
NRL Report 7956

A Self-Consistent Theory of Steady-State
Lamellar Solidification in Binary Eutectic Systems

G. E. NASH

Transformations and Kinetics Branch
Material Sciences Division

February 9, 1976

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.





SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NRL Report 7956 

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

A SELF-CONSISTENT THEORY OF STEADY-STATE Final report of one phase of a
LAMELLAR SOLIDIFICATION IN BINARY continuing NRL Problem
EUTECTIC SYSTEMS 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(S)

G.E. Nash

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Naval Research Laboratory NRL Problem M01-32
Washington, D.C. 20375 Project WR0220101

1I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
February 9, 1976

Naval Air Systems Command '.3 NUMBER OF PAGES

Washington, D.C. 20360 168
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified
15a. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and Identify by block number)

Lamellar eutectic Crystal growth
Directional solidification In-situ composite
Chemical diffusion

20. ABSTRACT (Continue on reverse side If necessary and Identify by block number)
The potential theoretic methods developed recently at NRL for solving the diffusion equa-

tion are applied to the free-boundary problem which describes lamellar solidification in binary
eutectic systems. By using these techniques, the original free-boundary problem is reduced to a
set of coupled nonlinear integro-differential equations which when solved yield the shape of the
solid/liquid interface and the solute concentration on the interface. The behavior of the solu-
tion to these equations is discussed in a qualitative fashion, leading to some interesting infer-
ences regarding the nature of the eutectic solidification process.

(Continued)

EDITION OF I NOV 65 IS OBSOLETE

5/N 0102-014 66011 1 SECURITY CLASSIFICATION OF THIS PAGE (W*en Data Bntrero,

-

FORM
DD I JAN 7, 1473



,LUIJRITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. Abstract (Continued)

Using the information obtained from the analysis, an approximate theory of the
lamellar-rod transition is formulated. The predictions of the theory are shown to be in
qualitative agreement with experimental observations of this transition. In addition a
simplified version of the general integro-differential equations is developed and used both
to assess the effect of interface curvature on the interfacial solute concentrations and to
check the new theory for consistency with experiment.

ii
SECURITY CLASSIFICATION OF THIS PAGE(When DaMe Entered)



CONTENTS

1. INTRODUCTION 1

2. MATHEMATICAL FORMULATION 8

2.1 Formulation of the Boundary-Value Problem 8

2.2 Some Comments on the Analysis 17

3. A FORMAL SOLUTION OF THE FREE BOUNDARY PROBLEM 21

3.1 Chemical Diffusion 21

3.1.1 The potential theoretic method 21

3.1.2 Implementation of the potential
theoretic method 24

3.2 Thermal Diffusion 36

3.2.1 The "fictitious source" method 37

3.2.2 Implementation of the fictitious
source method 39

3.3 Construction of the Formal Solution 48

4. SOME ASPECTS OF THE BEHAVIOR OF SYSTEM I 55

4.1 A Qualitative Analysis of System I and
Its Implications 55

4.1.1 The torque at the triple point 55

4.1.2 A qualitative examination of System I 56

4.1.3 The implications of the analysis 62

4.2 Asymptotic Estimates as ro-> o 64

4.3 On the Existence or Nonexistence of
Solutions to System I for W =-o 68

iii



4.3.1 Integration of equation (75) for large
values of U- 69

4.3.2 Integration of equation (75) for
arbitrary values of /eL 73

4.3.3 A physical interpretation of the results 79

4.4 An Approximate Version of System I 82

4.4.1 The approximate equations 82

4.4.2 An important property of System II 88

5. NUMERICAL RESULTS AND COMPARISON WITH EXPERIMENTAL
DATA 90

5.1 Numerical Procedures and Results 90

5.1.1 A procedure for solving System II 90

5.1.2 Validation of the numerical procedures 92

5.1.3 Sensitivity of the solution of equation
(73) to interface shape changes and
comparison to the Jackson-Hunt solution 94

5.1.4 Some typical numerical results 101

5.2 Comparison with Experimental Data and
Previous Theoretical Results 101

5.2.1 A procedure for assessing the theory 104

5.2.2 Estimation of al, a3 a4 , and 10531 41 Y op 0

5.2.3 Comparison of theory with experiment 109

5.2.4 Comparison with the theory of Jackson
and Hunt 114

SUMMARY AND CONCLUSIONS 116

REFERENCES 120

iv



APPENDIX A - Derivation of the Explicit Form of

the Single-Layer Potential 123

APPENDIX B - The Indeterminacy Associated with the

Solute Concentration Field 132

APPENDIX C - Derivation of Equation (62) 137

APPENDIX D - A description of the Computer Program

for Solving System II 145

v





A SELF-CONSISTENT THEORY OF STEADY-STATE LAMELLAR
SOLIDIFICATION IN BINARY EUTECTIC SYSTEMS

I. INTRODUCTION
rr

It has been known for some time that many

binary eutectic alloys, when solidified unidi-

rectionally, develop a lamellar microstructure

consisting of alternate layers of a and ( phase

crystals with the lamellar phases aligned parallel

to the solidification direction. Because of the

fine-scale distribution of these aligned eutectic

structures and their inherent stability at

elevated temperatures, these alloys possess

excellent high-temperature load-bearing capabilities

and show great promise for supplementing and/or

replacing the conventional nickel-based super alloys

currently being used in naval aircraft engine

components.

Although the feasibility of producing a wide

variety of technically interesting eutectic

systems has been amply demonstrated, no satis-

factory theory has been available for rationally

predicting the characteristic structures produced

by unidirectional solidification.

The first systematic theoretical investigation

of lamellar solidification in binary eutectic

systems was that of Tiller [l]. Tiller went
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through a rather careful dimensional analysis

and concluded that a freezing rate-lamellar spacing

2
relation of the form VA = const. = C (V being

the freezing rate and A the lamellar spacing)

should apply. His solution, however, was incom-

plete in the sense that unknown shape factors

were involved in the calculation of the constant

C. Somewhat later Jackson and Hunt [2] attempted

to eliminate the unknown shape factors in Tiller's

analysis by utilizing an exact solution of the

chemical diffusion equation for a planar solid/

liquid interface. Since, in general, the solid/

liquid interface is non-planar, the Jackson-Hunt

approach was not entirely successful in remedying

the deficiency in Tiller's analysis.

The aforementioned investigators were severely

hampered in their efforts by the lack of a suitable

method for solving the diffusion equation in a

domain bounded by an arbitrarily shaped solid/liquid

interface. Colin, et al.[3], in an attempt to

resolve this difficulty, proposed a method for

obtaining the required solutions based on eigen-

function expansion techniques. Such methods,

2



however, usually work well only when the boundaries

coincide with the coordinate lines. When the

boundary is of arbitrary shape, the eigenfunction

expansions tend either to converge very slowly,

or not at all [4]. Therefore, their solution

was not entirely satisfactory.

Strassler and Schneider [5] also investigated

this problem and, with the aid of certain classical

results in potential theory, obtained both an

integral representation for the solution in terms

of an unknown potential, and an integral equation

from which the potential could be determined.

Their approach was superior to that of Colin, et al.;

being far more general and less cumbersome, and

yet having none of the attendant difficulties.

Strassler and Schneider also utilized their

solution to the diffusion equation to investigate

the lamellar eutectic freezing problem, and developed

an iterative scheme for obtaining both the solid/

liquid interface shapes and a definitive freezing

rate-lamellar spacing relation. Although this

work constituted an admirable attempt to rigorously

treat the problem, it fell short in two respects;

3



namely, the convergence of the iteration scheme

was not demonstrated, either analytically or

numerically, and the thermodynamic equilibrium

at the a/B/liquid triple point was not accounted

for properly.

It is the purpose of this report to attempt

to remedy these difficulties by carefully recon-

sidering some of the essential physics involved in

steady-state lamellar freezing, and to develop a

theory which is as self-consistent as possible,

thereby providing a first step in understanding

the formation of the characteristic microstructures

produced by directional solidification.

In Sections 2 and 3, the problem is formulated

as a boundary-value problem for the thermal and

solute diffusion equations, and is subsequently

reduced to a system of ordinary nonlinear integro-

differential equations for the shape of the solid/liquid

interface and the solute concentration on the

interface. The analysis makes use of the potential

theoretic methods developed at NRL over the last

several years for solving various free-boundary

problems associated with the diffusion equation

[6,7], and is noteworthy because the quantities

of interest, namely the quantities defined on the

4
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interface, may be determined without calculating

the bulk temperature and solute distributions. In

this respect, the analysis is similar to that of

Straissler and Schneider; however certain of the

resulting integro-differential equations are

somewhat simpler in form than those derived in

the aforementioned study, primarily because no

intermediate potentials are involved.

The behavior of the integro-differential

equations is critically examined in Section 4,

and simplified versions of these equations are

derived by assuming that (1) the solute diffusion

length is large compared to the lamellar spacing

and (2) the interface is approximately isothermal.

In particular, it is shown that:

* The thermodynamic equilibrium require-

ments at the a/B/liquid triple point must

be compatible with constraints imposed by

the diffusion equation in order for

lamellar solutions to exist.

* When lamellar solutions are possible,

the solutions generally admit to a relatively narrow

range of possible crystallographic orientation

relationships between the two solid phases.

5



* For a given alloy system, the solutions

to the simplified integro-differential

equations are functions of a single non-

dimensional parameter which is proportional

2
to V X . This result has the important

ramification that the use of virtually any

subsidiary condition for the selection of

the system operating point must lead to a

2
relation of the form V A = const.

* Lamellar growth may not be possible

when the ratio of thermal gradient to

freezing rate is less than some critical

value which depends on the phase properties

and the volume phase fraction. This result

can be used to explain the lamellar-rod

transition.

In Section 5, various preliminary numerical

results are presented, and, in particular, the

new theory is utilized to assess the effect of

interface curvature on the interfacial solute

concentration distribution. Specifically, it

is shown that the planar interface model can

lead to considerable errors in the calculated

concentration distributions, particularly in

nonsymmetric systems.

6
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Finally, the theory is checked for consistency

with experimental data for a number of alloy systems,

and the theoretically predicted V-A relations are

compared with those predicted by the Jackson-Hunt

analysis.
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2. MATHEMATICAL FORMULATION

2.1 Formulation of the Boundary-Value Problem

In this section we formulate the boundary

value problem which describes the growth of a

lamellar eutectic solid in its melt under the

influence of an imposed temperature gradient.

The geometry of the system under consideration

is illustrated in Figures 1 and 2.

In systems which do not facet (systems in

which the effects of interfacial molecular attach-

ment kinetics are negligible), the solidification

kinetics are controlled primarily by the rate at

which solute can diffuse into the liquid, which

in turn depends on the temperature distribution

at the solid/liquid interface. Quantitative

information pertaining to both the solute and

temperature distributions is therefore required

in order to completely characterize the solidification

process.

Because D is generally much smaller than D
5

(by several orders of magnitude), where D5 and D

are the chemical diffusivities of the solid and

liquid phases, respectively, solute diffusion in

8



COORDINATE SYSTEM IS
MOVING WITH VELOCITY "HALF
V IN THE +Y DIRECTION CELL SOLI

X~~~~~

Fig. 1 -Schematic representation of the model used to
simulate lamellar solidification

I~~~~

_ O X LIQUID
F(X) 8

__-~~~~~~~ I

a

i I

Fig. 2 -Schematic representation of the
solid/liquid interface
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the solid may be safely neglected. Hence, the

solute distribution in the solid, t c, is independent

of Y and is given simply by c S(X)=csa(X) (in the a

phase), cs(X)=cSB(X) (in the 1 phase), where c a(X)

Aand cS (X) are the solute concentrations on the

solid side of the solid/liquid interface and are

as yet unknown.

The solute distribution in the liquid , el

and the temperature distribution in the solid and

liquid, T, on the other hand, are determined by

solving the appropriate diffusion equation. Thus,

assuming that the freezing process proceeds in a

steady-state manner, i.e., assuming that the

prescribed solidification velocity, V, is constant

and that the solid-liquid interface shape, F(X),

is invariant with time, cl can be found by solving

V xue f = 0 (in the liquid) (l)

in the "half-cell" in Fig. 1, where equation (1)

is the steady-state diffusion equation written in

the moving coordinate system (X, Y). Similarly,

assuming that the ratio of chemical to thermal

t All concentrations are in units of mass fraction.
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diffusivity, D,/D., is sufficiently small, an

estimate of the temperature distribution which

is asymptotically valid as D /D --6 0 may be

obtained by solving Laplace's equation

7 .T= o (in the solid and liquid) (2)

in the half-cell.

Finally, in addition to equations (1) and (2),

c and T must also satisfy the following far-field,

boundary and interface conditions:

/im, 2L At & (3a)
ye - 0

Y Sy | (far-field conditions), (3b)

hoo _ (4)

where G and G are the far-field temperature

11



gradients in the solid and liquid, respectively

(only one of which may be prescribed independently),

and c _ is the specified bulk composition;

d,) _ d ) = -( 'K (5)

where satisfaction of equation (5) guarantees that

the symmetry and periodicity requirements are met,

and X is the width of the half-cell;

= co (6a)

(XG (AAe)

(on the solid/liquid interface)

(7a)

(X L

(7b)

(on the solid/liquid interface),
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where equations (6) and (7) represent local con-

servation of mass and heat flux, respectively,

across the solid/liquid interface (equation (7)

does not contain a latent heat term, because

the latent heat effect is 0 (Dt/Dt) and can

therefore be neglected as D2/De -A- 0), ,/'

and t denote the normal derivatives A anddfl

ST respectively, evaluated on the liquid
AI
side of the solid/liquid interface, ; denotes

I' , evaluated on the solid side of the solid/
jan
liquid interface, c} is the solute distribution

in the liquid, evaluated at the solid/liquid

interface, Ak. ( £ = aI, ) are the thermal

conductivities in the appropriate phase, f, are

the corresponding densities, A is the width of the

a region, and &e= tan (-F');

T = kn 4 C< a m Qc

( X (8a)

(8b)

(X X (A) sx I

(on the solid/liquid interface)

13



A "'?fe A
6 = Coge~ if -t (r - Ce) i 6 ID

(X C_ God) (9a)

C E 
C5Ws =C~grPf 3 (C:; - Cry 4.A bai j 

X e(x) (9b)

(on the solid/liquid interface),

where equations (8) and (9) are the constitutive

equations relating the interface temperature and

concentrations and are obtained from the phase

diagram as modified by curvature effects (equation (8)

provides the coupling between the temperature and
Asolute distributions), T is the temperature on

the solid/liquid interface, TE is the eutectic

temperature, cE is the eutectic composition;

c E ( E = a,B) are the terminal solid solubilities

(see Fig. 3), me and n. are the absolute values

of the slopes of the liquidus and solidus lines

evaluated at TE, a_ is a Gibbs-Thomson coefficient

(a. = //Sf£) ;r is the appropriate solid/

liquid interfacial free energy, ASff is the

entropy of fusion per unit volume, bE is a

second Gibbs-Thomson coefficient which is

14



generally small and will be neglected

henceforth, and & is the solid/liquid interface

curvature (k = F"/(l+F 2 )3/2)

As = (on the a/B interface), (10)

where equation (10) represents local conservation

of heat flux across the a/B interface, and f

denotes 9 , evaluated on the a or B side of the

a/B interface;

a d

A ftx = bfy t ,- ,fp (llb)

ros6a A 4- (>- -=A)
(12)

I

TE - - ________

CaE
_CE 

I le ~~~~~E

SOLUTE CONC.--

Fig. 3 - Schematic representation of a binary eutectic
phase diagram
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where equations (11) and (12) represent global

conservation of mass and heat flux, respectively;

and, finally,

(13a)

la(/ CO-S - C2 05 = torque terms (13b)

FLAX) = F~s^+7 (13c)

t 0) --FLA = o (13d)

where equations (13a) and (13b) are statements of

thermodynamic equilibrium at the a/B/liquid triple

point (assuming the solid/liquid interfacial energies

to be isotropic and admiting an as yet unspecified

torque term due to possible anisotropy in the solid/

solid interfacial energy, zaB), equations (13c)

and a3d) are statements of interface continuity

at the triple point and symmetry, respectively)

and

~~~- _~

A.

@/? /ln t.,,X } 

A Sf

16



The system of equations (l)-(13) is a

mathematical statement of the boundary-value problem

which describes the lamellar solidification process.

Of primary interest is the determination of the
A

interface quantities cX and T, the volume phase

fractions A/x , and the interface shapes, F(X),

which are compatible with a specified solidification

rate (or lamellar spacing) and thermal gradient.

2.2 Some Comments on the Analysis

Before proceeding any further, it is worthwhile

to comment briefly on several aspects of the analysis.

First, the problem is a free-boundary problem in the

sense that the domains over which equations (1) and

(2) are to be solved are not specified completely at

the outset, because F(X) and A/A are a priori

unknown. Rather, these quantities must be found

in the course of the solution. Such problems are

generally nonlinear and do not usually yield to

classical methods of solution.

Second, even when F(X), V , and x are specified,

the system composed of equations (1), (4)-(6), (9)

and (11) does not necessarily admit to a unique

17



solution. Rather, the concentration fields

associated with this system contain a term of the

form

l T(yyxv)=>,4Q ~v eA k (14)

where the function A(Z,,)V) is indeterminate from

diffusional considerations alone. This is a

rather subtle point and is considered in more

detail in Appendix B. It suffices to say here

that the determination of I(Y,%,V) is intimately

related to the triple-point equilibrium conditions,

equations(13a) and (13b).

Thirdly, as will become apparent later,

multiple families of solutions may exist for a

prescribed lamellar spacing and thermal gradient.

Thus, a one-parameter family of solutions may

exist for fixed values of A A G5 (or Go), and V,

with each member of the family corresponding to

a different crystallographic orientation relation-

ship between the two solid phases. Moreover,

when A, G (or G ), and the orientation relation-

ship are fixed, a second family of solutions exists

and can be generated simply by varying the freezing

rate, V.

18



It is probable that the solutions belonging

to the second family represent possible physical

states when the correct orientation relationship

is prescribed. Indeed, Hunt and Jackson [8], in

their work on transparent organic systems,

demonstrated that a lamellar morphology could be

maintained over a range of freezing rates, even when

the changes in lamellar spacing which would normally

take place were suppressed (this was accomplished

by using thin specimens to grow a fault-free

structure). It has also been observed that a

lamellar morphology can persist when the orientation

relationship is varied (by forcing the lamellae

to curve, for instance), provided that the orientation

relationship does not deviate too far from the

preferred one (see ref. [9] for a comprehensive

summary of these results). Hence, it is conceivable

that solutions belonging to the first family can

also be realized physically.

Finally, it should be noted that the afore-

mentioned experimental results are highly atypical.

In the vast majority of experimental situations,

it is observed that (1) the lamellar spacing is

19



a single-valued function of the freezing rate,

and (2) a preferred orientation relationship

invariably develops as solidification proceeds.

Therefore, it is evident that the steady-state

theory does not provide complete predictive

capability.
The point of view adopted in this report is

that the selection of the preferred lamellar spacing

and orientation relationship is essentially a

time-dependent phenomenon, and is therefore outside

the purview of steady-state theory. The most

that a steady-state theory can provide are candidates

for the favored solutions. Only by introducing

additional information via a stability analysis

or a variational principle can the approrpiate steady-state

solution be selected.

20



3. A FORMAL SOLUTION TO THE FREE-BOUNDARY PROBLEM

To solve the free-boundary problem defined

by equations (l)-(13), it is necessary to both

solve the chemical and thermal diffusion equations,

and determine the shape of the solid/liquid inter-

face. It proves convenient to consider each

diffusion process separately in the initial stages

of the analysisand then introduce the coupling

via the interfacial constitutive relations in the

final stage. Hence, we begin our investigation

by examining the chemical diffusion equation.

3.1 Chemical Diffusion

The solute diffusion portion of the problem

consists of obtaining solutions to equation (1)

which also satisfy the subsidiary conditions

(4)-(6), (9), and (11). The required solutions

will be constructed in this section using a

potential theoretic method very similar to that

described in reference [6].

3.1.1 The potential theoretic method

The potential theoretic method developed

in reference [6] was devised to treat a general

class of free-boundary problems associated with

21



the diffusion equation and essentially consists

of utilizing the jump properties of the single and

double layer potentials associated with the

diffusion equation to transform the original

boundary-value problem into an equivalent (and

hopefully simplier) problem involving only

the determination of the solid/liquid interface

shape and certain quantities defined on the

interface. Because the procedure yields

integral representations for the bulk solute

concentrations in terms of the interfacial

quantities, the original free-boundary problem

may be regarded as solved once these quantities

are determined. A detailed discussion of this

method is presented below:

Denoting the portion of the half-cell

occupied by the liquid as O> and that occupied

by the solid as ff. , the potential theoretic

method may be outlined as follows:

22



1. A solution, 9t_ (X, Y), to

equation (1) is constructed throughout the entire

half-cell, 09 U A such that condition (5) is

satisfied and

Im 4
1vo)+0

f, 6 O'

rd,

oo 3 = Ad adi

l; -R Id JXz

A-/' -"' _ ~. 1

ge '~ --4 3qt- 

- ,flm dJo - d;J 
-is ~S OS> d

where P is a generic spatial point (X, Y), S is

a point on the solid/liquid interface, and Ag

are prescribed jumps in and its normal

derivative across the interface.

2. is set equal to zero.

This step insures that 0 (P) = 0 /P d 5-, and

hence guarantees that = d

In addition, this step provides a compatibility

23
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relation in the form of an integral equation

involving c1 , , and F(X).

3. A second solution, X (P), is

constructed such that ^ - *c+TVAV),where

I(Y,A,V)is given by equation (14). 0 (P) satisfies

both equation (1) and conditions (4) and (5);

moreover, 0(P) CX (P) for PCP> , provided

that conditions (6), (9), (11), and the compatibility

relation are satisified.

4. The compatibility equation is used

in conjunction with the relation -s Co< ()AV,

equations (6), (8), (9), (11), (13), and additional

equations arising from thermal diffusion considerations

to form a system of equations from which the quantities
I'l A

A/X , cv , T, and F(X) are obtained. These quantities

may then be used to determine the bulk concentration

and temperature distributions, if desired.

3.1.2 Implementation of the potential
theoretic procedure

In this section we shall examine the

properties of the single and double layer potentials

associated with equation (1) in the strip [0, A ],and

then employ these potentials in the procedure just

outlined to obtain explicit expressions for the

solute concentration and the compatibility relation.

24



It is convenient to introduce the following

nondimensional variables:

X_ //\ Y /, 

-j.~ F/A V cO A v;\/2v~ (15)

Then, in terms of these variables, the appropriate

single and double layer potentials, U S Lh) f

and W XLpO ( A M ) , respectively, are given by

Vf Jl ,xy - -j< n o 3
U60h A2,) (16 a)

and

1 APJ Y) XU /aS{>'pi 7Sg3) ')}F~d 4 n(16b)

where () and t) are the density functions for

the appropriate potential,

- = -,. d +. .5 7 (17)

25



- ;,,2Ct~~h'v-r) - .2co5fT(tS)J9 + 1

-t;,X {) coiyo5wt H(- (C)) le- < (18)

'k=1 (8

*eAUt - (cX2 tzhrn)t/ 11 VQ -/) I _ - (-'- _ v/C) ),J

- 'Xp W - i ^

H(x) denotes the Heaviside unit step function,

and 1'(x) iS a single-valued function of x in the

strip x e [0,1]. A detailed derivation of the

expression for U2I Lh3i C-,1) is given in

Append ix A .

i<~~~~~~~~~-

The potentials Li4 £Ii1 (?%7) and

W/,Y, Lpl' (%,X) are known to have the following

propert ies:
1. They satisfy the nondimensional

d V~ ~~~Vversio ofeqaio8()

'2 ~ 12--e~f c- ( 2wV

26



at all points in the strip [0,1] except for points

on the surface V= X)

2.

.VoW I

Liu) r hI (X] W)=

.X/~ ~~~~2 Cos1(,'1-Xk Z-~ 0(,-)=..
1~~~~~~~I Zl-P 15_c

3.

tLlj,) 4) G O 3 (§fJ )) . s5

where 1

/~b Ii (19

.5) is a generic spatial point; (x, 1,v(x)) is
a point on the surface 'V(x); ( is the portion
of the strip [0,1] consisting of the points (x, , )
such that " V v(X) ; and is the complementary

portion of the strip.

27



4.

(Y)r,) '&~-d~

= - - A h;) -/- (. Y

/im "'. iJ .,lh bar) -,~~/ i . .(4X-, -[X))

where

dns

Y, -i 1L76) 1X •TIJ (X-)

+ (c2- o(?•; S.
(20)

and where A (V Lh I (x-, is a well-behaved

function of x.

5.

/ 4~~~~~~~~~~~~V
/,, iLs 5) , : j- p(rS 4- W- I 1:> 7rJ

(; 5 ,- 0- U(e-u, 

I 4 [) PO) A42'LfI _ v),

28
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where

1

6.

dAA

where Y Q-AJ:1yr) is continous across Y-(x.

It is now a relatively simple matter to implement

the procedure described in the previous section.

Using the properties of the potentials

tJJiLi- (S. a-) and k/aL/'J (o- v'), it is readily

verified that the solution

''f(/f' y ) -/3'J /C? 7e) (22)

satisfies all of the conditions set forth in
step 1, provided that
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21SJ~ty, v~UG{S}Os&() 4-=/

where I now denotes the nondimensional normal

derivative of . evaluated on the liquid side

of the interface. Assuming for the moment that

equation (23) is satisfied (it will be shown

shortly that equation (23) is identically satisfied

as a consequence of global mass conservation),

step 2 can now be implemented and the compatibility

relation obtained by setting 7 - a . With

the aid of properties 3 and 5, this results in

YtoX) '~ew [§J(// -&/ (J /,2,to v~1C"&(J?) -- >; (24)

Cf'Finally, the interfacial and bulk solute concentrations,

<,,,(x) and c( x,y ) respectively, are constructed

as in step 3. Thus, provided that equation (24) and

the nondimensional versions of equations (6) and (11),

i.e.,

-21-fL) = ('Q (tj@gS Aod gxy -af) y (25)
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Cf = BK /ja {22t -g fC~j,{72 ,},(26a)

J p sL (/-g3 A I ~~~~~~~(26 b)

are satisfied, Ck'(X, ) and (,(ax) are given byt

(27)

-(~ 1~ hj(;c, y } - (Jwf~ -i2 t r(9r~sa1Z 

t -# ay /> Uz) t-2(f(9)J +'7~yS"tR c ,

and

(28)

t Strictly speaking, A( 9, O) is a function of the
nondimensional half-cell width, as well as J and it)
We have chosen here not to display this relationship
explicitly.
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where

A iA

.J/ Com £(J j. j
afS ~ x" J

is the nondimensional normal derivative of the

solute field evaluated at the interface, and

Cfi (4&z:LX ) is given by equation (9).

It only remains to verify the condition expressed

by equation (23) and to obtain integral representations

for equations (24) and (27).

Consider the expression

Since

by definition and

by equation (27),
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./

= 71 _ A ,@ o. Cos& ctyle
C

(30)
-I!AO

Substituting equations (28) and (30) into equation (25)

gives

I (.z) = - v rG 05 e &(U (g + C"3 - 1' 4J ) ;

hence,

t%2i 2w C o f5 --I () 2J ' L;(7) ( j-- fJ

(31)

If, now, equation (31) is substituted into the integrand

in equation (23), the result
c_J/ / 7 p 2"C, 5 i ~ ::_ -

LO T -/- -4-1 eV C~~~~~ (~~) ~__C 5' &-( 1, "¶.

p, / 5 a (27 j d> t- .I5- 4 (j ly2. -o

(by equations (26a))

is obtained, thus confirming equation (23).

33
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Equation (31) is also of use in obtaining the

required integral representations for the solute

field and the compatibility relation from equations
(27) and (24). Thus, with the aid of equations

(16)-(19), (21), (26a), and (31), ,e (' y) and

the compatibility relation can be written as

'JC

1.S di(X#J/l(X'} z~jf2' XGF,.vy(32)

1)

and

respectively, where

/o -f- A .- 'rc r7J)(34)
11. (y - C,''K jfr.) )A'4 = 6,D

./ ~ ~ ~ |CY- 9 pR*(;M a~~~v 
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-(ci -
.~2CL eI4-

I/

&/:5 lp

1- b -54. 77 (, J(ad) - To.r-,gf I

+ 'u ( rK-ft}; !jt /C-2e:Zo( -j(R) 7
(35a)

Z.X --Iw X IltoklT

Iy2/V -7-4'
- 67 k,{ ffl /X-,k3"/J )

(;z '. --/
4. 1 - '-�.:21 /"� ";�'�'7 ��./ (�);' '0)

CC'- -'�?7 1,

1.1� A r -0 -- -Y /7 i�'J

' S~t' l- t~t/ T'( 1 g- t(~) - C ''\N (-t (ko -- )1 IX''fr )I F 7 / / T ( 3 fr J ( ) / - C V~ / I i f ( 

-5
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and

Ki ('7jg 'J~tff)7Z) - k' (7,}a~r}1t 2 - . ^
(35b)

The free-boundary problem can now be regarded

as partially solved in the sense that an integral

representation for the solution to equation (1) is

known in terms of the unknown quantities C,(zk/,i(>~)a

and J , and that a compatibility equation relating

these quantities is available. However, the compati-

bility equation, together with equations (26), (28),

and the interfacial constitutive relations, do not

contain sufficient information to uniquely determine

40,) and J ; in order to proceed further,

thermal diffusion effects must be considered.

3.2 Thermal Diffusion

The thermal diffusion portion of the problem

consists of obtaining solutions to equation (2)

which also satisfy the subsidiary conditions (3),

(5), (7), (10), and (12). The required solutions

will be constructed in this section using a method

very similar to that used in reference [7].
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3.2.1 The "fictitious source" method

The method to be employed here is more --

classical in nature and is conceptually simpler

than the technique previously described. Essentially,

the method consists of employing fictitious heat

source distributions to introduce arbitrary dis-

continuities in the normal derivatives of the

temperature field across the solid/liquid and a/B

interfaces, and then adjusting the strength of

these discontinuities so as to satisfy conditions

(7) and (10). Specifically, this procedure results

in both an integral representation of the temperature

field in terms of two unknown discontinuity density

functions '' 1' and ' 3t2' and a set of coupled

integral equations for '" and '2. These

relations, together with the interfacial constitutive

relations, provide just the information required to
complete the solution to the entire free-boundary

problem. A systematic outline of the method follows:

1. A solution, -(%V7) , to the

nondimensional version of equation (2),

d _ + _ -- 
( 36cH H- o 0 (36 )
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is constructed throughout the strip, A UcPf5 ,

such that the nondimensional version of condition

(5) is satisfied and

[Lidd-f

where i.P- is a nondimensional temperature (- =- )-,

X/m t9-M I o.-/

l S"x z so and 3 denote jumps in the

normal derivative of Ze across the solid/liquid and

a/B interfaces, respectively, and Pr 1 and "' 2
denote the prescribed values of the aforementioned

jumps.

2. With G regarded as specified, G15

is obtained in terms of IP 1 and Yr2 so as to

guarantee satisfaction of equation (12).
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3. The normal derivatives of Th

are evaluated on either side of each interface and

equations (7) and (10) are applied. This step

leads to a set of two coupled integral equations

for the discontinuity functions n and 2'

thus assuring that heat flux is conserved at all

points on each interface.

4. The representation for L9-> and

the integral equations for YIr1 and 0"2 are used

to provide the remaining information required in

step 4 of the procedure described in Section 3.1.1,

thus completing the solution of the free-boundary

problem.

3.2.2 Implementation of the fictitious
source method

The implementation of the fictitious

source method is facilitated by the introduction

of two particular solutions to equation (36),

CtL, l {'D and v [ (XV. , in the

strip [0, 1]. These solutions are given by

;1 Ik 3 (X) K)3- J /<.S (X, J), oV cos4 3 (37)1 C 05 09 Q
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and
-/<-

< [.Fi ( i;Y) = Ji /4 (/Cy;4 M)/t1'(d) -v& (38)

the appropriate solution, c1 and C2 are constants,

1/7 7 /z'LY5/ ?y- i(3 -'IT 2j
(39)

k- {ty, - -/7y- '7-) -< ..s77v~cag.t})]''J'/ /-~)

(40)

and 'I(X) is defined as in Section 3.1.2. The

solutions V/Li7&(,'f) and V§7 [-1L'y~) also have

a simple physical interpretation; namely, they

represent the temperature fields due to distributions

of heat sources acting on the surfaces r -v ,

and (C
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The solutions V. iLh (Lk ) and

V,.j1127 (,'4) have the following properties:

1. They satisfy equation (36) at all

points in the strip [0,1] except at selected

one-dimensional sets of points ('W = V (x) for

VI Li, Iand (,'7{) 5 C-)JorVc7LF2J)

2.

,, V Lh v., LP1o - ° (-,1l

~~~~~L Y

A, U4'L ~"] = X 3 ;j$ 

(provided that / P() -o),

5~~~~~:z vj - So

-00I,,a, aS 4'Z1:X7 = -A} ay 7

avX Kclp: -

1,PV]l J^

00~~~~~~~~~~~~~~~~~ 
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3. They are continuous and have continuous

first derivatives at all points in the strip except

on the selected one-dimensional sets mentioned in

item 1. In particular, LA VLI1 undergoes a

jump across the surface VIZ), and S. V " l
-ox V.~ E I

undergoes a jump across the surface (C, &, -&x,(-. C1).

The limiting values of these derivatives are given

by

- -;1 b(Z) 4- C5 4 r L A It)
.Z -1~~~I 

./b I V, L*]hJ~
(,T, 39) (4, V<))

L C-r 9 

S)r;X V1 L I1 (S,<) - 4 h(Z) 4- CO's S9(K)Z i * [ 7 (X)

(AJ1 5) ( X7 V(1) 

('f, 5.) G 6Ys

I" 

-41

= + I .P (U ) ; . 71a*

- .2 p(V) + Z;; [PIca >J
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where (-. 5) , R , andR -shave the same meanings

as in Section 3.1.2,
.1

Z I L171 W " j; " Vq)), A Ccc,
j CO1

Z. fpi &f
.X, I tY) : /

-I,

= - /-Z
;Z~2

- $/fAl+ In)77 - ±k, ) ) -x. ) S I t3 )
f/:t-Gz}Xt to,;flt~j-.- (J)- Co$4Z1 Z- IV>) 

(42);~ TwV-; ' - -W 7-)/ 4, &( '- t) 5 /A1T,'(ZXu3 

7Z/Lo47f (-ir-7)-- .Yl) - CO- l7 -)j

and

/K<C(- =- 

of'5f x Ad 2/wotrt- ,J 5' 2/7J-j

With the aid of these properties, the required

solution to equation (36) can be constructed

almost by inspection.

43
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It is readily verified that the temperature
f ield

9('X,,y ) -con< Z. it 

of L,:g 1( X,,4Hiq J ) ga~f~j Lt Al( -<K, /, (44)

satisfies equation (36) and all of the subsidiary

conditions listed in step 1 of the fictitious

source procedure, provided that

1i ./ kt (a{) ->4) 
J>- -of

41~~~~~~~~.

Gs2 _6 3 ,--r~y, -f.,2a , (45)

where the constant in equation (44) is arbitrary.

It will be assumed henceforth that the first of

these conditions is always satisfied. The second

of these conditions can always be satisfied by

adjusting G. ; moreover, it can be shown that

satisfaction of this condition automatically

guarantees the satisfaction of the nondimensional

version of equation (12). In view of these con-

siderations, all that remains is to determine the

discontinuity functions Jf 1 and P2 such that

equations (7) and (10) are satisfied.
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To accomplish this task, the
normal derivatives of Z3 on either side of the

solid/liquid and a/1 interfaces are expressed

in terms of 76 1 and it 2 using the jump properties

listed earlier, and the results are substituted
into equations (7) and (10). This procedure results

in the following set of integral equations for t 1

and

5; -X})4t/}t s 'ty) e9ras X-)4 /Z:z/J ]t
(46)

s1st()[ 1(Gift.') -t =O () 

and

1 { ( . f Of tt2 A- a - ! )(47)

where

(48a)

21 LzF ); ~-6 
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and

3 -1 [oJ, (48b)

Once these equations are solved, 2#(,y) is

completely determined for a given interface shape,

f(x)(at least to within an arbitrary constant).
As a final result, we can employ

equations (20) and (37)-(41) to obtain the explicit

forms of equations (44), (46), and (47). Thus,

is given by

2EfX -iJ= LC 5t . -+ 4 -S(X pjX R J
(49)

CK7~~~

(XI)

and the integral equations assume the form

f

C ~~~~~~~~~(50)

-oct~~~~~~~~~~~~~~~~~~j
.03

-~~~~~ =o
7 1(J)
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+ - f~~~~~1

X-P~~
7 '(4J)

/

/k2 [( Lp>1 ii l
6 (j ) I "itJ)) l 

ldj

A-i ,

!Il ir ( J(IT, }. -_) +t ; 74,*) 64 ; -(7--J
'+Lc~c~/v-� (f ( 7- -) - .c57 e (- .1 3

_ sink 77-(J6?a) - /2,) #-f-1':: Eof?) 5- ?-i'r(2UJ)

'1; § Q.$ ?Fi'Cj(%}t. (d C- )-CO$7; (%,4) jJ

5-iiztr(J- 1 j

fi E -. O 52w- (7y -if.?S, -<co_,,,z71-'

- 131)" (i- )
Ir ?C<,- , 7 ( '4--if()J )-' --/- 0<h- j) 2

and where (P f ~- W' / G- C and
47

.f1 ,(Y

,+ (.. i)

Yr

(51)

where

___ __ i 
-z;1

1<4 (l'J, W, &1t)

(52)

7

(53)

I (t,
;z X�

e"(, It/ (,e,()1( g -) IP-1 -

/<7 'IX-' i (;e);, o" )



As in the case of chemical diffusion,

equations (49)-(51) provide only partial solutions

to the free-boundary problem. In order to complete

the solution, the interfacial coupling conditions

must be considered.

3.3 Construction of the Formal Solution

Equations (9), (26), (28), (33), (45), (50),

and (51) comprise a system of nine equations in

the eleven unknowns c,>(X), Ci4), 4(Z,4)) e <a faze

r,;#gewy, jxt), ,'X), cv) , J* C', and J ; with

A) , A~, and the torque term acting as parameters.

Hence, two additional equations must be obtained

in order to complete the analysis. It will be

shown in this section that the required equations

are provided by the interfacial constitutive

relation (equation (8)), and the triple-point

conditions, equations (13).

We begin by considering the first of these

conditions, namely equation (8). Using the

relations 7C=F/A and O-=T/S,,A , equation (8)

can be written as

I (.Az s j = _ mu, f~v_ >) f ,;C fA69)J)) (54a)
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where ,f is now given by f'/C/ff/2) 3/.

I = '/ &G'
Setting the constant in

equation (49) equal to 19C and substituting equations

(49) and (28) into equation (54) then results in

-i 1 '
H-I/

C
-Wi 

-f/Ie k-

i+ A
FeTw,

I1

/K3 (%, -, jla, fra p) j76 j)

j 6- [O. 11I

:tcc~~dbc t '1- 6-(- -1. 10J) (55a)

2

441 / -
I ( 115 ;i) 731:

I
,<yj,/tv C

I1

- = -~ J, I;- )/ ~))P A;) 
la. -.IC

// /A'9 (k' ) t fk), & Ai' d I t', 2 C ro(/ fl 1

I C-(C-i)If D)

I
/~~ ~~~ Lt ~ ft e r"k f (9))4.~/ ~) 

hu

49

(54b)

and

-2t/

( II t '4-)'/ -'

f - /
/.-

(55b)

I'1,

I )
-- L. ig, le( ̂  - -,.>', ) = 'ff-- --1 ( - C. e ) f I !�Tf-
14-?- 4t V (q AL

(',� , / O'), C' ) �

1-1 I1)
I�tl�- (�z , -�- ( C.- W - C C- ) 4-

V(;., ;Va (W (,k' -f - -f-_4 - IP�



where c-f = ape7la and oat, = -3/7O

Equation(55) essentially provides the coupling

between the two diffusion processes, and in

conjunction with the boundary and triple point

conditions

sin, (. 3sinz =X4
(56a)

CO5490. -5 z 3 COS C 0 (torque terms)
(56b)

i (z-) = Adz+) ~~~(56c)

Pr =,41 =° 9 (56d)

where c4 and 0el= 4/Ai
constitutes one of the sought-after equations.

The second equation results from the fact that

equations (56) are in general inconsistent with

respect to equation (55) when the torque term is

specified. This inconsistancy arises because only

second-order derivatives with respect to f(x) appear

in equation (55), thus implying that equations (56a)

and (56b) cannot be prescribed indpendently. Rather,

only one of these conditions can be prescribed a priori;

the remaining condition must be satisfied a posteriori.
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The heretofore undetermined term A(%x/7a) provides

the system with the flexibility necessary to resolve

this inconsistency. Thus, when one of the triple-

point conditions is prescribed, A(Z,) can usually
be adjusted in such a way as to assure satisfaction

of the remaining condition. This procedure leads

to an additional relation (henceforth denoted as(*))

between A(%,w) and the remaining unknowns, thereby

providing the second sought-after equation.t

The completed system consisting of equations

(9), (26), (28), (33), (45), (50), (51), (55), (56),

and (*) can be simplified somewhat by using equations

(9), (26b), and (28) to eliminate the quantities
A ~A A-

C~, C.) G C~ (X),p Cs'j , and Thus, with the

aid of the aforementioned equations, equation (26a)

can be written as

t We have not, as yet, been able to express relation

(*) explicitly for the general case considered here.

However, in the next section it will be shown that

a definitive expression for (*) can be obtained

when several reasonable approximations are made.
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C40v [,)foL4 (l -f)f~ I 4- #E(I-j1

C-,

1

i' [ C, -o -;. (fu -,C,) -IJ4 3)

,J j d69

(57)-( O(faa-')/t l . J dt
dj J1

and equation (33) assumes the form

/2 -- C(;L) tl (j2 ) f-q) ) i 7 10 ) Cy {)dj"2 ~~~, 
," (j ) -/.;z~~4.-

I~~~~~~~~

C 2t, ) ['()1 J)4-U X, 7 f t'{, v) 5f -pyd = °

with

41 iv) =:C co - . ._,
Jp>e 1 f-f jO

1-Wc

/..e+ ,e i-,dj (58a)
c/

Cx,~ -oleJ)')
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'Iy

(33)

+ fe-

I

I ".C"e(l) + ('C-- C,--)



I ~~~~~~~~~

Equations (55), (56), (57), (33), and (*), together

with equations (45), (50), and (51), i.e.,

X=1-J

_ 4C-

7 O) , HZ -
70 s

(obtained from eq.

51

() Pt -'. 53()
/

(50)

and
- ov

tol ('v 14) L$J t L-dci-

iI//-cld 
f

'f 1S. ej,0 Y jX)) O1'5) fJ
t.

{ ' (= f9,1 -

53

rr

(5 8b)

(59)

(45)) ,

(51)

-1 ( -00 A - Cle'E-

'p" + ( -I -JV

- car

4- C--l (v .I tl') 0O? "z (a) 4z�- -/' '5� (z) =-- 0 "

_j.o2 i/4 -i- 1) (? �-- -- f)
e A-�A

- 2W (fa) -f- W�--/j I



now form a system of equations (hereafter denoted

as System I) in the unknowns ( 7t(), 21 ('),

2 eyJ, A(zc CV) , j , and GR . Once these
quantities have been determined, the bulk temperature

and solute distributions can be calculated from

equations (49) and (32), and the problem is solved.
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4. SOME ASPECTS OF THE BEHAVIOR OF SYSTEM I

Since obtaining solutions to System I is

tantamount to solving the original boundary-value

problem, the remainder of this report will focus

almost exclusively on that task. We begin, in

the first part of this section, by examining the

nature of the torque term in equation (56b), and

utilizing the information thus obtained to quali-

tatively analyze the behavior of the solutions

to System I. In the remaining parts of the section,

several approximations are introduced, which are

then used to develop both a quantitative theory

of the lamellar-rod transition, and a numerically

tractable version of System I.

4.1 A Qualitative Analysis of System I and
Its Implications
4.1.1 The torque at the triple point

As discussed at the end of Section 2,

the results of Hunt and Jackson [8] indicate that

it is possible to maintain a lamellar morphology

over a range of freezing rates for a fixed lamellar

spacing. Because it is difficult to envision a
mechanism by which the crystallographic orientation
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relationship between the two solid phases could

have varied during these experiments, and because

there is a one-to-one relationship between the

relative orientations and the torque at the triple

point, the torque term in equation (56b) will

henceforth be regarded as independent of 1) for

given values of A and Gs.

4.1.2 A qualitative examination of
System I

A considerable amount of insight into

the behavior of System I can be gained by qualitatively

examining the interaction between the surface energy

and diffusion effects at the a/1/liquid triple point.
It suffices to consider the limiting case

X,,,, =, and dl= -t = 10 . This choice

greatly simplifies the analysis, but in no way effects

its generality. When = G and W./ = f=

it follows from equations (50), (51), (57), and (59)

that G G , = e {) =0, and J is a

known constant. It therefore remains only to examine

the behavior of equations (33), (*), and equation (55)

with e CA) = = C.7 I a =.
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Equation (33) is a linear Fredholm

equation of the second kind with respect to ,

and it is always possible (at least in theory) to

obtain an explicit solution for i (A) in terms
of the resolvent kernel. Assuming this were

actually carried out, the resulting expression

for 2 could be substituted into equation (55),

thereby yielding the following equation for j(z)

luff-29-+ - & ),f),4(,ww .) (As )))
Y- ~~~~~~~~~~~~~~(60a)

1(111 /.)4/) A -- J(X~')/x,A(K),-- --) /(26C,12)(6ob)

where G1 and G2 are known functionals.

Now suppose that equations (60a) and (60b)

could be explicitly integrated, subject to the

boundary conditions

f vJ -- ) 7 , j(J) -- f48 @4(for equation (60a))

/9 ,IfJ) = (for equation (60b))
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Then, it should always be possible to obtain

relations of the form

F (4YJ)A , 46, -- )-o (for equation (60a))

F (f;) 1? ,4 At 0 . (for equation (60b)),

which, upon the elimination of j~d) , can be reduced

to an expression relating &, and @g , i.e.,

t3 (i~t,@rXS,- -) °E (61)

In principle, equations (56a), (56b),

and the requirement that Gob and 19p be independent

of I) (again, A\ and Gs are regarded as fixed)

should provide sufficient information to determine

EKE, Gilq , and A(A .,W ) for any relative orientation

relationship (henceforth denoted by the five-dimensional

vector f ) for which equations (56a) and (56b) admit to

real solutions. Indeed, expanding equation (61) with

respect to 6) about the point C) = 0 results in

Fs Q.,K 3 Go A (XSJ; X), . _

t-3 (ea f!S2) - 4)=o
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which can be satisfied by solving F, (EPO1 , A(x-,o),

17) = 0 for A( X, 0 ) and then adjusting the

higher order terms in A(X t,.>) to ensure that the

O (4)) terms in F3 vanish. Once 0(, , and

A(X,40) have been determined, there should be no

difficulty in completing the solution by obtaining

f (X:) and ,x ( K) by a simple integration

procedure. Hence, it can be inferred that lamellar

solutions (with A and Gs regarded as fixed) should

exist as a function of W' in the range ( (aC~o )

for all values of IF corresponding to real values

of the angles and 09

All such solutions thus obtained, however,

might not have particularly desirable properties.

For instance, it is shown in Appendix C that the

solutions associated with the preceeding analysis

generally imply that the interfacial solute con-
Acentration, C, (I ), is of the form

i, (X) = 3#z,\) + c' -÷Ot4o), i (62a)

where

,,/An-v Ct A)= const. (planar interface limit) (62b)
A of~~
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and

(62c)

But equation (62b) implies that § (j ) z (it as 'c- eO

and A -ox (the planar interface equilibrium limit),

which is clearly undesirable because >;,, (A-) should

equal Cr in this limit. Moreover, equation (62c)

implies that lamellar solutions are possible only
when X > ,. , where > is the value of A

such that f [0,1]. This, again, is bothersome

because it is reasonable to expect that, under certain
conditions, lamellar solutions should be possible for
arbitrarily small values of A Hence, it appears

that a restriction of the form

A ~ ~ ~ ~ 2a'(j~~~O/ -/ '
.y(Z)~ ~ ~~~~( co 9 X a AA{)ve- (1 5~

(63)
- cg- oc co)

should be imposed on the solutions to System I.
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Inclusion of the above restriction

necessitates a modification of the preceeding

analysis, because, as will be shown in Section 4.2,

the result of applying equation (63) is to preset

the term A( X, ° ).

Rather than expand F3 in equation (61)

about the point Z)J -0 , let us now expand F3

about some point t.4.e,, where '4' , is in general

a function of 5:- . The resulting expression, i.e.,

,7 G;F , &,3 .,X {, C~o) 7- -') + O(4)u oic ) A

(which, by the way, is precisely that (*) relation

mentioned in Section 3.3), can be satisfied by

solving F ( -0,Gp, (XALV4 ),- - ) 0 ° for UoP

and A(A , cd, ) such that equation (63) is satisfied,

and then adjusting the higher order terms in A( X,W)

in such a way as to make the 0 ( CO--4 Lcke,) terms

in F3 vanish. It then follows by reasoning similar

to that employed in the previous analysis that

lamellar solutions, parametized with respect to W

should exist for 60 in the range (4<-OO£t, oo ) for
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all values of g which correspond to real values

of 0,,v and )yt

Finally, reference should be made to the

end of Section 2,where it was mentioned that

lamellar freezing generally proceeds at a rate

which is uniquely related to the lamellar spacing.

This fact implies that the system selects an

operating point, 4 , which is a function of

N , G s, and , . Hence, as a practical matter,

we need only be concerned with solutions to System I

for which a),/I £d

4.1.3 The implications of the analysis

The results just discussed have some

interesting physical implications. For instance,

in view of these considerations, the following three

modes of behavior are possible in binary eutectic

alloy systems:

Case 1. c LS0, for all values of a

Gs., < ,and volume fraction, 0 . This is the

case in which lamellar growth is never possible,

and is most likely realized in systems which

exhibit "abnormal" microstructures.

t The quantity W.,:,, could conceivably be infinite,
in which case it is simply impossible to satisfy
the (*) relation.
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Case 2. Oi., •' cO for all values of

okGs I: , and J . This is the case in which m

lamellar growth is always possible.

Case 3. WI,-, Wp for some values

of A , G , , and J . This case is frequently

encountered in systems capable of cooperative

growth. In these systems, the occurrence of

lamellar growth is favored by either high G/V

ratios or volume fractions sufficiently close
to 0.5. When these conditions are not met, a

rod-like morphology is usually observed.
Given the required thermodynamic and

transport data, the theory should yield quantitative

results regarding these modes of behavior for any

non-faceting eutectic system.

As a final remark, it should be mentioned

that there is reason to believe that ' is a
very sensitive function of IF, particularly when

the system operates near a cusp in a generalized

MN -plot. If this is indeed the case, then

it may be inferred that the range of admissible

orientation relationships during lamellar growth
(i.e. those values of F for which E W, )
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is quite limited. This result is in accord with
the majority of experimental observations.

4.2 Asymptotic Estimates as M0 -° O

In order to proceed further, it is necessary

to have available certain asymptotic estimates
for System I as CV -*

With the aid of equation (63), the required

estimates may be ascertained in a relatively

straightforward manner. Thus, substituting equation
(63) into equations (55), (57), and (58) gives

(fit f />,U
- /

I

y - 017 (' //w) Ilp'2 C) <12
K3 j "(64)

a
- .0

/", ; / ; (Xz'j/ },o a) /,_ ('i /t + °9(o 0
eieJ)

where

2.6To. ,

Mt 4s (- -0r t6d ))
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a, (1, ) -= X� E� ; S )

I

a, ) 'Y 6- (J., -1 J 1 (65)



( - .--C- -. -

le ( fit,. -- Ccon ) d-g If ( r>-- ("

4- GICO)

5f (x) = Cs M- $f4C co

j ft C-1f-q
4 Of40 ( X e,- (d 1 J X.

Also, (1) expanding the kernels in equation (33) in a

Taylor series with respect to a) , i.e.,

(68a)

and

k'S (R4J()}, j(>))i, ) = a) C &?j 2ijrz),j ) O) 0( ,0) (6 8b)

65

where

and

(66)

(67a)

(67b)

::::., dr 4 0 (60) )

'51 (X "I = C 00 - - -

r" . - " , ". -

k'f ( ", J , j (1), =- Cf' Q, ;, lrt- ). j'(j ) ) -i- 0 (to)



where

C, Ot ) A frP) -
5/-' w (jxY) -/ (j)) - t&X 0A) Ir (Z# )
41CO-h uY/c) -(-)-4 Nosh&'rf Ks) -j (, ~ -Z2 

(69)
,1

and

C2 (X,)), J(-Y)7 yy) ~= -. :/A fT.;c&5h Cft)--/6p)-4)

(70)fI J, 1;? r~ *t 7 /(-57'tt) -f f3 ) - X_ C, 05 7-;rti |_2 

- (W) - /() I

and'(2) utilizing equations (63)-(65) along with the

relations

Coo

j *&, 4. ( 1 --f't-)f(
_(-J I

I (71a)

66

-a;t &(3 ) :�,-/ k�g, (,Z-- y- -/- 5/ , 4- 77'(Je"�,Z) - J(�))
.� - U - - -_ --- ---- - - - - - �-.-

4 (//�t) _f(j)) - (705/7-(;r-p I

J"'�r"e -+- (I -J, *)-r,6



�K - CCV-,P-L?� -j9a-C'O - ----
j -Ar11 0, .A 'Y'! 4 (I -P)P

gives for
A-

C~ (7-Q (via a perturbation analysis of

equation (33)):

CCm -- CdaFT
C /=- ZX'l- j

~~'e ~ djc -Ole ('d -J *1) P C(;) 449)

where C* Y-) is the solution to the equation

I
2, ~ '~")-1 ;~" 6~W/O'x) f () ) g 1i) ) ;Y

4 (1j-j A) )~ I( •),~ y) ~ i~ - 4P x-j

7(

Finally, an explicit statement of the

restriction on A4%,W) mentioned in Section 4.1.2 may

be obtained by substituting equation (72) into

67

and

(71b)

(72)

I

(73)

� J*111,



equation (63) and taking the limit as W-°

Thus, A(.tO,' ) must always satisfy the constraint

1

C-o (74)

4.3 On the Existence or Nonexistence of
Solutions to System I for = .

In order to gain additional insight into the

behavior of System I, it is worthwhile to examine

the constraints at the triple point for a class of

solutions for which specific results can be obtained

by relatively elementary methods; namely the

solutions corresponding to , = ° for

>-= -A' = -*,t 

It will be assumed that a particular orientation
'f can always be selected such that equation (56b)

is satisfied. Therefore, the problem is to determine

the conditions under which the constraints on the

triple-point angles due to diffusion effects are

compatible with the requirements of equation (56a).

It is evident from the discussion in Section 4.1.2

that we need only investigate the 0(1) (with respect

to tO ) terms in System I, because once compatibility

is attained to 0(1), it can be maintained to any
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order simply by adjusting the higher order terms

in A( X, ).

When £o= = , it follows from the

considerations discussed in Section 4.1.2 that

01 _ =0 and Gs = G., G. Moreover,

setting 60 = O in equations (66) and (72) results

in X = and rL (X) =-(' . Hence, it

remains only to consider the limiting form of

equation (64) with COU = = = a , i-e.,

(/

(-ev - '^)s/; y r Be I'', J } ) (75a)

and

(75b)

and, in particular, implement a procedure similar

to that described in Section 4.1.2 to obtain

explicit expressiony for the triple-point angles.

4.3.1 Integration of equation (75) for
large values of a.

When the parameter, At , is sufficiently

large, it can be shown that

(JO wa ̂ X fO I' 2 /'(
Le ;

69



which implies that

J /(y)c/~i dy iffAndand 7sf) (t.-J)J(O. (76)
Vo I

With the aid of equations (76), the relation

f/I

and the boundary conditions J '&O) = O.

equations (75a) and (75b) can now be integrated

out from the triple point to their respective

end-points in a routine manner, thereby providing

the following expressions for G0 and in

terms of f (I):

-r f - ) (77a)

and

:511t, (916 = O e(77b)
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Eliminating j(J) from equations (77) then gives

°61 J~ipL sP. -(1 J} Sia&$ - or (78)

which, when combined with equation (56a), yields

the following expressions for G, and G/?

S'JX 6)=rv ~ f se~-) J- (79a)

and

ok,'5i-(J (79b)

Equations (79) provide the required angles;

however, it soon becomes apparent that certain

conditions must be met in order for the values of

Set 6e, and P(i7 49,e to be less than unity. For

example, if o-t is set equal to unity (this will be
shown in Section 5 to be reasonable approximation

for most systems), then a little algebra reveals

that:
1. If - C | .lthen

:5ix and six G/4 , as given by equation (79),

can never be less than unity.
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2. If 0&14 )-o3( 1 , then

and 51 -x can be less than unity only

when Je r 0 , tdpX
where

0 if aL 4 ~

2064 ,DbX,.)_-i3 is gs <°<§CS) (80a)

and

3 =JX do , ;e g4 ) (80b)

and where e [oo.5j and J c- E La5, 1o I

The nonexistence condition I - 0c.3 '71

is not particularly interesting and merely

represents a condition under which equation (56a)

(and hence the triple-point equilibrium conditions)

can never be satisfied. On the other hand, the

second condition essentially states that even when
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it is possible to attain triple-point equilibrium,
solutions to System I

corresponding to (IJjO = 0 may not exist for large

values of C if the volume fraction deviates

sufficiently far from a value of 0.5. This

condition has interesting physical ramifications
which will be considered shortly.

As a final item, it should be mentioned that

the results just obtained are asymptotically

valid even when /oc. £ 4 , because the

terms involving 01 and 02 in equation (64) approach

zero as /.4 becomes large.

4.3.2 Integration of equation (75) for
arbitrary values of p&

When the magnitude of /, is arbitrary,

equations (75a) and (75b) can still be reduced

to quadratures; however the procedure is considerably

more involved than that for large values of lt .

Without going into details, it can be

shown (e.g., ref [10]) that when equations (75)

are integrated out from the triple point to their
respective end-points (with o6f = 1), the following

expressions are obtained for 6(9,h and 90 in terms

of f(o ):
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(81a)

- SeLXf -EE (;g F T-* 6)]

and

(81b)

where

-f: . 4/(1t= +J2() - ;/w (1-0cos e) ) e

A
and where K, E, F, and E denote the complete and

incomplete elliptic integrals of first and second

kinds, respectively. Equations (81) comprise a

74

(82)

i=

NF�' ;z

f-6f -= (I - ;g�/ �z ) 2e �'- po� ) - F-0;4- � -!�� ) ]
--5/73

I

- [1� ( -FI) -E ( ig� , 1 --a# ) I,
-5� .2-



system of two equations in the three unknowns f&J),

e&,, and A- , and upon elimination of f(J ) yield

a relation (henceforth denoted as (f )) between

i9 and ee . It remains to investi.ate the
system composed of relation (t ) and equation (56a),

and, in particular, determine the conditions under

which real solutions are possible.

It is possible to derive closed-form

asymptotic expressions for (t ) in the limits of

high and low values of /t . Thus, with the aid

of certain elementary properties of the elliptic

integrals, it may be shown that G 9A = S asp/L- 0.

Moreover, as ",_ w-t , (0) is simply given by

equation (78). For the intermediate valuesof 14

however, (f ) must be evaluated numerically.

Relation (t) has been evaluated as a

function of /t for a range of J values. Some

typical results are shown in Fig. 4 for J = 0.45

and 0.55, and in Fig. 5 for F = 0.35 and 0.65.

The quantities O maj and S min. are the inter-

face slope angles at the triple point in the

majority and minority phase, respectively, i.e.,
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0, f or 6< 0.5

mfor Ja 0.5

and

for 6< 0.5

G~maj.1
Ga.for J> 0.5

Also shown in Figs. 4 and 5 is a hypothetical

version of equation (56a) with M 3 = 1 and o&4 = 1.7.

Obviously, real solutions are possible for a

specified value of 1,e only if the curve corresponding

to the (t) relation (the (t) curve) intersects the
curve corresponding to equation (56a) (the Y-curve).

The conditions which determine whether

or not the (t) and Y-curves intersect are readily

ascertained. As before, the case in which

( -'sgI > 1 can be immediately discounted,

because equation (56a) can never be satisfied for

any value of -,t . When IoQ(F) - jC 1< I , there

are two possibilities:

1. If °q(5) 1 and is _ -

then,by equations (80), real solutions to equations
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Fig. 4 - The triple point angle emaj as a function of
Omin as predicted by the (t) relation (the numbered)
curves, and as predicted by a hypothetical version of
equation (56a), namely sin 3maj + sin 0 min = 1.7,
for 6 = 0.45 and 0.55. In this case 6 E [blows 6 up].

1.5-
*- =08=0.35.0.65
I) IL 0.0

2)L 0.2
3)k-1.0
4)1, ODX / 

1.0 SINimj +SINMmtnI.7

z
5

Fig. 5

aE t@hemtiini
OD ~ ~ ~ ~ - -thetie

sin a I
6 O [

z
C

.S

0maj (RADIANS)

- The triple point angle emaj as a function of
I as predicted by the (t) relation and the hypo-
al version of equation (56a) sin emaj. +
'min. = 1.7 for 6 = 0.35 and 0.65. In this case
4ows 6 up]=

elm; (RADIANS)
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(56a) and (t) exist for large values of /4 for all

values of J in the range [0,1]. Moreoversince

the (t) curves corresponding to ,tL = 0 and /-t- = 00

form the-upper and lower bounds of an envelope

within which all (t) curves must lie, real solutions

exist for all values of ft- for [0,1].

2. If either ACE)' 1 or oe3

then real solutions exist for all values of /4 only

for a restricted range of J values, i.e.,

C e [< , ;",r ], where J~t. and JX are given

by equation (80). If 6 lies outside this range,

i.e., J9 [ Jl SpJ ], then real solutions exist

only when /4 is less than some maximum value, /'fmax.

The cases for which J 6 [ jCo J f ] and

6 ¢ [I A , AiafT] are illustrated in Figs. 4 and 5,

respectively.
The values of /ACmax.X for any admissible

version of equation (56a), may be obtained as a

function of J by a simple graphical procedure.

Thus, denoting the value of @ m at which
A ~~A

= 7F/2 by G). (G t. for a (t)
maj. iun. min.

curve and Gmin. for a Y-curve), (9mn
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for a given value of J may be plotted as a

function of it , and, max. found by locating

the point of intersection of the 0 t. curvemin.
with the horizontal line

for S0j-

Plots of <3 min. as a function of e are presented

in Fig. 6 for 0.2 < £ C 0.8 in increments of 0.05.

4.3.3 A physical interpretation of the results
The discussions in Sections 4.3.1 and 4.3.2

were exclusively concerned with the solutions to

System I corresponding to 4Sj~= 0. However,

if e ) is sufficiently small, then the nonexistance

results derived therein should also furnish reasonable
approximations to the conditions pertaining to the
nonexistence of all solutions to System I for which
WC4-[O, Lop ]. Assuming this to be the case, and

assuming that the relative orientation, , does
not change appreciably with c or /L-( (so that X/ 
can be taken as a constant), the aforementioned
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1.8 =0.45,0.55
E 2.8 =0.40,0.60

<OD 3.8 =0.35,0.65
4.8 :0.30,0.70
5. 8 =0.25,0.75

0.5 6.8 =0.20,0.80

0 C~

0 1=2 lo1 '10° 10

Fig. 6 - The quantity 6 t as a function of ,u for a range of 6 values
min.
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results, in conjunction with the experimentally

observed relation V, = constant (this implies

that /at- V/G), then lead to the following

predictions:
1. In systems for which I - £ 1

'4te 1 , and oC.3 Z O4 , lamellar solutions

which satisfy equation (63) are possible for all

values of G/V and all volume phase fractions.

2. In systems for which I Gv -o- -I1,

and either af - -1 or Oc3 i c4 , lamellar solutions
which satisfy equation (63) are possible for all

values of G/V only when the volume fraction lies

in the interval [I,, , JI , ], where J1OW and AS,
are given by equations (80). When the volume

fraction lies outside this range, then lamellar

solutions are possible only when G/V is greater than

some critical value, (G/V) . Moreover, the value

of (G/V)c increases as the volume fraction approaches

zero or unity.

The theoretical predictions relating to

the impossibility of maintaining a lamellar

morphology are in accord with a number of experimental

observations of the lamellar-rod transition, e.g.,
refs. [11,12]. Hence, it is likely that this
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transition is simply a physical mainifestation of

the aforementioned theoretical prediction. If

indeed this is the case, then the results presented

in this section in effect constitute an approximate
theory of the lamellar-rod transition.

4.4 An Approximate Version of System I

4.4.1 The approximate equations

The task of obtaining solutions to

System I is computationally formidable; hence,

it is reasonable to seek approximations which

will simplify the equations, and yet leave the

fundamental nature of the solutions unaltered.

In this spirit we now invoke the following

approximations and assumptions:

1. The solute diffusion length is

large compared to the lamellar spacing. This

condition, which implies that C 41 , is

satisfied in the majority of experimental situations.

2. The solid-liquid interface is
approximately isothermal. This condition,

which implies that /, is large, is also frequently

satisfied experimentally.
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3. The nominal composition, co.,

sufficiently close to the eutectic composition,

cE9 so as to permit a certain term in the expression

for c(x) to be safely neglected.

4. The value of 4) is small, which

implies that the behavior of System I is essentially

characterized by the solution corresponding to

6Qo~td = 0.

5. The system can always adjust the

triple-point torque (by selecting a suitable
orientation relationship) so as to assure satisfaction
of equation (56b) when JE5 [ J~vot , Jcp ].

To derive the approximate equations,

we first take note that the O(O ) term in equation

(65) and the 0(4c) ) term in equation (72) may be

neglected as 6*) becomes small with respect to

unity. This leads to the following approximate

expressions for S and c,(x):
C-A

* 96 ~~~ Coo ) _ ~~~(66)
Cfs (Ctzd' - Coo -}+fo ( Cx-C )

and

(X) = 41 A r.), (83)
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where c,*(x) (henceforth referred to as the reduced

interface concentration) satisfies equation (73) and

A1 -=: * Cg - CLisf

A, 4. (I -fr
An approximate expression for c (x) can

be obtained with the aid of equation (83). Thus,

substituting equation (83) into equation (63),

expanding the term

0

with respect to A), invoking equation (74), and

neglecting terms of O(Wi2) gives

(X-) = 49'A-, L2t-) + , 71 + C-c-

I

0 2 ~ ) -/~1 

where B. has no explicit (d dependence and is
1

a priori unknown.

Equation (85), together with the condition

that the parameter/Z be large, can now be employed

to obtain a simplified form of equation (55). It

84
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is permissible to neglect the terms involvingP
and 02 in equation (55) because, as mentioned at

the end of Section 4.3.1, these terms approach

zero as ,L gets large. Therefore, if the term

Aq(310) is taken to be proportional to car-c0.

(this choice is consistent with equation (74)),

and if it is assumed that CO is sufficiently
close to cE to permit the term involving A(3,o)

in equation (85) to be safely neglected, then

substitution of equation (85) into equation (55)

(with abl = 1) results in

=rLf/DJ3/7 }Ct. Z M~/idt~ft~+LB'] (te$)) (86a)

/-Ie. A.' (86b)

where

\~ jI / 1(87)
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Finally, an explicit expression for B

can be derived by employing the condition that

s)s and ' - must be independent of 4) (and therefore

tr ) and using a procedure similar to that used

in Sections 4.1.2 and 4.3.1. Thus, with the aid

of the approximations used in Section 4.3.1,

equations (86a) and (86b) can be integrated out

from the triple point to their respective end-
point to give

si/n 67d~o, - fit S- 1+ 1J, Cf (88a)

and

* in _s^AJ~gt S)+5trrg+Bs(1-z))v (88b)

where

£z = J~t My, dL (89a)

and

(89b)
0o'
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Eliminating f(J) from equation (88)then yields the

relation

= iJ7fr6jI~ + {f4)It 6a+ 1) -(-) By6], (90)

But EL and lots can only be independent of t

if the righthand side of equation (90) vanishes

(recall that WJ,= ?/4, = 0). Hence, this implies

that

.~~ -

and, moreover, that

Stx,) = J d (92a)

and

= tD3 (92b)

where equations (92) follow from equation (90) with

the righthand side equal to zero and equation (56a).

Equations (73), (86), and (91), together

with the boundary conditions
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J 0) - i "m1 = a

f X)= ten- -'

=LoJ--fait OE,

are the soughtafter equations, and comprise a

system of three equations (hencefore denoted as

System II) for the quantities c,,*(x), f(X ), and

B1 in terms of the parameters A4C and J and the

known quantities o-i cit 1, -- f) and J . Once

f(X7) has been obtained, 01 (x), 9P2 (y), and Ge

can be found, if desired, by solving equations

(50) and (51) for 01 and b2 and substituting

the results into equation (59) to obtain G

4.4.2 An important property of System II

Before concluding this section, it should

be pointed out that the solutions of System II are

essentially independent off/ . To see why this

is so, consider equation (86) and assume that

c! (x) is independent of S . Then because 6\0.,

f(j )//e , and B1 are independent of fs by

equations (88), (91), and (92), and because

f($ )//a- f (x)/e , the relation

7d
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implies that f(x) is independent of /Z to within
a constant vertical displacement. But the

kernels Cl and C2 in equation (73) are not functions

of F , and, moreover, are invarient with respect

to a constant vertical displacement in f(x). There-
fore, c *(x) is indeed independent of pI , and it

follows that the solutions to System II (to

within a constant vertical shift in f(x)) are

functions of the parameter 3; alone.

The fact that the solutions depend

only on P- leads to an interesting prediction;

namely, that the use of virtually any subsidiary

condition for the selection of the system operating
point must lead to a relation of the form

1/\" = const.,
where the constant does not depend on the thermal

gradient. This result is in accord with the

majority of experimental observations.
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5. NUMERICAL RESULTS AND COMPARISON WITH
EXPERIMENTAL DATA

Having completed the theoretical analysis,

it remains to develop and implement a numerical

solution, and compare the resulting predictions

with experimental data.

5.1 Numerical Procedures and Results

5.1.1 A procedure for solving System II

A combination iteration and bootstrap

procedure proves effective in obtaining numerical

solutions to System II as a function of the

parameter ' . To implement this procedure, a

step size A a is specified, ; is set equal to

a-f- , and an initial guess (iterate 1) for f(x)

is obtained by solving equation (86) with P = 0.

Next, the kernels C1 and C2 in equation (73) are

evaluated using the initial guess for f(x) and

equation (73) is solved for c,*(x). This

estimate for c *(x) is then inserted into

equations(91) and (86), and equation (86) is

resolved with -P =L-f to obtain an improved

estimate for f(x) (iterate 2). The kernels C1
and C2 are then re-evaluated using the updated
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estimate for f(x), and the process is repeated
until either convergence is obtained (to within

a specified tolerance) or until a specified

upper bound on the number of iterations is reached.

Upon completion of the iteration process, ? is

set equal to 2A k and the iteration procedure

is repeated taking the last known f(x) as the

initial guess. In this way, f(x), c, *(x), and B

are ascertained as a function of 3p' until a

specified limit Ec,,is reached, at which point

the calculation is terminated.

A computer program was written to

implement the iteration/bootstrap procedure.

Equation (86) was solved each time by using a

self-starting fifth-order predictor-corrector
scheme with an automatic step-size selector to

integrate each of the equations out from the

triple point. The starting values of f and K-,

i.e., the values of these quantities at the

triple point, were obtained in each case from

equations (88), (91), and (92)

To solve equation (73), an approximate matrix rep-

resentation was formulated by replacing the integral containing
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CI by a trapezoidal quadrature and those containing

C2 by a quadrature based on product integration

(the latter being necessary to properly treat

the logarithmic singularity in C2 ). The relation

was used to evaluate the kernel, Cu, at the points

= x. The matrix approximation procedure resulted

in a system of linear algebraic equations for the

values of c,*(x) at the quadrature points which

was then solved by standard techniques' a

listing of the program and the accompanying

documentation is presented in Appendix D.

5.1.2 Validation of the numerical procedures

Because the accuracy of the solutions to

System II depends critically on the accuracy of the

computed values of C,*(x), it was deemed necessary

to check the convergence of the scheme used to
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solve equation (73) before implementing the entire

iteration/bootstrap procedure. Thus, equation (73)

was successively solved using a 32, 64, and 128

point quadrature. The volume phase fraction was

chosen as 0.5 and C1 and C2 were evaluated using

as f(x) the solution to equation (86) with 'IT = 0,
a63 =0.6218, and oC4 = 1.3. The values of c,*(x)

obtained in each case are displayed in Table 1.

As can be seen from this table, the convergence

is excellent with four-figure agreement achieved
in most cases.

Having established the convergence of

the interfacial solute concentration calculations,

the convergence of the iteration procedure was

checked by observing the results of four iterations

starting at YJ' = 0.5 and increasing 3r in steps

of 0.5. The values of f-f(J ) obtained after

each iteration for J = 0.5, jt = 1.0, '62 = 3.855,

CI 3 = 0.6218, and c44 = 1.3 are shown in Table 2.

The first iterate represents the
interface shape obtained from the final results

of the iteration procedure for - = 0.5. Subsequent

iterations were obtained by solving equation (86)
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with . = 1.0, with c,<*(x) determined from the

solution of equation (73), and with C1 and C2

evaluated using the interface shape as determined

from the previous iteration. As can be seen

from the table, convergence is rapid, with four-

figure agreement achieved by the fourth iteration.

Similar results are displayed in Table 3 for

aYI = 3.0, where comparable convergence rates

are attained.
Finally, it should be mentioned that

additional calculations of this type were performed

with several other values taken for the J -step.

The rate of convergence of the iteration procedure

was found to be relatively insensitive to the

particular value chosen.

5.1.3 Sensitivity of the solution of
equation (73) to interface shape
changes and comparison to the
Jackson-Hunt solution

Jackson and Hunt [2] obtained solutions

to equation (1) which satisfy conditions (4)-(6),

(9), and (11) correctly to 0( 4) for the special

case f(x) = const., i.e., a flat interface.

Since their solution is widely employed in
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TABLE 1

Convergence Check on the Solution to Equation (73)t

J= 0.5 '? ° c = 1.0 °d3 = 0.6218

32-Point 64-Point 128-Point
Quadrature Quadrature Quadrature

x cC clc,,* 2

0Q. O0C'E+00
3 .,125 OtE-02
6 . 2 500E-02
9 .3750E-02
1.2500E-0l
1 .5625E-01
1. 8750E-01
2 .1875E-01
2.5000E-0l
2.8125E-01,
3 .1250E-01
3 .4375E-01.
3 .7500E-01
4 . 06 2 5 E-01
4 .3750E-01
4 .6 875 E-01
5. 0000 E-01
5 .0000 E-01
5 .3125E-01
5 .6250E-01
5.9375 E-01
6 .2500E-01
6 .56 25 E-01
6 .8750E-01
7.1875E-0l
7 .5000E-01
70 8125 E-01
8. 1250 E-01
8.4375E-01
8 .7500E-01
9. 0625E-01
9.3750E-01-
9 .6875E-01
1. 0000 E+O0

2. 9587E-01
2 .9387E-01
2 .9066E-01
2. 8529E-01
2 .7769E-O1
2 .6781E-01
2. 5552E-01
2 .4071E-0l
2. 2337E-01
2 . 03 44 E-O1
1. 8065E-0l
I .54 81 E-01
1 .2656 E-01
9 .5502E-02
6 o2465E-02
2 .9575E-02
1.0805 E-06
1 .0805E-06

-2.9571E-02
-6 . 246 3. E-02
-9.5497 E-02
-1.2656 E-O1
-1 .5480E-01
-1 .8064 E-01
-2 .0344 E-01
-2.2337 E-01
--2 .4070 E-01
-2.5552 E-01
-2 .6780 E-01
--2. 7768E-01
-2. 8528 E-01
-2.9065 E-01
-2 .9386*E-0l
-2. 9586 E-01

2.9591E-01
2.0392E-01
2. 9064 E-01
2. 8 526 E-01
2.7765E-01
2 .6777E-01
2. 5548E-01
2 .4066E-01
2. 2332E-01
2. 0339E-01
1. 8059E-0l
1 . 5473 E-01
1. 2647E-01
9 .53SlE-02
6 .2273E-02
208998E-02
1 o 7434 E-06
1 .7434E-06

-2. 8990E-02
-6 .2265E-02
-9.5373 E-02
-1 . 2 646 E-01

-1. 5472E-01
-1. 805SE-01
-2, 033 E-O1
-2.2331IE-01
-2 .4065E-01
-2 .5547E-01
-2.6776 E-01
-2 .7764E-01
-2. 8525 E-01
-2 .9063E-01
-2.9391E-01
-2.9590E-01

2.96 02E-01
2. 939]1E-01
2 .9062E-01
2.8523E-01
2 o 776 2E-0l
2 .6774E-01
2. 5544E-01
2 o4062E-01
2 .2328E-01
2 .0334E-01
1 . 8053E-01
1. 5467E-01
1 .2640E-01
9. 5280E-02
6 .2114E-02
2. 8630E-02
2 .7615E-06
2 .7615E-06

.-2.8617E-02
-6 .2101 E-02
-9 .5267 E-02
-1 .2638E-01
-1. 5466 E-01
-1 . 8052 E-O1
-2. 0333 E-01
-2 .2327E-01
-2 .406 1 E-01
-2.5543 E-01
-2 .6772 E-01
-2 .7760E-01
*-2.8522 E-01
-2 .9060E-01
-2 o9389 E-O1
-2 .9601 E-01

t An E-type format, i.e. aE
throughout Tables 1-3.

± nn = aXIO101
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TABLE 2

Interation Convergence Check for Y/ = 1.0

o' 2 =3.855, oe3 =0.6218, cX4: = 1.3,

Iterate 1 Iterate 2 Interate 3 Iterate 4
x f-f ( f ) f-f (6j ) f-f ( 6 ) f-f ( 6)

. n oO t,-o°°
* I 2 1

* . 5!0F+O01
. 1 P7 nF +fnfn.IP~c3F+On

.?0 0PF+00

.?PI -F+ n)
*3l?1 F+Ofl

*343RF+Ofl
3 75 R.F + non

* 3750F+Onf
*A06.3F+Of
.437FF+flf
.4'6RR+ 00

.*500F+00.9000p+op
.319 +onn

.5 9 3 R F + n o

.6q56,F+On

.6'375F+flf

.75PPF+n0

.70lRF+00

S.7?`F+00
. P 41 P F + n 0
,P790F+n0

* 06 -1F + 0 0
. 3 7c5F + n n

.968RF+nn

.1I0 nF + 0 

.?471F+00

. ?46?F+0n

. ?43PF+0n

.?39AF+00

. ?342F+ n o

.??7lF+OO
.?1 93F+OO
.?07PF+n0
.1 s94F+n0

.1 64cF+o0

. 145sF+0o

. 124nF+O0
*Qq37F-O I
.71 1 I 7.-n 1

7 3P41F-nl
.0
. n
. 379!F-0 1
.6996F-O l
*965PF-0 1

. 1400F+nn

. 1576F+nO

.1729F+On

.I F6?F+OO
* IQ7mF+nO
02072F+00
02V53F+0O
.??P1F+00
.?P6PF+OO
. ?304F+0n
.?3?7F+00
.?33SF.+0n

.24??F+00

.?473F+00

.?3P9F+O0
*?391F+00
.??97F+0,
.??PPF+On
.?143F+0n
*2041F+00
.19?OF+00

.1* snF+00

.1 ?2c1F+0Q

. QP3F-O 1

.7OnF-0 1

. 3P?4F-01

.0

* 37?QF-0 1
.675kF-0 I
.9?,R7F-OI
.1 144F+n0
.13?qF+nn
. 14RPF+nO
. I6?FF+nO
. ]743F+00
.I R44F+00
.Ql?9F+nO
.?OonF+00
.?057F+00
.? IO1F+00
.?1 3?F+nn
.?9l1F+00
.?159F+.0

.?4?OF+on

.?41 1 F+0O

.?3RRF+00

.?349F+OO

. ?29#"F+ n0o

.???7F+On

.?14?F+00
*203qF+o0

.1919F+0n 

.1. 79 nF+ n n

. 119OF+fl
* 1439F'+00
. l??4F+no
.98?qF-0 I
.705?F-OI
,39?3F-01
.0
.0
. 37?7F-ni
.67F?F-01
.9,? W 1F-n I
. I 1 43F+o0
.1 3?PF+00
.I 4P7F+n0
.1624F+fn 
.174?F+O0
.1 R41F+ 0
. 19?PF+nO
. 199pF+00
.?0v5F+no
.?nOqsF+o
.*131F+00
*215 F+ 0
;l 5AP+ n

.?4?OF+O0

.P?411 F+nO

.?3PPF+00

.2349F+0o

. PP96F+nO
*?2?7F+on
.214?F+nO
.?039F+00
*1 Q1QF+OO
.1.7R OF+ 00
, 1619F+0O
. 1439F+no
. 12??4F+ no
.98?9 F-O1
.705?F-01
. 3P?3F-0 1
.0

.0

. 37?7F-l I

.6775?F-fn1

.9 2?9 I F -n 1
.1 143F+nO
.1327F+oo
. l4P7F+o0
.16 ?4F+nO
* 174?F+00
.1 843F+oo
. 1)92F+nn
. I 99QF+no
* ?s95F+nn
.?099F+0n
*7131F+o,
.?1 58F+ono
*?1 5$R+flf
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TABLE 3

Iteration Convergence Check for 9 = 3.0

'1 = 1.0, 02 =3.855, O&3 = 0.6218, Oc- = 1.3,
4

Iterate 1 Iterate 2 Iterate 3 Iterate 4

x f-f(J ) f-f(j ) f-f(i ) _f-_f_(If )

.0

.31 ?PSF-n I

.*650F-01

.9375F-O I
* 1250F+00
.1563F+00
.1 97'F+On

.?IsOOF+nn

.?5onF+On

.2811F+On

.31?25F+nfo

.343RF+00

.3750F+00
*4063F+00
.4375F+00
.46RRF+00
.000oF+n0
.9snoF+00
.5313F+00
.56?SF+00
.593RF+OQ
.6?50F+nn
.6563F+nn
.6R7qF+00
.71 RF+nn
.75onF+00
.7Pl3F+00
.R?29F'+0O
.*43PF+00
.P750F+00
.9063F+0n
.9379F+n0
*.6RPF+nO
. o o nF +n 0l

.??65F+00

.?257F+00

.??36F+00

.??01F+00

.?153F+00

.?091F+00

.?015F+00
.19?2F+0o
.1 1k4F+00
. 16R7F+00
.1540F+00
.1 370F+n0o
.1 175F+fo
.949PF-n1
.6871F-01
. 376SF-0 1
.0
.0
.3536F-01
.6177F-0l
. '254F-0 1
.9s?9F-n 1
.1 1 30 ,F + 0 0
.1243F+ n
.1336F+00
.1412E+00
.1475F +00
.15?6F+00
.1567F+0o
. 1599F+nO
. l6?3F+00
. 1640F+O0
.1651 F+00
.16h55F+On

.221F+n0n
.220sF+n0
*?IRPF+00
.?159F+Oo
.2109F+00
.?04sF+no
. 197FE+ n
.18F86F+n0
.17P1F+n0
* 169PF+0f
. 1515F+0O
.1350F+00
.1 160F+0o
.9396F-n 1

.6815F-01

.3747F-01

.347PF-0 1

.600RF-O1

.7955F-0 1

.9492E-0 1

. I07?E+O0

.1 171F+no

.1251 E+00

.1315F+00

.1366F+00

. 1406F+.0

. 1437F+0O
,1461F+OC
. 1479F+OC
. 149?F+OC
. 1499F+OC
.1503E+OC

.22l3F+i0

.220sF+0o

.2185F+00

.?106rF+Oo
.2046F+00
.1972F+00
.1 RP3F+OO
* 177RF+00
. |656F.+oo
*1513F+oo
.134sF+nn
.1 1|9F+00
. 93R7F-0 1
.6810F-01
. 3746F-01
.n
.n
.3474F-01
.5995F-0 1
. 793?F-n 1
*946OF-01
.106PF+n00
.1 166F+O0
.12?45F+no
.130RF+00
.1 35QF+00
,139PF+0o
* 142sF+00
. 145?F+00
.1470F+OO
. 148?F+00
. 1490F+00
. 1493F+00

.?213F+00

.?20SF+00
,2185F+nO
.?15?F+00
.?106F+OO
,2046F+00
. 1972F+00
.1 R3F+l0n
.177PF+0n
.1655F+00
.1513F+oo
.1349F+00
.1 11;9E+0fl
.9387F-01
.680s9F.-lI

.3746F-O 1

.0

.n

. 3474F-0 1

.S994F-0 1
.7931E-Ol
.945RF-01
.1 06PF+00
.1 166F+00
.1245F+00
.130PF+00
.139PF+00
.1397F+00
.1428F+00
.145?F+00
. 1 46hF+n0
.1481F+00
. 1489F+00
.149?F+00

I . I __________________ __________________
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theoretical and experimental studies of eutectic

solidification, it was deemed necessary to assess

the effect of interface curvature on c)e.

An investigation of this effect was carried

out by solving equation (73) for a series of inter-

face shapes which were obtained by solving equations

(86) and (92) with ' = 0, 6L 3 = 1.0 (for Jf = 0.5),

0 63 = 0.6218 (for d = 0.65), and values of cL4

ranging from 1.8 to 0.1. The interface shapes

employed are shown in Figs. 7a and 8a for J = 0.5

and J = 0.65, respectively.

The values of c*(x) obtained from the

solution of equation (73) with a 68-point quadrature

(this is used in all subsequent work), along with

the Jackson-Hunt result, are shown in Figs. 7b and

8b for J= 0.5 and J = 0.65, respectively.

It is apparent that the present results encompass

Jackson and Hunt's results as the interface

curvature decreases (indeed, this serves as an

additional check on the numerical solution to

equation (73)). However, as the interface

curvature increases, the solutions of equation (73)

change considerably, leading to significant
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x

Fig. 7a - Interface shapes employed in the comparison of the
present theory with the Jackson-Hunt theory for 6 = 0.5

8=0.5 a,=I.O a,=1.I p=O JP=O

I a4 =1.8
2)a4 1..8
3)a4 =0.1
--- JACKSON-HUNT THEORY
(FLAT INTERFACE)

-0.4

Fig. 7b - The reduced interfacial solute concentrations c* pre-
dicted by the present theory for the interface shapes shown in
Fig. 7a compared with the Jackson-Hunt prediction
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z

x

Fig. 8a - Interface shapes employed in the comparison
of the present theory with the Jackson-Hunt theory for
6 = 0.65

0.7

a-11.0 a3-=06al 8-0.65 /1-= T'0

0.6 \)04*13

2) 1.0

0.5 3)04.-.4

2 \ --- JACKSON-HUNT THEORY
2 (FLAT INTERFACE)

0.4

0.3 _

0.2-

0.I

S

Fig. 8b - The reduced interfacial solute concentra-
tions c* predicted by the present theory for the in-
terface shapes shown in Fig. 8a compared with the
Jackson-Hunt prediction
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departures from Jackson and Hunt's theory, which

are particularly pronounced in the unsymmetricr

case, i.e., J = 0.65.

5.1.4 Some typical numerical results

To illustrate the behavior of the

solutions as a function of 7 , the iteration/

bootstrap procedure was implemented for two values

of J, namely S = 0.4 and 0.7, with ° 2 = 3.855,

a 3= 0.6218, and a 4 = 1.2. A V -step of 0.5

was used and four iterations per 3 -step were

performed. The computed interface shapes are

shown in Figs. 9a and lOa for J = 0.4 and J = 0.7,

respectively, for values of tr ranging from 0

to 5.0 in increments of 1.0. The reduced interfacial

concentrations corresponding to these interface

shapes are shown in Figs. 9b and lOb.

5.2 Comparison with Experimental Data and
Previous Theoretical Results

If suitable subsidiary conditions were available

for the selection of the system operating point, ?+,

and if all the thermodynamic and transport properties

required by the theory were known, then the theory

could be critically compared with experiment in
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x

Fig. 9a - Variation of the interface shape with VI for 5 = 0.4

4

3 

8=0.4 aI=1.0 a2=3.855
03=0.6218 a4=1.2 =CD
(l) 4'=0
(2) *= 1.0
(3) *= 2.0
(4) *= 3.0
(5) *=4.0
(6) *= 5.0
I I 1 l l

0.1 0.2 0,3 0.4 05 0.6 0.7 0.8 0.9 1.0

-0.1 -

-0.2 -

-0.3 4 6

-0.4-

-0.5

-0.6

Fig. 9b - The reduced interfacial solute concentra-
tions c* corresponding to the interface shapes shown
in Fig. 9a
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0.6

0.1

0 0.1 0.2 0.3 0.4 0,5 0.6
x

Fig. boa - Variation of the interface
5 = 0.7

0

0

0.

0.

0.

C)1

0o

0

-0

-0.

shape with 4 for

.7
8=0.7 al=1 .O a2 =

6 a3=0.6218 a4=1.2

.5 (2(I)-0

)3 - (6) =5.0

4

0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1.(
.1~~~~~~~~~~~~~~~~~~~~~1)el: - ~~~x I

.I e-

3.855

/,=C

Fig. l0b - The reduced interfacial solute concentrations
c* corresponding to the interface shapes shown in Fig. boa
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a relatively routine fashion. Unfortunately,

neither of these requirements is currently satisfied,

even for the simplest eutectic systems. In

particular, very little is known regarding the

chemical diffusivities, D. , and even less is

known about the interfacial energies A ,

and . Moreover, the stability analysis

and/or variational principle required for the

selection of V' are still awaiting development.

Hence, it does not appear possible at this stage

to utilize the available experimental results to

critically evaluate the theory and the assumptions

therein. Rather, we must be content to make

comparisons which are essentially qualitative in

nature, and then hope that meaningful results

can be extracted.

5.2.1 A procedure for assessing the theory

With these considerations in mind, the

following procedure was formulated to check the

consistency of the theoretical predictions with

experiment:

1. The quantities J and ° 2

are calculated using data obtained from the phase

diagram, presuming one is available.
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2. The quantities a , and
1' ~3

x6 (which depend on the interfacial energies)
4-

rr
are estimated using procedures to be discussed

shortly.

3. The iteration/bootstrap procedure

is implemented and , is selected using Tiller's [1]
"minimum supercooling hypothesis."

4. Equation (87), with V =

is utilized in conjunction with experimental

information concerning the V- A relation to

obtain an expression for the quantity ( p., ).

5. lg,, is estimated, thereby

yielding an estimate for D,, .

6. The resulting value of D_,e is

compared with values obtained by independent

measurements (when such values are available), or
~ 1X1 5 2with the rule of thumb that D - X 102 cm sec.

5.5.2 Estimation of K _ __,_o'e
and le

To estimate c1 and cL3, we note that

for a pure material the Gibbs-Thomson coefficient, a,

can be approximated by the relation

t -~~~~'I A M, /3 (94)

105



where , is the solid/liquid interfacial energy,
M is the molecular weight, No is Avagadro's number,

Tm is the melting temperature, P is the density,

and K is a constant such that 0 c K d 1. Then

assuming that equation (94) can be applied to each

solid phase in a binary eutectic system with Tm

taken as TE and K. = Kf , the required expressions

for d I and 062 follow immediately. Hence,

- ____ 1 ~~~~~(95)

and (with 1 = 1)

2 tS 5f>, f K o ~~~(96)

where L,£ ( £ =Cp ) is the latent heat of fusion

of the appropriate phase.

The quantity DC4 can be obtained from

equations (80) when the limiting volume fractions

and are known. The limiting volume

fractions can be estimated from either lamellar-rod

transition data, or by an educated guess when such

data is unavailable, thus providing the required

estimate of o< 4.
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As mentioned in Section 5.2.1, the
system operating point, X , is estimated using
Tiller's "minimum supercooling hypothesis," which

states that for a prescribed value of V the system

will select a value of A such that the average

interfacial supercooling, ATav, , is minimized.
For large values of Arc , the solid/

liquid interface is approximately isothermal.
Therefore, the interfacial supercooling, AT(x),

is approximately equal to ATOL,, and is given by

A4zT r -T () -A &f(Z) -A\ C,(X (J - r 

which, with the aid of the relations

// ..&(M )(Aii -1AI e~~~
tv )Ce, )A

and

Al c.2p __
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can be written as

where

and is a constant when V is fixed. Hence, the

determination of Nor essentially reduces to

obtaining the quantity -f(J )//, as a function

of -qr with the iteration/bootstrapping procedure

(recall that f(J )//$- is independent of/$ ), and

then minimizing AT with respect to

It will subsequently be shown that the

quantity f(J )//,L can usually be approximated by

a simple linear relation in 4 , i.e.,

jN() to ? -

where aav and a2i are constants determined from

the iteration/bootstrap procedure. Hence, the

system operating point, op , is given by

icy - ,s 

tI?1
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which, with the aid of equation (87), leads to

the following expression for the V- A relation:o
oil

/R (-')(- 'w ) = 3 tS Ds -const. (7

5.2.3 Comparison of theory with experiment

The procedure described in Section 5.2.1

was implemented for six alloy systems in which

regular lamellar structures are known to form;-

namely the systems Sn-Pb, Pb-Cd, Cd-Zn,Al-CuAl 2,

Ag-Cu, and Sn-Cd (the phase arbitrarily labeled 0'

is always listed first). The phase-diagram data

for these systems was obtained from Hansen [13] and

is listed in Table 4.

The interfacial energies, >0, , were

estimated using equation (94) with AS f = ASfA =

LA /T , M = M f = _PA , T = Ta , and K e [ 1/3 , 1],

where the subscript A denotes the principle

constituent of the oc phase. These properties

are tabulated in Table 5, and, with the exception

of the solid/liquid interfacial energy, 4,, , were
obtained from Smithells [14]. The values of the
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2' °t 3Y O/ 4, and J used in the

calculations are shown in Table 6. Also shown

are the J -ranges,, [ JW, Se ], which were

used to obtain oL 4.

The quantity, -f(J)//, , as obtained

from the iteration/bootstrap procedure, is

displayed as a function of -J for several

representative alloy systems in Fig. 11. As

is evident from the figure, f(J )//L. varies
approximately linearly with U; , thus justifying

the use of equation (97).

The calculated values of and A 3

are listed in Table 7 along with experimentally
2determined values of the quantity VA . Also

shown are the estimated values of De which

were calculated by substituting the experimental

values of VA 2 and the estimates of ye: (Table 5)

into equation (97).

Finally, the values of D2 provided by

the theory are tabulated in Table 8 along with

corresponding experimental values for the four

alloy systems for which such data is available;

namely the systems Sn-Pb, Pb-Cd, Al-CuA12, and Sn-Cd.
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TABLE 4

Phase Diagram Data for Selected Eutectic Alloy Systems

s MI ,/
System I (°K/wt.fract.).

Ms i TTE I

( 0K/wt.fract.f l (IK) I
t Wt. fract. Cu

TABLE 5

Relevant Physical Properties of Selected Pure Materials

Latent Heat Density Atomic Wt.
3 XsI2Material (cal/g) (g/cm ) (g) (erg/cm

Pb 5.74 11.68 207.2 30 - 90

Sn 14.2 7.3 118.7 40 - 130

Cd 13.6 8.64 112.4 45 - 140

Zn 26.3 7.14 65.4 70 - 210

Ag 25.3 10.5 107.9 95 - 290

Al 92.7 2.70 26.98 90 - 270

Cu 48.9 8.96 63.54 140 - 420

CuAl2 76.5 3.25 ----- ---------

1ll

CE
(wt .fr-a )

c
(aE

(wt frac .

CBE

{wcr~e 

Sn-Pb 100 285 456 0.381 0.025 0.81

Pb-Cd 250 315 521 0.174 0.033 1.0

Cd-Zn 175 365 539 0.174 0.03 0.98

I-CuA?2, 420t 300t 821 0.33t 0.055t 0.54t

Ag-Cu 400 490 1052 0.281 0.088 0.92

Sn-Cd 100 165 450 0.323 0.056 0.998



TABLE 6

Values of the Parameters Used in the Calculations

t J is not the volume fraction corresponding to the
eutectic composition for this system.

4.0
* Sn-Pb
X Pb-Cd
A Cd-Zn

O Sn-Zn

-f (8)

0 1.0 2.0 3.0 4.0 5.0 6.0

Fig. 11 -The quantity - f(6)/IP as a function of 4 for representative
alloy systems
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System cf 2 063 J,_,_ J -range

Sn-Pb 2.9 0.65 1.16 0.658 0.35 - 0.8

Pb-Cd 1.25 1.75 1.2 0.812 0 - 0.9

Cd-Zn 2.0 1.6 1.18 0.822 0 - 0.9

Al-CuAl 2t 0.7 1o0 1.55 0.5 0.35 - 0.65

Ag-Cu 1.22 1.65 1.1 0.74 0 - 0.95

Sn-Cd 106 1.15 1.2 0.75 0.06 - 0.85

I ______________________________________________ ________________ _______________ ________________ ______________________________



TABLE 7

The Results of the Present Theory and the Jackson-Hunt Theory

2 I A3 A
V A (experiment) (present theory) (J-H theory) Calc. values of DSystem (c3 /se c3 3 2 .I System ' (cm /sec) V~ p (cm /cal) (cm /cal) (cm /sec)

Sn-Pb 8.25xlO 12 ( 3.73 0.318 0.302 0.84 - 2.7xl0 5

Pb-Cd 5.26 (b 4.30 0.358 0.466 0.68 - 2.1

Cd-Zn 6.93 CC) 3.47 0.224 0.289 0.93 - 2.8

Al-CuAl2 27.5 ed 7.5 0.217 0.200 2 - 6

Ag-Cu 3.7 e) 3.8 0.103 0.107 0.52 - 1.6

Sn-Cd .7-18 - , 4.02 0.385 0.458 0.73 - 4.9

(a) obtained from ref. 15.
tbJ obtained from ref. 16.
(c) obtained from ref. 17.
(d) obtained from ref. 18.

2(e) obtained by fitting the data in ref. 19 (crudely) to a V A = const. relation.
(f) low value obtained from ref. 19 -- high value obtained from ref. 20.

TABLE 8

Calculated and Experimental Solute Diffusivities

Di (calc.) Da (experiment)
L System (cm /sec) (cm /sec) Remarks

Sn-Pb 0.84-2.7xlO 5 0.67xlO 5(a) Eutectic composition-extrapolated to TE

1. (j) Eutectic composition- extrapolated to TE
0.63 (c) Eutectic composition-extrapolated to TE
0.62 (dj Eutectic composition and temperature

Pb-Cd 0.68-2.lxlO 5 l.-1.5xlO 5(e) Eutectic composition at 6230 K
AV -CuA2 2.-6.xlO" 5 3.26xlO 5 (di Eutectic composition and temperature

Sn-Cd 0.73-4.9xlO 3.6x.0 ( _) Eutectic composition at 6730K

(a) obtained from ref. 21.
(b) obtained from ref. 22.
(c) obtained from ref. 23.
(d) obtained from ref. 18.
(e) obtained from ref. 24.
(f) obtained from ref. 25.
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Reasonable agreement is achieved in all cases,

thus lending some credence to the V-A relation

predicted by the theory. Moreover, the calculated

values of D,, for the remaining systems appear

viable on the basis of the data in Table 8.

5.2.4 Comparison with the theory of Jackson
and Hunt

As a final item, it is of interest to
compare the V- A relations predicted by the

present theory with those predicted by the Jackson-

Hunt [2] analysis.

Utilizing the current notation and
employing the assumption used in ref. 2, i.e.

Rae 5,@S X,!z50X3 = 2/ tL

it can be readily shown that equation (17a) in

the aforementioned reference assumes the form

V ]- 1+zJ/&(63os)1 D-A P
+ do~e a si 1?

A'sp,. ' (98)

where

_ _ [1+ S + 5/(VO$> ]2
A3 -9 4fi~~s z Si~~g t 1 P (99a)
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and
Orn F E ME ) . ~~~~~~~(99b) G=

Hence, the desired comparison can be made simply

by comparing the values of A 3 and A 3 obtained

from equations (97) and (99a), respectively.

The values of these quantities for

the six alloy systems are displayed in Table 7.

Despite the large disparities in the interfacial

solute concentration distributions (see Section 5.1.3),

good agreement is achieved, with the relative

differences in 1\3 ranging from 5% for the Sn-Pb

system to 30% for Pb-Cd. Whether or not such good

correlations can be maintained when the operating

point, -k, , is established by criteria other
than the "minimum supercooling hypothesis, it

however, remains an open question.
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6. SUMMARY AND CONCLUSIONS

1. A general treatment of the free-boundary

problem associated with the growth of a lamellar

eutectic solid from its melt was presented. The

analysis served to decouple the calculation of

the interfacial quantities from the computation

of the bulk temperature and solute distributions,

and led to a system of nonlinear integro-differential

equations for the shape of the solid/liquid

interface and quantities defined on the interface.

2. The behavior of the integro-differential

equations was critically examined, and it was

shown that:

*The thermodynamic equilibrium requirements

at the ct/p/liquid triple point must be compatible

with constraints imposed by the diffusion equation

in order for lamellar solutions to exist.

* When lamellar solutions are possible, the

solutions generally admit to a relatively narrow range

of possible crystallographic orientation relation-
ships between the two solid phases.

3. The behavior of particular solutions to

the integro-differential equations was analyzed
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and the information thus obtained was used to

formulate an approximate theory of the lamellar

rod transition.

4. Simplified versions of the integro-

differential equations were derived by assuming

that (1) the solute diffusion length is large

compared to the lamellar spacing and (2) the

solid/liquid interface is approximately isothermal.
In particular, it was shown that the solutions to

these equations are function of only a single

parameter, 7k , which is proportional to V A 2

thus implying that the use of virtually any

subsidiary condition for the selection of the

system operating point must lead to the familiar
2relation VA = constant.

5. The simplified theory was used to

investigate the effect of interface curvature on

the interfacial solute distribution and the

results were compared to the predictions of Jackson

and Hunt, who assumed the interface to 'be planar.

It was found that the present results encompassed

those of Jackson and Hunt as the interface curvature

decreased. However, as the interface curvature
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increased,the interfacial solute distributions
changed considerably, leading to significant
departures from the Jackson-Hunt theory, which

were particularly pronounced in the unsymmetric

case ( J = 0.65).

6. A procedure was formulated to check

the consistency of the theoretical predictions

with experiment, and was implemented for six

alloy systems which were known to solidify with

a regular lamellar microstructure. Good
correlation between theory and experiment was

achieved in all cases.

7. The lamellar spacing-freezing rate
relations predicted by the new theory were compared

with those predicted by the Jackson-Hunt analysis.

Good agreement was achieved in spite of the

large disparities in the predicted interfacial
solute concentration distributions, thus
implying that the V- /; relations obtained with

the "minimum supercooling hypothesis" are

relatively insensitive to the solid/liquid
interface shape and the detailed solute concentration
distribution on the interface.
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8. Recommendations for further work include:

*A detailed stability analysis of the steady-

state solutions and/or development of a suitable

variational principle in order to establish a
definitive V-A relation.

* Interface stability studies to determine

the onset of dendritic growth.

*Studies of cell formation and colony growth

due tothird-element additions.
*Extension of the theory to include

interfacial molecular attachment kinetics and

faceting.
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APPENDIX A

Derivation of the Explicit Form of the Single-

Layer Potential Ut, fh j (xi tj)
The single-layer potential

LS h I (g,xW) Jk Dy -}P) W)), 4) h)

introduced in Section 3.1.2 essentially represents
the concentration field due to a distribution of
point sources of strength h(x) acting on the

surface v(x) in the strip [O., 1]. This implies

that the kernel

A<. k .x-, , X) , via), )A iS)22df};@

satisfies the equation

-76 t. - ?(. .- -
JewX-1 PV2 d-}, (A.2)

in the strip [O, 1] with boundary conditions

SG = 2 X SO 1 }(A.3a)

oo' G v (A.3b)
00co
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(A.3c)

where J (s-t) is the Dirac delta function. Thus,

the required expression for U2§LS]ICz,} ) can

be obtained once a suitable solution to equations (A.2)

and (A.3) is found.

An eigenfunction expansion approach

probably affords the simpliest and most direct

method for solving equations (A.2) and (A.3). To

implement this technique, we assume that

thus insuring that boundary conditions (A.3a) are

satisfied. Then substituting equation (A.4) into

equation (A.2) and expanding the term Jf(x-z) in
a Fourier cosine series, i.e.

results in ,- -,Y77 I

results in
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7Co I/) 4 2S~ W 0 ) 4- 'p VO 'Q))
(A. 5)

CIO

4ZtEL-jn~~a 4n(; 2 Wd /

+Jco5' imy J (X-v(}) J Co~ = OD

But the basis functions ,co Co5 xrz) COf5f-i"Y j- are

linearly independent, which implies that equation (A.5)

can be satisfied only if

4' 2jJo('v) 4 JC (-vcp) = (A.6a)

and

7L~~~~~~~~~(-1; (A.6b)
Cof, -~rgV J CY T))= 

Hence, G will satisfy equations (A.2) and (A.3),

provided that the functions jA#iY) satisfy

equations (A.6) along with the boundary conditions

( (A.7a)

and

I --> 00 (A. 7b)
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Equation (A.6a) can be solved in a routine

fashion by transforming it into a first-order

equation with the substitution PO?77- f/(Y),,

and then integrating the resulting equation twice

using the relations

.I r Cokit. Forl1ct

and

/f d 'PO e d (reW)

This results in

e- 2

and

+ ('V - v~a. ) Le11

where H denotes the Heaviside unit step function

and Ci ( i- -1, 2) are arbitrary functions of
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3 and c . But C1 and C2 must vanish if

equations (A.7) are to be satisfied. Hence,

go, (V) = --L -- I S (7 -[

To solve equations (A.6b), it is convenient

to take

fi,(7) = Iv.;)e- a

Then substituting equation (A.9) into equation (A.6b)

gives

Ok - ( 24 A I' i2 .U = - e--o5 si) e 2"J (' -- vQ)g),

or equivalently,

ahi, - (C -irr- ) et k= 
for/ y -?L- Y (~) (A. 1Oa)
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and

/' - ", A 4 -,2 t6 e 2
We 1()) 'Ve v (9) (A.lOb)

where the jump condition (A.lOb) results from

integrating equation (A.lOa) from [ = VQ)-£

to V1VQ)4, i and then taking the limit as

£ o
A general solution to equation (A.lOa) which

permits satisfaction of conditions (A.7) and (A.lOb)

is given by

-4. V27 6?- (V 14 2n 77 ) X (A.11)

where and _1, are arbitrary functions of

and a> But must vanish if equation (A.7b)

is to be satisfied. Hence, using equation (A.lOb)

to evaluate DI, and substituting equation (A.ll)

back into equation (A.9) gives for

128



ccx- [w~f i2)~'Z~4v~I ~ 1/.))J. (A. 12)
fi})~~~~~~0 CM 2aS -k' (XTrk'/C 1SC 

With fhC^,) (1i-o'7,;y --) now determined,

an explicit expression for G could, in principle,

be obtained simply by substituting equations (A.8)

and (A.12) back into equation (A.4). However,

the resulting expression for G will not be well

suited for numerical evaluation, primarily

because the resulting series converges very

slowly for points (x,y) in the neighborhood of

the point (j, or (3 )). Hence, to complete the

solution, we must incorporate into the analysis

a device to accelerate the convergence of the

aforementioned series.

Such a device was formulated by Morse and

Feshbach [26] in their treatment of a related class

of problems, and simply consists of adding and

subtracting to equation (A.4) the solution to

equation (A.2) with 6=-o , i.e.
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Thus, upon noting that

J _ l X jt [§O~ff(X ~ f) ) T AorC-) 

(A.13)

(see ref. 26 for a derivation of equation (A.13)),

the Morse and Feshbach procedure furnishes the

following expression for G:

- A4 [;Ld-) a0 + '

+jf F£#l('-7tC')') Le 4 '- 1 3
(A.14)4- 'Vrk CO-5Xw L'-Xes)-'' 

4&,)-1 1|0
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It can be shown that the series in equation

(A.14) converges rapidly for all values of x, y, z,

and v(z) in the strip [0, 1]. Hence, substitution

of equation (A.14) into equation (AAl) yields

the required expression for U IrLhj('k14) .
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APPENDIX B

The Indeterminacy Associated with the Solute

Concentration Field

It was asserted in Section 2.2 that the

system composed of equations (1), (4)-(6), (9),

and (11) does not generally provide a unique

concentration field, ct , even when the interface

shape, freezing rate, and lamellar spacing are

specified. In this Appendix, we establish the

validity of this assertion.
We consider first the limiting case ate.vp.coo

In this case the nondimensional versions of

equations (1), (4)-(6), (9), and (11) become

V;-4. g ,2 a ,-S a (B .1)

and

-nd cy -Co
+Do (B.2)

JC,? =Z o , A= 0)1,(B.3)
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$ = - s a s e(; --fi c ) ; ;ze [o"s ))

- '= ,2CO-5G-(C-2 PCtg ) , ) e(J,1I
(B 4b)

C= 5,L 9(%) 9 4 e05 (Y) ,
1j, ~2%X -D- .z ~

(Che- co*)FP

A(COE7 - AC9 ) fp (COx- C )

and the remaining symbols are the same as in the

main text. Now let C = C + l (7,&),where

any solution to equations(B.1)-(B.4) and

c o
:-f

(9 I j) ef w (e f'y d) 4+
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where

2 (B.5)

(B.6)

is

(B.7)I (4) 10) =

j = J*.=



Then, because I(y,w ) satisfies equation (B.1) and

d1r Co-> ' di - -2 615 )
d~ U D}4 14 'I I 

c (x,y) also satisfies equations (B.1)-(B-4).

Hence, the solute concentration field is unique

only to within a term of the form I(y, o ))

where the function A(z, C ) is arbitrary, thus

verifying the assertion for this case.

A proof of the assertion for the general

case Wt and Nash oo is not as straight-

forward as in the preceeding case.

For the general case, it is convenient to

utilize the results of Section 3.3, namely that

the solute concentration on the solid/liquid

interface, i, (x), is given by

§zZ) = §(t) + I Cf22)@) + at 2 (B.8)

where C,(x) is found by solving

- (.X') 4lp(,,{)/QS r}d
1i (B.9)

+ kR~zj)I(2Z9)f(')cv) 15~d~ 0,
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with

fven

4 O NIX) I + ( c-,- c-) + -If-q , }

S(x) C-o

, 4EUS

A. ~[ e E
Sfg+ u -J)F lp r

(C,- C,) T( t)I
I

is found from the solution of

Coo [*, - (I? as1 j= CeLf- W + C-, C1- J)f

J
4JfL Mot Lg )

C~ ~ ~ -- j

1

+ ( Coo- Ce ) 4I-j (i, )) W ) ] d) 
(B.11)

£4 f
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rr

(B. lOa)

'I 2 [ -
k Cft .

and where J

(B. lOb)

7 Z, (,13
)

3.1 W := C . - f '-Z
jrot -f V - j ) f'8

Y/3 �, 0) 4- (Coo - C 15) + :1 (J-(), W) I d 3 -



In order to prove that the concentration

field, c , is not unique, it is sufficient to
demonstrate that a change in I(y,w ) implies a

change in c (x) and/or c

By utilizing a perturbation analysis of

equation (B.9) similar to that employed in

Section 4.2, it is readily shown that changes in

the O(W4J ) terms in I(y,w)) can only induce

corresponding changes in the O( Vk4l ) terms in

C (x). Hence, it is evident that changes in

I(y,W ) do indeed induce changes in c (x) and J

Therefore, the assertion is affirmed for the general

case as well.
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APPENDIX C

Derivation of Equation (62)

By equation (28) in the main text, the inter- m
Afacial solute concentration, i(X) , is given by

z , -20 ~~~~~~~~~~~(fre) -Ab
C W( = C, ZJ -f +~~ySg y (C.1)A -2d

where Q(.Z) and the volume phase fraction, ,

are found by solving equations (33) and (57),

respectively. If it is assumed that Kor and ?2/1
are large, then a perturbation analysis of equation (33)

reveals that

-, I '+ (f-J) J (ct) 4 (C.2)

where is the solution to equation (73), and
OfA is given by

J =_A-C _(C.3)

(c/ry C o)j + a
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M rThus, expanding the term

with respect to to and substituting equation (C.2)

into equation (C.1) yields

A

where

sBo'e) - A(a)p D) J/ # am - Cr (C.5)

and is a priori unknown.

The quantity B0 (/X) is determined from the

condition that equations (55) and (56) in the main

text are to be satisfied'simultaneously to 0(1)

with respect to co . In the analysis to follow,

this condition will be used to obtain explicit

expressions for B,( ) for the two limiting cases

of small and large values of /a .

For simplicity, we shall consider the case

of equal thermal conductivities, i.e., #i~= =) -6
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r-

:- 

4.el

In this case, by utilizing equation (C.4) and the

definition of /i , i.e., /,t = a- As

equations (55) (correct to 0(1)) can be written as

-ii'~~~~~~-

-f -§Bo
/Z Y;p

, el2O,;J)

) 6C6, 1 2I. - cf S
W i t/-I-12

where is a dimensionless parameter given by

C= Mv ( fA 2

('3?o C ) I

4tI'L =?VP /,; , and where oC1 =0e/4L4 was

assumed equal to unity. Assuming that there exists

a range of relative orientation relations such

that real values of 67a and e,4 can be found

which satisfy equations (56a) and (56b), Bo is

determined by solving equation (C.6) subject to

subsidiary conditions given by equations (56c)

and (56d), i.e.,
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(C. 8a)

and

(C. 8b)

i (OL) =' I

Y(O) = 1"() = o,

Solution for small values of

Let

p2) :=I ()+1/B 
(C. 9a)

A(t) = fiz) - Oz8 /44 Bo ,17 1 -r( 62'1 ]

(C.9b)

Then, substituting equations (C.9) into equations (C.6)

and noting that(i3t '-,4-(1t;1)1 do

gives

d cos &-
7/ --

,, 6L°,-1 .
(C. 10)
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If equation (C.10) is now integrated from S CCo)

to ECU-) , and from = c41) to V(a) , then,

with the aid of equation (C.8b),which implies that

Cos O- = Co056 O)

we obtain

Cam)

and

Zfs9-1. g J~vs =o. (C.llb)

The quantities ' C°) and ,Ci) are not known

in general, and are difficult to obtain for arbitrary

values of ARC . However, as AC.- o , 7CX) must

approach zero except~perhaps, in a very small region

in the neighborhood of the triple-point groove; i.e.,

the solution for small values of k (large values

of ,( ) must be the plane-front solution with a

perturbation in the neighborhood of the groove.
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I (o) = IC-) 1- for small.

With the aid of equation (C.12), the quantity

Bo is now readily determined. Thus, substituting

equation (C.12) into equation (C.ll), integrating,

and substituting the results into equation (C.9)

gives

f(} -Fx) 1 - ob / ) e 

and

Hence, by virtue of equation (C.8a),

-o - _ _ _ _ _ _ _

0

(for small values of /-t ).

This result is equivalent to that expressed by

equation (62b) in the main text.
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Solution for large values of AR-

As was mentioned in Section 4.3.1, when the

parameter oL4 is sufficiently large,

'ro)f/(7}d ~JfJ))

and (C .15)

FOX)dD BC1- ) W(J.

Thus, with the aid of equations (C.15), the relation

~= -
5t;, 19-

and equation (C.8b), equations (C.6) can be integrated

out from the triple point to their respective end-
points in a straightforward manner to give

- a ( -ac Q/B 0 or (C.16a)

and

_'(I) = -s p 5 ~ is .Bo (iJ). (C.16b)
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Therefore, again by virtue of equation (C.8a),

'B - 5,:'/Op -- -S s ) 5P/e
'Bo (C.17)

-0 (YD4) 5 O-J)

(for large values of He ).

This result is equivalent to that expressed

by equation (62c). Moreover, as discussed at the

end of Section 4.3.1, this result is asymptotically

valid even when as, e si , ) 0
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APPEI4DIX D

A Description of the Computer Program for

Solving System II

Language: Fortran Extended Version 3.

Computer: CDC 6600.

Operating System: SCOPE 3.3.

Program Input: Each set of input data consists

of four logical records. The first record consists

of a 0-80-character title. The contents of the

remaining records are tabulated in Table D.I. The

data sets may be stacked; the run will terminate

when the program reads an END OF FILE.

Program Output: The program output consists of

tabulated values of f(x), tane(x), A-(x ) (interface
curvature), f(x)-f(d), and c>,*(x) (denoted as ACOL

in the program), which are printed at the end of
each iteration. A sample output is included at

the end of this Appendix.

Program Listing: The program listing follows on page 147.
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TABLE D.1

INPUT DATA REQUIRED

Variable i l
Name I| Type Definition

Record 2

I Comments

BETA3 Floating aI
point

BETA4 Pi a.3 1. BETA3 is always taken as unity.
I 3 2. RMU is usually taken as 15.

BETA5 a4 3. To insure real values for G a
and G6B, DELTA must lie in the

BETA9 a range ( M . ), where J,,., and
2 jI are given by equations (80a)

DELTA j and (80b).

RMU)

Record 3

M Fixed These variables are used to 1. MMAX and NMAX should usually
point control the number of be set equal to 1024.

N quadrature points in the 2. The values of M and N are
integrals in equation (73). J -dependent. For 0.25-J'- 0.75

MMAX take M = N = 32; for O.J4 0.25
take M = 16, M = 32; for

NMAX! 0.75 '-j< 1.0 take M = 32, N = 16.

Record_4 4

ISKIPl Fixed 1. ISKIPI and ISKIP2 1. ISKIPI and ISKIP2 can be
point are used for debugging taken as any nonzero integer.

ISKIP2 purposes.

ITER1 2, ITER1 is the number 2. ITERI iterations are done
of iterations to be done per step, unless convergence

ISTPLIM per -r' -step, is obtained- A conservative
value of ITERI is 4.

PSISTEP Floating
point 3. ISTPLIM is an upper 3. The calculation terminates

PSIHI , limit on the number of when either - = PSIHI or
- -steps to be taken. _t = PSISTEP*ISTPLIM, which-

ever is less.
4. PSISTEP = -' (the
amount by which U- is
incremented per step.

5. PSIUI is a upper
limit on .-
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10 OROGPAM SPTPOT3(TN!UT.OLJTPUT.TAPFI=TNPUT)
2o rOMMOl/F5PACK/tlH-4l gIJ-H2,IJGH3
30 COMMOr4I/VlGHTPAC/MPI.MPNP -
40 CnMMnfl/RLKl/PT
Fn rOMMOI'XTMODOIMO .

An CoMMmom/TSTM/TSTM
7n CnMMnN,/TRIG/0CM*OCF.CTMv0TP _

P0 romMo(i/TNPDFLG/TNPrFLG
P0 nTMFNITON STOPIM130)

0 0 nTMFNTONM XX(?0no)qFFn(?O50),X(13n),FO(110)9 ACOL(70)9CAPF2'(10)
110 D1MFNcT N ATFCT(1fln.4).AMAT(707 )
1?0 nIMFrizTON STO°r(20'50),CfSAPY'(13f ) .TANAPY(13O) ,RKAPAPY(130)
13n nTMFKlCION TITLF(P),F'N(I1) .FI AST(7n) _ _

140 EXTFN AL FIINCTI ,FLMCT2,FUNCT39FUNCT4
j0n 1 Fn°MAT(6FJ0.J)
In ( FOPMAT(4T9) _ .__ _ -

170 3 Fr)DMAT ( IOX,4F1 7.4)
]P0 4 FOPMAT(4OXqFl.4)
190 5 FOPMAT(/) . . .__ -- - --
Po 6 FOPMAT(7F1n.l)
210 7 Frn)AT(CT10FIl.4)
??n R FODMAT(1IOY9F13.4)
?3n 9 FOPMAT(InX9PTIO)
240 In FODMAT(EX,6TR,4F1'.4)
2c6 0 11 FnmAT ( ITnX*FPI7.4)
?6n 137 F00MAT(I0nqYAF7.4)
27n 14 Fn-DMaT (Ih4T1 )
?ck( 14 rnDAT ( 1H1)_
?9n 15 Fr)DMmAT(0PA1)
3nn 1 6 F0QMAT( ?XAPA1)
37r) 17 F0PMAT n(1(| FF13.4)
-(0 1J PODMQAT(C1nFI3.4))

4 0 2n FnDMAT (Jl 6)(x 11 X*.*rFn*) _ _____ _ ____

ln0 71 FnDMAT(I7X.e4X*.11y,*ACOL*)
340 72? rnDMAT(| nx.cF1 7.4)
37n 23 F0DMAT(;CPF.X.CTNTFPFACF SOLlJTTONK*/IRX*TTFRATE*,T3,1IX,*PST=*,
lPn+rl1.4/1 Ry-.<THc'TA-=*>.F I .4,RX,
In90zPFThFTA+=F*F| 1.4/1 PY .->gl=§*FtI .4/)
4no 26 FnDM4AT(17X.*Xe*,1?Y*F*,RX,*TAN THETA*q6X9*K4PPA*,6X _

410+*r'-F(rFI TA)*)
420 27 FnDMAT(fnyl *rCrjtJTTON fF THF INTFGP8L FOQIATION*/28X,
410.*nFT=*.F 11.4/7nY.eTi=n*.Fll .4,5X.*T2=*.*El.4/)
44 n' -" * C TN' CDl0nTI.T-F PrQOOVr ANrLFS APF TAKFM' TO RE
4n O0 TklnFRIF,,rFNT rF PrT

47o'*r C .MMAX.NI.NdAX MIJ.)T RF GtTVF,, a 2 TO 4h1 INTFGER POWER
4P000** T-TS VFS!TnN OF SPIPOT3 CAN ONLY PF PUNI ON SCOPE
4qn nn Pon ,)4Y=Jqlnn __ ,____ __
cnn 'FAn(I)C(TITLF(T).T=1qR)
c 1 0 TF(FnFC(1 ) )0Oi),OQfn
c 0 gQn ¢TTNrIJF ___I____
c0n DF Anl )PFT A*RFTA4APFTAS5, PTTAPMU
c;4n DF^ ( a1) ) M .KI ,MAY 8 ye '0 AX
rccO OFAn( I)lTSKIP1.TCKTp2.ITFP1.TSTPLTmPSTSTFPPCTHI __ __ -
c60 01=1 .- rfFj TA s n2=-nFI-TA $ PTMtl=JOQT(pMti)
c7n DT=3.141q9 r FI=0FI.TA/'4MAX S H?.=(.-nFLTA)/NMAX S TOL=I.F-3
CAn NMAXPQI=YlMAX+j T kAVYD1vJ=mMAX+J T P.A14AXP?=MMAX+?_
qfn MNlTrTP1=MMAX+NMAX+J Z t)DI=N+l It 0=M+l MPNo1=M.N.+ $ MpM*2
600n 0 HOnl=Hl F HOL fnl=-?
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6n10 QP=CT*FTA*(I.-nFLTA))/(RATA3*fFLTA+(I.*-ELTA)*8ETA4)
APO ("-M=PFTh f-RFTA4*0cP
AlO F"nLTA=9RTA3*PFT1'/(iRFTTA3*FLTA+(I.-DELTA)*RFTA4)
A4n FOl-TA=-DMMU*FonL.TA
650 THTAPL=ASIN(OSP) I THTAMI=ASTN(OSM)
660 RFTA6=EFTA7=1.
670 MPN=M+Kl
APO MMlMm-l $ MPNMI=tAN-I
69n ICH=1
700 MPPWTT =M/16 % N'PfTNT=N/l6
710 TF(MPPTiKlT.F0.0) MCQTNT=
7?0 TF(NPPTNT.FO.O) NP'INT=I
73n TOLR=I.F-3 3
74n TOLFPP=I.F-3
710n ITRDFl-S=0

76n PPTIT 16*(TTTLF(T),T=19_P)
770 PRINT S
7P0 DiDINT 3vRFTA3q9ETA4 -RFTA5PFFTA9
79n PPTNIT 1?, nFLTA*THTAPLqTHTAMT.RMLJqF0rLTA
POn *DSTqTFO
PI0 POPTi4T 1,*MMMAXN.NVAX
P?0 00TKIT __

P30n fl(M=Crc(THTAMT) % rfrD=ecS(THTAPL)
P40 OSM=qTK'(THTAMT) If 0c=STN(Ti-4TAPL)
Rqn 0'TtM4=TAm(THTAMT) T QTP=Tfm(TI4TAPL)
P6n Y7=F~rl-TA*2?
P7n FCOIlT=n0.
PRn RIXX=n.
Pqn TF (Y7.iT.O.) FCnNfCT=-SORPT (Y7)
PO0 CAfL F7FPO(l .TC-.MV AXPI p*Mi,il'lnLTA*FCONSTSToPF ,TOL8)
010 TF(TmqlnF7LG.FO.I) fe To P50
Q?O flC) 90 T=1.,1AIAXPI
030 FFO'( T)=TOQF-("AXF?-T)

o40 gn CC)NTTNtJF
0co0 YY7=PRmtRFTA3
OfnO Y7=Fnrl TA**P? -. *XY7*(l.-OCP)
07n FCO~lqT=n.
PRO TI (Y7.rT.0.) FrCnYlT=-Sn=T(Y7)

qcn rAl F7FDCO(k?.AyOVp 1,Mr !TOT1'1.XY7,rnCLTAqFCONqTFFTOTOLP)
IOr TF(TKDDFLf.Ffl.I) fiC TO Rsn
1010n f o 0nn T=1,MmhAxc

2r' XX(T)=(T-I)*HI
30n3n 100 n ONNTTNIIF
104 0 nn 1 1 o T=MAXD?*NlNTflTP1
1 no xx(T)=nFl TA+(T -MVAD1)*H?
1 06r 110 ln NTTNIIF
1070 Hl=r)t TA/M F HP=2I.-nFLTA)/N
JoRo no 120 T=10M1
109'0 Y( I)=xe Cl + -i) *tuMhX/
1100 FO ( T ) =FF0 ( 1 + ( 1-1 ) *Iv4Ay/M)
11'l 12? CONTTNI1F
]1?, no 110 T=MP2.MDNPl
113r y ( T ) =xy (MKAX0cl + ( T-D1 ) *NMAY/N)
114^ FO ( I ) =FFO (rCMAXb( + t T-IAP1 )*N*'AX/N)
l11q' 130 n CONTTN()F
1 1 Al PKAPk' T=FO (MP1) 110.l 'F P<APDl =Fn (Mcl) /PMOJ/RETA3
117n rncADy(mo1)=TANIAFY(mDl)=PKAPAPY(O4Pl)=O.
11P" nn 711 T=1,M

1190On nADY(T)=1.-(F0(T)e*2-F"OC )**2)/2./R41
1?00s y1=l'coaYCJ)
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i2n TANhRAY(T)=SOPT(l./YI**P-1? $ RKAPARY(T)=FO(T)/RMU
122I 310 rnhNTTNIJF
123n no 32n T=MP?.MDN1D
1?4n rn11AcY(T)=1.-(FO(T)**2-FO(mPNPI)**?)/?./PMU/RETA3 _
125" Y1=CCqAPY(T)
1 26) TANAQY (T) =-SOPT (I ./Y1*?2-1. )
1?27n RKAPAY(I)=Fn(T),PAII/PFTA3 _M__ _ -___'_

12PO 320 CnhNTTNIIF 
2?4n TF(T JKTPI.NE.O) @O TO 655

13n0 PPINT 20
1310 no 300 T=IMNToTc1.8
132n PPINT RXX(T)9FFO(r)
133n 300 CONTTNU.F
134n PRThIT 5
135n 65r CONTINUEF
13'0; PST=O.
1 37n STTFP=
130n Sq CONTINIIE
139n IFLGEPP=l

1o.n TTCNTI=O
141n PST=PSI+PSISTFP1420 TSTFD=ISTFP+l ___ _ _

143n TF(TcTFP.GT. TTPLJ ) GO TO 850
144n TF(PCT.lrT.PSTHT) GO TO 850
141;n no RIO K107=1,TTFPI ,__ _ _ _ __ -
14An TTCN!T1=TTCNTI+l
1470 PPTKIT ?3,TTCNTlCrT . THTAMTTHTAPLqRXX
14Rf' POTNT 26 __ _

149sn no 3n0 I=l MP1*MFPTNT
lqnn Y1=TANAPY(T) 5 YP=PKAPAPY(T)
IrFl1 TF(T.PFO.MPI) Yl=rTV ,..,, _ _______
125? TFI( T.r.MPI) YP=FKAPMT
130n Y3=FO(J)-FOC(MD1)
1C;4n PPTh'T 22 X ( I ) .FO ( I ) ,Y 1.Y2*Y3.----.--------------
1550 3P0 CONTITNUF
156n no 42n T=MP1.APN'PlINPPTNT
]cR7n YI=TANAPY(T) 5, YP=PKAPAPY(T)
1q'4 TF(T.FO.MPI) Yl=-OTP

c;qn TF"(T.FQ.MPI) Y?=PKAOO1
1600 Y3=Fn( T)-FO("4P1) ______
1610 PPTNT 2??X(I),F'(T)oYlqY2?Y3
1420 420 CONTINUF
1630 TF(K17.FO.TTFQl) CO TO 82_

A'4 TF( TFfJF>PV.FO.0) GC TO 82S
I f1; no 140 T=IMPI
16'60 Yl=CCrAPY(T) t Y,=X(T) ' YI=X(T)
1l-7n IF (I1.FO.MPI ) Yl=CCU
] -P. Y4=FO(T) 5 YI=QT/Y]
1&q- Ctl mon TOAP(F(JNCT1*YY FFn.0I MM4XP] ,YI Y?,Y3,Y4,TOLANSI)
17n00 TF(T.FO.1) ANsl1=; .o*Nl
171 0 TO1=TImO
172n Yl=QCD 5r Yl=PT/Y}
17 3 CA!I Mflnn TOAP(FIJtCTlYXFFnMMAXO1,MNTOTP1Yl*Y2,Y39Y4,TOLhN52)
1740' TF(T.Fm.1) ANs,=t**AN5?
l1q- TQ?=Tmenn
1701 ACOn (T) ?.*fi1tN1l+?*ANS?
]77n rADr,(T)=DTm(l*PFTA7*C(ASl+FTA6*MN52)
17P', ATP'zT (T %1) =Atlr It ATFqT ( T 9)=^NS-?_ _ __
17Qn TF(TCwTP2.NE.n) rO TO 140
PO 4 P0 T C'T goO]TINTO

1 P 1 140 CONT TNIF
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Ipp no 1n O T=MP?2MPN1I
Ip3n Y1=orC4 I Y1=PT/Yl S YP=Y(J) $ Y3=X(T) S Y4=FO(I)
IP4n CALL MOD TQAP(FI)KCTl .XXFFn-l0 M MMAXP1 ,YIY?-,Y.Y4*TnLtANS1I)
IP5cn TF(T.FQ.MPNPI) AKS1 =?.*ANS1
196n TO I=TPM40)

n 1 yl=ecqApY(T) C Yl=PT/Yl
JPPO CALL Mfn TQAD(FIJKCTI*XXFFn'MMAXP1,MNTOTPlYlY2,Y3qY4,TOLjANS2)
]P9n TF(TIFO0.m-NP1l) ANS2=?.*AfJ?
1000 TO?=TMDn
1910n ACOI (T) =.*01*NS1 2.*O?*ANS2
19?n CAP F(T) =PTMtlRPFTA7* ( AeSI FTA6ANS2)
1936 ATFST(T,I)=ANqj q hTFST(19?)=ANS2
1940 lF(Ti<TKP?.NF.0) 0-O TO 1SO
19 n PPTNIT Q.TOI*I0?
1960 150 CONTINUF
197n PRINT S
19Pn DO 160 T=1.MPNPI
1990 Y1=PT t Y2=0. $ Y3=X(T) $ Y4=FO(T)
?oon ANSI=AN?2=0.
pnln TOi=TO?=O
P02n TF(l.FO.1.OP.T.FC.>NPP) rn TO 640
?030 CALL STM4(FUJNCT?.XXFFo1ltMMAXPIlY3,Y4,TOLANS1)
?04n Inl=TSWM
2050 CALL CTMl(FUNCT?.XXFF'0MMAYP1 MNTOTPl Y3,Y4.TOLANS2) __ _
P06n TO=2TITm
?070 640 CALL STM(FLNCT3,XXFFO*,1MMAXPlY3VY4,TOLANS3)
?ORn T03=1TK4 M
?090 CALL STM(FUNCT3,!XFF0,MMAXP1,NTOTP1,Y3qY4,TOLANS4)
?100 104=TSTM
2ln ACO[(T) =ACOL(I) +?.*01*(ANSIANS3) +?.*02*(ANS2?ANS4)
1P2n CADFP(T)=CAPF?(I)+QTMlj*RETA7*(ANlS1,aNs3 +FTA6*(ANS2+ANS4))

?13n ATFST(T,1)=ATFTCT(Tl) ANSI+ANS3
214n ATFcT(T.?)=ATFCT(l.?)+ANS?+ANS4
?15n TF(TcKTP?.NF.O) G-O TO 160
216n CALL qTM(FlJNCT4,-XX*FF01,MMAXP1 Y3,Y4,TOLANCl)
?170 T0I5=1cIH
2l~n CALL CTM (F INrT4,Xy.FFn*MMAXPI.MNTOTPI Y'3Y4,ToLANS2)
219n IO6=TcIM
2PO0 ATFqT(T.3)=AhlIl I ATFrT(194)=ANS?
P?IP PPTNT 10,TO1,TO2,TC3,TC4,TI5,106 ,ATFST(I.1),ATEST(T,3).
???n+ATFST (T,2) .ATFST (1.4)
??3n 1A0 CONTTNUlF
2240 DOINIT C
??50 no 17n T=1*MPNPI
22?4 ~n 1n 7 .J=19,MPNf'O
??7n TF(J.1,T.MPl) 600,60s_
??Qn 600 u)GH1=CoqAQY(J) I UGH;=TANAPY(J) S IJGH3=PKAPAQY(J)
722n AMAT(T.J)H=-H1lW(I-T(J)*FtINCT5(X(T),X(J),FO(T),FO (J))
2300 (rO TO~ r20
?3-0 Asnq TF(J.GT.mc1) 610n*61
?p32r 410 I)(H1=Cnqaf Y(J) t (JGH2=TANJAY(J) $ (IGH;=RKAPAPY(J)
233n AMaT ( T~J)=-H?*WG,-T (J)FtJNCT5(X (I ),X (J)*FO(I) ,FO (J3))
?34n "n Tr A?0
?3ql 61A AM.AT(I.J)=-Ftjf\CTA(X(T) *X(J) .FO (I),FO(J) .H1_H2_
?.3.+PKAPv T.,PKAPPL)*Wr.HT(J)
P37n 0 n TF (T.Fn.J) ANAT(T9J)=AMAT(TJ)+1.
P!Pn 17n CMtlTIN111F
?39' 1NnI-70 T t\!COL= T TfOO!T=O
240n CALL F.48TALr((AlAATACOL.MPNP1 NCOLIrlONTrFTINTNROW)
241 ANq4P0=n.
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?420 nn 410 T=1,MPI
?4 3r F-ACT (T)=FO(T)
?44' q47=a rS4?+ACAnt ( I ) W*.|wCHT2 (I)
?4F n 430 rnNTTNUIF
?4(, ) 1a154 1 f
?470 nrn 44n T=MP1.MPNPI
?4O ANlq4T=ANIS43+ACOL(I)*H?*WfiHT?(I)-
240" FLAcT(T)=Fn(T)
20nn 440 CNITINIIFN__ 

_

2q10 PIYY=PrTA9*nF7 TAAS4!+(1 r)EITA *
?5?n RIXX=-P1XX/((PRTA9q1.)*PELTA*(l.-DELTA))
?q30 YI=PFTA3*nELTA+(I.-OFLTA)*PETA4
P?4n Y?=PFTAI*ANS4?-PFTA4*PRTA9*ANS43
?9Sn Y2=Y?+P1YX*(RFTAI*nFLTA-RFTA4*RFTA9*(I.-D)FLTA))
?560 F"0(MP1 )=PT*Y?+PRTA3*PPTA_

?57n F0(MPl)=-F0(MP|).eRfj-YI
2590 FN(1)=0. s FN(?)=OTM 'F FN(l)=FO(MPI) $ FM(4)=RMU
P99n FN(F)=n. C FN(6)=nFLTA It FN(7)--1. __ __

260" FNI(A)=0(I*PST 'F FNf(9)=FN( 0)=O.
261n F'N(l1)=91XX
?620n MAT=MMAX/M
2630 CALL F NEW(HOLDr*1.MP1,IMMAXPItURATFNCAPF?,ACOLXSTORFOTOQI)
?64n TF(TNPnFLG.EO.1) (0 TO 850
?6in Dn 3cn T=19MMAXPI
266n FF0(T)=STOPF'(MMAXP2-I)
?67n 39n CONTINUJF
26P0 nn 40n T=1,MPI

.69n TANIAPY(T)=sTnPi(JP?-I)
2700 F0(T)=FF0(1+(T-I)*"RAT)
271n YI=T8d-APY(T)**2
2-?7"n COSACY(T)=T0QT(1./(i.IYI-)
?773 YI=Fn(T)
2740 YI=Y]+DMtJ*PST*(ACOL(T)+RlXX)
?7rq RKAKAOY(I=YI'/-ML
?76n IF(T.FO.MPI) PKAPMI=RKAPAPY(I)
?770 400 CONTTNIIF
27P9 FNC (I)r)FLTA ' FN (?)=OTP C'FN (4)=PFTA3*PNMJ
?7Qn FrN()=O. It FN(7)=1. $ FN(A)=-RFTh.9*PtU*PSI
pp0n N2DAT=IMAX/N
2Pln CALL F NFW(HnLD?,MP1,M4PNP1,MMAXPl9MNTOTPINQfATFNCAPF?,ACnOX,
PPn+FFO.TANAPY)
?83n TFC(TNDFLG.E.l ) G( TO 850
?p4n.no 410n T=mP.MPNPF
2P9n TAh'Any(T)=-TAtIAPY(T)
2AR4 FOC() =FFO (MMAXP. (T-MP ) *NDAT) _
?R7n Y1=TA'!APYY(T)**?
2PRO CnqAQY(I)=SOlT(1./(1.+YI))
?P'O YI=Fn ( I )
?9nn Yl=Yl-RFTAq*Pl U*PT*(ACOL(T)+RIXX)
PCP RKAPAY (I) =Y1 /IMI /PFTAI1
?9?n TF(T.rO.MP1) PKAPPL=RKAPAPY(T) -- _ _
?930 4In CONTTNU-F
294" TANAQY(MPI)=COSAFY (MP1A) =RKADAPY(MP1)=0.
290n FOnD TA=FO (MP1)
2p4fl ^,ALt. TFPP(FL AT.F0,MPNhPIT(LFPPTFLGFRP)
PO7n) DPT"!T P7*nFTTp.T..hNC4PANS4l
?9Ar) DPTKIT ?1
209n no ?0n 1=1l.MPIMFPTNT

() 0 nn PPT'KT A ,Y(T),ACCL(T)
01on 230 CON'TTNIIF
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3 0 nDO 3.n T=fAQ IMr. NFlN I oMPPTNT
'I 0 PM T A qx(T)qACrL(T)
3n4n 3sn CnNTTNUIF
3-n' DPINIT 5
306n DQTNT S
107n RIO 1 CONTTNIJF
lnpn A E0 CCrNTTNIJF
I309- DPTNIT 14
'lIon Pon CONTTNINF
1 I n9n CONTTNIJF.

3II0 FND
?13" cll9DOIlTTNF SPLINF(tY.YMXTNTYINT)
3140 n T'F'NqSTON X (300) qY(300) I C(4I300)
wI co1 T F y(Y I ) Y(k)-ATFP) In.p3q10
316n 10 CALL SP[-TCrN(XgYoMqC)
317' A.TFP=Y(|)*Y(M)
39PA K=l
319n 3 TF(XTNT-X(l)) 70,1,2
320n 70 K=|
3?1 n GO TO 7
??2n2' 1 YINT=Y ( 1_)
3?3n 0FT(iPN
324n 2 TF(XINT-X(K+l))69495
3250 4 YTNT=Y(R+1)
3?6n PETULPI9
3?7n 5 K=K+l
32?O TF(M-K) 7197193
3?2q 71 K=M-1
330n fO TO 7
3310 6 - IF(XTNT-X(K))13,12911
33Pn 12 YINT=Y(K)
3330 PETUPN
3340 13 K=K-1

--33s0 GO'T0 -
3360 11 YTNT= (X (K+1 )IXTIKT)* (r (1 K) *(X (K- I)-XINT) **2+C (3, K)
3370 YINT=Y IlT+(X TNT-X(K))*(C(?.K)*(XTNT-X(K))**?+C(4,K))
33Rn PFTtUPN
3 3 Q 3 7 CONTINUE
3400 101 FOP" T(PH OINT = E1R.993?H OUT OF RPAKGE FOR INTERPCLATION)
341 GO TO 11
342n FNn
3430 S(JRPOIJTINF SPLTCON(X.YMC)
344n nIMFNSION X(30n),Y(3ln),C(4,30on),(300)qP(30O),E(3no),A(3nO*3),R(3
345 0+n0) ,7(3O0)
1460 MM=M-1
1470 00 2 K=1lMM
34Pn D(K)=X (K+1 )-X (K)
349-n P(K)=n(K)/6.
3500 ? F(K)=(Y(K+I)-Y(,K))/n(K)
35]0n nO 3 K=?,MM
3520n 3 a (K)=E (K)-F (K-I )

93n 0A(I,)=-1.-D(I)/C(2)
3540 (C1.3))=n(1)/n(2)
35qn A (?P)=P(2)-P(1.)A(1A 3)

lq7n A (?.)=A(?q3)/A (2q)

359-n nO 4 K=3*MM
360" A(K. )=2.*(P(K-])*P(K))-P(P-I)*A(K-I13),
3610 n (K) =R (K )-P (K-] )R (K-I)
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(f20n A (K.)=D (K)/A (K,2)
363") 4 R (K) =R (K) /I(K.?)
34n4 n=nDVp-)/nD(M-I)

36f 7 (M)=R((4) /A(M,2)
349-0 MN!=t-?~
17n' no h~ 1=1 *MN370"'~~~ ~ ~ DO -' I=1. N - -.--.-- --- -- - .

71 n K=M-T
3720 f7 7(K)=R(K)-A(K13)*7(K+1)

374n nO 7 v=].MM
3750l 01= ./(6.*n(K))
374n C(| K)=7(K)*O _ ___ _ __ ___

377"f C (?*K ) =7 (K+l ) *f
37Rn C(3.K)=Y(K)/n(K)-7(K)*P(K)
379-0 7 r(4.K)=Y(K+l)/f(K)-Z(K+l)*P(K) __,

1Pnn FNn
P I n1 FUNCTTOKN FUJNCT ]In (XrG.7,M)
9?2 nTMFKICTIfl G(l13).?(1 730)

3RIO CALL SDLlNF(7oC,,,9XY)
3R4n FUNCTIO=Y
3 R Sn FN n
96"n qUP9nlUTTNF F -NFW(H. TLO iHttjLOqJWT, P9 T 9.4.C l,FTN)

-3P7( njmFKZTON A(I]).Y(?).P)Y(2).SCPATCF-(2o),P(13n).PC(130)-pt)130I,
39r0 nlk'F~STON RN(0) ,CNl(1'1O)9nN(130)
I3R90 DTMFNSION F (2Oco0TN(136)-
3900 FPP=I.F-7 ' NF0=7 $ TT=ILO T X=A(l) $ Y(1)=A(2) It Y(2)=A(3)
39-1 M=TI-T-ILO+1 S HH=H/?. $ NTL=1 $ NPL=O T TL=H+A(1)
39-20 .JJ=JL O
3-30 F(J.J)=A(3) ¢ TN(T)=0.
394n0-no In T=1.M
39-50 8N(T)=6(7+ILO-1)
3960 CN(T)=C(I+lLn-1)
'3Q70 DN(T)=D(1+TLO-1)
39-0 i1 CONTINUE
399n KK=n
anon 110 CALL NOPnSFT(KKyHHN.NFOYDYFRP.SCRATCHNTLTLNPLqn.)
401-.,PFTUP\'S(140)
40?n GO TO (120911O*.1O)KK
4030 120 nY(1)=SOPT(1.+Ytl )*2)**3/A(4)*(Y(2)+A(5)*F'UNCTIO(Al6,4A(7[X
404n+,
4n0n+RN.DN.M)+A(8)*(FLNCTIO(A(6)+A(7)4XCNDNM)+A(9)*(EXP(-A(1O)*Y(2)
40o n+ )-1 I* ) + A ( 1 1) )) _ ___________ ____________

407n ny(2)=Y(l) $ Gn TO 110
40pn 130 JJ=Jj+1
4 09n F(JJ)=Y(2) _ _ _ _ 
41nn TF((JJ-.JLO)/N~hATTO*MNPTIO.M1E.JJ-JLO) GO TO ?n
411n 11=T1+1
1 n TN(TT)=Y(1) , _--

413n, ?n IF(JJ.FO.JI-) GO TO 140
414n Tl-=TL+H ' GO TO 110
41 5n 140 CONT INUEF
41sn END
417n S(JPP"IITINF F7EDO(H.IL0qIHT.OY7FOOYCONCTYAPRAY.TOL8)
6419n P TN'FN'.IOM YAPPAY (c2On) .SCP TCH(10) , __ . _._ __. _ _ __
419n FPP=1.F-7 $ NFO=ITTT=TI.O 'F HH=H/2. $ NTL=l ' NPL=O
420" TL=H % Y=YZFRO T X=n. T YAPPAY(IT)=YZERO
4?10 KK=O
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4??O 110 CALL NIPfnlFT(KK*XqIHo.NFOqYqfYFPP.SCPATCHNTLTLNPL*n.)
4?30 +.PFTIJ0NC (140)
4?4n GO Tr (12?9110911?)KK
4?5n 12n nY=FIJNCTP(YqYCONST*O) $'GOTQ 110
42?0n 130 T111+l 1
4?7n YAPPAY(1I)=Y
429" TF(TT.FO.THI) fiO TO 14n
42Q9- AP=FljrCTR(YqYCOKCT,0)
43nn AP=APC.(AP)
431n TF(AP.LT.TOLR) GC TO lSO
43?0 TL=TlI+H ' CiO TO 110
431r I so JL=I1+l
434n DO ]'n J=JL*TIHI
4q50 YAPPAy(,J)=Y
4360 160 COh'TTNIUE
4370 140 CONTINIuF
43Pn FND
.300 SUPPrIJTINF MOn TCA0(F7qFO7qNLO.NI-TCAXqFnXTOLANS)

440n nTMFqTON 7(0n .nn).Fr7c200), F (?250)*ALN(2050)
441"' CrOMf-'NI/TMOD/TMOn
44?" TNC=(NHT-NLO)/P I aNS=n. C ASO=A**2
4430 JMOn=I
4440 no 10 T=NLOqNHMTNC
44Fn Yl=7(T) ¢r Y2=F07(I) _______ _, __ __

4460 AF(T)=F(X.Yj%.FOXY2.A9C)
4470 ALN(T)=O.
44Rn TF(Y].M'F.A) AlIN(T)=ALOr(ARc(Y1-A)*C)
449n 10 CONTINUF
4590 50 NIIP=NHI-INC
451n ANqLAST=ANS _
49?n ANS=n.
4r;3n DO 20 T=NLOqNIJPqTNC
4q4n Yl:AF(T) ' YP=AF(T*TNC)-AF(T) T Y3=7(T+TNC)-7(_I) _Y4=Y2/Y3
4550 YS=((Yl-Y?,Y3*.7(I))*(7(T+TtNC)-A)+Y2/Y3/?.*(7(I+INC)**2-ASO))
456n +*ALNI ( T + IMNC)
457A Y6=((YI-Y?/Y3*7(T))*(7(I)-&)+Y?/Y3/2.*(7(T)**2-ASO))*ALNl)_
4S5e Y7=YI*Y3 ' Y9=Y?/Y1/4.*((7(T)+A)**?-(7(T+INC)+A)**?)
459n Y9=YP*7(I)
460n ANS=ANIS+YS-Y6-Y7.YP+Y9
4610 P0 CONTINUF -
4620 TF(TNC.FO.(NHY-NLO)/?) GO TO 30
463n FPP=APq(ANS-ANSLAST)
464A TF(ANqSLAST.NF.n.) FPR=FPP/A9S(ANSLAST)
465n TF(NUP.FO.NHT-1.CR.EPP.LE.TOL) GO TO 60
4660 30 NIROT=NLO+TKC/2
4670 NTOP=NHT-INC/2
468e TMon=TMOn+1
469n DO 40 T=NROTqNTOFINC
470n Yl=Z(T) $' Y2=Fnzi0-i--)+--
471n AF (T)=F(XYlFnXY2,AC)
47?n AL ( I) =n .________
473n TF-(YI.NF.A) ALN(t)--ALOOi(AO (YI-A)*C)
474o 40 CONTINUE
475n TNC=TNC/2?_ ___,_
4760 rGO TO 5n
477n 60 CONTTNIJF
47PO FNn
479n SIJRPOIITTNF STM(FZ*FO7,NLOnNHIK.FOXTOLANS)
4pSOn nOIMFNqvIN 7(?0FO),F07(,05n),AF(?n5O)
4R1l COMMOtl/T-,lM/TSTM
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4P2A TNC=(NHT-NLO)/ It ANS=n. 'F H=(7(NlF.T)-Z(NLO))/2.$ HOV93=H/1.
4p,3n sM t4P4n no in T=NLONH'TgTNC
4R5n AF(T)=F(XZ7(T)*FOXqFO7(I) )
4P6n 10 CONTNIJNE
1.7n FO ANISLAST=ANQ
4R9n ANf1=n. $ J=j tT
6R9n-0 no pn T=NlLOiNHTqT-NC
49n-0 w=HO8ipl
491n IF(T.FO.NLO.OP.T.EO.NHT)Av0 TO? 'S
49?n W=4.*H0VP3
4g-3n TF (/?*?.EQ.J) Gr TO 2S
49-4n W=?.*H-4'VP3 ' '-' -' -
4Q5( P5 A?,JS=AN5+iI*lF (T)
49-6A J=J+,
497t P2 CONTINIJF -- --------- ------ ---- ---

49P0 TF(TtC.Fo.(NHT-N,-O)/2) GO TO 30
4agn FP=A(NS-ANqLAST)

n0 O( TF( A t ACT.NF.n.) F P=7PPR/RS(ANcLASTT)
rxOlA TF(T\C.FO.1.OP.F(QPLF*TOL) GO TO 6o

o2n i(n N'RnT=NL-n-TC/P?
Fn3 \TOP=tfHT-TNC/?2 .-....
9(14n TSTM=TcTM.-
Fsnqo no 40 T=NROT*NTOnINC-
qO6n AF(T)=F(X.7(T),F0XvF07(I))
qn7A 40 CnNTINUF
F0nP T'lC=IMC/? $ F-JV9-=FOV9-X2.
Fosn r~O Tr e-0 '---- -- '_ _ _
F 10n 60 CONTINUF
qlln FND

I P20 FIlJ\CTTOnI WGHT(J)
tl'n COnMmNtr/'WGHTPAC/MPlMPN8P
c 140n WGH-T= . 'i__-____R_________RTR

51lqn TF(J.FO.I.OP.J.EO.MDl.OR.J.EO.MPNPi) RETURN
tM I1hn '^'GHT=I .
F17n FND
r l9n FUJ'CTTON 0W j (
C 1 9," COMMnM/1WJGHTPAC/MF I ,MPNP
52?0n VGHTP=I./3. 

F-?1n TF(J.FO.1 .OR.J.EC.PI.OR.J.EO.MPNI ) RFTURN
F22n WGHT?=4./3.
F2?3n IF(J/?*?.EFo.J) RFTURN
c24n WOGHT?=?./3.
c25n FND

?26n' FUNCTTON FUNCTI(w,7,FOXvF07,A9C)
527n COMMON/8LKI/Pl
F2Rn FUMCT I--1 ./PI
q?9n TF(X.FO.Z) RETUPK
3130n Yl=2.*COSHF(PT*(F0x-F07)) 'F Y2=2.*COS(PI*(X-7))

F31n Y3=-1./?./PI*ALO(.(Yl-Y?)
5320 FUNOCTI=Y3/ALOG( APS(7-A )C)
F330 EoND
534n FUKICTTnN FUNCT?(X.Z.FOX,F07)
5350 COMMOn/RLKI/PI _______
F360 Yj=?.*CnSHF(PT*(F0X-F07)) t Y2=2.*COS(Pl*(X+7))
C;37n Y3=-l./2./PI*ALOC(Yl-Y?)
5390 FUNCT?=Y3
-39- 3 END ___

F40n FUNCTTON-COSHF(X)
m410 COSHF=(EXPCX)FEXc (-X) ) /2.
54?n FNn
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F430 FIJNICTTON STNHF(X)
F44n S7KNRHF=(FXP(X)-FXr,(-X))/2.
45n FNnD

546n FUNCTTONI FUNCT3(X,7,F0XF07)
5470 FUNCTI=F07-FOX
F49n FNn
q490 FUJNCTTON FUNCT4C(w7,FO0XFn7)
5510 CnMMOI\,/PLKI/PT
5510n FtJNCT4=F07-FOX
t55n TF (7.F0.0. .ANn.Y.FC.0.) RETURN
553n TF(7.FO. .. ANDX.EC.I.) PFTUPN
554n Yl=?.*COSHF(P7*(FnX-Fn7)) t Y?=?.*COS(PT*(X,7))
5550 FI)JlCT4=FJNCT4-. ./?./PT*ALnr(Yl-y?)
qrf6n TF(X.FO.Z) RFTURN_
Fq7O y3=?.*CnS(PI*(X-7j)
F5R5O FUNCT4=FUNCT4-)./?./PT*ALnG(Y1i-Y)
9-qn FND-

5c60 FU.)MCTT0Kt FUNCTSC(x.7',qFlXF7)
610n COMtN'O/RLKI/PT

';6?" COMMOnh/F59PACKr/ C5TNRK _ __

56;0 FlJNICT5=I ./PI/C5 PK +I.
56405 TF(7.F.o0..ANn.X.EC.O.) RETURN
56rFO TF(7.F0.l .. ANn.X.Fl.1.) PFTUPN
5660 Yl=cVtM!tFi(P1*(FOX-F(7)) IE Y2=TN*STt(P1*(X+Z))
5671 Y3=CosI-.F(PT*(FOY-Fn7)) $ Y4=COS(DT*(X+7))

Rt6 FJ)NCT=l ./Pl/2./rS*PK+,..(Y1-Y?)/(y3-Y4)/2_
96Qn IJF(X.FQ.7) RFTURN
F7nn Y5=TN*SlN(PT*(Y-7)) s Y6=CoS(PI*(X-7))
';710 FiJCTF (Yl-Y?)/(Y3-Y4)/?.+ (Y]+Y5)/(Y3-Y6)/?.+1..
=7?n FNn
573I FIJNICTITON FI)NtCT6('X,7 ,FYOyqFf7,H1 ,IHPKAPMTPKAPPL)
5740 COMmtdel/TPT0/0CMCCPi0Tm,0TDR___ ---
975o COMMmKI/RLWI/PQT
576" YTl=?THF(PT*(FlX~-FO7)) ' Y?=SIN(PI*(X+Z))
F770 Y3=OTM S Y4=-OTP ' Y5=COSHF(PI*(FOX-FOZ))___
57Pn Y6=CCS (PT*(X+7))
q79n FMT= (Yl-Y3*Y?) / (Y-Y6) /2.+1
~o~r. F'PI= (YI-Y4*Y?) /(YI--Y6) 12 .+I.

5910 TF(X.NF.7) GO TO 10
FR?n Y7=1./?./PT/OCM*PKhPMT
5930 YP=] ./?./PT/OCP*RKAPPL ____.__ __
5P40 FMT=FMT+Y7 S FPL-=FOL+*Y
pn FrtiNrTA=HI*FMT+H?4*FPL

5960n ETURmN
SR70 10 I Y7=SIN (P* IX-7) i Y=-COS (PI@*(X-Z) )
99pn FMT=FMt+(Y3*Y7+Yl)/(YS -Y8)/2.

599pn FPL=fPL+(Y4*Y7+Y1)/(YS-Y8)/?.
S9-(1O FtJNC T6=HI *FM I 4H2FPL
S910 -FNn
592?n FUKICTTON FU'NCTP(Y9YCO)
s93n ( A1=(1 .I./2./O*(Y**2-YC**2))**2
594n TF(AI.GT.1.) A1=1.
595n F(JNCTP=S0TT(1.'Aj-1.j)
596n FNn
F97 SUPRCIJTTNF NOPDSFT (KTH.NIY.FnELTAYPNTL.TLNPLPL)
q0Qn+.PFT(JPNS (ASPI) 
Fssn**C-~' - - -
600o**C K CCNTPOL TNITEGER FOR USER STATEMENTS INTEGE
Anln**C T TNDFPFNDENT VAPTAPLE REAL
A(1?O**C 'H TNTFPDATTON STEP SIZE REAL
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6,03n**C N NNUMRFP OF FIRST OPDER FO'JATIONS INTFGE
604n**C Y nDPFNnFNT VAPTARLES REAL
6OSO**C -- -,''F DR- ' IVATIVF-S PEAL
606n**C DELTAY FOPOP CONITROL VFCTOR REAL
607n**C R, TFMPOPARY STORAGE, DIMENSION_1O*N __ REAL
rORn**C - NTL N("RFP OF FNTQTFS IN TL INTFGF
r(oqn**C TL LTST OF TmPtJPT TIMES PEAL
6]o0**c NPL NUMmRF OF ENTPIrFS IN PL _____TNTFGF
Alln**C PL LIST nF TI'TEPIJPT FUNCTIONS REAL
612n**C
A13n**C R(1I ) ECIJIVALENT __ _ __
6140**C R(2.T) OF
61 0**C 8(3,1) AnAMS
616O**C R(4,T) DTFFEPENCF_
6170**C P(5,T) PPFDTCTED DERIVATIVES
61pn**C R(691) Y AT rTAPT OF INTEGRATION STEP
Aqn1**C R(7,I) SFCONn PQ'CTSTOm PART OF Y ABOVE
6?O0**C R(R. I) F AT cTADT OF TNITFS9ATTON STEP
Apln**C R(9*1) HrLF FOP TNTTTAL Y WHILE STARTING
622n**C R(IO(l) SFCOND PQFCISTON PART OF Y
6?30**C
2?40 OTmFNSTON Y(1)*F(l),R(1ONJ)TL(I)*PL(1),DPTA(2),TEST(2),
?25F'FTNn(lo) *PLEFT(10),DPTTE(IO)

A?60 FOIJITVAI-FNCE (nPT4r@DTFMA)
A?7n TYPF INTFGER STFF
APR TYPF nOllPIF nPTFA
6?29- TYPF !-nrr.CAL FINr*F-ALVFqDOtf19E --_'-----.--

30nn0 CMmrM/No!nonCom/TrDFePTFOSTTLPL*STFPtHMAXHMIlNHRIGHL
631 n roMMoK,/TNQDFl[-/TKPrFLG
63?" nATA (H..=n),q(HPT(=n)
633n qrnln FnPMAT(jnX,*FQPO0 IJ NORDnST CALLTNG SFOIJENCF*)
634r" 55(?0 F0PMAT(ln0x.*NO~nET QTFP STZF TOO SmALL*) _____

63qn**C HL A!nO I-IG MUST AL1WAYS FE ZERO IN THIS VERSION
6360**C OF NOPOSET
637n**C
APo nFLY(T)=H*f(Ra*T)+(Q(I-T)+(R(29I)+(R(3 I+((§i7)i
639n TF(K.N!F.0) GO TO KFLIO(30nn0OO23004,;n3O37O6,l7O3,l300.
640n1l71120n40)
641 n*C
6420**C TEST FOP CALLINrG SENOENCE ERROR
643A**C

644n TF (S .. F.0.no. .l-.E. os.NS¢T.?Owl.OP.IJT.LTi.OO.NTL.GT.5 n 0..NPL
645r0+.T.n.OP.NPL.GT.COnn.OP.DELTAY.LF.0.OP.T.LT.0)
646n+q"101 n (_o
647n Snlo °PINT 5501f0 _

6,480 TNPnFLG=l
6490n OFT(.PN ASP1
6500 C(10 CONlTINUJ-'----------
6,510 r C I
Ar5pn**C- qET SJRPQOLTTNF GOUNTEPS ANC STEP ST7F DATA
Al-30**C ---- - - - . _ _

654n HMAX=HMIN=IDFQ=TFOS=ITL=IPL=STFP=O
6550 * *C ________

56O;**c CONTQOl. SFCTTION FOP STARTTNG INTEGfRATION
657n**C
650n ASTC-i 30n1o TO KFLIP
6590 GO TO 1001
6(6nn 3000 H=H.AND.1777400lnoo00o0000000

661n DO 3(0? J=1*NTL
66?n IF (T.FO.TL(J)) 3nnl(*3002
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6630 3001 ASSIGN 3002 TO KFLIP
6640 GO TO 100?

fhA50 300? CONTINUF
6660 T LFFT=T
667n TF(NPL.FO.O) 60 TO 5050 _ ___ __ _ _-
66P0 no I3no4 J=1*NPL
66f-Q PLFFT(J)=PL(J)
67nn TF(PL(J).FQ.n.)3001,3004 - _ _ _ __ _

h71( n3003 ASSTGN 3004 TO KFLIP
67?n GO TO 1003
6730 3004 CONTINUE. . . ______
674n 50s0 CONTINUF
67qn DO 3n1O l=1lN
676n 3010 R19(1)=Y(IT) _,,___,__,,,___,______

677n n1=-i.
67Rn ASSTc-N 3100 TO IcFrijQ
67qn GO TO 1400
64nn 30?0 I=STEP.AND.3
AS1n IF(T.K'>.0) GO TO 2000
6P92 T=STFP/4
6R3^ GO TC (3030,3050,30 30,101,3(13n1040) I
694n 3030 nl=-1.
69P50 ASSIG-N 2000 TO IECIFR
606n AO Tn 1400
6P7n 3040 n =P?.
ARPA HMAX=HMTN=-H ,_,_,_,,
6P90 A5SI(rN 30n0 TO ITFOUQ
6900n GO Tn 1400
691n 30FP 00 306n T=1lN-
(- 4;ln Y(T)=P(9,7)
6Q9-0 306n R(10In)=0.°
hq-4^ 3107n ASTGN 3030 TO KFLIP _,,,_ _,__
6QqO GO TO 1000
64-0 3(op nl=.5
Fq70 ASSIC-M 3090 TO TcFnIJP
69A ) GOi Tt 1400
6A99n (1Q- TF(HALVF)I100( 3nq0
700n 31(1 STFP=O
7011 Do 3110 I=1,N
702n 3110 Q(I T).=R(?,I)=q(,I1=8(4.I)0.O
701n GO TO 3050
7n4O**C
7050**C CON'TRnt SFCTTON FOP TIMF TNTEPUPTS DUOPING NODMAL ITTFrIPATOnN
70On**C STATFUENT 170 .TNTFGRATFS FORWAPD*PFTIJPNTNG TO_
7n7n0*C
7n(n 170n Go TO 1600
71n9 17nl DO 170? T=),N ___
71nn R(6I*)=Y(I)
7110 170? P(9,l)=F(T)
712n TSAVF=T
71 30 1703 7=2.*TSAVE
714n DO 17n0 I=1.NTI
7150 TF (TL(I).LT.7) 1704,1705 _ _ __
716n 17(4 7=TL(I)
717n J=T
714J 1705 CONTINUF
7190 IF (7.GF.TSAVE) c-6 TO .1707
7200' ASSEC.N' 17n6 TOKFLIP721n PTFST=TSAVE/7' __ _ _ - -
7?29 PTFST=PTFST.ANn..NOT .3
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7?3n IF (PTEST.FO.1.0) 17051,17053
7?4n 170(i no 17052 T=IN
72sn 1705? Y(T)=B(6* )
726n T=TSAVF
7?7n GO TO 10010
7?Rn 17n53 HP=?-TSAVE
729" bSSIAS 1001 TO ISTWO rn
730n GO TO 1?00 __

731 n 1706 ASSIGN 1701 TO KFLIP
7320 ASSIG-N' 1002 TO ISTF-REE
733n GO TO 1300
7340 1707 DO 1708 11,N
73Fn F(T)=R9(PT
736n 17(8 Y(I)=R(6,T)
737n T=TSAVE
73901 ASlTC-hN 1300 TO KFLTP
739n ASSICN 1709 TO ITSTI-REF -_-----
74nn GO Tr, 1001
7410 1709 PTFST=7/T
74?0 PTFFT=QTFST.AND..NOT.3
743e IF (PTFST.EO.1.0) 1710,1711
744n 171n ASSIGN 1711 TO KFLIP
745n GO TO 100?
746n 1711 TF(NPL.EO.n) f6i TO 5060-
747n no 171? I=1NPI
74Pn 171?- FINn(I)=.FALSF.
749n 5060 CONTINUE
7q0n GO TO 1700
751 n**C
75?n**C INTFGPATF ONF STEP

754n**C qAVE CONnTTTCNS AT STAQT OF STEP
755n**C - . -.. - ------ __ ----- ---- --

7F6n ?1.0O nO 2nl0 I1=.N
7570 R(6,T)=Y(T)

7F;9n ?0Iniqn R(.TI) =F (TI)
76n0 TSTAPT=T
7061 n**C
76?2**C FNTPY FOP HALVED STEP
763n**C
764' ?0?0 T=T+H
76r- Do ?203O 1=1,NI
7660 7=n
7670 Y(T)=R(6.1)+ OELY(I)-
76Pn ?(30 R(5.T)=F()+(?.*P(1,I)+(3.*P(29I)+(4.*9(391)+5.*R(4,T))))
7(9-n**C
770n**C TTERATF TWIOEDFVEOP TFST PAPAMETEPQ
771 n**C
77?0 HALVF=.FALSE.
77V' notRF-F=.TPUE.
7740 TFST(1)=TFST(?)=O.
77qA 00 2070 J=1l2
7761 ASSTC~-' ?040 TO KFLT- .- ' '

7770 nO Tr 10on
77R9 ?040 no ?27n T=1,N _

779-n 7=F(TJ-R(SI)
7ROn YF(J.FO.2) 205909060
7910 ?n2F0 77=A9S(Z7*H)
7R?2 PTFqT=nFLTAY*APq(Y(Y))
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7P93 IF (77.GT.PTFST) HALVF=.TPIJE.
7P4n TF (77.GT.PTF5ST*.O156?) 0OJRLF=.FALSE.
7RS 206o nPTA(1)=8(S*Ty)
7P6n nPTA(?)=R( 7,1)
7p7n 7=7*.3?9861111111 _
7R9n nPTFYA=nPTFMA+.FLY(I)
7PC99 7Z=A'n(nPTA( )-Y(I))
7900 IF (77.GT.TEST(J)) TFST(J)=ZZ
791( Y(I)=DPTA(l)
79?( R((10T)=DPTA(2)
7930 207( CONTINUE
794ni**C
795n**C CHFCK TFST PAPAMETEPSBUMO COUNT OF INTEGRATION STEPS
7gf-n**C
7s7n STEP=STFP+l
79An IF (STFP.GT.l.ANr.cTFP.LT.PS) GO TO 1100
7s9n IF (P.*TFST(?).CT.TFST(1)..ND.NDolNT.DOIJRLE) iO TO_1500

O(10 IF (Q.*TEST(?).CT.TEST(1)) DO(RLf.FALSF-.
A010 IF (CTFP.FO.1) --C TO 1100
OPn1 IF(HALVF) 150091100A030**C -_3

904n**C UPDATF POLTINERETIIPNS TO 30?0 IF STAPTING - 1701 OTHERWISE
9050n**C
A6n 11(1( no0o0 iT=1.N

9(7n 7=F(T)-R(5CI)
PQRA R(lT=~l)(.n?.)(.RwI+l.*(,)7.6) 
Q09n Rt?. t)=R(?, J) +(4.*P(3 T)jf(10.*R(491T)+#Zn.4R61111111) )

(10o R9(3*1) =R (3.1)+ (t.*P (4 T) +.7/9.6)
Alin 10nl P(4.I)=P(49I)+.7/120.
Pl?n IF (cTFP.LE.?4) .rn TO 3020
Ali3 IF (1t-.6T.oMAX) 9XMAY=H
Pl4n IF (-.LT.HMIN) HIFN=H

clsn fiO TO 1701
P 60I**C
P170**C POIJTINE TFST0HIFALqF EXIT TS S1100,TPUE EXIT IS POQ

pQ]O 13(00 TF(NPL.FO.n) GO TO sn70
9?00 nn 13(11 11,lNPI ____
P?1n TF (FIND(I)) GO TO 1301
P?220 IF (PL(T)*PLFFT(TI)LT.0) Gt TO 1303
P?3n 1301 CONTINUE
P?40 Fn70 CONTITNfF
O?90 TF(NDI .FO.(1) tO TO s5O(1Q?6n0 ]0 130 T=1lNPL ,, ,, ,, __
2?7n 13n? PLFFT(I)=PL(T)
9R2n c(OAO CONTINUE
R?2n Tl FFT=T
9'0n 0-V) Tr ITTHPEF(lnn?91709-,1jnO)
Olin 13013 TFU(ILD.FO.n) Gn TO 5en0
93?2 00 1304 T=1,NPL- - --- ---
R330 1304 PPDTF(I)=PL(I)
934 50n9o CONTTNUF
9ln~ TPTTF=T
PlAn Gn TO 1800
a937n**c
P39n**C DFOENDFEIOT VADTAPLE cFAPCH PPoCEDIJPFF.NTFPED IF PL(J) CHANGES

P410 19no 7=0.0
P1i-n TF(KILt .O.(O) GO TO s'fl-n
P4?0 no 19n? I=19NPL
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Qo03p no 12nl I=1,N
9-4n 1201 Y(I)=R(6, I) + -FP *(P-(',T)+(nI*P(1.I)+(D?*q(2.I)+(o3*R(?.T)+D4*R(
Q(41 +4

906n+) ) ) ) )
-070 rO Tc TSTWO(10n0)
90qn**C
9090**C PESTORF T,Y,F. HALVE STFP SI7E. TRY STEP A6AIN

0ll 19o0 C TEST=H/2
01?n TF(T.F0.(T+RTFST)) 5030,5040
130 (1303 PQINT 5(,120

cl4"1 IN4TnFt G=1
Plqn PFTIIRN ASPi

- '16n c;040 CONTTNUE
917n STFP=STEP-1
91An T=TSTAPT
-190 o n1o 1 n=IN

9?nn Y(T)=P(69T)
9?1n I (l0.I)=FI(7,I)
9?220 1501 F(I)=8(8,I)
9?3n D1 = .c
9-240 ASSITN 2(20 TO ITOOUR
osn GO TO 1400
026A nFND .
0?7n ScUPPCUTINF MATAIL (AqXNR*NVgIDODFTNACT)
9?0n nIMFKSITN A(NACTNACT),X(NACTNACT)
9-29n IF(ICO) 19291
9300! 1 DO 3 191NF __
9P310 DO 4 J=1.NN
43?0) 4 X(I*J)=0.0
0330 3 X(II)=1.O
9 34 n NV=NQ
9-35 2 OFT=1.0
Q037,n DO 1 K=1',N \ ---- ------ -------
037n nro K=l .NQ1
QlRn TPI=K+l

Q090 PIVOT=f.O . ° _._._-_ ._ ___ . -

04n0 no 6 T=KNR
0410 7=ARS(A(ITK))
94?O IF(7-PTVOT) 696,7 ------ ---- -
043n 7 PTVOT=7
9440 IPPI
04c50 6 CONTINUF ' . ...
946n IF(PIVOT) 8.9.8
P47n 9 DFT=O.0
9490 PFTURPN
049n . IFF(IR-K) 10(11910
9qntl 10 Dn 12 J=K,KR
0q1" 7=t(TPQ J) _ _
o05r0 A(TPRJ)=A (KJ)
Pq30 12 A(KgJ)=7
OC;4 lno 13 J=1.NV
050n 7=Y(TPP*J)
of,6r- X (TPQ.J)=X (Kgj)
09-70 1 X(KJ)=7
aqAn nET=-DFT
0Eq0 I nFT=DET*A(K.K)
0ynf PT\/1T=I.o/A(KK)
a~ln no 14 J=PJKIeP
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96?n A (KtJ)=A (KJ)*PIVnT
0630 Dn 14 T=TQ1IP_.
Qf040 14 A(IJ)=A(T.J)-4(T.K)*A(KJ)
0690 DO q 1=.t NV
9660 TF(X(K*J)) 155,15
0670 15 X(K.J)=X(K*J)*DTVOT
969qn DO 16 T=TIlPNP
069q- 16 X.(TJ)=X(TqJ)-A(T9K)*X(KqJ) ___
07o(1 5 CONTINUF
071 TF (A (FI'.NQ) ) 17,q*17
072n 17 nFT=OET*A(hPNN _ ___
071n PTvOT=1.q/A(NRqNP)
0740 no 1 .J=19NV
07?:; X(\lPJ)=X(NR.J)*F IVOT
q760 DO IP K=1,*NRI
°Q770 J=NR-K
079n ScjJM=.0_
070n nn 19 L=INR
q9nn IC9 SUlM=SUM+. ( TL+l ) *X (L+1 J)
6PIn JR9 X(I %J) XI .J).-S;Uk

0930 SUPPCUTTNF TFPP(,BPNTOLTERR)
9P40 DIMFNSInN A(70),P(70) _____

95n TFRPO --
s-6( Do 10 1=1N
9A97n YI=APS(A(I)-8(I))
QRPn TF(A(T).NFO) Yl=YI/ARI;(A(TI)
9R99 ITF(YI.GT.TOL) GO TO 20
90on 10 CONTINUE
991' nETURN
9g2n 20 IFRR=1
q930 FNDn
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