on the surfaces 11: VLK)

and (C.z)ff) > '71 € (-9, <),
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v
The solutions V, Lh] (_76,"4) and
<
Vl(:'zl;p'] (’L,‘@) have the following properties:
1. They satisfy equation (36) at all

points in the strip [0,1] except at selected

one-dimensional sets of points (’4 = Vv (x) for
V1"’ [A1 and (c:.,'z‘f),'qe. -29,¢) 7Cor‘V2 &"Lp] R
2.
2] = 20 - (%=0,1)
IK I

«///44/ .9‘}/ U’] A (9'6[ (LLV] =0

'y-ﬂ-m ;f——} o0
(provided that .Zim Ple) =0),
28 Babed
VZ ) 2
" 91 //<éf?} - 2
1—?00 A Co«@(i}

/- 2 Ca /
’1;{,; 5 Voe, Ipl = -//,‘a/oc)c/w.
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3. They are continuous and have continuous
first derivatives at all points in the strip except

on the selected one-dimensional sets mentioned in

item 1. In particular,j%xV?Y[hT undergoes a
. _ ) o .
jump across the surface =4 = Vv(x), and 5 \4‘!4 [F]
undergoes a jump across the surface (<;,yY), Y& (oo,C)),
The limiting values of these derivatives are given
by
- d v - VE

Lim an, Vi [hlCope) = = h(x) + cos 9(;&);_24 [6] ()
Of,35) = (2, v)

o,y) € R,

?

)

¢//WL %7 \/1‘/[-’11 (,7,.§) +4 2;{ h(r) + Cos o) Z‘7V*[h] (x) )
X

(,5) = (k,vay)
(%) € ®,

\

) o — e ¥ ‘
'z 59_)( Voo, Lp1 1) =+ 5 PG+ Zzt-q lelcq,

(7,7) — (C2,4)
M)5) & (0,63) X &, €)

o e, " . — ek
A Voo [p10s) = =% pep+ £, Tr1ep

(%g) - (’3-2,"1)

(1,5) € (C2,1) X (~00,¢5)
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where 07/5) s ﬁ; s and#ﬂs have the same meanings

as in Section 3.1.2,

7

Go;@(;)

1
2z [n1(x) = //(-5 S Y 3
(2

ey O ) C ‘
Z} (j; [F._{ly) = //<¢,‘, ( ?_; c(«‘//)/[,(.) 474 P
/,

7
Ks (2,3,V12,v(3)) = =%

— ST (V1) - vr35) + TanE(x) s (743 )
4[4"0';//&. VTR )~ V(3)) ~ COST(A1F) ]

SHAT (V- VP + Tere 8OO 3/RT (-3

- 2 TR ( )
7 [ ostor (Vv )- V13)) - cosm (7-3> ]
and
K, CY,e) = — S/ 27 Cy o

7L O;[’-/W '(7“ ) ~ Cos 277 C;z.~ ]

With the aid of these properties, the required
solution to equation (36) can be constructed

almost by inspection.
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It is readily verified that the temperature

field
W(ry) = consl. 4y
+ WY Ty + 14;2,- L 1%y
satisfies equation (36) and all of the subsidiary

conditions listed in step 1 of the fictitious

source procedure, provided that

1. Lim Ww) —> 0,

A= -0
. e Wz }
Z ?53 = 7 //[%fﬁ?) o - }é;ﬂz/d%Q ’
> 7 CO5 /j_) 7[[{/)/)

where the constant in equation (44) is arbitrary.
It will be assumed henceforth that the first of
these conditions is always satisfied. The second
of these conditions can always be satisfied by
adjusting Gl ; moreover, it can be shown that
satisfaction of this condition automatically
guarantees the satisfaction of the nondimensional
version of equation (12). 1In view of these con-
siderations, all that remains is to determine the
discontinuity functions }L]_and ?42 such that
equations (7) and (10) are satisfied.

44
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To accomplish this task, the
normal derivatives of ¥ on either side of the
solid/liquid and a/B interfaces are expressed
in terms of y& 1 and 'y*z using the jump properties
listed earlier, and the results are substituted
into equations (7) and (10). This procedure results

in the following set of integral equations for '¢F1

and ‘%”2:

S;(Jc) W)+ 53 z"z/{cos &(ﬂf)Zf*[’ﬁ](Jc)

(46)
+ o - .
an, ML;_(/) [}ﬁ ](Z,f&/) + Cof@(}f.)} =J
and
1/ Ay s
> ( A1) : w1
%
. r__g.m. Vf[’wi" J‘.- ) Z!* [— ; " =
where
1(1+%¢) , xelou),
S} (2) = #e (48a)

(14 2) , recsa),
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and

#

o, ,
Z. -1 , X&[o,8),

i

5;%)
) £ (48b)
-1, xed,11

Once these equations are solved, #(X%,Y) is
completely determined for a given interface shape,
f(x)(at least to within an arbitrary constant).

As a final result, we can employ
equations (20) and (37)-(41) to obtain the explicit
forms of equations (44), (46), and (47). Thus,

(X, Y) is given by

7
Bixg) = const. + y *//( (254, 50) 6313
(49)
[#]

- O
-/-//'(4 (X, y,w) @ (L) du
#(d]
and the integral equations assume the form

7
o " ¢ . . oy P
QP e) + O (%)/Kj-/l,g,/zz)) F(30) &, (543
(50)

- OO

~

7 5—;('%) Mo, (X F k), ) é(u,) S + jg(;z) =0,

d

£(d)
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(%00 -f7/‘ﬁlj) +(ﬁf» ’/)/K:»(j L/)@(L<)(j(_,’
H)

(51)

/ /
R _ 4 o3 { /¢/)( = ()
(/j /)/ £ 42 ?7)2/ § > =

x,5 € [0,71] Z
Y, & (00, 504)) |

2

where
Ko, (X, £02) @) = =) K (X, 100, w)
7 g JIn, ’ ’

ST (f (1) L) 3 Tan &0 ST ()

/

A /f—LC‘DT:’.'h‘]T‘ (f‘(',"(’)—-u/) —~LosT (-4 ]

- —

(52)
Sinh 7 (fG) = ie) #E206G) 3107 (2 0d)
Fleosht (flrj- ) ~ cosT (244 ) ]

/(g (jv 7497‘(3 )) = '% /<:, (J7 é)nj)/‘(é))

_ _.)/.4,'7"(J~r§) ‘ (53)

U L <

G [coshr (v ,l/?)) -0 F[Jrj)_l

— Smgm (=30

FTcovnn Cy=43) = 20 =31

and where @, = %/':,Cf}g" and (z',‘)! = ’?@' .
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As in the case of chemical diffusion,
equations (49)-(51) provide only partial solutions
to the free-boundary problem. In order to complete
the solution, the interfacial coupling conditions

must be considered.

3.3 Construction of the Formal Solution

Equations (9), (26), (28), (33), (45), (50),
and (51) comprise a system of nine equations in
the eleven unknowns C:'Z()é), Cixy, Alx, w3, ;‘35“ (X,
.’E,A;FC};}_, FE), Py, @,(y>, £, G, and J ; with
A , 4, and the torque term acting as parameters.
Hence, two additional equations must be obtained
in order to complete the analysis. It will be
shown in this section that the required equations
are provided by the interfacial constitutive
relation (equation (8)) and the triple-point
conditions, equations (13).

We begin by considering the first of these
conditions, namely equation (8). Using the

relations - =F/A and #=T/3A , equation (8)

can be written as

L Vo= =N 75 , oo T
< (12 - 29;-;) = —}:‘i (C/ .,,;) A+ O (2E[0,8)) (54a)
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L ({ = MPX (& e ey + (e, (Xe,11)
/%(7}— Ve ) e ( < =) (C{x) 5 (54b)

where 4 is now given by j-'/’/'('/f'f"a)?’/2 and
M= Z{(,/’,\’ngs;w. Setting the constant in
equation (49) equal to 19E and substituting equations
(49) and (28) into equation (54) then results in

7 : T
[717,1758/1, - /'é = ;;;Z /(3(75,517[(2),][_/??) ,i"/, (31 43
- XK€l d)
+- L / ) 4 ) o Feled }
F Ry (1, 4, ) ffe) du we w160 ] (552)
G

= Zes (Fx)- 43
1 /?AA/(,(14(cw—cL)4/47 W)€ Zeo (f{x /////]

. 7 £ .
a, o - = e~ L . T .
/(7%7[/1)3/2. M ﬂ4//<36‘) j,f/x))f/;)j }97 3)dq
i (55b)
% xe (il
/ Ky (l/;//k), 1) ,cet) du F€[o,11
f{J/' o E C—«oo,) f'(d‘})

/R/ (X - -
.)/7“ A [1()‘/ # /rw-ct;) /4/7/ .7 L}%t/ /(9))d3_!,
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where oty= Zp/dy and ot = M/ M
Equation(55) essentially provides the coupling
between the two diffusion processes, and in
conjunction with the boundary and triple point

conditions

SIN@u + X3 SIN@p =Xy

(56a)
CO5 @, — X3L0s@g = (torque terms)

(56Db)
f(dn-) =.;(J+) (56¢)
-/ /.

f @ =F(1)=0, (56d)

where <3 = 79:/)xs and oy = 22/, /Xy ,
constitutes one of the sought-after equations.

The second equation results from the fact that
equations (56) are in general inconsistent with
respect to equation (55) when the torque term is
specified. This inconsistancy arises because only
second-order derivatives with respect to f(x) appear
in equation (55), thus implying that equations (56a)
and (56b) cannot be prescribed indpendently. Rather,

only one of these conditions can be prescribed a priori;

the remaining condition must be satisfied a posteriori.
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The heretofore undetermined term /4(15¢U) provides
the system with the flexibility necessary to resolve
this inconsistency. Thus, when one of the triple-
point conditions is prescribed,i4(1,u0 can usually
be adjusted in such a way as to assure satisfaction
of the remaining condition. This procedure leads
to an additional relation (henceforth denoted as(x*))
between A(X,w} and the remaining unknowns, thereby
providing the second soughtafter equation.T

The completed system consisting of equations
(9), (26), (28), (33), (45), (50), (51), (55), (56),
and (*) can be simplified somewhat by using equations
(9), (26b), and (28) to eliminate the quantities

(;(z,), 65“ (x), Egﬁ[,@) and (% . Thus, with the
aid of the aforementioned equations, equation (26a)

can be written as

t We have not, as yet, been able to express relation
(*) explicitly for the general case considered here.
However, in the next section it will be shown that

a definitive expression for (*) can be obtained

when several reasonable approximations are made.
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Coo [Jfoc (1- J)ﬁg J fm + CﬁE (7~J‘)63

. 20 (fE)~§15)
f«,/ [0 ()4 (Coo — T) -rfA(j w) e 0/5] df
1 (57)
o 7 - Ze (fe) ~f(31)
+f 7?,}{ [C,6)+ (Cos=ce) 4 |AG W)€ g3 1 9,
.Y o
and equation (33) assumes the form
/o~ 7 pit
-2 ‘}‘(7‘-)"'/;<1(7,§ y1(E); (37, w) 9[5) d;
5»
(33)

* //<; (54020, §G), ) 5,33 =0 (Z3e[e,1])
/

with

J,,(Z) = Cpo — f"“ Coce
Jp +(7- J/P/

7 S o
Yo [ 7, : .~ =X ()~ (F)
17}

(refod))
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“‘('Z)"f‘oa“ﬁé - {C/gg
SR+ (7~ J)j%

7
e e . oy - Rew (f(&) ~f(3])
< j[‘;,(l/ 4  Coo— Crz) + A(j,“)/e AL f / J( ?)dj]}
(recs,11). (58b)

Equations (55), (56), (57), (33), and (*), together

with equations (45), (50), and (51), i.e.,

=7 - /wfﬁi’f}

[ ¢',-; Cee) Hee s
Ao

5“\»3

(obtained from eq.

1
S, (%) 8 + S55(2) [ [ (2,3, (%), #(3)) 5@/77 43
o

-7

4 SaX) | Ky (R 2), ) P, () die + Sy (x) =0
770

and

(59)
(45)),

(50)

_._. -;1) A% +/,éﬁ__7) /kb(v)w)gg(%/ dw

ﬁ 7( ’y

7
_qﬂg;j;x -1 )/ ké‘ (327,/:/5))¢f{5) dj =

{7; ¢ [o,1] }
t,f € C-eo,50d)) J 5
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now form a system of equations (hereafter denoted

as System I) in the unknowns §<'X), Fxr, P (x,

Gaey), Ate,w) | S, and G, . Once these
quantities héve been determined, the bulk temperature
and solute distributions can be calculated from

equations (49) and (32), and the problem is solved.
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4. SOME ASPECTS OF THE BEHAVIOR OF SYSTEM I

Since obtaining solutions to System I is
tantamount to solving the original boundary-value
problem, the remainder of this report will focus
almost exclusively on that task. We begin, in
the first part of this section, by examining the
nature of the torque term in equation (56b), and
utilizing the information thus obtained to quali-
tatively analyze the behavior of the solutions
to System I. In the remaining parts of the section,
several approximations are introduced, which are
then used to develop both a quantitative theory
of the lamellar-rod transition, and a numerically
tractable version of System I.

4.1 A Qualitative Analysis of System I and
Its Implications

4.1.1 The torque at the triple point

As discussed at the end of Section 2,
the results of Hunt and Jackson [8] indicate that
it is possible to maintain a lamellar morphology
over a range of freezing rates for a fixed lamellar
spacing. Because it is difficult to envision a

mechanism by which the crystallographic orientation
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relationship between the two solid phases could
have varied during these experiments, and because
there is a one-to-one relationship between the
relative orientations and the torque at the triple
point, the torque term in equation (56b) will
henceforth be regarded as independent of & for
given values of A and Gs'

4.1.2 A qualitative examination of
System I

A considerable amount of insight into
the behavior of System I can be gained by qualitatively
examining the interaction between the surface energy
and diffusion effects at the a/B/liquid triple point.

It suffices to consider the limiting case
Ao= Ry= #, and ¥ = ¥, = «© . This choice
greatly simplifies the analysis, but in no way effects
its generality. When ‘ﬁu = 75,3 = ﬁ/_ and -’}7“ = ’}'(/3 = 00 |
it follows from equations (50), (51), (57), and (59)
that G, = G, , g, (x) = @ (x) =0, and J is a
known constant. It therefore remains only to examine
the behavior of equations (33), (*), and equation (55)

with ¢;cz/ = @.(x) =0.
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Equation (33) is a linear Fredholm
equation of the second kind with respect to §2007
and it is always possible (at least in theory) to
obtain an explicit solution for é;ﬁt) in terms
of the resolvent kernel. Assuming this were
actually carried out, the resulting expression
for é;CZ) could be substituted into equation (55),

thereby yielding the following equation for (%)

4

R
(7+F72)21%
f P

i

G (%, fo, A w, ) (ke[0,)
(60a)

{//
“ ' ' - 'j: = G (X) 62)/4 X; w . - - - ZCJ 1
1(,7_/7[/2)b73. 73 (B0, Ale,w),w,---) (265 1 ), (60b)

where G1 and G2 are known functionals.

Now suppose that equations (60a) and (60b)
could be explicitly integrated, subject to the

boundary conditions
][ /(y) =0, / ,/(}) = - 7“‘6;'1 ¢, (for equation (60a))
7//(7): ) )/ZJ)‘ 74% @ﬁ ) (for equation (60b))
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Then, it should always be possible to obtain

relations of the form

]

¢ (for equation (60a))

E (3,60, 4,0, )

1

f;(f(J))@/ng;w7"")

o (for equation (60b)),
J

which, upon the elimination of ij7 , can be reduced
to an expression relating &, and Gg , i.e.,

fg(@d;‘@ﬁ//q)a))"—) = 0, (61)

In principle, equations (56a), (56b),
and the requirement that ®. and CDﬁ be independent
of & (again, A and GS are regarded as fixed)
should provide sufficient information to determine
O » Op and A(X,«w ) for any relative orientation
relationship (henceforth denoted by the five-dimensional
vector }f ) for which equations (56a) and (56b) admit to
real solutions. 1Indeed, expanding equation (61) with

respect to 4 about the point < =0 results in
f-3 (@oc) @/,A(k‘)w))w)"‘-) -

F3 (B, 6p, /4[7c)o)) ) 4 Owy=o,
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which can be satisfied by solving Fé(xj)gpﬂ) A(K,G),

tho) = O for A( X, © ) and then adjusting the
higher order terms in A(X ,w ) to ensure that the

0 (W) terms in F3 vanish. Once 'G?%.,<Dﬁ , and
A(Z ,w) have been determined, there should be no
difficulty in completing the solution by obtaining

4 (X)) and E;V(X.) by a simple integration
procedure. Hence, it can be inferred that lamellar
solutions (with A and G regarded as fixed) should
exist as a function of «W in the range ®@&€( 2,0 )
for all values of js corresponding to real values
of the angles @ and @(9 .

All such solutions thus obtained, however,

might not have particularly desirable properties.
For instance, it is shown in Appendix C that the
solutions associated with the preceeding analysis
generally imply that the interfacial solute con;

A
centration, g (x ), is of the form

A )
C ) = €,(N) + ce +Qtw)

where

'/Zlhm» g(A)= const. (planar interface 1limit)
A—> 00

59

(62a)

(62b)

gITITSSYIOND



and .
A ey = oo,
A0 (62¢)
But equation (62b) implies that é,(k:) # g as >0

and A ~» oo (the planar interface equilibrium 1limit),

which is clearly undesirable because é;(/t) should

equal <z in this limit. Moreover, equation (62c¢c)

implies that lamellar solutions are possible only

when A > X where ANy, 1is the value of A

Min 1
such that ¢, # [0,1]. This, again, is bothersome
because it is reasonable to expect that, under certain
conditions, lamellar solutions should be possible for

arbitrarily small values of A . Hence, it appears

that a restriction of the form

A —~ . : 2w (JF) -S43
S(2) = )+ Co +////j,we G ! 43

(63)
= ":g + 0((0)

should be imposed on the solutions to System I.
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Inclusion of the above restriction
necessitates a modification of the preceeding
analysis, because, as will be shown in Section 4.2,
the result of applying equation (63) is to preset
the term A(X,0).

Rather than expand Fg in equation (61)

about the point &« = @ | let us now expand F

3
about some point a%@w , where ¢, .., is in general

a function of fi . The resulting expression, i.e.,

Fa(@x,p Alxw) w,---) =

F3 (@”«J @/"’u /4(}{7‘.‘)15":;)7 oo ) + 0(0‘)"'“&’9&0) =d

(which, by the way, is precisely that (*) relation
mentioned in Section 3.3), can be satisfied by
solving F( @« , @, AX, 840), - -- )= O for <&, .
and A(X, Wy, ) such that equation (63) is satisfied,
and then adjusting the higher order terms in A( X ,w)
in such a way as to make the O ( ﬁJ-'“ﬁﬂq) terms

in F3 vanish. It then follows by reasoning similar
to that empléyed in the previous analysis that

lamellar solutions, parametized with respect to 77

should exist for &> in the range (wy

oty 1 O ) for
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all values of jg which correspond to real values

of ©®. and C%.f
Finally, reference should be made to the

end of Section 2,where it was mentioned that
lamellar freezing generally proceeds at a rate
which is uniquely related to the lamellar spacing.
This fact implies that the system selects an
operating point, QJ%, , which is a function of

A, G, and d . Hence, as a practical matter,
we need only be concerned with solutions to System I
for which &y, < Won -

4.1.3 The implications of the analysis

The results just discussed have some
interesting physical implications. For instance,
in view of these considerations, the following three
modes of behavior are possible in binary eutectic
alloy systems:

Case 1. 0y .0 7qu:for all values of A
G., £ , and volume fraction, d . This is the
case in which lamellar growth is never possible,

and is most likely realized in systems which

exhibit "abnormal' microstructures.

T The quantity wyes, could conceivably be infinite,
in which case it is simply impossible to satisfy

the (*) relation.
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Case 2. Wrow < W, for all values of

— 4
and J . This is the case in which

A Gs’ Ei ’
lamellar growth is always possible.

Case 3. Wy , = Woep for some values
of A Gs’-E:’ and J . This case is frequently
encountered in systems capable of cooperative
growth. 1In these systems, the occurrence of
lamellar growth is favored by either high G/V
ratios or volume fractions sufficiently close
to 0.5. When these conditions are not met, a
rod-1like morphology is usually observed.

Given the required thermodynamic and
transport data, the theory should yield quantitative
results regarding these modes of behavior for any
non-faceting eutectic system.

As a final remark, it should be mentioned
that there is reason to believe that &/, is a
very sensitive function of ¥ |, particularly when
the system operates near a cusp in a generalized

22? - plot. If this is indeed the case, then
it ﬁay be inferred that the range of admissible

orientation relationships during lamellar growth

(i.e. those values of f for which </, < “"o",’ )
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is quite limited. This result is in accord with
the majority of experimental observations.

4.2 Asymptotic Estimates as &) —> O

In order to proceed further, it is necessary
to have available certain asymptotic estimates
for System I as & —=> ©

With the aid of equation (63), the required
estimates may be ascertained in a relatively
straightforward manner. Thus, substituting equation

(63) into equations (55), (57), and (58) gives

o (x) N VAR fUR P
(‘7f]{/1-):5/}-w yza B H- /Kj{X)?//[I/,//?7)%/2)(/(&4)
o

- o

;
*}7 P Ry (%, {0, u) &, (a) e + Ow) #3011

. b
{”z”d) u & (~oo,4(d))
where ~
1, Xelo§)
(X)) =

o, Ye (S0 7 (65)
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S = Ol ,
where

= : — — 3 (66)
f{g (Che — Con) —fﬁ (Coo—Corg)

and

foo C«f;_‘.‘ +4 Olw) (A<[0,4))

%. 4-(7'-,/‘)1’/[3 (67a)

S = o —

(67b)
S, W= Cw— SBPE__ L0G)  (XeCiAD),

Pt (1-J)fn

Also, (1) expanding the kernels in equation (33) in a

Taylor series with respect to & , i.e.,

Ky(Z,3,4(2),1G),w) = C; (1,77,/&,;/}(5 XYY (682)

and

Ka(23./0,ftg),w) = @ C (3, 4(2), 13) + D03?) , (68p)
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where

SiyhT ({(x)-§(3) = Tapn 6(3) <) Sur(m; )

A [coshir (§2) - f(3) = cosm(2+3) ]

C, (X%3,4(2),437) =

: - . 69
4+ TanOG) S (Z-7) 1 Sk (J2)- §&)) 9

4 [coste (fre) - f(30) = cosr(r-3)]

+ 1
Z

and

Co (3400, #(31) = - 2—’7{ A7 [2eoshn (F8)-§(3) - 2c05ir(7-3) ]

+ n[2 coshm (f(x)-4(3)) - Z cosg(Xt3) ]} (70)
- (£ - £3),

and'(2) utilizing equations (63)-(65) along with the

relations

oo o Coe (1T 'C(szf(o’g— Cur g,
J*ﬁf 4-(7—'(f¥-)f(3 J'kﬁ( +(7“J*)f6 (71a)
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and

- fé (.%6,'5____,_,__ - __J’k géﬁ“f/z-‘ Cor fru (71b)
St CTINfp I+ (-5

Pg
gives for C, () (via a perturbation analysis of

equation (33)):

C - » y
G = [ LfE ] ) a)+0w?), (72)
/xfx + (14 *)f/;

where Qif(%) is the solution to the equation

1
2 X/ 5 ’ 54 ) ) s
~ X LI 3.0, 151) Xz 23

4 (73)

J
4-(7';/*)/5: #030,7(3)) 43 J/C’ (%3, §%),4(3)) 5
&
= 0,

Finally, an explicit statement of the
restriction on A(X«w) mentioned in Section 4.1.2 may

be obtained by substituting equation (72) into
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equation (63) and taking the limit as @ > O

Thus, A( X, ) must always satisfy the constraint

7
[’4/310) dj = g~ Coo

(74)

4.3 On the Existence or Nonexistence of
Solutions to System I for «,., =@

In order to gain additional insight into the
behavior of System I, it is worthwhile to examine
the constraints at the triple point for a class of
solutions for which specific results can be obtained
by relatively elementary methods; namely the
solutions corresponding to “«W,,,6 = ¢ for
B - Fop = R,

It will be assumed that a particular orientation
E? can always be selected such that equation (56b)
is satisfied. Therefore, the problem is to determine
the conditions under which the constraints on the
triple-point angles due to diffusion effects are
compatible with the requirements of equation (56a).

It is evident from the discussion in Section 4.1.2
that we need only investigate the 0(1l) (with respect

to w ) terms in System I, because once compatibility

is attained to 0(1), it can be maintained to any
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order simply by adjusting the higher order terms
in A(CX,w).

When fw = ’7@/5 = ﬁ,c_ , it follows from the
considerations discussed in Section 4.1.2 that
¢, = QD; = 0 and G, = G, = G. Moreover,
setting ¢/ = © in equations (66) and (72) results
in f = 4% and Cx) =0 . Hence, it

remains only to consider the limiting form of

equation (64) with w = @, = ¢, = ¢ , i.e.,
4
(W’i/t)—g/} - /é (Fe[od)) (75a)
and
. i” _ 4 . ‘
I (T44'2)% 1 (re 1), (75b)

and, in particular, implement a procedure similar
to that described in Section 4.1.2 to obtain

S
explicit expressioq{for the triple-point angles.

4.3.1 Integration of equation (75) for
large values of /<

When the parameter, /M , is sufficiently

large, it can be shown that

() 27 max [ #(2) -{(5)] ,
[, 7]
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which implies that

J 1
/f(?)d; = Jf(J] and /7:/7)4; = (1-4) &) (78)
° %

With the aid of equations (76), the relation

"‘7’;——"" = f fd-sme
(7_/_][/3-)7/‘9- d)( (,/f,j(lﬂ-)f/}) C/Z'f

and the boundary conditions £ (0) = 7(:/(1)—_- o

4

equations (75a) and (75b) can now be integrated
out from the triple point to their respective
end-points in a routine manner, thereby providing

the following expressions for &, and C%s in

terms of } {d):

Sin @ = ‘._‘_/_Z{_[-J—) (772)
y22
and
- —(1-4)£(d)
St G = pa £ . (77Db)
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Eliminating #(4) from equations (77) then gives
o dsin & - (1-J)5inB), =o,

which, when combined with equation (56a), yields

the following expressions for . and &

Sin Gy = KrX4(22

Lgd +0c3 (1-J)

and

, Ay (§)(T-d)
Sl'h/@ﬁ = L d + oy (7-4)

Equations (79) provide the required angles;
however, it soon becomes apparent that certain
conditions must be met in order for the values of
S @, and sin @p to be less than unity. For
example, if o¢1 is set equal to unity (this will be
shown in Section 5 to be reasonable approximation
for most systems), then a little algebra reveals
that:

1. 1f [ (E) ~*3| Z 1, then
sin @, and S/u.CQﬂ , as given by equation (79),

can never be less than unity.
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2. 1f 104(8)-«3[< 1 | then
S O and Siw @p can be less than unity only
when Je [Jj/ow’ J“’P _( )
where
o Ij o3 Z (%)
é{ = . (80a)
o) LB %3 g ks £ &alE)

7+‘ K¢ C%) - “-3
and ) : <

1 ¥ oy (£) =1

Ay (E) + ks =T

and where J,Lowe [0,0.5] and ‘;“f’ e Les, 1],

The nonexistence condition {4 -3z = 1
is not particularly interesting and merely
represents a condition under which equation (56a)
(and hence the triple-point equilibrium conditions)
can never be satisfied. On the other hand, the

second condition essentially states that even when
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it is possible to attain triple-point equilibrium,
solutions to System I
corresponding to ‘Qﬁbw = 0 may not exist for large
values of e if the volume fraction deviates
sufficiently far from a value of 0.5. This
condition has interesting physical ramifications
which will be considered shortly.

As a final item, it should be mentioned that
the results just obtained are asymptotically
valid even when R # %,4 # 7€e , because the
terms involving ¢1 and ¢2 in equation (64) approach
zero as J¢ becomes large.

4.3.2 Integration of equation (75) for
arbitrary values of;po

When the magnitude of 4C is arbitrary,
equations (75a) and (75b) can still be reduced
to quadratures; however the procedure is considerably
more involved than that for large values of xc¢
Without going into details, it can be
shown (e.g., ref [10]) that when equations (75)
are integrated out from the triple point to their
respective end-points (with o<, = 1), the following
egpressions are obtained for (. and (23 in terms

of £f(J ):
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% .
J:. (1-F,/2) %‘f [K(%)—F(a,“'@ﬂ)]

~ Z
(81a)
o A .
- % [E(F)- E(5 , T3%) ]
and
- = - > Y Z '
1-5 = (1 ?ﬂz)z%’[/«g;)—/-‘(%%@wj
(81b)
— IpPra, ;
5 [E(5) -£(5,,7:8)] ,
where
§= Ape/ (et fH0 -2 (105 9)), (82)

A
and where K, E, F, and E denote the complete and
incomplete elliptic integrals of first and second

kinds, respectively. Equations (81l) comprise a
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system of two equations in the three unknowns f(J),
@« , and @g, and upon elimination of f£(J ) yield
a relation (henceforth denoted as (+ )) between

@« and @(3 . It remains to investi-ate the

system composed of relation (+ ) and equation (56a),
and, in particular, determine the conditions under
which real solutions are possible.

It is possible to derive closed-form
asymptotic expressions for (# ) in the limits of
high and low values of Jf¢ . Thus, with the aid
of certain elementary properties of the elliptic
integrals, it may be shown that @, = C}g as j > 0.
Moreover, as jt—>o0, (1) is simply given by
equation (78). For the intermediate valuesof iL
however, (+ ) must be evaluated numerically.

Relation (t) has been evaluated as a
function of A4 for a range of d values. Some
typical results are shown in Fig. 4 for ) = 0.45
and 0.55, and in Fig. 5 for J = 0.35 and 0.65.

The quantities (Dma and cjmi are the inter-

J. n.
face slope angles at the triple point in the

majority and minority phase, respectively, i.e.,
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Q for 4< 0.5

I

‘éymin.
@Pfor Jd> 0.5

and

@ﬂfor §< 0.5

[}

C)maj.
Qfor J> 0.5,

Also shown in Figs. 4 and 5 is a hypothetical
version of equation (56a) with 0£3 = 1 and oé4 =1.7.
Obviously, real solutions are possible for a
specified value of j¢ only if the curve corresponding
to the (1) relation (the (1) curve) intersects the
curve corresponding to equation (56a) (the Y-curve).
The conditions which determine whether
or not the (1) and Y-curves intersect are readily
ascertained. As before, the case in which
|4 (5) —tal > 1T can be immediately discounted,
because equation (56a) can never be satisfied for
any value of f¢ . When [oq(F)-x3(< 1, there
are two possibilities:
1. If o4(%)< 1 and «3 = %4 (%),

then by equations (80), real solutions to equations
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Fig. 4 — The triple point angle ®,,.; as a function of E;: _
©®min. as predicted by the (}) relation (the numbered) & $IN Bpgj+ SIN Bryin =1.7
curves, and as predicted by a hypothetical version of asr
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" v 8:0.35,065
[ nu=00
- 2102
L 3pcl0
i Ay =0
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(56a) and (1) exist for large values of x for all
values of J in the range [0,1]. Moreover,since

the (1) curves corresponding to /= 0 and f& = 9°
form the upper and lower bounds of an envelope
within which all (%) curves must lie, real solutions
exist for all valuesof g for J€ [0,1].

2. If either o4 (%) = 1 or oty < 44 (%),
then real solutions exist for all values of Y az only
for a resfricted range of 4 values, i.e.,

J € [J-low , J""P ], where d,, and Juf are given

by equation (80). If d lies outside this range,
ie.,d& [ dy, » Sip ], then real solutions exist

only when /¢ is less than some maximum value, f(’max'
The cases for which J€ [ Js, J“‘P ] and

S € [ $0n J“F] are illustrated in Figs. 4 and 5,
respectively.

The values of [« for any admissible

max .’

version of equation (56a), may be obtained as a

function of 4 by a simple graphical procedure.

Thus, denoting the value of @min at which
A A
©) maj. = T/2 by @min. (e gxin. for a (1)
A
curve and ijin. for a Y-curve), @7T.
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for a given value of J may be plotted as a
function of A , and A oax found by locating
the point of intersection of the & %in curve

with the horizontal line

Sl"‘!b_f[o(q,(f)’vég 1 3 for- 5<O,5")

—

oM

4’(1)(, v - . o
s [E) =T T for 8 7o5,
3

A
R .
Plots of @ min. 25 @ function of fe are presented
in Fig. 6 for 0.2 £ J £ 0.8 in increments of 0.05.

4.3.3 A physical interpretation of the results

The discussions in Sections 4.3.1 and 4.3.2
were exclusively concerned with the solutions to
System I corresponding to 4/y = 0. However,
if “%P
results derived therein should also furnish reasonable

is sufficiently small, then the nonexistance

approximations to the conditions pertaining to the
nonexistence of all solutions to System I for which

g, 10, Wop 1. Assuming this to be the case, and
assuming that the relative orientation, % , does

not change appreciably with J or 4 (so that x ,(Z)

can be taken as a constant), the aforementioned
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A
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1.8 =0.45,0.55
2.8 =0.40,0.60
3.8 =0.35,0.65
4.8 =0.30,0.70
5.8 =0.25,0.75
6.8 =0.20,0.80

1

Fig. 6 — The quantity 6 } .

as a function of u for a range of & values
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results, in conjunction with the experimentally
observed relation V,\z = constant (this implies
that gL oc V/G), then lead to the following
predictions:

1. In systems for which |&4—-4l<1,
o®y« 1 5 and oy Z &, , lamellar solutions
which satisfy equation (63) are possible for all
values of G/V and all volume phase fractions.

2. In systems for which [oq-agj21,
and either oLy >1 or o3 <« , lamellar solutions
which satisfy equation (63) are possible for all
values of G/V only when the volume fraction lies
in the interval [of( , J‘,,f, ], where &zwand Jaf
are given by equations (80). When the volume
fraction lies outside this range, then lamellar
solutions are possible only when G/V is greater than
some critical value, (G/V)C. Moreover, the value
of (G/V)c increases as the volume fraction approaches
zero or unity.

The theoretical predictionsrelating to
the impossibility of maintaining a lamellar
morphology are in accord with a number of experimental
observations of the lamellar-rod transition, e.g.,

refs. [11,12]. Hence, it is likely that this

81

GITITSSYTIOND



transition is simply a physical mainifestation of
the aforementioned theoretical prediction. If
indeed this is the case, then the results presented
in this section in effect constitute an approximate
theory of the lamellar-rod transition.

4.4 An Approximate Version of System I

4.4.1 The approximate equations

The task of obtaining solutions to

System I is computationally formidable; hence,
it is reasonable to seek approximations which
will simplify the equations, and yet leave the
fundamental nature of the solutions unaltered.
In this spirit we now invoke the following
approximations and assumptions:

1. The solute diffusion length is
large compared to the lamellar spacing. This
condition, which implies that w<<1 | is
satisfied in the majority of experimental situations.

2. The solid-liquid interface is
approximately isothermal. This condition,
which implies that /¢ is large, is also frequently

satisfied experimentally.
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3. The nominal composition, Ceo,
sufficiently close to the eutectic composition,

c so as to permit a certain term in the expression

E’
for %}(x) to be safely neglected.

4. The value of Q#,is small, which
implies that the behavior of System I is essentially
characterized by the solution corresponding to
W = 0.

5. The system can always adjust the
triple-point torque (by selecting a suitable
orientation relationship) so as to assure satisfaction
of equation (56b) when J€ [ duows , dup ].

To derive the approximate equations,
we first take note that the O(4 ) term in equation
(65) and the 0(&/2) term in equation (72) may be
neglected as & Dbecomes small with respect to

unity. This leads to the following approximate

expressions for 4 and %;(x):

J':.J'k - fffs"Qw)i%
(3 (pr~ Coo) +fu(Cn™ o)

(66)

and

Cx)= WA, g¥xy, (83)
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where ql*(x) (henceforth referred to as the reduced

interface concentration) satisfies equation (73) and

A = o7 Ceefe
-0

(84)

An approximate expression for Qp(x) can
be obtained with the aid of equation (83). Thus,
substituting equation (83) into equation (63),

expanding the term
4
~A () —H:
JAtgme “GIIV 45
o

with respect to &), invoking equation (74),; and
neglecting terms of O(aiz) gives

é(x) = wh; &) +B, 1 + ce
1 (85)

_ 2w /;4_/;,0; (#10)-#(31) /3 »

(4

where B1 has no explicit W dependence and is
a priori unknown.

Equation (85), together with the condition
that the parameterlﬁé be large, can now be employed

to obtain a simplified form of equation (55). It
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is permissible to neglect the terms involving }él
and ¢2 in equation (55) because, as mentioned at
the end of Section 4.3.1, these terms approach
zero as M gets large. Therefore, if the term
A(7,0) 1is taken to be proportional to Cg-Ce
(this choice is consistent with equation (74)),
and if it is assumed that ¢, is sufficiently
close to cp to permit the term involving A(%,0)
in equation (85) to be safely neglected, then

substitution of equation (85) into equation (55)

(with 0(1 = 1) results in

E// .
-z - Z?[g;*(zMB.,] (xe]o,4))

()P

f”
- L . -ﬁ?[(;*fz)m,] (zedd,11)

?;;f/z)@@' P )

where

‘}P':: W«(Z/Lz)(,é_sﬁ’c A .
20, N\, /7T
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Finally, an explicit expression for B1
can be derived by employing the condition that
@« and @g must be independent of &/ (and therefore
1?' ) and using a procedure similar to that used
in Sections 4.1.2 and 4.3.1. Thus, with the aid
of the approximations used in Section 4.3.1,
equations (86a) and (86b) can be integrated out
from the triple point to their respective end-

point to give

Sin @y = ‘:ééng “ ZD—(j:m'*f31cf)

and

S/n @ = ‘,i‘_g)(/-,/) +05, U(Zp+B,(1-5)),

where
d
Tw= [a*pdy
0

and

7
74 = / @)y
/
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Eliminating £(dJd ) from equation (88)then yields the
relation

Ssin@p = (T-F) 5 Ox

= W[, dTy+(1-5)Tu+ (X2t 1) § (7-/)B; ],
But @ and @g can only be independent of ¥
if the righthand side of equation (90) vanishes
(recall that azw==¥am,= 0). Hence, this implies

that

. _ (#42d Ty +(1-/) I, )
- ?
(et +1)F(7-4)

B

1

and, moreover, that

J x5 (1-4)
and
. oy (T-
Stw@y = f( D,
d+o3(7-J)

where equations (92) follow from equation (90) with

the righthand side equal to zero and equation (56a).

Equations (73), (86), and (91), together

with the boundary conditions
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flor =0 =0
F(I) =TenBu

F () ==12n 85

are the soughtafter equations, and comprise a
system of three equations (hencefore denoted as
System II) for the quantities q,*(x), £(X ), and
B1 in terms of the parameters /< and % and the
known quantities ¢¢; (i=17,---4) and & . Once
f(X) has been obtained, ¢i(x), ¢2(y), and G,
can be found, if desired, by solving equations
(50) and (51) for ¢1 and‘¢2 and substituting

the results into equation (59) to obtain G, .

4.4.2 An important property of System II

Before concluding this section, it should
be pointed out that the solutions of System II are
essentially independent of/é. To see why this
is so, consider equation (86) and assume that
c* (x) is independent of /¢ . Thenbecause O ,

Op » £(d )/ , and B; are independent of 4¢ by
equations (88), (91), and (92), and because

f(J)/,a. = f(x)/fe , the relation

Vs
_,_,.:/___ = —j 5/‘}(/9

(T472)3 1
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implies that f(x) is independent of f£ to within
a constant vertical displacement. But the
kernels Cy and Co in equation (73) are not functions
of /£ , and, moreover, are invarient with respect
to a constant vertical displacement in f{x). There-
fore, ql*(x) is indeed independent of yZ A and it
follows that the solutions to System II (to
within a constant vertical shift in f(x)) are
functions of the parameter ]?' alone.

The fact that the solutions depend
only on ¥ 1leads to an interesting prediction;
namely, that the use of virtually any subsidiary
condition for the selection of the system operating
point must lead to a relation of the form

V,\ﬂ‘ = const.,

where the constant does not depend on the thermal
gradient. This result is in accord with the

majority of experimental observations.
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5. NUMERICAL RESULTS AND COMPARISON WITH
EXPERIMENTAL DATA

Having completed the theoretical analysis,
it remains to develop and implement a numerical
solution, and compare the resulting predictions
with experimental data.

5.1 Numerical Procedures and Results

5.1.1 A procedure for solving System II

A combination iteration and bootstrap
procedure proves effective in obtaining numerical
solutions to System II as a function of the
parameter ¥ . To implement this procedure, a
step size AY is specified, ¥ is set equal to
A'@7 , and an initial guess (iterate 1) for f(x)
is obtained by solving equation (86) with 19‘ = 0.

Next, the kernels C. and C, in equation (73) are

1 2
evaluated using the initial guess for f(x) and
equation (73) is solved for c*(x). This
estimate for c,*(x) is then inserted into
equations (91) and (86), and equation (86) is
resolved with P =A@ to obtain an improved
estimate for f(x) (iterate 2). The kernels Cy

and C, are then re-evaluated using the updated

2
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estimate for f(x), and the process is repeated
until either convergence is obtained (to within

a specified tolerance) or until a specified

upper hound on the number of iterations is reached.
Upon .completion of the iteration process, 1?‘ is
set equal to 2A ¥ and the iteration procedure

is repeated taking the last known f(x) as the

initial guess. In this way, f(x), *(x), and B

Ce 1
are ascertained as a function of P until a
specified limit @Zq,is reached, at which point
the calculation is terminated.

A computer program was written to
implement the iteration/bootstrap procedure.
Equation (86) was solved each time by using a
self-starting fifth-order predictor-corrector
scheme with an automatic step-size selector to
integrate each of the equations out from the
triple point. The starting values of f and &,
i.e., the values of these quantities at the
triple point, were obtained in each case from
equations (88), (91), and (92)

To solve equation (73), an approximate matrix rep-

resentation was formulated by replacing the integral containing
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C1 by a trapezoidal quadrature and those containing

Cz by a quadrature based on product integration

(the latter being necessary to properly treat

the logarithmic singularity in Cz). The relation

[ F®) 1 @zor

4T O 2) A

Anm (2 = 1
g5/, £63))
3% & £ 4L ey O
27 (7% 7))

-

was used to evaluate the kernel, Cl’ at the points
3} = x. The matrix approximation procedure resulted
in a system of linear algebraic equations for the
values of qI*(x) at the quadrature points which

was then solved by standard techniques; 'a

listing of the program and the accompanying

documentation is presented in Appendix D.

5.1.2 Validation of the numerical procedures

Because the accuracy of the solutions to
System II depends critically on the accuracy of the
computed values of q}*(x), it was deemed necessary

to check the convergence of the scheme used to

92



solve equation (73) before implementing the entire

iteration/bootstrap procedure. Thus, equation (73)

was suécessively solved using a 32, 64, and 128

point quadrature. The volume phase fraction was

chosen as 0.5 and C1 and C2 were evaluated using

as f(x) the solution to equation (86) with P = 0,
443 = 0.6218, and <, = 1.3. The values of C *(x)

obtained 1in each case are displayed in Table 1.

As can be seen from this table, the convergence

is excellent with four-figure agreement achieved

in most cases.

Having established the convergence of
the interfacial solute concentration calculations,
the convergence of the iteration procedure was
checked by observing the results of foﬁr iterations
starting at ¥ = 0.5 and increasing ¥ in steps
of 0.5. The values of f-f(dJ ) obtained after
each iteration for J = 0.5, ¥ = 1.0, o, = 3.855,
o 5 = 0.6218, and 064 = 1.3 are shown in Table 2.

The first iterate represents the
interface shape obtained from the final results

of the iteration procedure for ¥ = 0.5. Subsequent

iterations were obtained by solving equation (86)
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with ¥ = 1.0, with c,*(x) determined from the
solution of equation (73), and with C1 and C2
evaluated using the interface shape as determined
from the previous iteration. As can be seen

from the table, convergence is rapid, with four-
figure agreement achieved by the fourth iteration.
Similar results are displayed in Table 3 for

@ = 3.0, where comparable convergence rates
are attained.

Finally, it should be mentioned that
additional calculations of this type were performed
with several other values taken for the ¥ -step.
The rate of convergence of the iteration procedure
was found to be relatively insensitive to the
particular value chosen.

5.1.3 Sensitivity of the solution of

equation (73) to interface shape

changes and comparison to the
Jackson-Hunt solution

Jackson and Hunt [2] obtained solutions
to equation (1) which satisfy conditions (4)-(6),
(9), and (11) correctly to O(&) for the special
case f(x) = const., i.e., a flat interface.

Since their solution is widely employed in
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TABLE 1

Convergence Check on the Solution to Equation (73)t

throughout Tables 1-3.

95

J=0.5 ¥=0 o/ =1.0 & =0.6218 o, = 1.3
32-Point 64-Point 128 -Point
Quadrature Quadrature Quadrature
X c¥ c% qj
0.0003E+00 2.9587E-01 2.9591E-01 2.9602E-01
3..1250E-02 2.9387E-01 2.2392E-01 2.9391E-01
6 .2500E-02 2.9066E-01 2.2064E-01 2.9062E-01
9.3750E-02 2.8529E-01 2.,.8526 E-01 2.8523E-01
1.2500E-01 2.7769E-01 2.7765E-01 2.7762E-01
1.5625E-01 2.6781E-01 2.8777E-01 2.67748-01
1.8750E-01 2.5552E-01 2,.5548E-01 2 .5544E-01
2.1875E-01 Z2.4071E-01 2.4066 E-01 2.4062E-01
2.5000E-01 2.2337E-01 2.2332E-01 2.2328E-01
2.8125E-01 . 2.0344E-01 2.0339E-01 2.0334E-01
3.1250E-01 1.8065E-01 1.8052E-01 1.8053E-01
3.4375E-01 . 1.5481E-01 1.5473E-01 1 .54G7E-01
3.750CE-01 . 1.2656E-01 1.25847E-01 1.2640E-01
4,0625E-01 9.550G2E-02 9.5381E-02 9.5280E-02
4 .3750E-01 G .2465E-02 6.2273E-02 6.2114E-02
4 ,6875E-01 2.9575E-02 2.8898E-02 2.85630E-02
5.0000E-01 1.0C805E-06 1.7434E-06 2.7615E-06
5.0000E-01 1.0805E-06 1,7434E-06 2.7615E-06
5.3125E-01 ~2.9571 E-02 -2 .8990E-02 ~2.8617E-02
5.6250E-01 -6 .2461 E-02 -6 .2265E-02 -6 .2101E-02
5.9375E-01 ~9.5497 E-02 -9 .5373E-02 ~9.5267E-02
6 .2500E-01 ~1.2656 E-01 -1.26468-01 -1.2638E-01
6.5625E-01 ~1.5480E-01 ~1.5472E-01 -1.5466 E-01
6 .8750E-01 -1.8064 E-01 -1.8058E.01 ~1.8052E-01
7.1875E-01 ~2.0344E-01 ~2,0338E-01 ~2.0333E-01
7 .5000E-01 -2.,2337E-01 -2.2331E-01 -2.,2327E-01
7.8125E-01 -2 .4070E-01 -2 .4065E-01 -2.4061 E01
8.1250E-01 -2 .5552 E-01 -2.5547E-01 -2.5543E-01
8.4375E-01 -2 .,6780E-01 -2.6775 E-01 -2.6772E-01
8.7500E-01 -2 .7768E-01 ~2.7764E-01 -2 .776 0E-01
9.0625E-01 -2.8528E-01 ~2.8525E-01 ~2,8522 E-01
9.3750E-01 -2 ,9065E-.01 -2 .8063E-01 -2,9060E-01
9.6875E-01 ~2.9386 E-01 -2 .9391E-01 -2 ,9389 E-01
1.0000E+00 -2.6586 E-01 -2.,95%0E-01 -2.9601 E-01
. + _ + nn .
+ An E-type format, i.e. @E X nn = &X10 , is used
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TABLE 2

Interation Convergence Check for y? =1.0
«; = 1.0, o, =3.855 o5 =0.6218, o¢, = 1.3, J = 0.5
Iterate 1 Iterate 2 Interate 3 Iterate 4
X £-£(d ) f-£(4 ) f-£(d) f-£(Jd)
«NOO0E-00 WP4T1F+00 JPUPPF 400 «2420FE 400 «2420F+00
c31P5F -0 PHEPE+N0 » P413F+00 «P411F+ND W P411F+N0
A2E0F -0 WPL43RF40DN «?3RGF+0DN +P3RAF 400 «23RAFE+N0
c9375F-0) .?39RE4+00 LP351F+00 P349F+00 «2349F+00
L1250F+00 P3GRF+00 SP29TF+00 «2296F4+00 «2PB6F+00
s1563F+00 s2271E4+00 JPPPRFE40D W2227E+00 W22PTF+00
C1R7GF 40N «21R3E+00 »2143F 00 «2142F 400 «2142F 400
«21RRF 4NN 2NTARF+0N «2041F+00 «2038F+00 «2033F+00
SPSN0F 400 «1954F +00 «1920F+00 «1919F+00 +1919F+00
«?R13F+00 «1810F+00 L17RIF+00 JITROE+ND J1780F+00
<3125E+00 C1H4EF+00 C1620F+00 «1619F+n0 L1619F+00
«3438F+00 «1456F+00 «1435F+00 «1435F+00 «1435F+0n0
«3750F+0N J1240F+00 L 1225F+N0 «1224F+00 J1224F+00
JANERF 4NN «9937F~01 «9R3IF-01 «98720F-01 «93829F~01
«437EF 4NN 7111F=01 L 7085F=0] « 7T052E=-01 . 7052F=01
JHHRRE 4NN «3R41F=-01 «3824F =01 3R23F =01 3RPIF=0]
«S0N0F+0N o0 .0 oN .0
«5000F+0N N o0 o0 o0
«5313F+00 «3793FE=-0] e 3729F=-01 «3727FE=N1 W37P7F=-01
cEH25F 4NN «AOBAF=N] «BHT56F =01 ATEPE=-0] W6TSPE=0]
.5938F+NN «9657F-01 «9287F =01 «92B1F=-01 «9PR1IF=-N1
AP2H0F 4NN «1198F+00 <1144F+00 «1143F+00 J1143F+00
«HGHIFNN L1400FE+00 .1329F+00 «1328F4+00 <132RF+00
+HARTGEF+00 +1GTAF+00 L14R2FE+N0 <J4BRTF+00 J1487FE4+00
LT1RRF+0D «172GF+00 L1625F+00 «1624F+00 e 1624F+00
sT5ONF 400 «1862F+00 L1743F+00 «1747F+00 J1747FE400
S 7R13F 4NN «1975F+00 c1R44F+00 1843F+00 L1R43FE+00
SR125F 40N L2NT2F+00 .1929F+0n0 ¢ 1928F+00 «1928E+00
JR4ZAF+ON «2153F+00 «P00NF+NN «199RF+00 .1999F+00
L L R7BOF+0N LPPIRF 400 PNSTE+DD «2085F+00 «2NSSE+00
L9NAF 4NN W PPRAF4N0 227101F+00 «2099F+n0 .2099F+n0
LO83T75F+NN «?304F+00 .2132F+00 «2131F+00 «?131F+00 -
«OARRAF +NN 2327F400 P2151F+00 «215NF+00 «2150F+0¢
«1000F+01 «2335F+N0 «21839F+00 «2158F+00N P158F+00
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TABLE 3
Iteration Convergence Check for 70 = 3.0
oc‘l = 1.0, c(z = 3.855, 063- = 0.6218, 064 = 1.3, d = 0.5
Iterate 1 Iterate 2 Iterate 3 Iterate 4
x £-£(J) £-£(d ) £-£(4 ) f-f ()

.0 «?P65F+00 «2216F+00 e 2213F+00 «2213F+00
«3125F-01 «2257E+00 «220RE+00 «2205E+00 «27208E+00
«A?250F-01 «2236F+00 «?18RE+00 «2185F+00 «2185F+00
«9375F =01 «P201F+00 «2158E+00 «2152F+00 «2162F+00
«1250F+0N «2153F+00 «2109E+00 «2106F+00 «P1D6F+00
«1563F+0n0 «2091F+00 «2049F+00 «2046FE+00 «204AF+00
«1878F +00 «2N15F+00 «197SE+0N «1972E+00 «1972F+00
«2188F+00 «1922€E+00 «188AFE+00 «1BR3E+00 «1883F+00
«2500F+00 «1814F+00 «1781E+00 «1778F+00 J177RE+00
«2813F+00 «1687F+00 «1658F+00 « 1656E+00 +1655F+00
«3125F+00 «1540F+00 «1515F+00 «1513F+00 «1513E+00
+3438F+00 «1370F+00 «1350E+00 «1349F+0n0 «1349F+00
«375NF+00 «1175F+00 «1160F+00 «1159F+00 L1159E+00
«4063F+00 «94098F~0n1 «9396F~-n1 «93R87F=-01 «9387€-01
«4375F +00 «6871E-01 «6815F-01 «6810E-01 -26809F=-01
«46BRF 4N «3765F=01 L3747F-01 «3746F=-01 L3T4RE=-01

«S000F+00 0 0 o0 0

«5000F +00 o0 o0 o0 o0
«5313F+00 «3536FE=-01 « 3478F-01 e 34T4F =01 e 34T74F=01
«562GF+00N «A177F=-01 «A00RE=-01 «59095F~-01 «5994F =01
«5938F+00 «R254F-01 « 7955F~-01 e 71932F~01 « 71931E-01
«H2ENF+00 «992GF =01 «94G2E-01 - «9460FE-01 «945RF=~01
«ASHAIE+NN «1130F+00 «1072E+00 «1068F+00 +106RF+N0
«ABTEF+00 «1243E+00 «1171F+00 «1166F+00N J1166F+00
« 7T188F+00 «1336F+00 «1251E+400 «1245F+00 « 1245F+00
«T500F+00 «1412F+00 «1315F+00 «1308F+00 . 130RFE+00
«TR13FE+00 «1478F+00 W 13AAF+00 +1358F+00 «1358F+00
«R125F+00 «1526F+00 «1406E+00 «1398F+00 «1397F+00
«R43RE+N0 J1567E+00 <1437E+00 1429F+00 J1428F+00
«BTS50F+0N «1599F+00 e1461F+0C e 1452F+00 «1452FE+00
«9063F+00 «1623F+00 «1479FE+0C «14T0F+00 . 1469F+00
«9375F+00 «1640F+00 e 14972F+0(C «1482F+00 «1481F+00
«9688F+N( «1651F+00 « 149GF +0(C «1490F+00 s 148BGF+00
+1000F+01 «1655F+00 «1503E+00 .1493F+00 »1492F+00
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theoretical and experimental studies of eutectic
solidification, it was deemed necessary to assess
the effect of interface curvature (nlgj.

An investigation of this effect was carried
out by solving equation (73) for a series of inter-
face shapes which were obtained by solving equations
(86) and (92) with P =0, &, = 1.0 (for d = 0.5),
ol g = 0.6218 (for J = 0.65), and values of ot

4
ranging from 1.8 to 0.1. The interface shapes
employed are shown in Figs. 7a and 8a for Jd = 0.5
and d = 0.65, respectively.

The values of ef(x) obtained from the
solution of equation (73) with a 68-point quadrature
(this is used in all subsequent work), along with
the Jackson-Hunt result, are shown in Figs. 7b and
8b for Jd=0.5and J = 0.65, respectively.

It is apparent that the present results encompass
Jackson and Hunt's results as the interface
curvature decreases (indeed, this serves as an
additional check oﬁ the numerical solution to
equation (73)). However, as the interface

curvature increases, the solutions of equation (73)

change considerably, leading to significant
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Fig. 7a — Interface shapes employed in the comparison of the
present theory with the Jackson-Hunt theory for 6 = 0.5

0.4

8:0.5 =10 ay:1.0 p=o ¥:0

la, =1.8
2)a, =1.8
3ay =0.1

~—=—JACKSON~-HUNT THEORY
(FLAT INTERFACE)

-0.4%-

Fig. 7b — The reduced interfacial solute concentrations c* pre-
dicted by the present theory for the interface shapes shown in
Fig. 7a compared with the Jackson-Hunt prediction
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0.6
a,=1.0 ay=0.6218 8-065 pu:o ¥=0

0.5+ 1 a,=1.3
2)a, =1.0
0.4 3)a, =04

0.3

t-1(8)

0.2 LiQuID

0.1

Fig. 8a — Interface shapes employed in the comparison
of the present theory with the Jackson-Hunt theory for
6 =0.65

;1.0 ay:0628 82065 p:® ¥:0

0.6 Naget.3
2)a,*1.0
0.5 3ta, =04

——— JACKSON -HUNT THEORY
(FLAT INTERFACE}

Fig. 8b — The reduced interfacial solute concentra-
tions ca‘ predicted by the presenttheory for the in-
terface shapes shown in Fig. 8a compared with the
Jackson-Hunt prediction
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departures from Jackson and Hunt's theory, which

are particularly pronounced in the unsymmetric
case, i.e., J = 0.65.

5.1.4 Some typical numerical results

To illustrate the behavior of the
solutions as a function of ¥ , the iteration/
bootstrap procedure was implemented for two values

of J , namely J = 0.4 and 0.7, with o¢ , = 3.855,

2

o, =0.6218, and o, = 1.2, A ¥ -step of 0.5

3 4
was used and four iterations per ¥ -step were
performed. The computed interface shapes are
shown in Figs. 9a and 10a for & = 0.4 and J = 0.7,
respectively, for values of ¥ ranging from O
to 5.0 in increments of 1.0. The reduced interfacial
concentrations corresponding to these interface

shapes are shown in Figs. 9b and 10b.

5.2 Comparison with Experimental Data and
Previous Theoretical Results

If suitable subsidiary conditions were available
for the selection of the system operating point, QZP ,
and if all the thermodynamic and transport properties
required by the theory were known, then the theory

could be critically compared with experiment in
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a relatively routine fashion. Unfortunately,

neither of these requirements is currently satisfied,
even for the simplest eutectic systems. In
particular, very little is known regarding the

chemical diffusivities, Ql , and even less is

known about the interfacial energies Z;Ah s %2<
and 7&5 . Moreover, the stability analysis

and/or variational principle required for the
selection of ?Z? are still awaiting development.
Hence, it does not appear possible at this stage
to utilize the available experimental results to
critically evaluate the theory and the assumptions
therein. Rather, we must be content to make
comparisons which are essentially qualitatiﬁe in
nature, and then hope that meaningful results

can be extracted.

5.2.1 A procedure for assessing the theory

With these considerations in mind, the
following procedure was formulated to check the
consistency of the theoretical predictions with
experiment:

1. The quantities J and < o
are calculated using data obtained from the phase

diagram, presuming one is available.
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2. The quantities °51, 9'53, and

(which depend on the interfacial energies)

o 4
are estimated using procedures to be discussed
shortly.

3. The iteration/bootstrap procedure
is implemented and ¥, is selected using Tiller's [1]
"minimum supercooling hypothesis."

4. Equation (87), with ¥ = ¥4 |,
is utilized in conjunction with experimental
information concerning the V- A relation to
obtain an expression for the quantity ( e Ze ).

5. 7:¢ is estimated, thereby
yielding an estimate for D , .

6. The resulting value of D, Iis
compared with values obtained by independent

measurements (when such values are available), or

with the rule of thumb that D, = 1x10 OcemZsec.

5.5.2 Estimation of o _, ol,, oL,
and Yoo B )
[
To estimate < ; and 063, we note that

for a pure material the Gibbs-Thomson coefficient, a,

can be approximated by the relation

/l=.7_'i-2)¢:,4<ﬂ_.. P (94)
AS_;. PNO
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where 2%, is the solid/liquid interfacial energy,
M is the molecular weight, NO is Avagadro's number,
Tm is the melting temperature, ¢ is the density,
and K is a constant such that 0 < K= 1. Then

assuming that equation (94) can be applied to each

solid phase in a binary eutectic system with Tm

taken as Ty and K, = KF , the required expressions
for oCl and 062 follow immediately. Hence,
_ & Ma ey P
=g =)= (95)
- H M!’F
<[5

and (with & ., = 1)

1

R

oty = Yt = ASH - fLp
7 Due ASige P ’

® Lo

(96)

where L, ( € =¢,3) is the latent heat of fusion
of the appropriate phase.

The quantity 0¢4 can be obtained from
equations (80) when the limiting volume fractions
4Zu, and JLf are known. The limiting volume
fractions can be estimated from either lamellar-rod
transition data, or by an educated guess when such
data is unavailable, thus providing the required

estimate of 044.
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As mentioned in Section 5.2.1, the
system operating point, TZT , is estimated using
Tiller's '"minimum supercooling hypothesis," which
states that for a prescribed value of V the system
will select a value of A such that the average
interfacial supercooling, AT,, , is minimized.

For large values of ¢ , the solid/
liquid interface is approximately isothermal.
Therefore, the interfacial supercooling, AT(x),

is approximately equal to ATku’ and is given by

AT =Tz -TH) = =Gy f) = =N 6, f(d) TAT,,

which, with the aid of the relations

/,(, = %‘[

AV Gy 451:,\

Y= 4W&';2§ )( 7&:0)./\1 >

and

N, = €Z€F :_S%EIE
f 4}%:4(17'J)ﬁ2
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can be written as

R R L
2 b

where

Az :[VMoc Tye A } Yz
J-DJzAs{ob

9

and is a constant when V is fixed. Hence, the
determination of 'yzf essentially reduces to
obtaining the quantity —f(J’)(ﬂb as a function
of 1?’ with the iteration/bootstrapping procedure
(recall that f(J )/ 1is independent of f¢ ), and
then minimizing A’I;D}vith respect to 'P' .

It will subsequently be shown that the
quantity f(J )/ can usually be approximated by

a simple linear relation in ¥~ , i.e.,
._j?&) ~
= &Z,+ 4,1&,
2

where &, and <23 are constants determined from
the iteration/bootstrap procedure. Hence, the

system operating point, y%% , is given by

-y = 49
c i
r =& ?
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which, with the aid of equation (87), leads to

the following expression for the V- A relation:

A _ )12(/;(/ «)4 D, = t. (97)
Y1~ = )(/47¢A S',ca/\1 ) = Az Ye:De cons

5.2.3 Comparison of theory with experiment

The procedure described in Section 5.2.1
was implemented for six alloy systems in which
regular lamellar structures are known to form;
namely the systems Sn-Pb, Pb-Cd, Cd-Zn,Al—CuAlz,
Az-Cu, and Sn-Cd (the phase arbitrarily labeled o<
is always listed first). The phase-diagram data
for these systems was obtained from Hansen [13] and
is listed in Table 4.

The interfacial energies, 4, , were
estimated using equation (94) with ASp = ASgp =
Ly/T,, M =My, £ =P, , T, =Tz , and K € [1/3, 1],
where the subscript A denotes the principle
constituent of the o phase. These properties

are tabulated in Table 5, and, with the exception

of the solid/liquid interfacial energy, ¥

sp » were

obtained from Smithells [14]. The values of the
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quantities ok o 043, o 4, and J used in the
calculations are shown in Table 6. Also shown
are the J -ranges, [ 4km/, J;f ],‘which were
used to obtain 0C4.

The quantity, —f(<f)//b , as obtained
from the iteration/bootstrap procedure, is
displayed as a function of Y for several
representative alloy systems in Fig. 11. As
is evident from the figure, f(dJ )/t varies
approximately linearly with 3 , thus justifying
the use of equation (97).

The calculated values of 'l[fof, and /A 3
are listed in Table 7 along with experimentally
 determined values of the quantity Vﬂxz. Also
shown are the estimated values of D, which
were calculated by substituting the experimental
values of V\Az and the estimates of 9233 (Table 5)
into equation (97).

Finally, the values of D, provided by
the theory are tabulated in Table 8 along with
corresponding experimental values for the four
alloy systems for which such data is available;

namely the systems Sn-Pb, Pb-Cd, Al—CuAlz, and San-Cd.

110



TABLE 4

Phase Diagram Data for Selected Eutectic Alloy Systems

} Moy ! Mg P Tg °g Car “aE
System (°K/wt.fract.) . (°K/wt.fract.) | (°K) (wt.fract.) (wt.fract.) (wt.fract.)
Sn-Pb 100 § 285 456 ! 0.381 0.025 0.81
Pb-cd ! 250 i 315 ; 521 ¢ 0.174 0.033 1.0
Cd-2Zn % 175 ! 365 539 0.174 0.03 0.98
Ai-cuat, | 420t ? 300t 821 0.33% 0.055t 0.54t
Ag-Cu ; 400 ; 490 1052 0.281 0.088 0.92
sn-ca 100 165 450 0.323 0.056 0.998
f i ‘
t Wt. fract. Cu
TABLE 5
Relevant Physical Properties of Selected Pure Materials
Latent Heat Densi;y Atomic Wt. Yer y o

Material (cal/g) (g/cm™) (g) (erg/cm®)

Pb 5.74 11.68 207.2 30 - 90

Sn 14.2 7.3 118.7 40 - 130

cd 13.6 :8.64 112.4 45 - 140

Zn 26.3 7.14 65.4 70 - 210

Ag 25.3 10.5 107.9 95 - 290

Al 92.7 2.70 26.98 80 - 270

Cu 48.9 8.96 63.54 140 - 420

Cual, 76.5 3.25 | e ] L
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TABLE 6

Values of the Parameters Used in the Calculations

System Ao g oLy S d -range
Sn-Pb 2.9 0.65 1.16 0.658 0.35 - 0.8
Pb-Cd 1.25 1.75 1.2 0.812 0 - 0.9
Cd-Zn 2.0 1.6 1.18 0.822 0 - 0.9
A1—CuA12T 0.7 1.0 1.55 0.5 0.35 - 0.65
Ag~-Cu 1.22 1.65 1.1 0.74 0 - 0.95
Sn-Cd 1.6 1.15 1.2 0.75 0.06 - 0.85
+ J is not the volume fraction corresponding to the
eutectic composition for this system.
4.0 .
® Sn-Pb
X Pb-Cd
A Cd-2Zn
0 Sn-2Zn
|
6.0

Fig. 11 — The quantity - £(5)/u as a function of ¥ for representative
alloy systems
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TABLE 7

The Results of the Present Theory and the Jackson-Hunt Theory

! 9 ! As As
: V A “(experiment) ; (present theory) (J-H theory) Calc. values of D,
i System ! (cm3/sec) wbp (cm3/ca1) (cm3/ca1) (cmz/sec)
? !
Sn-Pb 8.25x10—12(a) 3.73 0.318 0.302 0.84 - 2.7x10-5
Pb-Cd 5.26 2 4.30 0.358 0.466 0.68 - 2.1 |
I
Cd~-Zn 6.93 )’ 3.47 0.224 0.289 0.93 - 2.8 !
Al—CuAl2 27.5 (di 7.5 0.217 0.200 2 -6 ‘
Ag-Cu 3.7 |ee 3.8 0.103 0.107 0.52 - 1.6 |
Sn-Cd §.7-18 (4 4.02 0.385 0.458 0.73 - 4.9 Y
(a) obtained from ref. 15,
tb) obtained from ref. 16.
{cy obtained from ref. 17.
(dy obtained from ref. 18.
ey obtained by fitting the data in ref. 19 (crudely) to a V,Az = const. relation.
(f) low value obtained from ref. 19 -~ high value obtained from ref. 20.
TABLE 8
Calculated and Experimental Solute Diffusivities
{ D; (cale.) Dy (experiment)
i System (cmz/sec) (cmz/sec) Remarks
Sn-Pb 0.84—2,7x10_5 0.67x10_5(¢) Eutectic composition-extrapolated to TE
1. & Eutectic composition- extrapolated to TE
0.63 <) Eutectic composition-extrapolated to TE
0.62 td) Eutectic composition and temperature
Pb-Cd 0.68-—2.1x10_5 1.—1.5x10_5(€) Eutectic composition at 623°K
Al —CuA}J 2.-6.x10_5 3.26x10—5(d) Eutectic composition and temperature
Sn-Cd 0}73—4.9;{10"5 3.6x10_5 ) Eutectic composition at 673°K
(a) obtained from ref. 21.
(b) obtained from ref. 22.
(c) obtained from ref. 23,
(d) obtained from ref. 18,
(e) obtained from ref. 24,
() obtained from ref. 25.
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Reasonable agreement is achieved in all cases,
thus lending some credence to the V- A relation
predicted by the theory. Moreover, the calculated
values of Ql for the remaining systems appear
viable on the basis of the data in Table 8.

5.2.4 Comparison with the theory of Jackson
and Hunt

As a final item, it is of interest to
compare the V- A relations predicted by the
present theory with those predicted by the Jackson-
Hunt [2] analysis.

Utilizing the current notation and

employing the assumption used in ref. 2, i.e.

Ve sin@. = 221:9%&(}3 = é’7%ﬁ,
it can be readily shown that equation (17a) in
the aforementioned reference assumes the form

VA* = T+ d/t35) Yp, = A, 00

3 : )

FM n AS_}‘K.AjP (98)

where
/_\_ 2(1+§+c)/(o¢3(,(,})]o¢4
> Ameas; NP (99a)
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and
oK
— 1 g 2,
1 g (‘rﬂr) St d, (99Db)

Hence, the desired comparison can be made simply
by comparing the values of /13 and ;§:3 obtained
from equations (97) and (99a), respectively.

The values of these quantities for
the six alloy systems are displayed in Table 7.
Despite the large disparities in the interfacial
solute concentration distributions (see Section 5.1.3),
good agreement is achieved, with the relative
differences in ZXB ranging from 5% for the Sn-Pb
system to 30% for Pb-Cd. Whether or not such good
correlations can be maintained when the operating
point, yZF , 1s established by criteria other
than the "minimum supercooling hypothesis,"

however, remains an open question.
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6. SUMMARY AND CONCLUSIONS

1. A general treatment of the free-boundary
problem associated with the growth of a lamellar
eutectic solid from its melt was presented. The
analysis served to decouple the calculation of
the interfacial quantities from the computation
of the bulk temperature and solute distributions,
and led to a system of nonlinear integro-differential
equations for the shape of the solid/liquid
interface and quantities defined on the interface.

2. The behavior of the integro-differential
equations was critically examined, and it was
shown that:

® The thermodynamic equilibrium requirements
at the o/B/1liquid triple point must be compatible
with constraints imposed by the diffusion equation
in order for lamellar solutions to exist.

@ When lamellar solutions are possible, the
solutions generally admit to a relatively narrow range
of possible crystallographic orientation relation-
ships between the two solid phases.

3. The behavior of particular solutions to

the integro-differential equations was analyzed
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and the information thus obtained was used to
formulate an approximate theory of the lamellar
rod transition.

4. Simplified versions of the integro-
differential equations were derived by assuming
that (1) the solute diffusion length is. large
compared to the’lamellar spacing and (2) the
solid/liquid interface is approximately isothermal.
In particular, it was shown that the solutions to
these equations are function of only a single
parameter, P , which is proportional to VAz,
thus implying that the use of virtually any
subsidiary condition for the selection of the
system operating point must lead to the familiar
relation V}\z = constant.

5. The simplified theory was used to
investigate the effect of interface curvature on
the interfacial solute distribution and the
results were compared to the predictions of Jackson
and Hunt, who assumed the interface to.be planar.
It was found that the present results encompassed
those of Jackson and Hunt as the interface curvature

decreased. However, as the interface curvature
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increased, the interfacial solute distributions
changed considerably, leading to significant
departures from the Jackson-Hunt theory, which
were particularly pronounced in the unsymmetric
case ( 4 = 0.65).

6. A procedure was formulated to check
the consistency of the theoretical predictions
with experiment, and was implemented for six
alloy systems which were known to solidify with
a regular lamellar microstructure. Good
correlation between theory and experiment was
achieved in all cases.

7. The lamellar spacing-freezing rate
relations predicted by the new theory were compared
with those predicted by the Jackson-Hunt analysis.
Good agreement was achieved in spite of the
large disparities in the predicted interfacial
solute concentration distributions, thus
implying that the V- A relations obtained with
the "minimum supercooling hypothesis" are
relatively insensitive to the solid/liquid
interface shape and the detailed solute concentration

distribution on the interface.

118



8. Recommendations for further work include:

@ A detailed stability analysis of the steady-
state solutions and/or development of a suitable
variational principle in order to establish a
definitive V-A relation.

® Interface stability studies to determine
the onset of dendritic growth.

® Studies of cell formation and colony growth
due to third-element additions.

®Extension of the theory to include
interfacial molecular attachment kinetics and

faceting.
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APPENDIX A

Derivation of the Explicit Form of the Single-

v )
Layer Potential Lja,[h](ﬁgﬂj)

The single-layer potential

.f
v ’ : ALY - [ ’\‘ ‘. d-ﬁ
h = L
Uw [1] (2,3 Zu)&[k (1,};’7/,V/§))41)/4(§)w?__2—§6@) (A1)

introduced in Section 3.1.2 essentially represents
the concentration field due to a distribution of
point sources of strength h(x) acting on the
surface v(x) in the strip [0, 1]. This implies

that the kernel
2-5) k(%}ﬂ;/, vip,w) = G-(%;,y?w;),a/)

satisfies the equation

276 . 2% | 2w 26 - J(x-3) S (y~v13))
)—x'z t ;yJ- + ‘;"J’ }) 7 7 (A.2)

in the strip [0, 1] with boundary conditions

2-6 -O 7%;’:'.031)

iy (A.3a)

/53%' G < oo (A.3Db)

v
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Am G =o, (A.3c)
/lj-—foo
where J (s-t) is the Dirac delta function. Thus,
the required expression for Ua.l: Lh] (1{7) can
be obtained once a suitable solution to equations (A.2)
and (A.3) is found.
An eigenfunction expansion approach
probably affords the simpliest and most direct
method for solving equations (A.2) and (A.3). To

implement this technique, we assume that

oQ
G = Z 7€,(’{,U Cos HTTY (A.4)
W=o

thus insuring that boundary conditions (A.3a) are
satisfied. Then substituting equation (A.4) into
equation (A.2) and expanding the term J (x-z) in

a Fourier cosine series, i.e.

oo
J('ﬂtu;) = J+2 ? Cos HTZ Cosmrg

n=1

results in
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750”(:7') + ;zw.;ol(fj) + d(y-vE&))

(A.5)

* %Z; [ ~f, (w4 fn"(ﬂ;) + wak’(w

+2cosung J (4-v(3) 1cossar =o.
But the basis functions i}1,6057aCL,C053E”%f"} are
linearly independent, which implies that equation (A.5)

can be satisfied only if
/] X
7[0 [3) -+ 26(7{0/(%() -+ JC’J"V("’J) =0 (A.62a)

and

u / 2
M)+ Lwd (v) - 1T* 4 (y)
7[71 4 ﬁ"J 7 4(1 @=1,2,--), (A.6Db)

+;)cosfmr}<f(’16(—vc})) =0

Hence, G will satisfy equations (A.2) and (A.3),
provided that the functions f,[y) satisfy

equations (A.6) along with the boundary conditions

///?;’V fn(/g) =0

y__’m (A.7a)
and
A 74,,[7)< o,
/y—’-x (A.7b)
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Equation (A.6a) can be solved in a routine
fashion by transforming it into a first-order
equation with the substitution F%4?7= i;ky):
and then integrating the resulting equation twice
using the relations

coxsC. for /1441-'“

g
/J(-f—t) g dg =

Coust. + ) far 13>6

and

Vi R S,
pltawp, =€ ?ds’i (Re 1)

This results in

Pa(«}) = fo’ G

A R
and

Foly) = -j% e™* &

+ 5 HCy-vie3)) [e-:zwq—v(;n‘ 11 +e.,

where H denotes the Heaviside unit step function

and Ci(“i=7,2) are arbitrary functions of
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}, and «w . But C1 and 02 must vanish if

equations (A.7) are to be satisfied. Hence,

‘ ; -,2[0[7-7/(37)
() = — + =~ -v(3), '—7],
2o C) = 50 F Y-V | @ (A.8)
To solve equations (A.6b), it is convenient
to take
_.a)y
16 ) = U3 () EC
d ¢ "y . (4.9)
Then substituting equation (A.9) into equation (A.6b)
gives
LM . Aew . .
Uy - (WHHTY) Uy = -2 eos a3 € V=V,
or equivalently,
Uy — (WP ATY) Uy =0 for YFV(G)
(A.10a)
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and

”, 4 szl
//m, 6(14/ - A 6(:[ = ~2s A3 e #

Y2 VG) YD VP

where the jump condition (A.10b) results from
integrating equation (A.10a) from 'V::}qg)—-a
to ’V=V(3) + € and then taking the limit as
E —» o0 -

A general solution to equation (A.10a) which
permits satisfaction of conditions (A.7) and (A.10b)

is given by

Z(w*entp? M2 ay :
Uy = D ¢ )Y~ VG|

n

_ (_Q)7‘4~ uznﬂ.)’/} 11

4'D&n ¢ ’

where QD7n and D,, are arbitrary functions of 3
and @ . But D,, must vanish if equation (A.7b)
is to be satisfied. Hence, using equation (A.10Db)
to evaluate D;, and substituting equation (A.11)

back into equation (A,9) gives for f;(yj :
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Ju) = PTG |-Gty Ryl - wly-—v )

T T e

With -f:ﬂ(:\i) (%:0,772/--0 now determined,
an explicit expression for G could, in principle,
be obtained simply by substituting equations (A.8)
and (A.12) back into equation (A.4). However,
the resulting expression for G will not be well
suited for numerical evaluation, primarily
because the resulting series converges very
slowly for points (x,y) in the neighborhood of
the point (?}, v (3 )). Hence, to complete the
solution, we must incorporate into the analysis
a device to accelerate the convergence of the
aforementioned series.

Such a device was formulated by Morse and
Feshbach [26] in their treatment of a related class
of problems, and simply consists of adding and
subtracting to equation (A.4) the solution to

equation (A.2) with w=0 , i.e.

i

—_— R . —WM Y -vEG 1
J Wi COSNIE COS W;e [,K
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Thus, upon noting that

J = “‘f‘TT y [5?(.0%7(/5— V) - dcosT(*-3) |

(A.13)
- 4—;-/% [2costT (y-vgn — 2<osT 2+ ) ]

+ 4y - v

(see ref. 26 for a derivation of equation (A.13)),
the Morse and Feshbach procedure furnishes the

following expression for G:

5(:%,%3,'1’(3),00) = jzd/z(y)’;',’g,‘m‘;),w)
= —4";; M [2esstym (y-vp) — 2cosT (2P ]

gy A [2etr (V) - 2oz (443) |

t Z[y-v| + 5o

+ E H-rep) [77°VA 1 ]
(A.14)

oo
+ Z cosomg cos iy [[ A N
n=1

.eap {— (i) (y-vepl - Oy v |

..(\4“07')"1@;1/19 {-*%ﬂ"["&"‘“%”j _} ,
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It can be shown that the series in equation
(A.14) converges rapidly for all values of X, y, z,
and v(z) in the strip [0, 1]. Hence, substitution
of equation (A.14) into equation (A:l) yields

the required expression for Lla;[h](ﬁq1é).
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APPENDIX B

The Indeterminacy Associated with the Solute

Concentration Field

It was asserted in Section 2.2 that the
system composed of equations (1), (4)-(6), (9),
and (11) does not generally provide a unique
concentration field, c, , even when the interface
shape, freezing rate, and lamellar spacing are
specified. 1In this Appendix, we establish the
validity of this assertion.

We consider first the limiting case #Mu=Mp=<e0
In this case the nondimensional versions of

equations (1), (4)-(6), (9), and (11) become

and
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c A
-8, = 2wcose (C —_E_L Cut ) , Xe[0,8), B.4m)
-9, = 2w coso (& - P cpe) ze(d,11
3 P ~ / / ? (B.4b)
where .
?C: Son .9(,’1);_:—9 + cos ex) ?_E” )
/ 77 oY {'13'33“7") (B.5)
= J*_ (Che - Coo)f)
- ? (B.6)
Fp(Cpe - Coo) 4 fu (Cro~ Cui)
and the remaining symbols are the same as in the
main text. Now let §¢{= Ci’+f['(’£i,w))where 9’ is
any solution to equations (B.1)-(B.4) and
f '7
: ) Y -
Tq,e) =//4[;,LU)€ w (¢ f(y)djo (B.7)
T
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Then, because I(y,w ) satisfies equation (B.1l) and

q}(x,y) also satisfies equations (B.1l)-(B-4).
Hence, the solute concentration field is unique
only to within a term of the form I(y,w L
where the function A(z, @ ) is arbitrary, thus
verifying the assertion for this case.

A proof of the assertion for the general
case M« and ¥g< co is not as straight-
forward as in the preceeding case.

For the general case, it is convenient to
utilize the results of Section 3.3; namely that
the solute concentration on the solid/liquid

A
interface, ¢ (x), is given by
A ~
Gy =¢@x) + T (f),w) + Coo

where A'(x) is found by solving

- 280 / (2,3, 0,43, %) E(3) 3
[7

+//<;(1,7);/2), 31, w) S (3)I%
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with >
Sq(x) T Co- f“ {c,,LE_’ éﬂ
ot (-3 f5 (B.10a)
+f’iw[6;(x) + (Coo-Cg) + I(f(x),m]} , Xelo,8)
ny
Si(x) = C, ..~f(6 (%E
S+ (- 5) g
(B.10b)
+§; [c;(x)-I—CCw— Ce) + I(f&),w)]} ) ke (4,11
and where J is found from the solution of
Co [Iat@-D1g5] = Corr I + e G-0)p,
J
+ - ) -
ﬁ‘/};,q: [g(;) + (Coo—Ce) + T (f{g))w)] J3
¢
(B.11)

1
+ M I
%J/;{ﬁ [Geg + (cm-cey + Tlep,0) 1 93.
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In order to prove that the concentration
field, ¢, , is not unique, it is sufficient to
demonstrate that a change in I(y,«w ) implies a
change in ac(x) and/or d

By utilizing a perturbation analysis of
equation (B.9) similar to that employed in
Section 4.2, it is readily shown that changes in
the O(CU" ) terms in I(y,®@ ) can only induce
corresponding changes in the 0( ) terms in
¢,(x). Hence, it is evident that changes in
I(y,w ) do indeed induce changes in ql(x) and J

Therefore, the assertion is affirmed for the general

case as well.
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APPENDIX C

Derivation of Equation (62)

By equation (28) in the main text, the inter-

facial solute concentration, é{x) , 1s given by

1
A . - 2w (fe)-1(3)
W = B+ co + /;4(7,@/4)6 4 )d;, (c.1)
2

where é;Cz) and the volume phase fraction, J ,

are found by solving equations (33) and (57),
respectively. If it is assumed that W_. and 1@3

are large, then a perturbation analysis of equation (33)

reveals that

p ) + Ow?)
B+ (1-5) ps g ? (c.2)

where {}Cl) is the solution to equation (73), and

J;t is given by

. »

J* - »(Cﬂs ~ Sl | | (c.3)
(C/JF" Cw)fﬁ + (Coo - CaLE'>f0(.
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Moreover, d % §¥ . Thus, expanding the term

7
Z Atz 0 p) @2 FR TP

with respect to W and substituting equation (C.2)
into equation (C.1l) yields

A

G = B, (1) + Ce+ O@w),

where

7
Botye) = JG,0,p0) 43 + Com <
o

and is a priori unknown.

The quantity Bo(/c) is determined from the
condition that equations (55) and (56) in the main
text are to be satisfied simultaneously to 0(1)
with respect to & . In the analysis to follow,
this condition will be used to obtain explicit
expressions for Bo(/‘ ) for the two limiting cases
of small and large values of ¢ .

For simplicity, we shall consider the case

of equal thermal conductivities, i.e., & = Ap = v
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In this case, by utilizing equation (C.4) and the

definition of K , i.e., K = Jue/6 DS N>

H

equations (55) (correct to 0(1l)) can be written as

/4

- - 7( = _@: B XEeLO,d) (C.6a)
(H2)7 P | :

U*f/}) Ya. L (C.6b)

where db is a dimensionless parameter given by

ol
2.6)V% 7 .7

&g = 7”/3/7%( , and where «, = 4‘»/&/; was
assumed equal to unity. Assuming that there exists
a range of relative orientation relations such

that real values of @« and @4 can be found
which satisfy equations (56a) and (56b), B, is
determined by solving equation (C.6) subject to
subsidiary conditions given by equations (56c)

and (56d), i.e.,
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F(&) =f(d) (C.8a)

and

7‘»/(0) = £ =0, (C.8b)

Solution for small values of Lo

Let

qw = F + > F B, , X€lo,d),
(C.9a)

G- fr) - TG B FECHTI,
(C.9b)

Then, substituting equations (C.9) into equations (C.6)

and noting that

« g
= — 2 cos &

(119'%)7* dg
gives

5_1605& +F =0 , xe[o,11 .
? 1 (C.10)
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If equation (C.10) is now integrated from ?= gco)
to 4(d-) , and from = 9(1) to 3(&) , then,

with the aid of equation (C.8b), which implies that

Cos & = cose = o

lg:a&n ‘3::60

we obtain
g(a',)
CS@u=1 +7; | §45 =0
jﬂd

and

Fl/¢)

C‘OSQA’1+'/IZ/(§’€€ =o.
ﬂtv

The quantities ¢g(o) and ¢(1) are not known

in general, and are difficult to obtain for arbitrary

values of 4t . However, as HL>o 7(2/) must

approach zero except,perhaps, in a very small region

in the neighborhood of the triple-point groove; i.e.,

the solution for small values of 22 (large values
of 1 ) must be the plane-front solution with a

perturbation in the neighborhood of the groove.
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Thus,

g(a) = g@) x o for j¢ small.

With the aid of equation (C.12), the quantity
B, is now readily determined. Thus, substituting
equation (C.12) into equation (C.1l1l), integrating,

and substituting the results into equation (C.9)

gives

#8.) =(2p)"* (1~ cos @ - P B,

and

‘/(J{.) = (2/4)1/1 (7"‘ cos @ﬁ ) ,/1__,_ oél/’("’/v?BO ]

Hence, by virtue of equation (C.8a),

Ya y&

8 - [2(1-cos@) 1" - [a(T-cosgp)]

o
st 1) @

(for small values of M ).

This result is equivalent to that expressed by

equation (62b) in the main text.
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Solution for large values of /<

As was mentioned in Section 4.3.1, when the

parameter & is sufficiently large,
J o .
4;-(3)4; = Jf1)
and

1
/f(g)dj = (1-F) F£(4).
S

Thus, with the aid of equations (C.15), the relation

4

aa——

(1443 z

and equation (C.8b), equations (C.6) can be integrated
out from the triple point to their respective end-

points in a straightforward manner to give

g;tgg-):z —-SV%Vézz “‘_gé B, ¢
/LL /,(1/1

and

(1-5) f(§ ,
_,._)_L_f’) — _5/7{/@/’ + b(;z,@ B, (1-4).
(t ke
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Therefore, again by virtue of equation (C.8a),

B} = [ $srn Op - (1-9) 5% G 1 1>
P(Aat1) §5(1-5)

(for large values of st ).
This result is equivalent to that expressed
by equation (62c). Moreover, as discussed at the
end of Section 4.3.1, this result is asymptotically

valid even when £+ 7é/3 7 R,
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APPENDIX D

A Description of the Computer Program for

Solving System II

Language: Fortran Extended Version 3,
Computer: CDC 6600.

Operating System: SCOPE 3.3.

Program Input: Each set of input data consists

of four logical records. The first record consists
of a 0-80-character title. The contents of the
remaining records are tabulated in Table D.1. The
data sets may be stacked; the run will terminate
when the program reads an END OF FILE.

Program Output: The program output consists of

tabulated values of f(x); tane(x), A (x) (interface
curvature), f(x)-f(dJ); and qy*(x) (denoted as ACOL
in the program), which are printed at fhe end of
each iteration. A sample output is included at

the end of this Appendix.

Program Listing: The program listing follows on page 147.

145

A9T3T1SSYIINN



TABLE D.1

INPUT DATA REQUIRED

variable
Name Type Definition Comments
L. Record 2
BETA3 Floating ay
point
BETA4 o g 1. BETA3 is always taken as unity.
! - 2. RMU is usually taken as 15,
BETAS a, 3. To insure real values for & «
and @B, DELTA must lie in the
BETA9 a, range (C by Jdug ), where ., and
i Jup are given by equations (80a)
DELTA J and (80b).
RMU ¥ <
Record 3 L
M Fixed These variables are used to| 1. MMAX and NMAX should usually
point control the number of be set equal to 1024.
N quadrature points in the 2. The values of M and N are
integrals in equation (73). J -dependent. For 0.25<J« 0,75
MMAX take M = N = 32; for 0<J< 0.25
take M = 16, M = 32; for
NMAX 1 0.754)< 1.0 take M = 32, N = 16.
Record 4
ISKIP1 Fixed 1. ISKIP1l and ISKIP2 1. ISKIP1 and ISKIP2 can be
po%nt are used for debugging taken as any nonzero integer.
ISKIP2 { purposes.
¥
ITERL i 2. ITER1l is the number 2. ITER]l iterations are done
‘ of iterations to be done per step, unless convergence
ISTPLIM : per 7 -step. is obtained. A conservative
Y value of ITER1 is 4.
PSISTEP Floating
point 3. ISTPLIM is an upper 3. The calculation terminates
PSIHI 4 limit on the number of when either » = PSIHI or
w -steps to be taken. ‘.. = PSISTEP*ISTPLIM, which-
ever is less.
4, PSISTEP = \ ¥ (the
amount by which % is
incremented per step.
5, PSIHI is a upper
limit on w .
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10
20
30

=0

a0

70

_n

an

100
110
1720
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
Inn
210
20
33N
wWwn
38N
40
370
QA0
290
ann
410
4?0
470

440
4s0n
INE

470
4aan
49N
&nn
€0
&20
&30
s40
s&n
SEN
€70
gRan
590
600

OPRNGRAM SPIPOTI(TMNEUTNUTPUT«TAPE1=TNPUT)
COMMOM/FSPACK/UGH] s UGH2,4GH3
COMMON/WGHTPAC/MP] s MPNP]

COMMORN/RLKL/PT

COMMON/ZTMODZIMOD

COMMON/TISTM/ISIM
COMMON/TRIG/QCHMeNCFoCTM,QTP
FOMMON/ INRDFLG/INRLCFLG
NIMENSTON STOP1(130)

DIMENSTON XX (2050) oFFO(2050) 49X (130)4F0(130) 44

NDIMEMSTION ATEST(17044) ¢ AMAT(70+70)
NIMENSTON QTODF(EOQO)9CﬁSAQY(l30)9TANARY(1?O)cBKAPARY(l3O)
DIMFNSTION TITLF(R)ZFN(11)oFILAST(70)

EXTFONAL FUNCT]SFLNCT24FUNCT3+FUNCTS

23

£OL (70) +CAPF2(130)

FOPMAT (AF10,1)
FNRMAT (475)

FNPMAT (10X s4F13.4)
FORMAT (40XeF17,.4)
FORMAT (/)

FORMAT (7F10,.1)
FORPMAT(T1I0WF1R,4)
FNPMAT (10Y47F13.4)
FOPMAT (10%47110)
FNPMAT (SXeATRW4F13,4)
FORPMAT(1NXeEF13,4)
FNPMAT (INY4FF13,4)
FAPMAT (10X 44TR)
FOOMAT (1K1)

FNRMAT (RNA])

FNARMAT (PEX4RA1N)
FORPMAT (10X 43F13,4)

FORMAT ((10F13.4))

FADMAT (4TS47F10,1)

FOAOMAT (1AX e XXtal 1 Xe#FFAH)

FAPMAT (17X e X#e]11Xe#ACOLY)
FNAPMAT (10X eCF13,4)

FNPMAT (PAX «#INTFRFACF SOLUTTON#/IRX¢#ITFRATE#¢I3911X,2PST=%,

+F11,4/71RY e #THETA==#aF 1] ,405%,
+uTHFTAs=%eF 1] ,4/71FX«#RI=#eF11,.,4/) )
FOPMAT (17X a#X2talPXotF2gRAXa#TAN THETA#AX 9 #*KAPPA# 46X
REF (FEI TA) ) el 2N S R ZRARBE
FOPMAT (20X 4 2SCLUTTON OF THF INTEGRAL ENQUATION®#/28Xe

P13

27

SUNFT=#eF 1 1.6/P0X a8 T =t eF 1] ,4eSXe#T2=#4E11,4/)
TN CDIRNATITHF ROOQOVF ANGLFS ARPF TAKFN

=C
=0
=0
B Y
-Z.‘%C

nn ’RON o
PEAN(IV(TITLF(T)eT=148)

IMDFOEMDENT OF PQT
HTGH Mi] ABPCRCXYIMATION

MeMMAX «M¢NMAX MUST RF GIVEN AS 2 TO AN

TO BE

INTFGER POWER

THIS VFRSINN F SPIROT3 CAN ONLY BF RUN ON SCOPE

Jax=le10n0

TF(FOF (1)Y)RRNRQAN

aqQn
PFAN(1)RFTAIRFTAL 4AFTAG,

FOMT INIF

DEAN (1 IMeNgMMAY NMAYX
PFAN(1) ISKIPL4TSKTP2ITFR]« TSTPLIMWPSISTFPPSTHI
N =1,=NFITA & O2==NFIL.TA § RTMUY=SNQT (RML))

PT=3,14159

T RETAG,DELTAsRMY

F F1=NFLTA/MMAX § H2=(1.-NFLTA)/NMAX § TOL=),F=3
NMAXP]=NMAX+] & MMAYD]=MMAX4] & MUAXP2=MMAX+?D

MMTOTP]=MMAX+NMAX+]1 & NDI=N+1 & MDlz=Me] & MDNDI MsN+1 § MP2=M+2
HNALNI=H] § HOLNP=RD
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A10
£20
A0
AN
650
660
670
AR
on
700
710
720
730
740
750
T7A0
770
780
70
enn
R10
a20
R30
R40
RGN
RAN
R7N
pan
fan
90N
o10
arn
a30
Qun
asn
Qan
o7n
aRn
oan
100
101
107
103
104

NSP=(RFTAS#(1,=NELTA))/ (RETA3#DFLTA+(1.-NELTA) #BETAL)

NSM=RFTAS=-RETA4%#0QSP
FODLTA=RFTAI®AFTAC/(RETA3#NFLTA+(1.=DELTA)#BFTAL)
FONLTA==PMULF NN TA

THTAPL=ASIN(QSP) ¢ THTAMI=ASIN(QSM)
RETAA=RFTAT=1,

MDN=M4+N

MM]I=M-] § MPNM]z=MeN=]

1CH=1

MPRINT =M/16 & NPRINT=N/16

TF(MPRINT.EQ.,N) MERINT=]
TF(NPRINT.FQ.0) NERINT=]
TOLR=1,.F=-3

TOLFPD:I OF-B

INRDFILG=0

PPTIMT 1A« (TITLF(T)sT=1.R)
PRINT § - Videld=2elt .
PRINT 3+4BFTA348BFETA4L4RFTAS,RETAQ

PRINT 12 DFLTAsTHTAPL s THTAMISRMUSFODLTA
+«PSTSTFO ' ' T
PRIMT 13eMeMMAX GNoNVAX

oBIMNT &

ACM=CCOS (THTAMT) & NrD=CNS(THTAPL)Y
NAM=STN(THTAMT) & QSP=STN(THTAPL)
QATM=TAN(THTAMI) S NTP=TAN(THTAPL)
YT7SFOR| TARR2=D  #RVUR (] ,-0GCM) o
FCONST=0,

QI XX=0 .

TF(Y7.6T.0,) FCONST==SART(YT)

CALL F7FRO(H]1 +TCH«MMAXDY +RMIIeFONL. TASFCONSTeSTNARFTOLS)
TF(INGDFLG.FN.1) €0 TO RSO

nNA G0 T=1le+MMAXP]

FEO(T)Y=STOPF (MMAXF?=T)

an CONT INUF

XY7=PMI|#RETA3

Y7=FOP) TA##2-2 ,4XY74(]1.=-0CP)

FCONST=N,

TF(Y7.6T,0,) FCONST==SRET(Y7)

CAf) F7FRN({R2«MMAXPY ¢MNTOTP) « XY7oFODLTAFCONSTIFFOsTOLR)
P TF(TINBDFLG.FN,1) GC TO RSN
N NO 100 T=]MMAXD])
6 XX (T)=(T=1)%H]
no10o0 CONT INUF

N NN 110 T=MMAXDD (MNTATP)

1080 XX (T)=NFLTA+ ({=MVAXD])aH?
1067 110 CONTINUF

107

N HI=OF| TA/M & HP=(],=-NELTAY /N

1080 DN 120 T=14MP]
1097 X(T)=X¥ (14 (T=1)#NMAX/M)
JINN FOATI=FFN(]1+(T=))uMMAX /M)

111
117
113
114
118
11A
117
11R

1190 COSARY (T)=]le=(FA(I)2#2=F0(1)#82) /2 7RNU

~flen CONTINNF

A NN 130 T=MPD (MDNF]
AOX(T)=XX(MMAXD] + (T=ND]) 2NMAX/N)
fOFO(IY=FFO(MMAXD] 4 (T=MP1])#NMAX/N)
n o130 CONT INUF

"N OAKAPMT=F((MP)) /DNI] & RKAPD| =FO(MD]) /RMU/RETAT
N CNSACY (MP])=TANAEY (MP])=RKAPARY (MP])=0,

T PO N T=leM

1207 Y1=CNnRAPY(T)
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1710 TAMARY(T)=SQRT(1l,/Y1##2=1,) § BKAPARY(I)=FO(I)/RMU
12729 310 CONTINUYF =7 77 CooT T

1230 DO 320 T=MP2.MPNE]

1240 COSARY(T)=1.~(FO(1)##2=FO(MPNP1)##2)/2,/RMU/RETA3
1250 Y1=CCSARY (D) Tt o i

1267 TANASY (1) ==SNRT(1./Y]1%#42~1,)

1270 BKAPADY(I)=FO0(T)/RMI/RFTA3

172RN 320 CONTINVIF

1290 TF(ISKTIP1,NEL.O) €GO TO KSS

1300 PRINT 20 .

1310 NO 300 T=14MNTONTF].8

1320 PRINT BeXX(I)sFFO(I)

1330 300 CONTINUF '

1340 PRINT S

1350 &5% CONTINUFE

1360 PST=0, :

1370 ISTEP=0 ,

13Rn 825 CONTINUE

1390 IFLGEPR=1
1400 TTCNT1=0
1410 PSI=PST+PSISTFP
1420 ISTFO=ISTFP+] e
1430 IF(ISTEP.GT.ISTPL M) GO YO 850
1440 TF(PST.GT.PSTHT) 6O TO 850
1450 DN RIN KID7=1+JTFR]
14A0 JITCNTI=TTCNT]+]
1470 PRINT 234 TTCNT1 .91 ’ THTAMT s THTAPL 4RI XX
1481 POINT 26

1490 NO 380 T=1+MP1«MFRINT
16010 Y]1=TANARY(]) ¢ YZ=FKAPARY(T)

1517 IF(I.FQ.MP1) Y1=QTWM

1529 TF{T.FN.MP1) Y2=FKAPMT

1630 Y3=FN(])=-FN(MP])

1540 PRINT 224X (1) eFO0(TI)eYlaY2e¥Y3
1650 380 CONTINUF

156N NN 420 T=MP]«MPNE] NPRTINT

JE7N YI=TANARY(I) & YZ=RKAPARY(T)
1580 JF(T.FN.MPl) Y1==-QTP

159Nn TF(T.,FQMP1) YPcFKADD(

1600 Y3=FN(T)=FN(MP]) o
1610 PRINT 27eX{I)sFO(T)eY)aY2:Y3
1429 420 CONT INUF

130 TF(KINT7 ,EN,ITFO1)Y GO TN B2S

1A60 TF(IFILGFRP,FN.N) GO TO R25

1650 N0 lan T=1,MP1

1£60 Y1=CNSARY(T) & YZ=X(I) % Y3I=X(T)
170 TF(T.FOMP1) Y1=QCV

JARD Y4=FO(T) % Y1=PT/YVY]

1690 LAY MOD TDAD‘FU’\CTIOYYQFFGOI!MMAXPIQYIQY‘?OY:;!Y‘*QTOLO»A“NSI)____»__
1700 TF(T.FN,1) ANS)I=2,2ANS)

1717 101=ImM0D

1777 ¥1=NCP ¢ Y1=PT/Y] o o
1730 CALl MND TRAD(FUNCTY o XXsFFNaMMAXD] oMNTOTPI Y1 eY2eY39YSLsTOL »ANS2)
1747 TF(T.FQ.1) ANS?=7,8ANG?

1750 TN2=TM0OD

17AN ACOL (T) =2 ,501#8NS]1+2,20P2ANS?

1770 CADFZ(T)=DTMII#RETAT7# (ANS]1+RFTAR®ANS?)
1787 ATFST(Te1)=ANS] & ATFST(T42)=ANS?
1790 JF(ISKIP2,NE.N) £0 TO 140

180" PRINT G41N1.1N?

181" 140 CONTINUE
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1820 NO 150 T=MP2 MPNE]

1R3N Yl=0rwm  Y1=PTI/YLl & Y?=¥(T) $ Y3=X(]) % Y&=FO(])
1840 CALL MAD TRAP(FUNCT1eXX«FFNelyMMAXP]4Y1,4Y29Y30Y40TNL sANSY)
185N TF (T FN.MPNPL) ANS]=?,#ANS]
1860 TO1=TMND

1870 Y1=CNSARY(T) & Y1=PI/Y] ) e
1RAN CALL MND TRAP(FIUACTY o XX oFFNeMMAXPL ¢MNTOTPl sY1eY2+Y3eY4sTOL ¢ ANS2)
JRON TF(T.FN MONP]) ANSG?=?, #ANS?

1900 1Q2=TMND

1910 ACOI (1) =2,#0]18ANS1+2,402#ANS?

1920 CAPF2(1)=PTMU#RFTAT# (ANS]+RFTAA#ANS2)
1930 ATFST(Te1)=ANS] ¢ ATEST(I.?)=ANS?2
1940 IFLISKIP2,NELOY GO TO 150

1950 PRINT Q4,701,102

1960 150 CONTINUE

1970 PRINT 5

1980 DO 1A0 T=1.MPNP]

1990 Y1=PT & ¥Y2=0. % Y3=X(IY $ Y&=FO0(I)
2000 ANS1=ANS2=0.

2010 1Q1=TA2=0

2020 TF(T1.FN.1.0R.T.FC.MPNP]) GN TO 640
2030 CALL STIM(FUNCT2eXX+FFOe1oMMAXPT3Y39Y4sTOL»ANST)

2040 I01=1SIM

2050 CALL SIM(FUNCT29XX9FFQsMMAXP]4sMNTOTPI9Y34Y4eTOL +ANS2)

206N TQP=1STM oo Tm T

2070 ALO CALL STM(FUNCT3eXXsFF0el sMMAXPIaY33Y4,4TOL9ANS3)

P0RN TO3=1SIM o

2000 CALL STM(FUNCTIoXXeFFOsMMAXPT sMNTOTP19Y34Y4 4 TOL 9 ANS&)

2100 104=ISIM

P110 ACOL(T) =ACOL(I) +2,#Q1#(ANS1+ANS3) 2 #02# (ANS2+ANSLY)
2120 CAPF2(1)=CAPFP2(1)+ETMU=RETAT® (ANS]+ANS3 +BETAGH# (ANS2+ANG4))
2130 ATFST(T+1)=ATFST(T41)+ANS]+ANS3]
214N ATEST(T«2)=ATFST(T42)+ANS2+ANSSG
2150 TF(ISKIP?.NE.O) GO TO 160 =
P160 CALL STM(FUNCTAsXXaFF0s1oMMAXPT 4Y34Y49TAL»ANST)

2177 INS=ISIM

2180 CALL SIMIFUNCTA+XXeFFNaMMAXP] «MNTOTP1sY4Y4,, TOLsANS2Y 77
2190 106=T<IM

2200 ATEST(Te3)=ANS) & ATEST(I44)=ANS?

2210 PRINT 104101571024 1C3sTN4sTNASsING 7777 JATFST(T91) s ATEST(Te3) e
PR2N+ATEST (T¢2) 9 ATFST(T44)
2230 1A0 CONTINUF

27240 DRINT &

2750 NN 170 T=1,.MPNPI

PPAN NO 170 .J=14MPND)

PP7N TF(J.l TMP1)} AN0WKOS
PPA0 A00 HGHI=CNSARY (J) € UGHP=TANAPY(J) $ UGHI=RKAPARY (J)

2290 AMAT (T« D) ==R1#YGEFT (D HFUNCTS(X (T o X(J)sFO(T)FO(D)) .

2300 GO T A20 T TTmm T s e e
2310 ANS TF(J.GTMP1) A1Ne615

2320 AlN HGHI=CNSARY (J) & UGHP=TANARY (J) § UGH3I=RKAPARY (J)
2330 AMAT (T ) ==H2HUGHT () #FUNCTS(X{T) e X (D sFO(I)eFO ()Y 7
2340 GO TO AP0

2381 415 AMBT (T o SV ==FUNCTAUX(T) o X(J)sFO(I)«FO(J)sHloH2sy
PRIAN+RKAPNT RKAPPL Y #WEHT (J)

2370 420 TF(TLFN.J) AMAT(TsJ)=AMAT(Ted)+],
23RN 170 COMTINUF

2300 MRAW=TN & NCNL=1 % IDONT=0

PLON CALL MATALG(AMAT ¢ACNAL +MPNPY «NCOLyIDONToNETINT9NROW)
241N ANS4L2=N,

150



2420
24370
Pu4n
2450
P46N
2470
P4RN
24an
2500
2510
25270
2830
2540
2550
2560
2570
PSAn
2590
2600
2610
2620
2630
2640
2650
266N
2670
PERN

2700
2710
2720
2730
2740
275N
2760
PT70
P7RN
p79n
2000
2R1nN
RPN
2R3N
Paun
PREN
PRAN
PRTN
PRAN
2R0ON
200n
2610
29721
293N
204N
2060
20410
2079
2980
»2Qgn
apnoe
3010

N 47n
FILAST (

ANSQAZ=AMSL2+ACOL (1) #H]EWGHT2(T)

430

ANSG =

na aan

ANS4I=ANS43+ACOL (1) #HRRWGHT2(T)

FLAST (
440

RIXX=RETAG#NF| TA#ANG4T+ (] ,=DELTA) #ANS42

T=]14MP1]
=Fo(T)

CONT INUF
N,
T=MP] «MPNF]

TY=FOL(T)
CONTINUF

RIXX==RIXX/((RFTAQ+] , )#DNELTA#(],=-DELTA))
Y1=RFTAR®NELTA+(1,-NFLTA)#RETAL
YP=RFTARBANSLP-RFTAL#RFTAQHANSAL]

Y2=Y2+R)XX# (RFTA#NFLTA-RFTA4#RFTAQ# (] ,=DFLTA))
FO(MPY)=PQI#Y2+RFTAIHRFTAS

FO(MB)
FN(1)=
FN(S)=

FN(R)=OMU#PST & FN(Q)=FN(10)=0,

FN(11)

)==FO (MP])2RNIjZYT
Ne % FN(2)=NTM ¢ FN()=FO(MPL) $ FM(4)=RMU
n. ® FN(6)=DFLTA % FN(7)==1,

=R]1 XX

MRAT=MMAX/M
CALL F MEW(HOLD]1«1aMPY141oMMAXP] sMRATsFNoCAPF29ACOLsX9STORF4STOR])
IF(INPDFLG.EQ.)) GO YO 850

NN 360
FFO(T)
380

T=1«MMAXP]
=STORF (MMAXP2=T)
CONTINUF

NO 400 T=]14.MP]

TPA9N TAMARY(T)=STOR] (NVP2=T)
FO(T)Y=FFO(1+(1=1)4MRAT)
YI=TANARY (T)2nD2

C0SAGY (1)=S0RT (1. /(1 av1))

Y1=Fn(

n

Y1=Y1+DMUZPST# (ACOL (1) +R1XX)
RKAPAOY (I})=Y1/RML

IF(T.FO.MP])

400

FN(1)=DFLTA & FN(2)=0TP $ FN(4)=RETA3®RMY

CONTINUF

RKACMI=RBKAPARY(])

FN(AR)=04 & FN(7)=1., $ FN(R)=~RETAGHRMU#PST
NDAT=NMAX/N N e
CALL F NEW(HOLD2¢MP1 ¢MPNP1 4MMAXPT ¢MNTOTP]1 oNRATsFNsCAPF24ACNI o X0

+FFN«TANARY)

IF(INPNFLG.ENL]) GC TN RSO

PO 410 I=MP]MPNF1
TANAGY (1) ==TANARY (T)

FO(T)=FFO(MMAXP]+ (T=MP])%#NOAT)

YI=TANARY (1) 22
COSARY(I)=SORT(l./(1a+Y]1))

Yi=Fn{

|8

Y1=Y1-RFTAQ#OMI#EST# (ACOL (T) +R1XX)
RKAPADY (1)=Y1/PM| /RFTAZ

TF(T.FN.MPY)

410

CONTINUE

TANABY (MP1)=COSARY (MP1)
FODI TA=FO (MP])

CALL TFRP(FLASTeF0+MPNP] TN FRR TFLGERR)

RKAFPL =RKAPARY (T)

=RKADARY (MP1) =0,

PRTMT 27 «NFTTNT«ANCLDP 4 8NSHT

DR INMT
no 230
PRTINT
230

21

T=1eMP] 4MERTINT
8 X (I)eACCL(T)
CONT INUE
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3022 DN 350 T=MP] «MPNF] «NPRINT
303N PRIMT 8 oX(T)eACALU(T)
060 I8N CONT INUF

2050 DRINT §

06N DRINT §

207" AR CONTINUF

308N a5n COANT INUF

NG~ PRINT 14

210" ’00 CONT INUF

2110 8Rp CONTINUF

21720 FND

213N SUARRATINF SDLINF(Y.Y.MoXTMToYINT)
2140 NIMEASTON X(300)4Y(300)+C(4+300)
15N TF(X (1) +Y(M)=ATEG)1Ns3410

3160 10 CALL SPLICCN(XsYeMsC)
3170 ATFP=X (1) +Y (M)

31Rn k=1

3190 3 TFAXINT=X(1)) 704142

3200 70 k=1
P10 GO TR 7

2N} YINT =Y (1)
3230 PFTURN 7
3240 2 TF(XINT=- X(K*l))6v405
3250 4 YINT=Y (K+))
3260 RETURN Tt T - —
3270 § K=K+1
32R0 IF (M=K} T71471¢3 v
3290 71 K=M=1 .
330N 6O TO 7
3310 6 - IF(XINT=-X(K)})13412911
3320 12 YINT=Y (K)
333% RETURN
3340 13 K=K=~1
“3350 GOTTOTE
A_N 1Y YINT=(X(K+1)=XINT)I#(C (oK) H(X(K+1)=XINT)B#2+C(3eK))

3370 YINT= YINT*(XTNT X(K))R(C2eK) & (XTNT=X(K))##24C(44K))
"33R0 RETURN ™

3360 7 CONTINUE . .
3400 101 FORMAT (RHOXINT = F1R.9+32He OUT OF RANGE FOR INTERPCOLATION)
3610 6GOTTO 1Y T

3420 END '

3430 SURRAUTINF .SPLICEN(XeYsMoC) I
3440 DIMENSINN X(?Oﬂ)oY(?Oﬂ)oC(&o?Oﬂ)9D(300)¢P(300)oE(?OO)vA(3nn.3 sB(3
3450+00) 7 (300)

GAN MM=Ma=] _
270 DO 2 K=leMM
AN D(K)IZX(K+1) =X (K)
34090 P{K)I=N(K) /6,

3son 2 FAK)=(Y(K+1)=Y(K})/D(K)
510 N 3 K=P MM '
ag2n 3 B(K)=E(K)=F (K=1)

53N A(1+47)==1.-D(1)/C(2)

AS4N A (1. N)=D(1)/D(2)

ISEN A(2« V=P (2)=P(1)#A(1+3)

AsAN A(?.?)—? #(P(1)+E(2))=P(1)#A(142)
RAETN A(Pe)=A8(P93)/A(Z+7)
3590 R(2)=R(2)/8(242)
580 DO 4 K=3eMM T
FENN A{Ke?)=2,#(P(K=1)+P(K))=P(K=1)#A(K=]10e3)
2610 R(K)I=R(K)=P(K=1)#B(K=1)
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362N
363N
364N
IEEN

F6AD

akTN
AN
349N
3704
2710
3720
3730
3740
3750
3760
3770
378N
3791
3RON
21N
RPN
383N
3840
3RS0
T3AAN
3Q7h
JRAN
3a9N
3900
3910
3920
3930
3940
3950
3960
3970
3980
3990

A(Ke)=P(K)/A(KWZ)

4 R(K)=R(K)/A(Ke?)
N=N{(~M=2)/N(M=1)
A(Mel)=]e+N+A (M=F o)
A(Me2)==N=A(My]1)2A(M=],43)
R(M)=R(M=D)=A(Ma])#R(M=])
7(M)=R (M) /A (My?P)
MN=M=?

NO & T=]1eMN
K=M=T R

A 7(K)=R(K)=8(K43)#7(Ks+1)
Z(1)==8(1a2)27(P)=A(14)%7(3)
NO 7 K=1eMM

N=]l./7(6.#N(K))
C(leK)=7(K)HA
C{2.K)=7(K+1) %0
C(3ekK)=Y(K)/DN(K)=7 (K)#P(K)
7 ClLeK)=Y (K41)/D(KI=Z(K+1)8#P(K)
FND

FUNCTINN FUNCT 10 (XeGe79M)

NIMEASTON G(13N)e7(130)

CALL SPLINF(Z+GeNeXeY)

FUNCT10=Y

END

SURRNUTINF F NFN(HQTLOOIHTOJLOOJHIONQATIOQAORQCQUQFQTN’
NIMFASTON A(l]).Y(?)oPY(Z)oSCPATCF(ZO)qp(l3")vC(l30)oD(l30)
NIMFASTON QN(]?H)»CN(]’O)-”N(130)

NDIMFASINN F(’ORO).TN(I?O) )

FRR=]1,F=7 § NFN=2 ¢ TT=IL0 % X=A(1) $ Y(1)=A(2) & Y(2)=A(]Q)
M=THT-TLO+1 § HK=H/?, & NTL=1 § NPL=0 ¢ TL=H+A(1)

Jd=JLn
F(JN)=A(3) & TN(T1)=0.

DO, 10 I=1eM

BN(T)=R(T+ILO-1)

CN(T)=C(I+ILO-1)

DN(T)=D(T1+1L0O-1)

10 CONTINUE

KK=0

110 CALL NORNSFT(KKeX9HHoNFQsYoDYsFRReSCRATCHyNTL o TL oNPL 40 ,)

L01N+4PETUPNS (140)

40720 GO TO (120+1104120)KK
4030 120 DY(1)=SQRT(1.+Y(1)#8#2)883/8(4)# (Y (2)+A(S) #FUNCTI0(A(A) +A(TI X _
40404,

40CN+BN«DN M) +A(BY# (FUNCTIN(A(K)+A(T)E2XeCNeDNeM) +A(G) H(FEXP(=A(10)2Y(2)

40AD+)=1,)4+A(11)))

Ta07n’
4LORN
4090

L10n
4110
L1720

T 4130

4140

4150

T 416N

4170

41RN

AL

4200

4210

NY(2)=Y(1) $ GO TO 110

130 NNENNES

FlJJ)=Y(2) o
IF ((JJ=JLO) /NOATIO®NRATIOWME L JU=JLO) GO TO 20
11=TT+1

TN(TT)=Y (1) S
20 IF(JJ.FR.JFT) GO TO 140
TL=TL+H % GO TO 110

140 CONTINUE _ i .

END

SURPAITINE F7EDRN(HeILO«THT <0+ YZEDO,sYCONSToYARRAYTOLS)

NIMFASTON YARRAY (2050)«SCRATCH(10) e
FRP=],F=7 § NFN=1%TI=T10 % HH=H/?. $§ NTL=1 $ NPL=0

TL=H % Y=YZFRO ¢ X=0, ¢ YAPRAY(IT)=YZERO

KK=0
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4720

110 CALL NOPDSET(KKeXsHHoNFQsYsDYsERR«SCRATCHoNTL o TLoNPLoN,)

LP A0+ 4 RFTUDNS (140Y

424n
4250
4PAN
4270
4pRN
4pan
430n
4310
4320
4370
4740
4350
43R0
4370
438n
430N
440n
a43n
anpn
443N
4440
4450
INA Y
a447n
LLRN
449n
450n
4510
4Ls570
4530
4540
4550

GO T (120+1104120)KK

120 NY=FINCTR(Y4YCONSTSNQ) $ GO TO 110
130 JI=11+1

YARPRAY(ITI)=Y

TF(TT.FOLTHI) GN To 140
AR=FUNCTR(YsYCONCT 40)

AR=ARC (AR)

IF(ARLT.TOLR) GC TN 150
TL=TL+H % GO TO 110

‘150 JL=T1+1

DO 1A0 J=JLeTHT
YARRAY (J)=Y
160 CONTINUFE

140  CONTINUE
END

SURRAYTINE MNAN TRAC(Fe7+F07eNLOMFT9CoBAsXoFOXsTOLeANS)
NIMFAGTON 7 (2050)«FN7(2050) 4 AF(2N50) s ALN(2050)
COMMAN/ZTMOD/TMON

TNC= (NHT=NLO) /2 § ANS=N, & ASO=A##2

TMON=1
DO 10 T=NLOsNHT4INC
Yi=7(1) % Y2=F07(I)

AF(T)Y=F (XeY1oFNXeYPeAel)
ALN(T)=0.
TF(Y1,MF.A) AILN(T)=ALOC (ARS(Y1=A)*®C)

10 CONTINUE
S0 NUP=NHT=INC
ANS[ AST=ANS

ANS=0,
DN 20 T=NLOWNIP, INC
Y1SAF(T) & YP=AF(T+INC)=AF(T) § YI=Z(T+INC)=7(I) & Y4=Y2/Y3

YS=((Y1=Y2/Y3472 (1)) # (7 (T+INCI=A)+Y2/Y3/2. % (7 (1+INCY##2=AS0))

LS5AD+#AL N (T+INC)

A57N
4SRN
459n
4600
4610
4A20
4430
L4640
LESN
LEAD
4670
46RN
4AON
4700
4710
4720
w730
4740
L4750
4760
4770
4780
479n0
4ANN
4810

Y6 ((Y1=YP/Y3#7(T))8(7(1)=RA)+¥Y2/Y3/2.8(7(T)#82=AG0) ) #ALN(T)

Y7=Y18Y3 & YRIY2/Y1/4 ., #((7(1)+A) 882 (7 (T1+INC)+A)222)
YO=v247 (1)

ANS=ANG+YS=YA=YT7+YR+YS

20 CONTINUF .

IF(INC.FOL.(NHI-NLO)/2) GO TO 30

FRR=ARS (ANS~ANSLAST)

IF (ANSLAST.NF.N,) FRR=FRR/A8S (ANSLAST)

IF (NUP.FO.NHI=1.CR.EPR.LE.TOL) GO TO 60

30 MROT=NLO+INC/2

NTOP=NHI-INC/2
IMOD=TMOD+]

DO 40 T=NROTNTOF s INC
Y1=2(T) % Y2=F0Z(1)
AF (T)=F(XeY1oFOXaY24A2,C)

ALN(T) =0, )

IF (Y1 NFJRY ALN(TI)=ALOG(ARS(Y1=-A)¥*C)
40 CONT INUE
INC=TNC/2
GO TC S0

60 CONT INUF

FND

SURRCITTINE STM{F 4Z+F07«NLNINHI ¢ XsFOXsTOL 9 ANS)
NIMERSTON Z(2050)4F0Z(2050) 4AF (2050)
COMMONM/TSIM/TISTM
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aa2n
4p3n
4840
4860
4Ra0
LRTN
4RAN
4RGN
490n
491n
4g2n
4930
4040
aagn
49AN
497n
49RN
Lagn
sn0n
gn1n
S020
S0390
cnan
snsn
ENaN
ga7N
SNRN
con
=10n
g11n
]12N
=130
c14n
5160
S16N0
<370
S8R0
€190
5200
s210
s22n
S230
SP40
S250
s260
5270
52R0
529N
5300
5310
5320

83307

534N
5350
8360
=371
5380
®39n"
g400
s410
S420

INC=(NHT=NLO)/? ¢ ANS=0. § H=(7(MRT)=Z(NLO)) /2.5 HOVR3=H/13,

TSTM=]
NO 1N T=NLOWNHT s TNC

AF(T)=F(XsZ(T)eFOXsFOZ (1))
10 CONTINUF

S0 ANSEAST=ANS

aNg=n, § J=] )

DO 20 T=NLNyNHT+INC
W=HOVR?

IF (T.FNLNLOLOR.TLERLNKT) 60 TOT 25
W=4, #HOVR3
TF(J/2%2.EQ.J) GC T 25

W=2 ,#HAVR
L ANS=ANS+WH#AF(T)
J=J+]

20 CONTINUF
TF(INC,FOL(NHTI=-NLO)/2) GO TO 30

FRP=ARS (ANS=ANSL AST) o
TF(ANGL AST NF,.N,) FRR=FRR/ARS(ANSLASTY —  ~~
TEF(INC,FQL.1.ORFERLF,TOLY GN TO €0

30 NMRNT=NLN+INC/?

NTOP=NRT=TNC/2 o T T
ISTM=TCTMe1.
NO 40 T=NROT«NTOF 4 INC.

BF (T)Y=F(Xa7(T)sFOXsFO7(1I))
40 CONTINUF
INC=IMC/? % HOVRA=LOVR/2,

RO TG SO
60 CONTINUF
END

FUNCTTION WGHT (J)
COMMAON/WGHTPAC/MF ] 4MPNP ]
WGHT= 8

TF(JeFN.1e0RLJ.EC MDY ORVILENMPNPY) RETURN
WGHT=1,
FND

FUNMCTTON WGHTP (J) ,
COMMNOM/WGHTPAC /ME] s MPNP]
WGHT?2=1 /3.

TF(JeF0.1a0R(ILECMPI,NR.ILEALMPNPT) RETURN
WGHT2=4./3,
IF(J/722?7.FQeJ) RETURN

WGHT?=2,/3,

FND

FUNCTTON FUNCT1(X924F0XsF0Z9AsC)

COMMON/BLK1/P1

FUMCT1=~1./P1

IF(X.FD.Z) RETURN

Y1=2.#COSHF(PI#(FOX=F07)) & Y2=2,%#C0S(PI#(X=7))
Y3==1./2./PT#ALOC(Y]1=Y2)

FUNCT1=Y3/ALOG(ARPS (7=-A)*=C)

END
FUNCTION FUNCT2(XsZ9FOX9F0?7)
COMMON/RALK]1/PT

Y1=2 . #COSHF (PT# (FOX=F07)) & Y2=2.%COS(PI#(X+7))
Y3==1,/2./P18ALOC(Y1=Y?)
FUNCT2=Y3

END
FUNCTTON- COSHF (X)
COSHF = (EXP(X) +EXE (=X)) /2.

END
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S430 FUNCTTON SINHF (X)

5440 SINHF=(EXP(X)=FXE(=X))/2,
450 FND T
5460 FUNCTTON FUNCT3(Xe2+F0XsF07)
S470 FUNCTRI=FO07-FOX
‘8490 FND '

€490 FUNCTTNON FUNCTL (X 47 4F0OXeFN7)
SS0N COMMON/RLK1/PT
BE1N FUMCT4=F07-FOX
S520 TF(7.FN.0..AMD X, FC,.0,) RETURN

BR3N TF(7.FN.l1eeAND, X,EG.1.) RETURN e
S840 YI=? ,400SHF (PI#(FOX=FN?)) & Y2=2 ,#COS(PT#(X+7))
E55N0 FHNCT4=FUNCT4=],/2,/PI2ALNG(Y]1=Y?)
SRAN IF(X.FN.Z) RFTUBRA

SS70 ¥Y3=P,#COS(PI#(X=7))

CSRN FUNCT4L4=FUNCTS4=) /7. /DI*ALnr(Yl-Yi)
8590 FND o
SADN FUMCTINN ruwrtq(x.w,rnx.r07)

SA1N COMMONM/RLKY/PT

620 COMMNN/FSPACK/CSe T oRK
BA3IN FUMCTS=1./PI/CS%PKe],
5640 TF(7.FN.0..ANN.X,EQ,N,) RETURN

SACN TF(7.FNel.oAND X, FR,.1,) RFTURN

CARAEN YI=STNKF(PI#(FOX-F07)) % Y2z TN*%TN(PI*(X+Z))
S67TN Y3=CNQHF (PI#(FOX-FNZ)) § Y&=CNS(DI#(X+7))
SRR FUNCTS=14/P1/2,/0S#0K+] o4 (Y1=Y2) 7 (Y3=Y4) /2
SAON TF(X.FN.7) RETURN

700 YS=TNRSTN(PI®#(X=7)) & YOE=CNAS{PI#(X=7))

B710 FUNCTS=(Y1=Y2)/(Y3=Y4)/2.+¢{(Y1+Y5)/(Y3-Y6)/2s+)e
c720 FND

E730 FUNCTTON FUNCTE(X 47 +FNXsFN74H1 sHP«RKAPMT ,RKADPL )
E740 COMMAM/TRIG/OCMsGCP 4QTM4QTD
S750 COMMNN/RLK1/DT e
S7AN YI=SINHF(PT#(FOX-F07)) § Y2=SIN(PI#(X+2Z))
S770 ¥Y3=0TM & Y4=-0TP ¢ YS5=COSHF (PI#(FOX=F0Z)) _
78N YA=COG(PI#(X+7))

B790 FMT=(Y]=Y3#YP)/(YG=YR)/2e+)

Q00 FPL=(Y]=Y42Y2)/(Y5-Y6)/2.4]1,

S5R10 TF(X.NF.Z) GO TO 10
B820 Y7=1,/2./P1/0CMEREKAPMT
SR317 YR=1,/2./P1/NCPHEKAPPL
BR4N FMI=FMI+Y7 ¢ FP|=FEL+YR
SRASN FUNCTA=H]I#FMT+HP#FPL
RR&N PETURN

TERTN 10 . YT7=SIN(PI®#(X<7)) € Va= CO%(DI#(X-Z))

SRRN FMT=FMI+(YI#Y7+Y1)/(Y5=-YB) /2,

SRGN FPL=FPL+(Y42YT74Y1)/(YS5-YR) /2,

590N FUNCTA=HIBFMISHPHFP

5910 FND

5620 FUNCTION FUNCTR(YsYCeN)

5930 Al=(l.=1e/2./08(Y282=Y(Ci#2) )82

5940 TF(A1.GTele) Al=1,

S950 FINCTAR=SORT(1.7A1=1.)

S960 FND

5070 SURRCUTINF NORNSFT (KeToeHoNoYeFoNELTAY9sR4NTLsTLeNPLoPL)
RQQ“*.PFTUQNQ(ASPI)

‘B9gN#aC )

6000naC K CONTROL INMTEGER FOR USFR STATEMENTS INTEGE
ANLNEBC T INDEPENDENT VARTARLE REAL
«02088C™ 7 H T T 7T INTFGRATINN STFP SIZE REAL
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N ELEY Y N .NUMRFR OF FIRST ORPDER FQUATTIONS INTEGE
aQ4anenc Y NDFEPFNNENT VARTABLES REAL
wOS08RCTT TR T T U DERIVATIVES REAL
ao6enNeuC DELTAY FEROR CONTRNL VFCTOR REAL
@OT7N®BC R TFMPORARY STORAGEs DIMENSION 10%N  REAL
AQRNERC NTL T NUMRFR OF FNTRIFS IN TL INTEGE
«0onuac TL LIST OF INTERUPT TIMES REAL
Al10n=aC NPL NUMRFR OF ENTRIFS IN PL INTEGE
611nesC Pt " LIST OF INTERPUPT FUNCTIONS REAL
6120%2C

6£13082C R(l,1) EQUIVALENY N

6l1a0naC R{(2.1) oF

A1G0#aC B(3,1) ANAMS

61AN%4C R4y 1) DIFFERENCES L

&170%8C R{S,T1) PEFNTCTED DERIVATIVES

f1RN#RC R(6+1) Y AT START OF INTEGRATION STEP

A19N%8C R(7+1) SFCONN PRECISTON PART NF Y ABOVE

6P0N=nC R{RsT) F AT STAPT OF INTEGRATION STEP

RP1N#5C R(Ss1) HALF FOR TNTTTIAL Y WHILF STARTING

€p2n=wnC R(10,1) SECONP PRFCISTIONM PART OF Y

oannnC . PRELISTON PA

240 NTMERSTON Y1) eF (1) aR(10sN)YoTL (1) +PL(1)4DPTA(2)$TEST(2),
A2ENASFINN(10) sPLEFT(10)4PRITE(10) A - -

APZAN FNUTVALFENCE (NPTALMDTFMA)
P70 TYPF INTFGER STFE
APRN TYPF NNURLF NPTFMA

/20N TYPF | nGICAL FINFoRALVFSDONBLE
6300 COMMON/NOPDCOM/ITFRGTIFNSy TTL s IPL«STEPoHMAX s HMINGHRTIG o HL
£310 COMMON/ZTNODFLG/INRPRFLG

&3720 NATA (RL=0)6 (HRTC=N)

£33N BENIN FAPMAT(1NX«#FORNAP IN NORNDSFT CALLTNG SFHIENCE#)
A340 G502N FNPMAT (10X +#¥NNPNSET STEP STZE TON SMAL(#)

@350 8C HL AND FRT6G MUST ALWAYS BE ZERN IN THIS VERSION
6IRNREC OF NORDSET
A37NaaC

£3R0 DELY(T)=HE(RIRLTI+(B(1+T)+(R(2eT)+(R(34TI+ (R4, 1) +7)00))

A3Q0 TF (K NF,0) GN TN KFLIP({300N0,3002,3004430304170641703+41300,
RG0N+1711.2040)

RGl10a8C
a0 TEST FOR CALLING SENUENCE ERROR
ALI0BRC

RGLO TF (Rl F o 0P NGLE0.NP NET L2000 0RINTL (LT .0.0RNTL.GTL500.NRNPL

AUGBR04 L TN NRNPL (GT . EN0 NP NDELTAYJLF . 0.NR.T,LT.0N)
64HAN+S010.5070 '

6470 S010 PRINT SS0107 ~
&£4AN0 TNRDPFLG=1
A490 RFTURN ASPY

A500 5020  CONTINUE
6S1N8aC '
AEPNARC - SET SURROLTTNE COUNTERS ANG STEP STZF DATA

KG30%aC
ASGN HMAX=HMIN=INER=TFOS=ITL=IPL=STEP=0
6550 8C

£SR0#aC CONTRNL SFCTTON FOR STARTTING INTFGRATION
334521

6SAD ASSTGN 3000 TO KFLIP

6590 GO TC 1001

AEON 3000 H=H, AND,37774000000000000000R

€610 NO 3002 J=1oNTL

6620 TF (T,FQ.TL(J)) 200143002
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AA30 3001 ASSIGN 3002 TN KFLIP
664N GO TN 1002
665N 30072 CONTINUE
6660 T LEFT=T

f670 TF(NPL ,EQ,0) GO _T0 S0S50__
668N NO 3004 J=14NPL

GAON PLFFT(U)=PL (D)

ATNN TF(PL(J) oFB.0,)3007,3004
A710 3003 ASSIGN 3004 TO KFLIP
6720 GO TN 1003

A730 3004 CONTINUE
“A74N 5050 COMTINUFE
ATSN NN 3010 I=1,4N

A7AN 3010 R(9,1)=Y(T)
67TRN ASSTEN 3100 TO ISFoUR
A79N0n GO TN 1400

ARNN 3020 I=STEP.ANDL.3

ARYIN TF(TWNFLD) GO TO 2000
ARPN T=STFP/4 . -
AR GO TC (3030430503030 30804,303N043040) 1T
P40 3030 NDl==1,

ARSN ASSIGN 2000 TO ISFOUR

626N GO TN 1400

ARTN 3040 D=2,

ARAN HMAY=HMIN==H _ .

‘/RON ASSIGN 3050 TO ISFOUR

A90N GO TN 1400

A910 3050 DO 3060 T=1eN.

AO2N Y{I)I=R(QsT1)

AG0 3NEN R(10,I)=0,0

AQ4n 3070  ASSIGN 3030 TN KFLIP
AQ8N GO T 1000

A9AN 30RND N1=.5

Q70 ASSTGN 3080 Tn ISFAUR
A08N GO T 1400

AQ0N 300N  TF(HALVF)?100,3050
7000 3100 STEP=0

7010 DO 3110 I=1.N .
7020 3110 B(1eT)=R(2411=8B(31)=B(4+11=0.0
7030 GO TO 3050

704088C

70S0#%C CONTRNL. SFCTTON FOR TIMF TNTERUPTS DIIRING NNPMAL INTFGRATINN
70ANRRC _STATFMENT 1700 INTFGRATFES FORWARDRETUPNING TO_
TO7ThRBC S

7080 1700 GO TO 1600

7000 1701 DO 1707 I=1eN
7100 R{ACTI=YL(T)

7110 1707 R{R,1)=F (1)

7120 TSAVF=T R
7130 1703 7=2.#TSAVE
7140 DO 17095 I=14NTL
TISO IF (TL(T).LT.7) 170441705
7160 1704  7=TL(L)

7170 =1

7187 1705 CONTINUE o

7190 IF (7.GFTSAVE) GO TO 1707
7200 ASSTGN 1706 TOKFL1IP
7210 RTIFST=TSAVE/Z
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7230
7240
7250
7260
7270
7280
7290
7300
7310
7320
7330
734N
7380
7360
7370
73RN
7390
7400
7410
7420
7430
7440
7450
7460
7470
T4R0
7499
7500

IF (RTEST.FQ.140) 1705117053
17051 NO 17052 T=1.N

17052 Y(T)=B(6+1)

T=TSAVF

G0 To 1001

17057 HP=72-~TSAVE

ASSIGM 1001 TO ISTWO

GO Tn 17200

1706 ASSIGN 1703 TO KFLIP
ASSIGN 1002 TO ISTHREE
GO TO 1300

1707 DO 1708 I=1,N
F(I)=R(BsT)
1708 Y(I)=R(6s1)

T=TSAVE
ASSIGN 1300 TO KFLIP

ASSTIGN 1709 TO ISTHRREF
G0 To 1001

1709 RTFST=7/T
RTFST=PTEST (AND, (NOTW 3

IF (RTFST.EN.1.0) 171041711
1710 ASSIGN 1711 T0 KFLIP
GO TO 1002

1711  TF(NPLL.EN.0) 6O TO S060°
NN 1712 I=14NPL

1717 FINP(I)=,FALSF.

5060 CONTINUE

60.T0 1700

7510%%C
7o2088C INTEGRATFE ONE STEP
7583n88C

7S4084C
755n%8C

7560
7570
7580
7590
7600

SAVE CONDTTTONS AT START OF STEP

- - PR

2000 NN 2010 I=1,N
R{AeT)=Y(T)
2(741)=R(10.1)

2010 R(ARLT)I=F(])
TSTART=T

7610880 .
762084 FNTRY FOR HALVED STEP
7630850

7640
7680
7640
7670
7680

7700%%C

2020 T=T+H
no 2030 I=1sM
7=0

Y{1)=R(heT) +NELY(TY

2030 9(5-I)=F(I)¥(?-*p(lot)¢(3.*9(291)*(4.*9(391)05.*3(5011)))
T7A90#4C

7710%8C

7724
7738
7740
7750
7767
7770
7789
7790
7800
7810
TR0

HAL VF=,FA| SE,

TTERATE TWICE.DEVELOP TEST PARAMETERS ~ 7~

POULIRE F=,TRUE,
TFST(1)=TFST(?2)=0.
DO 2070 J=1,2

ASSTGN 2040 TO KFLIP
GO TP 100N
2040 DO 2070 T=14N

72F(1)=-R(S41)
TF(J.FN.2) 205047060
2050 77=A3S(Z#H)

RTFST=NFLTAY#ARS(Y(T))
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7R3N IF (77 .GT,RTFST) HALVF=,TRUE,

7840 IF (77.GT.RTFST#,015625) NOUBLF=,FALSE.
“IRSN 2060 DPTA(1)=B(R.TY
TR6EN NPTA(2)=R( T41)
7871 7=7%,379861111111
TRBRN NPTEMA=NPTFMADELY(T)
7RQGN0 7Z=ARS (PPTA(1)=Y(I))

7900 IF (77.GT.TEST(J)) TEST(N=2Z

7910 Y(I1)Y=DPTA(]1)

79720 R(10,T)=DPTA(2)

7930 2070 CONTINUE

704082C

795n848C CHECK TFST PARAMETERS.BUMP COUNT OF INTEGRATION STEPS
7960n88C B

7970 STEP=STFP+1

73RN IF (STEP.GTL1.ANF,STFP,.LT.?5) 60 TO 1100

7990 TF (R #TESTU2)«CTLTEST(1) e AND. NNT.DOUBLE) GO TO 1500

RO0N IF (R.2TEST(2).GTLTEST(1}) DOUBLF=,FALSF,

R010 IF (STFP.FA,1) ¢C TN 1100

an2n JF (HALVF) 150001100
"AN3INHeC _
aQ4nEaC UPDATE POULTINESRETURNS T0O 3020 1F STARTING - 1701 OTHERWISE
ANSO#4C o o
R0AN 1100 DOI110Y1 T=1eN
RO7N 7=F(1)=R(Ss1)

BNARN R{1eT)IZR{T 1)+ (1, 2#R (P4 T)+ (A, #R (1) +(10,4R(441)+7/.96)))
2090 R(P«I)=R(29T)+(4,#A(34T)+(10.,7R(49T)+Z#0,4841111111))
R100 R(3eI)I=R(3aT)+ (G 4P (L4T1)+7/9,6)
R110 1101 RB(4.1)=R(4es1)+7/120.

R120 IF (STFP.LEL.?4) .0 TO 3020

R13N IF (F,GT.HMAX) HMAX=H

P140 TF (F L THMIN) KVMIN=H

RIS GO TN 1701

p1ANBEC

a17088C ROUTINE TFSTOHIWFALSFE EXIT IS S17300+TRUE EXIT IS 1R00
AlRN#HC '

2190 1300 TIF(NPLL,FN,N) GO TO 5070
R200 PO 1301 I=14NPL _
2210 IF (FIND(T)) 60 TO 1301

p220 TIF (PL(T)I#PLFFT(T).LT.N) GN TO 1303
2231 1301 CONTINUE

fran0 &§070 CONT INHE

APEN TF (NP ,FQ.0) GO TO SORN

2PAN DO 13072 T=14NPL

2270 1302 PLFFT(T)=PL(T)

R?RN S0R0  CONTINUE

2290 TLEFT=T

230N AN TN ISTHREF(1NN241709,1800)

2310 1303 JF(NPL,EN,N) GO TN SNn390

2320 PN 1304 T=14NPL ~
2330 1304 DPRITE(I)=PL(I)
R340 5N90 CONTINUE

/36N TRITE=T"

R3AN GN TO 1800

_R37088C

a3an#aC NEDENDFNT VARTARLE SEARCH PROCEDURECFENTEREND IF PL(T) CHANGES.
0390880 - '
P400 1R800 7=0.0 3
pL10 TF(NDL .FQ,0) GN TO 5100
P40 NO 1802 I=14NPL
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2430 IF (FIND(T)Y) GO TO 1802
ea4n IF (PRITF(1).FN.0) PLFFT(I)=0
P4SN 27=PLFFT(I)/PRITE (1)

Rab0 TF (77.LF.Z) 1RD141R802

470 1801 Z=2Z -
aLuRN =1 ,

R4GN 1R02 CONTINUE

25005100 CONTINUE o
RS1N HP=(TPTITE=TSAVF)=(TRITE=TLFFT}/(1,-2)
R530 1RN  ASSIGN 1702 TO KFLIP
RE4N FIND(JY)=.TRUE,

ASSN GOTTO 1003 v

RSAN 1804 ASSIGN 1001 TO TSTWO
RET7N ASSICN 1300 TN KFLIP

ASAN ASSIGN 1800 TO IS THRFE
RS9N GO Tn 1700

RAQNBRE

YS IR Xo " CHECK FOR DCURLF OF STEP SIZE
re2n=aC

R6E3C 1600 TF(DOURLFY YA01,2000
RE4N 1601 Dl=2,

RESN ASSIGN 2000 TN ISFOUR
R66M GO TO 1400 T T
RETNa8C

REANERC SUBROUTINF CALLSs ASSUMFS KFLLIP SET PRIOR TO ENTRY

RAQN#RCT
2700 1000 k=1
R710 IDER=TNDFER+1

R720 RETURN
R730 1001 k=2
RT4N TENS=TFNS+]

R750 RETURM
R7AN 1002 K=J+2

R770 ITL=1TL+1

‘B7RN PETURN

R787 1003 K=J+NTL +?

RANN TPL=TPL+1

ARR1" RETURN

rAZN®#C

RA3N#RC SURROUTINE T0O CHANGF mamu SIZE
RRaN=C .
RRGN 1400 Hz=H#D]
REAN N2=N1=0N]
TRRAT7N N3=NZaN1

AaRARN N4a=NIxN]

ARGN NO 1401 - I=1,4N
RGN R{(1«T)=R(1,T1)40D1}

Q1N R(P.T)=R(P41)%0N2

RG2N R(3T)I=R(I,T)%N3

89317 1401 R(4,4,T)=R{4T)%#DN4G
R94N0 GO TC ISFOUR(3100420003050,309042020)

DOﬂD&#O ——— . a—
ROAN®RC POUTINF TC PRENTCT TINTEPMFDTIATE vALIUFS OF Y(I)
RQ7Nx#C

RQAN 1200 T=TSAVF+HP
RGGQN N]1=HO/HK o
qnnn N2=N1+#n1

anl1n N3=hH2#Nn}

Qn2n Na=N3IaN]
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9037 NO 1201 T=1.N
904N 1201 Y(I)=R(AyT)+-P# (R(RGT)+(N1#B(14T)+(D2#3(2,1)+(D3#B (2 1)+D4*#R(

Q041 +4
G050+41
9060+)))))

9070 6N TO ISTWO(1001)
CREGEE Y
009n#a(C RESTORF TaYsFe. HALVE STFP SIZEs TRY STEP AGAIN

‘ajon=sC
o11" 1500 OTEST=H/2
0120 TF(T.FN.(T+RTFST)) 503055040

4130 5030 PRINT 55020
Q14" INRPNF| G=1
Q157 RPETIRN ASP]

"Ta160 5040 CONTINUE
0170 STEP=STEP=1
Q)An T=TSTAPRT

9190 PO 1501 T=1eN
9200 Y(I)=R(6sT)
9210 R(10+T1=R(7s1)

9220 1501 F(1)=B(8,1)
9230 pl=,%8 .

Q240 ASSIGN 2020 TO ISFOUR
oPEn GO TO 1400
QP&nN FND .

0270 SURPCUTINE MATALE (AsXoNRyNV+IDO,DETINACT)

T9280 DIMENSTINN A(NACT4sNACT) « X (NACT9NACT)

9290 IF(ICO) 14241

930" 1 DO 3 _I=leNR
79310 DO 4 J=1eNR

9320 4 X(1+J)=0,0
0330 3 X(I+1)=1.0
79340 NV=NR

91350 2 DET=1.0

Q36N NR1=NR=) .
Q370 N0 S K=1,NR1]
Q3RN TR1=Xe}

0391 PIVOT=0.0
0400 DN 6 T=KeNR
Q41N 7=ARS(A(T,4K))
9420 IF(7-PIVOT) heb,y?

‘o430 7 PIVOT=7

9440 TPP=1

Q480 6 CONTINUF =~ e e
O4AN TF(PIVNT) Re9eR

Q47N 9 DET=0.0

948N RETHIRN ) U
Q49Nn 8. IF(IPR=-K) 10411410

a=nn 10 DN 12 J=K AR

o8]1Nn 7=A(TPRJ) .
T oT2N A(TPR,J)I=A(KeJ)

9830 12 A(KeJ)=7

O8R40 NN 13 J=14NV

QEEN 7=X(TPRJ)

QREN X (TP ) =X(KeJ)

Q570 11 X{KeJ)¥=7 - S ——
O5RN DET=-DET
ogon 11 NFT=NET#A(KeK)

9ANN PTYNT=]1.0/A(KeK)
QslNn NN 16 J=TR1,NMP
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9a2n
0A3N
QRs N
Qesn
9aAN
aR7n
9ARN
[=YNeT)
Q7nn
e71n
o720
a7an
ar4n
Q7Cen
Q760
9770
a78an
a7an
aann
CER N

9A2n "

as13n
a4
9Rr&A
QRAN
QR70
aRAn
9a9n
9900
9911
ag92n
9930

Ak J)
NN 14

14

DO &
TF(X(K
1%

no 1A

16

)

TF (AN

N7

PIVOT=
nn 18
X (NP
no 1R
T=NR-K
sum=0,
nn 19
19

1R

FEND

=A (Ko J)=PTVYNT
I=IR1 4NP

A(TeJ)=A(Ta ) -A(TaKYHA(Ks DY

=7 e NV

+J)) 18545,15 -
X(KeJ)=X(KeJ)#PTIVOT
T=TR14NPR

XATo =X (Tod)=A(ToKIHX(KsJ)

CNNT INYF

PeNR))Y 1746417
NDFT=DET#A(NRGNR)
1.77A(NR¢NR)
J=1eNV
)=X(NReJ)#ETVOT -

K=19NR1

|

t=Te«NR1]

SUMSGUM+A (ToL+1)RX(L+14J)

X(19J)=X (10 J)=SUM

SURRCUTTINE TERR(A4R¢NeTOLy TERR)

NDIMENS
1FRP=0
no 10
Yl=ARg

1NN A(T70) R (70)

I1=1sN
(A(T)=-R(T))

TF(A(T)NELO0) Y1=Y1/ARS(A(T))

TF(Y1.
10

GT.TOL) GO TO 20
CONTINUE

RETURN -

20
END

1ERR=]1
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