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CHARACTERISTICS OF THE TETHER LINE FOR
AIRBORNE VEHICLES AT SEA

INTRODUCTION

The study of fogs and other boundary layer phenomena over the sea requires an
economical platform on which to locate sensing instruments. Practically speaking, we are
limited at sea to tower heights of perhaps 100 ft (these being the masts of ships). Free-
flight balloons, sounding rockets, and dropsondes, as well as manned aircraft, penetrate the
area of interest. These, however, tend to be expensive in studies which require many hours
of measurements. The small tethered kite balloon or parafoil can provide an economical
answer to sounding, to averaging meteorological parameters in the boundary layer, and to
collecting samples of fog droplets.

The altitude of the kite balloon is an extremely important factor which must be
accurately known in order that the other data being measured will have meaning. Histori-
cally, many approaches have been used. An ordinary radiosonde baroswitch is not particu-
larly useful in this application because the altitude of the kite balloon is not necessarily a
monotonically decreasing or increasing function of time, as it is in the ordinary free-flight
balloon or dropsonde. Triangulation by observers at the ground has been used successfully.
Another approach is to calculate the geometry of the tether catenary, using measurable
single-point parameters at the ground. Other forms of mechanical pressure gauges obviously
exist, but most are too heavy to be useful in the small kite balloon system.

With the recent availability of accurate solid state pressure gauges in the form of
integrated circuits, the altitude of the kite balloon can now be continuously monitored.
Thus, probing the boundary layer with a tethered vehicle becomes attractive.

PART I - PRELIMINARY PREDICTION OF
KITE BALLOON FLIGHT PATH

A kite balloon is different from both the kite and the spherical balloon in that the
lift it experiences is the result of both static and aerodynamic forces. Consider the diagram
in Fig. 1 in which the kite balloon is flying at its maximum altitude h above the ground
surface. If the angle of the tether line with respect to the horizontal is zero at the ground,
the tethered vehicle is at its maximum altitude. This is a special case which lends itself to
a simple analytic solution which, although it neglects the wind drag on the tether line,
nevertheless predicts with certain limitations the maximum altitude which a tethered vehicle
can obtain, given the lift and drag of the vehicle as functions of the windspeed. The maxi-
mum altitude is an important parameter in boundary-layer sounding (an adjustment in instru-
mentation load may be necessary to obtain a desired altitude). The following analysis is
intended to be used only as a rough preflight maximum-altitude predictor. A more
accurate analysis incorporating the wind loading on the line is presented in Part II of this

Manuscript submitted: June 23, 1975.
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report. If the effect of wind drag on the line is neglected, the tether line forms a
catenary which can be described in the x,y coordinate system by the equation

y = c [cosh (x/c)]

where c is the catenary parameter. The catenary has the property that the line tension is
everywhere equal to the unit gravitational force w on the cable times the distance of the
point on the cable above the x axis in Fig. 1. Thus at the vertex, point (c, 0), the tension
TV is horizontal and has the value

T = cw. (1)

At the kite balloon the magnitude of the tension Tk is

Tk = (c + h)w. (2)

The vertical component of this tension is produced by the weight of the cable and is
given as

Tk sin 0 = sw, (3)

where s is the length of the cable. The horizontal component is the same as TV;

Tk cos 0 = TU = cw. (4)

Then from Eqs. (2), (3), and (4)

sin 0 = s/(c +h)

1 - cos 0 = h/(c +h)

and, therefore,

tan 0/2 = h/s. (5)

If the forces acting on the kite balloon are equated, the vertical lift L is balanced by
the total gravitational force on the cable ws, and the instrument payload. The horizontal
component of the tension in the tether line at the kite balloon is balanced by the drag
forces D on the kite balloon. These relationships may be expressed as

Tk sin 0 = L -I

Tk cos 0 = D

or
tan 0 = (L - I)/D

From Eqs. (5) and (3), we have

h = ( ) tan { artan - I)DJ (6)
w 2 [L IID}
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Fig. 1 - Forces acting on a kite balloon flying at maximum
altitude h above the sea surface at the end of a tether line

The equations for lift and drag forces on an airfoil in an airstream of relative velocity
V are given by

L' = CApV 2I/2

D = CdApV2/2

where Ck and Cd are dimensionless lift and drag coefficients, p the density of air, and
A the area of the projection of the airfoil on the plane of the chord. The lift equation
for the kite balloon has the added buoyancy term B and may be expressed as

L = CkApV 2/2 + B. (7)
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The drag force can then be expressed in terms of lift as

D = (L - B)CdICk. (8)

The lift L can be measured experimentally or is given by the manufacturer for the specific
kite balloon. An expression for the maximum height h to which the kite balloon will rise
can be given if the observables of lift payload, buoyancy, unit gravitational forces on the
cable, and the ratio of CQ to Cd are known:

h-(Lni tan arctanh = tan 2 [(Ck/Cd) (L - I)/(L - B)] * (9)

Equation (7) simplifies the actual lift because the kite balloon changes altitude
with respect to the horizontal as the relative wind increases from calm to moderate. In a
calm, the kite balloon may stand almost vertically with the nose pointing upward. As the
wind increases, theangle of attack changes to that fixed by the bridle ropes.

Figure 2 shows plots of the maximum altitudes predicted from Eq. (9) for a realistic
range of windspeeds for various ratios of the lift coefficient to that of the drag coefficient.
These curves show the great advantage provided by the aerodynamically shaped kite balloon,
with the value of CQICd above 0.6 when it is compared with a tethered spherical balloon
with its value of C2ICd less than 0.1. In winds greater than about 2.5 m/sec the spherical
balloons are pulled by the wind drag almost to the earth's surface. When the windspeed is
above 5 m/sec, the kite balloon ceases to act like a balloon and becomes a kite. It is then
capable of heavier-than-air flight.

The effect of wind drag on the tether line has been neglected in the previous analysis.
A more accurate model will take into account both the effect of wind on the vehicle and
on the tether line.

PART II- MECHANICS OF KITE BALLOON FLIGHT

Partial analytical solutions to the problem of wind drag on a tether line have been
published by Willers [1] and by Kochin [2]. Digital integration techniques now make it
easy to take into account all of the pertinent parameters to model the actual flight charac-
teristics of particular vehicles.

Consider now an element of line shown in Fig. 3. The length of this element is ds.
The tension at the lower end of the element will be denoted by vector T1 and that at the
upper end by vector T2. These vectors differ from each other by a small amount dT.
The difference vector can be broken down into a component parallel with T1 and a com-
ponent perpendicular to it. The parallel component can be represented to the first
approximation by the difference in the magnitude of the tensions between the two points,
whereas the perpendicular component is represented by the IT11 dO, where dO is the
included angle between T1 and T2.

4



NRL REPORT 7919

CI
Cl =0.5Co

Cl
C =0.25
-d

CI
-=0.01

---- Cd
8 10 2I I I I I
8 10 42 14 IS 48 20

V (m/sec)

Fig. 2 - Plot of the maximum altitudes obtainable for a kite
balloon as a function of windspeed. The unit gravitational
force on the line is 0.049 N/m. The lift constants of Eq. (7)
for this calculation are B = 11.76 N and CRAp/2 = 0.39 N sec2
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gbX ~T2
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/ I\s

Fig. 3 - Vectors of tensions
acting on an infinitesimal
piece of tether line

Willers [1] and Kochin [2] made the assumption that the force of the wind on the
line is only in a direction perpendicular to the line, whereas the force of gravity affects
both the components. Therefore, if the forces in the parallel direction are balanced,

dT = w ds sin 0.

In the perpendicular direction,

T dO = w ds cos 0 + Fn ds

where Fn is the force of the wind normal to the line and may be expressed by

2
Fn = k vnt.

Now un = VW sin 0, where VW is the wind velocity in the horizontal direction. Therefore,
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F, = kv 2 sin2 0,
w

and Eq (3) may be written as

TdO = w ds cos 0 + kv2 sin2 0 ds.

Note also that the Cartesian coordinates are related to s and 0 by the following differential
equations;

dx/ds = cos 0

dyIds = sin 0.

Hence we have a system of four simultaneous first-order differential equations which
describe the tether line:

-= w sin 0
ds w

- = (w cos 0 + F sin2 O)/T
ds

dx = cos 0 (10)
ds

dy= sin 0,
ds

where F is the horizontal wind drag force per unit cable length and w is the gravitation
force per unit length. These two parameters describe the physical forces attributable
to the line. They are expressed as

.F 11 p d v2
2 w (11)

and

W = g d2 g,

where p is the density of the air, d is the area of the line per unit length presented to the
component of the wind normal to the line (or simply the diameter of the line times 1 m), g
is the acceleration of gravity, and Mu the density of the line material.

Given the initial values of T, 0, x, y at s = 0 and the above differential equations,
the values at different values of s can easily be computed by finite difference techniques.
Consider Table 1. (A simple, basic program for this purpose is given in Appendix A.)
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Table 1

Values in adjacent rows differ from each other by only small amounts of line length which
can be made as small as necessary for the accuracy required.

Here, To is the tension measured at the ground and 00 is the angle measured at the
ground. The length of line deployed is known by direct measurement; if the mean wind-
speed and the diameter of the line as well as its density are known, and if the coordinate
system is set such that x0,y 0 is the point (0,0), then the integration process can be con-
tinued until sn equals s. At this time, the altitude yn can be read from the computer
printout. It is not necessary to see the vehicle, but if accurate measurements of tension
and the departure angle as well as the metered reading of length of line are available as
well as an estimate of wind, then the altitude is known. The problem of measuring the
tension and departure angle on a moving ship, however, makes this method less desirable
than using a pressure altimeter. This method can be used to obtain also an equivalent
wind value throughout the altitude occupied by the tether lines.

If the vehicle can be sighted, then the angle a which the line of sight makes with
the horizontal can be calculated as the arctan (yn/xn). With a digital computer, integration
can start with the initial conditions of To and 00 and continue to Sn = s. At this point,
the measured angle and that calculated by the program can be compared. If they are not
equal, new values of wind can be tried until the appropriate wind is found. Thus from
ground-based measurements alone, both the equivalent windspeed and the height of the
vehicle can be calculated.

If the vehicle cannot be seen (as in fog for example), and if the altitude is measured
by an onboard pressure altimeter, then given the same initial surface conditions of To,
00, and the length of line, the digital computer can try various values of windspeed to
determine which gives the best agreement between the measured altitude and the calculated
altitude. An illustrative sample is given below.

A graphical technique was developed by the late Horace M. Trent, in an unpublished
communication, whereby with known measurements of tension and departure angle at the
ground, the length of the line, the density of the line, and its diameter with either the
angle ox or an independent altitude determination, the mean wind can be calculated. This
method involves the set of curves which represents analog solutions to the set of simulta-
neous differential equations shown in Eq. (10) as rectangular plots of s and h. In Figs.
4 through 11, each curve plotted represents a solution of this system for a given set of
values of the parameters wsITO and Fs/TO and given values for the initial conditions of
tension and departure angle at the ground. The initial values of x0 /s and y0 /s were taken
to be zero. From each curve thus obtained, h/s was read and plotted as a function of
(o-0 0 ), where a is the arctan (hix).
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Fig. 5 - Curves for finding horizontal component of wind drag on cable
when ws/T 0 = 0.2 and V = FsITO
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a -8o

Fig. 6 - Curves for finding horizontal component of wind drag on cable
when ws/TO = 0.3 and p = FsITO
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a-6O

Fig. 7 - Curves for finding horizontal component of wind drag on cable
when wsITO = 0.4 and f = FsITO
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Fig. 9 - Curves for finding horizontal component of wind drag on cable
when wsIT 0 = 0.6 and p = Fs/T 0
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This set of curves has two uses. First of all, if the vehicle can be seen, the elevation
angle a between the line of sight and the horizontal, and the angle 00 can both be measured,
and the ratio of h/s can be read directly from one of these curves. If the length of line
is known, the altitude is obtained approximately. Given the gravitational force on a unit
length of line, the measured tension, and either ot-0 0 and 00 or h and 00, the curve most
applicable to the situation is known, and sp, which is a function of the force F acting on
the line, can be found. This in turn is directly related to the equivalent windspeed if the
diameter of the line is known.

As an illustrative example showing both the graphical method and the program in
Appendix A (designed to obtain the effective windspeed for a layer of air through which
the balloon cable is suspended), consider the following observations:

Gravitational force on unit length of cable w = 0.01156 N/m

Lengths of cable s = 500 m

Elevation angle of balloon a = 630

Departure angle of cable 0 = 46.6°

Tension at the reel To= 46.55 n

Diameter of cable d =0.001 m.

In the graphical method, first compute (ws/TO) to find the appropriate figure to use:

ws 0.01156 X 500
- -_____ ~~= 0.12.

To 46.55

This value is closest to (ws/TO) = 0.1 used in the solutions on Fig. 4. The point where
a - 00 = 16.40 and 00 = 46.60 indicates that ,p = 0.73 and h/s = 0.86. Therefore the wind
drag per unit length is

F = pTQ = 0.0679 N,
s

and

h = 430 m.

From Eq. (11), with the density of air being 1.3 kg/m3,

v=1 2F = 2 (0.0679) = 9.7 m/sec.
1.1 p d (1.1) (1.3) (0.001)

Figure 12 is the example (using the program in Appendix A) where the interchange
between a keyboard terminal and a time-sharing computer is reproduced. The data
requested by the computer are underlined. In this particular case, the same input infor-
mation was entered into the digital computer as was used in the graphical analysis above.
The results show that the graphical and digital methods agree to within 3%. This is the
kind of accuracy expected from the use of graphical methods.
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WHAT IS LENGTH OF ROPE IN METERS ?500
WHAT IS DIAMETER OF ROPE IN METERS ?.001
WHAT IS SPECIFIC GRAVITY OF ROPE ?1.5
WHAT IS INTEGRATION STEP SIZE IN METERS ?.05
WHAT IS THE ANGLE AT THE GROUND IN DEGREES ?46.6
WHAT IS THE TENSION AT THE GROUND IN KGMS ?4.75
WHAT IS WIND IN METERS PER SECOND ?9.7

THE ALTITUDE IS 435.312 METERS
THE LINE OF SIGHT ANGLE IS 61.9494 DEGREES

WHAT IS WIND IN METERS PER SECOND 910

THE ALTITUDE IS 438.367 METERS
THE LINE OF SIGHT ANGLE IS 62.9298 DEGREES

WHAT IS WIND IN METERS PER SECOND ?10.3

THE ALTITUDE IS 441.352 METERS
THE LINE OF SIGHT ANGLE IS 63.9568 DEGREES

Fig. 12 - Sample interactive computer run used in finding
the windspeed from surface measurements on the tether line

SHIPBOARD KYTOON OPERATION

A tethered kite balloon flying from a ship does have hazards which must be kept in
mind by the operator.

Downwind from the ship is a region where both the wind velocity and pressure fields
are disturbed by the presence of the ship. The region of disturbed flow is here defined as
the region in which the velocity field is disturbed by 5% or more from the background flow.
The disturbed region can be divided into three principal characteristic zones illustrated in
Fig. 13. The displacement zone is relatively free of large-scale turbulent eddies and hence
has no adverse effect on tethered vehicles. Some information on the flow characteristics
within the wake boundary can be obtained by considering the experiments of Fail, Lawford,
and Eyre [3], in which flat plates were suspended normal to the wind in a low-turbulence
wind tunnel.

These results were summarized by Halitsky [4] for the case of a square plate of side
p. The range of applicability of these results is 0.5< x/p < 5 for a mean uniform stream
velocity. The wake axis is coincident with the x axis and the origin is at the center of the
plate.

1. The wake boundary originates at the edge of the plate and develops into a para-
boloid of revolution. The curve of the boundary in the longitudinal section through the
axis may be approximated by

y = p(x/p)114

where y is the radial distance from the axis at the longitudinal distance x.

18
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Fig. 13 - The distorted airstream areas about a ship

2. The mean velocity at the center of the cavity is about 60% of the background
flow velocity and is opposite in direction.

3. The cavity boundary originates at the edge of the plate but develops into an
approximate ellipsoid of revolution of length equal to 2.83 p and radius at the midlength
equal to p.

4. The longitudinal turbulence intensity, (v - V)/v at x = 3.6 p, varies from 0.11 at
the axis to 0.22 at y = 0.8 p and falls to substantially zero in the background flow.

As a first-order approximation, these results can be incorporated into the study of
launching hazards to tethered balloons. The following two aerodynamic features of the
wake and cavity cause dangers to the tethered vehicle. Within the cavity, vortices exist
which can have disastrous effects on kites or kite balloons. A kite balloon has been
observed caught within the cavity and forced to the sea surface. Outside the cavity but
within the wake, unpredictable turbulent eddies may await the kite vehicle. Both of these
effects are proportional to the undisturbed wind velocity. Although the geometry of the
wake and cavity boundaries appears to remain constant with respect to increases in wind-
speed, these wind-related effects put an upper limit on operational windspeeds. Experience
has shown that with relative windspeed in excess of 10 m/sec, violent eddies occur, and
the probability that the kite balloon will be caught up in one of these before it can rise
above their influence is great. On the other hand, the lift provided by the aerodynamic
shape of the kite and available for supporting experiments is a rapidly increasing function
of relative windspeed. Therefore, there is a "window" in relative windspeeds for a partic-
ular load in which safe launches can be made. If the windspeed is less than that required,
the loaded kite balloon will not raise the instrument package to the desired height. If the
relative windspeed is greater than 10 m/sec, the chance of the kite balloon being caught in
a violent eddy or forced into the sea is great. The upper limit of windspeed remains rela-
tively fixed with respect to instrument loading, while the lower limit increases with

19
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instrument loading; thus, increasing the load narrows the operation window. As an example,
the launch window experimentally determined for the USNS Hayes and a net load of 1.2 kg
is between 6 and 10 m/sec.

At this point, it is desirable to have a digital model which will plot the ascent path
of a kite balloon in order to determine how best to avoid the cavity and turbulent wake
zones. This may be accomplished by the simultaneous integration of Eqs. (10), taking into
account the proper boundary conditions. From Eqs. (7) and (8), the lift and drag of the vehicle
are known and both the balancing tension and the angle in the tethering line at the vehicle
can be calculated, as was done for the simple model. If the integration of Eqs. (10) is
started downward with known values of lift and drag and if the origin of the coordinate
system is defined at the vehicle, then the values of T, 0, x, y, and s are known at each
increment of line below the vehicle if the wind force is known.

If the values of x and y defined above are plotted, they are the focus of the position
occupied by the kite balloon during a slow ascent or descent in a coordinate system located
at the shipboard winch. The calculated position of the tethered vehicle can be compared
with the estimates of the geometry of the wind wake to determine if the rise path of the
kite balloon goes through the cavity or wind wake.

Figure 14 shows a plot of such rise paths for a windspeed of 7.5 m/sec and an instru-
mentation loading of 1.5 kg. Line FG defines the boundary of the ship's wind wake.
Tethered vehicles operating below this line are in danger of being caught in a strong down-
draft. Line OAC is the path which would be taken during the launch or recovery of an
unloaded kite balloon. Line OD is the path taken by a kite balloon with the payload
attached to its underbody. The chance of losing both payload and vehicle is very great,
using path OD. Consider the following technique where an unloaded vehicle ascends to
point A along path OA. At this time, the payload is attached to the tether line at the
surface and the whole system is allowed to continue on upward. The kite balloon will
now travel along path AB, while the payload will pass along line OE. The advantage of
this technique is that the payload is kept safe at the expense of a few meters of maximum
obtainable altitude.

Another technique which can be used to increase the chances of a good launch or
recovery of a kite balloon system involves adjusting the ship's heading and speed to keep
the relative wind within the required window. After the vehicle climbs above the turbulent
wake, a higher relative wind can be tolerated, and the ship can continue on its way. This
technique allows launching a kite balloon that normally could not be launched under the
ship's normal course and speed.

In Part I of this report, the stress was on predicting the maximum altitude which
could be obtained by a particular tethered vehicle. When the wind loading on the tether
line was neglected, this simple analysis gave the unrealistic result of an unlimited altitude
ceiling, given enough wind velocity. The more accurate numerical analysis in Part II may
also be applied to predict the maximum altitudes which can be obtained with a particular
vehicle, instrument load, and windspeed. The numerical integration referred to earlier is
continued until the value of 0 at the ground passes through zero. At this point, there is
a maximum in altitude determined for each value of wind entered into the calculations as
a parameter. Figure 15 shows a comparison of the results of the numerical analysis, the
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results of the simple analysis of Part I, an adaptation of Kochin's [21 analytical solution,
and some experimental points obtained with a kite balloon equipped with an altimeter and
operated from the USNS Hayes during February 1974. The theoretical solutions have
input parameters that correspond to the experimental values as closely as possible. Kochin's
analytical solution has the built-in assumption that the angle 0 at the kite balloon is 7r/2.
This is tantamount to saying that there is zero wind drag on the tethered vehicle. Therefore
as one would expect, the numerical analysis corresponds reasonably well with the Part I
solution for low lift-to-drag ratios and low winds. If, however, the lift-to-drag ratio is high,
the numerical solution corresponds with the Kochin theory.

70 I 1 1 1 I 1
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E~~~~~~~~~~~~~~~~~~~~~~~
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20 V =7.5 rn/sec
P=30m

I 0

0
10 20 30 40 50 60 70 80 90 100

DISTANCE, x: (m)

Fig. 14 - Plots of predicted flight paths with respect to the turbulent wake of a ship represented
by the area below line FG. See text for details.

Although the experimental points contain considerable scatter, it appears that they
do indicate that the lift-to-drag ratio is between 1 and 10 for the kite balloon. On the
other hand, a spherical tethered balloon has a low lift-to-drag ratio and the analysis of
Part I is applicable here for low wind conditions.
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Fig. 15 -Maximum altitude predictions for various methods de-
scribed in text. Squares represent maximum altitudes obtained at
sea with a small kite balloon system. Curve A is from Eq. (9) with
C2/Cd = 10, I = 9.8 Nand w = 0.038 N/m. Curve D is the same
as curve A except that CQ/C = 0.3. Curve B is result for the digital
integration method with the specific gravity of the line being 1.22,
the diameter of the line being 0.002 m, and C /Cd= 10. Curve E
is similar to curve B except that CQ/Cd = 0.3. Curve C is the result
of the Kochin theory with the same physical parameters as used
above.

22



NRL REPORT 7919

REFERENCES

1. Fr. A. Willers, "Ober die Steighdhe von Drachen," Z. Math. Phys. 57, 158-173 (1909).

2. N.E. Kochin, "On the Bending of the Cable of a Kite Balloon under the Action of
the Wind," Inst. Mekh. Akad. Nauk SSSR. Prikl. Mat. Mekh. X, 153-164 (1946),
NRL Translation 402.

3. R. Fail, J.A. Lawford, and R.C.W. Eyre, "Low-speed Experiments on the Wake Charac-
teristics of Flat Plates Normal to an Air Stream," Aeronautical Research Council Reports
and Memoranda, No. 3120, Aeronautical Research Council, Great Britain (1957).

4. J. Halitsky, "Meteorology and Atomic Energy 1968," D.H. Slade, Editor, U.S. Atomic
Energy Commission, TID-23190, 1968, p. 221-232.

23



Appendix A

PROGRAM TO DETERMINE ALTITUDE AND
LINE OF SIGHT ANGLE OF A TETHERED VEHICLE

t Pf: FPINT"l.,JHhT I: LENGTH OF FROPE IN METERS"i
Q1:1 INPUT L

.E30 PRINT"bIHAT I:L DIAMETER OF ROPE IN METERS";
40 INPUT ll
5(1 PRINT"W1IHAT I.-: .'EPCIFIE: GRAVITY OF ROPE";
t O I HPUT :7
7 0 REM IJ I:l UNIT STEP OF INTEGRATING PARAMETER IN METERS
.0 PRINT"lJHAT I:S: INTEGRATION STEP :IZE IN METERS";
90 I HPUT :;5
1 R's' REM ANG3LES ARE LABLED A AND TENSION T
11 Cl REM SUBE:CRIPTF . OF 9 REFER TO VALUESs FT THE SURFACE
120:' PRINT"'..HRT IS THE ANGLE AT THE GROUND IN DEt REES";
1:30 I NPUT A9
140 A'P=:3 .1415R9/180
150f PRINT"6IHAT IS THE TENs;ION AT THE GROUND IN tGMS"i
160 INPUT T9
1 7': PRINT " HHAT IS IIIND ItN METERS PER :SECONi"i
180 I NPUT V
190 IF Vf- THEN 460
200 REM 0 I; THE UNIT W.EIGHT IN KGS OF THE LINE USED
21(f FREM F IS FORCE OF WIND IN KGM:S ON UNIT LENGTH OF LINE
22(-1f LET F=0.f715,V*Y.I)
2:31 G 7=* 7 T5 . :9+ 11 11
2401 A=A9
2501 X=0
260 Y=O
270 T=T9
280 FOR S=0 TO L STEP S5
2901 T1=:35+G*Sl N(A)

:0cj A ' 1 =:::5.COGC.S (A) FSIN()* INR T

3*: ii T=T+Tl

,_- 5~ :X:=Xfl

c60. f Y=Y+Y 
:370 NEXT :0
:10 PRINT

39( PRINT"THE ALTITUDE 1:3" ;X;"METERS'
40( A=ATNcX/Y :O
410 A:3=A.180':3.1415
420A PRINT"THE LINE OF SIGHT ANGLE IS" ;A3;`DEGRPEES"
430 P'RINT
440 PRINT
45') GO TO 170
46(0 END
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