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FURTHER RESULTS ON NONLINEAR ENERGY
TRANSFER IN GRAVITY-CAPILLARY WAVE SPECTRA,

WITH VISCOUS CONSIDERATIONS

INTRODUCTION

The evolution of the two-dimensional spectrum F(x, k, t) of a water-wave system
under the influence of a number of expansible processes (which are weak in the mean),
can conveniently be described in phase-space (x, k) representation by the radiative-trans-
fer equation [1, 2]

3F aF .aF
+ Xi t ax + hi = Sin + S.9 + SdS, (1)

where x is the horizontal coordinate vector, k is the vector wavenumber, t is time, xi =
aa(x, k)/aki, hi = - aa(x, k)/axi, and a(x, k) is the angular frequency. Si, S0Q and SdS
are respectively the source functions representing the input from the atmosphere, the
nonlinear energy transfer produced by wave-wave resonant interactions, and the losses
from dissipative processes (for example, wave breaking and viscous damping).

Of great significance has been the finding by Hasselmann et al. [2] during the
JONSWAP experiments of 1969 that for given wind conditions the development of
the gravity spectrum and the attainment of an equilibrium state by the spectrum are
crucially controlled by the self-stabilization features of the conservative nonlinear energy-
transfer mechanism. For example, it was found there that for short fetches, about 80
percent of the maximal wave growth in the forward face of the spectrum could be
attributed to nonlinear energy transfer.

On the other hand, gravity-capillary waves are known to be a great deal more sensi-
tive to the wind than gravity waves are. Therefore, it should be important to learn to
what degree the conservative nonlinear resonant interactions participate in the develop-
ment of the gravity-capillary wave spectrum.

In this report we will not answer this question per se, since this would require an
integration of the radiative-transfer equation with all the source functions. This time we
will satisfy ourselves to investigate in more detail the dependence of the nonlinear energy
transfer of a gravity-capillary wave spectrum on the shape and state of development of
the spectrum.

Previously we have found that nonlinear energy transfer in a gravity-capillary wave
spectrum provides a new mechanism for the transfer of energy of short gravity waves
towards the capillary region, where ultimately it is dissipated by viscosity and wave
breaking [3].

Note: Manuscript submitted May 30, 1975.
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GASPAR R. VALENZUELA

The present results suggest that wave growth in the forward face of the gravity-
capillary wave spectrum may be directly related to the input from the wind, since the
positive transfer of energy toward the small wavenumbers is negligible in most cases.
However, in the early stages of development of the spectrum, just after it has been
generated by a turbulent resonant mechanism [4] for example, it is possible that the
nonlinear energy-transfer mechanism may still play a significant role in the development
of the spectrum.

The effect of viscosity has been considered anew, and it is shown, with a treatment
of forced vibrations in the presence of small dissipative forces, that in practice a decou-
pling of gravity waves and capillary waves will occur. This may be further proof that no
positive transfer of energy can take place from capillary to gravity waves [5].

In any case, if viscosity is not introduced at all in the analysis for the energy trans-
fer of gravity-capillary waves, quite unrealistic results do occur under certain conditions.
For those conditions it is found that a line spectrum in the gravity-capillary region inter-
acting with a background spectrum will actually tend to grow.

Combining the results on resonant interaction theory. for gravity-capillary waves with
perturbation electromagnetic scattering theory [6, 7], the effect of surface tension and
resonant interactions on the second-order contributions to the doppler spectrum of radio-
waves backscattered from a water-wave system is obtained.

NONLINEAR ENERGY TRANSFER DUE TO
RESONANT WAVE-WAVE INTERACTIONS

Nonlinear energy transfer in a wave spectrum has been obtained for infinitesimal
waves by Hasselmann [8, 9] and Valenzuela and Laing [3] for an ideal incompressible
deep fluid and irrotational motion under constant atmospheric pressure. In these investi-
gations the surface displacement ¢, the velocity potential j, and the mean energy of the
wave system E are expanded in perturbation series (the expansion parameter being the
wave slope)

= + 2 + 3 + (la)

= + 2 + 30 + ( ... f (lb)

E =.2E + 4E + 6E + = 2E + AE (lc)

for given initial conditions.

In the linear approximation (that is, 1¢, et, and 2E) the water surface is composed
of a superposition of noninteracting sinusoidal wave components, and the statistics of the
linear approximation to the surface displacement are homogeneous, stationary, and
Gaussian. Thus the surface is completely determined by a two-dimensional wavenumber
spectrum.
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For gravity waves for which resonant interactions are of third order, nonstationary
contributions are present in the term 6E of the energy expansion. These interactions
were investigated by Hasselmann [8, 9] by means of a fifth-order perturbation analysis,
finding that for a gravity-wave spectrum the nonlinear energy transfer is a cubic function
of the spectrum:

S9~~~0

=nQ ffff T(k 1, k2 , k3, k4 )(W4F1 F2 F3 + W3FjF2F4

- C 2 F 1F3F4 - wjF 2 F3 F4 )6(W4 + W3 - CJ2 - w1)d2 k1 d2 k2 , (2)

where k1 + k2 = k3 + k4 and co1 + co2 =c3 + C4

For gravity-capillary waves the resonant interactions occur at second order, and the
nonstationary energy contributions now appear in the term 4 E [3]. The nonlinear source
function for a gravity-capillary wave spectrum is given by

00

SnQc = ff T(kj, k2, k3 )(w 3 F F2 - w 2F1F3 - F2F3 )5(w3 - - co1 )d2k1

+ 2 JfJ T(kj, k3 , k2 )(w 3 F1 F2 - w 2F1 F3 + c1 F2 F3 )6(cw3 - cw2 + co1 )d2 k1 ,
_00

(3)

where k3 = k2 ± k1 and C03 = ±J2 ± CJ

In Eqs. (2) and (3) we have used the notation Fi = F(ki), wi = w(ki) and 5( ) is
the Dirac delta function; T(k1, k2, k3, k4 ) and T(k1 , k2 , k3) are the respective transfer
coefficients, which are given in detail in the original papers (except for some printing
errors). For example the coupling coefficient DV;5%2 given in Ref. 3 is incorrect. The
correct expression used in all the numerical calculations presented in the original expres-
sion and in this report is

D5klk2 - 2 {(Cl +C 2 )(k1h2 -k1 k2 ) + w1 C2(C1 +W2)(g+ T2 g+Tk )
2 2 2 1~2 

- (g+ Tk2) [w2 (kl+kl k2 ) + 2 + k1 k2 )]} (4)
g +Tk2 g +Tk2

The main contribution to Sgny comes from two pairs of nearly parallel gravity waves
of almost identical wavenumbers. On the other hand, the main contribution to Sgj'
comes from a triad of nearly parallel waves, but now the wave components may have
quite different wavenumbers [10].
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As usual the perturbation results for nonlinear energy transfer are valid only if AE,
the energy contributed by higher order terms, is small compared with 2E, the mean
energy of the linear approximation to the surface. An additional constraint is imposed
on the interaction time of a line spectrum with a background wave spectrum: it must
be larger than the corresponding wave period.

DEPENDENCE OF THE NONLINEAR ENERGY TRANSFER OF
GRAVITY-CAPILLARY WAVES ON THE SPECTRAL SHAPE

For gravity waves the magnitude and position of the positive low-frequency lobe of
the energy transfer is determined by the falloff rate of the spectrum toward small fre-
quencies [2]. To investigate this effect on the nonlinear energy transfer for gravity-cap-
illary waves, we have used various exponential factors on the radial part of the spectrum
(for the two-dimensional spectrum we have used the separable form F(k) = S(k, a) =
S(k)S(oa)). Accordingly the radial part of the spectrum has been expressed as

S(k) = 10- 2 k-4 exp {-(-) } (5)

where C is a nondimensional constant, K = k/km is a nondimensional wavenumber, km -
3.65 cm-1 is the wavenumber of 1.7-cm waves, and n is an integer taken as 1, 2, or 4.

In Fig. 1 the positive small-wavenumber lobe of the energy transfer is shown as a
function of the falloff rate of the spectrum toward small wavenumbers for a cos2 a angu-
lar spreading factor (normalized over a half plane) for a spectral peak at 0.375 km.

A noticeable shift of the positive small-wavenumber lobe of the energy transfer is
observed as the falloff rate of the spectrum increases. However, the shift of the lobe
toward the spectral peak with increasing falloff rate is in the opposite direction than for
gravity waves [2]. The increase in amplitude of the lobe is mostly a reflection of the
increase in amplitude of the spectral peak with falloff rate.

The dependence of the energy transfer on the power law of the spectrum in the
equilibrium range is not too strong for small changes in the power law of the equilibrium
range (Fig. 2).

However, if a more realistic falloff rate is adopted for the spectrum in the viscous
range, say for wavenumbers greater than 10 cm~-, a drastic reduction and disappearance
of the positive small-wavenumber lobe occurs. This can be corroborated by adding a
factor

[i+ () 4 (6)
to the radial part of the spectrum, Eq. (5). Surprisingly the factor (6) is that suggested
by Heisenberg for the viscous subrange of a turbulent spectrum [11], which also seems
to apply to the viscous part of the wave spectrum for light winds and short fetches
kV = 15 cm-1 , in accordance with unpublished spectral measurements with radar by
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Fig. 1-Small-wavenumber positive lobe of the energy
transfer for a gravity-capillary wave spectrum as a
function of dropoff rate of the spectrum towards
small wavenumbers. S(k) = 0.01k- 4 exp {-(CIK)n },
S(U) = (2/7r) cos2 a and U3 = 00. The spectral peak is
at 0.375 km
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J. W. Wright. The apparent decoupling of capillary waves from gravity waves may be a
support of Hasselmann's arguments [5] against a positive transfer of energy and momen-
tum for gravity-capillary waves toward the gravity region. Later on in this report we will
find that a treatment of forced vibrations in the presence of small dissipative forces will
also confirm the decoupling between gravity and capillary waves.

From the previous results we can immediately conclude that the growth of waves in
the forward face of a gravity-capillary wave spectrum, at least at this intermediate stage
of development of the spectrum, cannot be due to the nonlinear source function and
must be wind dependent.

However, when the spectrum is at an earlier stage of development, the nonlinear
energy transfer may still play a significant role in the development of the gravity-capillary
wave spectrum. For example, when the spectral peak is closer to km, the wavenumber
of 1.7-cm waves, some dramatic changes take place in the shape of the energy transfer:
now a positive lobe in the forward face of the spectrum is most evident, but in this case
it cannot be reduced with viscous effects.

In Fig. 3, the energy flux is shown for a spectral peak at 0.92 km; now the energy
is quite different from that previously obtained. The large positive lobe of the energy
flux on the forward face of the spectrum suggests that nonlinearities may play a more
direct role in the growth of the spectrum at this stage of development. However, in the
final analysis the growth of the spectrum will depend on the net balance of the various
participating mechanisms: Si,, the input from the wind, which in the linear approxima-
tion is given by Miles' instability mechanism [12] ; SQ, the nonlinear source function;
and Sds, the source function for the dissipative processes. In Fig. 3 a noticeable shift of
the small-wavenumber lobe of the energy transfer occurs with the change in the falloff
rate of the spectrum toward small wavenumbers.

In some cases we have found that the energy transfer becomes quite sensitive to the
directional properties of the spectrum; this is illustrated in Fig. 4 for a spectral peak at
0.776 km. Very surprisingly, under these conditions the energy flux is totally positive
along the wind direction for the cos2 oY and cos4 a spreading factors.

In most calculations on the energy transfer we have found a significant amount of
wave energy being scattered into angles greater than 900 (the crosswind direction), but
for backscattering (a = 180°) it vanishes. All this energy against the wind direction
could explain the fact that in many instances gravity-capillary waves have been observed
travelling upwind in wave tanks (private communication by W. C. Keller).

VISCOUS CONSIDERATIONS

It is quite evident that an exact viscid theory for the nonlinear energy transfer in a
gravity-capillary wave spectrum is not possible. However, in the hierarchy of the various
viscous approximations, to first order, viscosity may be introduced as a correction to the
inviscid energy flux. We include a viscous source term to Eq. (1), so that

DFDF = SQ - 4vk 2 F (7)
Dt

where v is the kinematic viscosity of the water.
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GASPAR R. VALENZUELA

This correction does not affect the actual dynamics of the resonant interactions; it
merely gives a guideline for the validity of the inviscid results. That is, when the time
constant of viscous dissipation is large compared to the wave period, the inviscid analysis
applies.

In Fig. 5 we have included viscosity as a correction to the nonlinear energy transfer
for the case when the spectral peak is at 0.375 km.

in

E

0
(01
M
co

(0

I' ~~~~~~~~~~~~3

2 - 2

. eID INVISCID
3- V /IY ISCOSITY

E CORRECTED

42 - C,
O -----~IVICI

- V~~ISC 2SIT

-2 

Fig. 5-Energy transfer for a gravity-capillary wave
spectrum corrected for viscosity. S(k) = 0.01k-4
exp {-(0.53/K) 2}, S(a) = 2/T cos 2 a and a3 = 00.
The spectral peak is at 0.375 km.

In the previous section it was found that the shape of the energy transfer changed
radically as the spectral peak approached km. Surprisingly enough, the interaction time
between a line spectrum located at kQ and a background wave spectrum peaked at wave-
numbers greater than 2-1/2 km is negative for certain ranges of k2 (indicating growth of
the line spectrum); thus instabilities occur. This is demonstrated in Fig. 6. However,
when viscosity is introduced, even as a perturbation, the instabilities cease. Thus this
indicates that viscosity may be very important in the early stages of development of a
gravity-capillary wave spectrum.

In Fig. 7, the decay (interaction) time is shown for a spectral peak at 0.92 km as
a function of falloff rate of the spectrum toward small wavenumbers. It is illustrated

8
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that even for the most peaked spectra (n = 4), the instabilities cease when viscosity
is included.

13t

0.776 V

102 _P09 .77K-9

0.92 ~(-) I -l 0.707

102

0.925

0 1 2 3
kl/km

Fig. 6-Decay (interaction) time for a line spec-
trum at kQ with a background wave spectrum as
a function of the position of the spectral peak
of the spectrum. S(k) = 0.01k-4 exp {-(C/K) },
S(a) = 2/7r cos 2 a and aQ = 00. The position of
the spectral peak in nondimensional wavenumber
is at K, = C/4.

The effect of viscosity on the dynamics of the energy transfer can be obtained by
a more formal treatment on forced vibrations in the presence of small dissipative forces,
where we are not including boundary-layer effects. For example, solutions of the differ-
ential equation

+ a- + b) 4 = h(t)e-ct,3tt (8)

for given initial conditions are investigated (a, b, and c being constants). Using the weak-
decay assumption (Appendix A), it is possible to show that the covariance of 4 is given
by

7r (eat - e 2ct) [H(cw') + H(-w')] + other terms
wt c'=2(' = c)2 2 a2

Iwith w'= [ b - (a 2 /4) ] 1/2, b = wj2 , and H(wj') is the spectrum of h (t).

(9)
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Fig. 7-Decay (interaction) time for a line spec-
trum at k2 with a background spectrum as a func-
tion of dropoff rate toward small wavenumbers
of the spectrum. S(k) = 0.01k- 4 exp {-(C/K)n },
S(a) = 2/7r cos2 a and aQ = 00. The spectral peak

is at 0.92 km.

For at < 1 and 2ct < 1, Eq. (9) reduces to the lossless case. A second asymptotic
formula needed in the perturbation analysis for the energy transfer calculation can be
modified in a similar fashion.

An application of these results to the nonlinear energy transfer of a gravity-capillary
wave spectrum (Appendix B) for infinitesimal times yields the inviscid results, Eq. (3).

For intermediate times, say Vk2 t < 1 and vk 2 t > 1 together with k2 ; k2 , a reduc-
3 1 1 2'

tion and a change of sign of the energy transfer occurs. (This case arises for difference
resonant interactions with k3 = k2 - k1 and W3 = 2 - col, k3 being in the gravity
region and k1 , k2 being in the capillary region.) The same conditions prevail in the
formation of the positive low-frequency lobe which was discussed in regard to Fig. 1.

For large times the energy transfer vanishes, as it should if no other positive source
function is included.

10
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Hence, this analysis also verifies the results obtained earlier in regard to the decou-
pling of gravity waves and capillary waves when the wavenumber spectrum was allowed to
have a faster falloff rate in the viscous range.

APPLICATION OF THE WAVE-WAVE RESONANT INTERACTION
THEORY TO THE SECOND-ORDER CONTRIBUTIONS TO THE
DOPPLER SPECTRUM OF RADIO WAVES BACKSCATTERED
FROM A WIND-WAVE SYSTEM

The results on wave-wave resonant interactions for a gravity-capillary wave spectrum
[3] can be combined with perturbation electromagnetic scattering theory [6, 7] for the
development of a generalized theory for the second-order contributions to the doppler
spectrum of radio waves backscattered from a wind-wave system [13]. The previous
results by Hasselmann [14] for a constant transfer coefficient and by Barrick [15] in
more exact numerical calculations for HF radio waves (frequencies in the 3-to-30-MHz
range) are contained as a special case of ours.

In the generalized theory we include the effect of capillarity (surface tension), the
radar polarization, the angle of incidence, and the lossy dielectric properties of the water
surface. For HF radio frequencies our results are in basic agreement with those obtained
by Barrick. However, for higher radio frequencies (microwaves), as the surface-tension
effects become important in the properties of the water waves contributing to the electro-
magnetic backscattering, a second-order contribution appears at the Bragg frequency CUB
because of the wave-wave resonant interactions. (CoB is the radian frequency of Bragg
resonant water waves, which are of wavelength half the wavelength of the radio wave at
grazing incidence.) Resonant interactions will also occur for gravity waves which are re-
sponsible for the backscattering of lower radio frequencies, but these will be present at
higher order.

Surface tension also produces a shift of the secondary lines, present at 21/2COB and
23I4(JB for HF radio waves, toward CJB and 21/ 2 WB respectively. In addition, for cross-
wind conditions the doppler spectrum now does not vanish for frequencies above COB,
as it is the case for HF radio waves.

The second-order contributions of the doppler spectrum at the Bragg frequency
represent the nonstationary and non-Gaussian statistical properties of the wind-wave
system. A detail analysis on these results has been published elsewhere [16].

CONCLUSIONS

The results obtained for the nonlinear energy transfer for a gravity-capillary wave
spectrum are in agreement with experimental observations in regard to the sensitivity of
gravity-capillary waves to the wind. However, when the gravity-capillary wave spectrum
is at an earlier stage of development with the spectral peak near km (the wavenumber of
1.7-cm waves), the nonlinear resonant interactions may still play a significant role in the
development of the spectrum.

11
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The investigation has also shown that viscosity may play an important role in the
overall energy balance of the gravity-capillary wave spectrum and in the dynamics of the
nonlinear resonant interactions themselves, producing a net decoupling between gravity
and capillary waves.

However, an application of nonlinear energy transfer for gravity-capillary waves to
the overall energy balance of a gravity wave spectrum should await a consistent theory
for the energy transfer of a spectrum also including the third-order gravity wave-wave
resonant interactions [8] and the modification of short waves by long gravity waves
treatable by the WKBJ approximation [5].

All the results for the energy transfer in a gravity-capillary wave spectrum have been
obtained using the classical dispersion relation for gravity-capillary waves. However, the
dispersion relation for wind waves is a great deal more complex, because of the wind-
produced surface current which is highly sheared with depth [17].

In the investigation it was also described briefly that surface tension and resonant
interactions should produce significant contributions to the doppler spectrum of radio
and microwaves backscattered from a water wave system.
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APPENDIX A
GENERALIZED ASYMPTOTIC EXPANSIONS

Consider the solution of the linear second-order differential equation with small
losses or weak damping (a2 < b)

(a2 a
( + a + b) =f(t), (Al)

(at2 at

for 4 = a /st = 0 at t = 0 and f(t) a given random driving function with a continuous
spectral-density function.

The solution of Eq. (Al) for the prescribed initial conditions is

X-.t t t 
4,= 2e" j f([r)eX2rae dT _ e2i f(r)eX1lTeaT dr (A2)

where M 2 - a/2 + i[b - (a2 /4)]1 /2 and w' = [b - a2/4]12.

With Eq. (A2) the covariance function of X can be derived:

4(4 = 2 ff f(T)f*(T') dTdT'
0 0

X ea(T+T')12 (ei'(t-r) - e-iw'(t-T))(e-iw'(t-T') - eiw'(t-T')), (A3)

where 4* and f* are the complex conjugates of 4 and f respectively and the bar over a
quantity means the ensemble average.

Before proceeding to obtain the results, let f(t) = h(t)e-ct, where c is a small quantity
and h(t) is a stationary random function with a continuous spectral density H(co).

After substituting the explicit expression for f(t) in Eq. (A3), transforming the double
integrals into a single integral by the change of variables r1 = T - T' and T2 = r + T' and
integrating over r2 , exchanging the order of averaging and integration, using the weak-
decay assumption, and performing some algebra, it is possible to show that the covariance
function of 4 is given by
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7r (e-at - e2ct)) + H(-')] +
W 4(cw')2 a-2

c --

+ Uh((e -at r ei2i 't

8( )2 Ii - (c -j2)
e2ico't

t1t' + (c -- 2)

1 rt 2t
where H(w) = - h(Tr + T')h*(r')e-iwrl dTj and ao(t) J h('r1 + T')h*(T') dT-.

0 0

Thus for a -' 0, c -> 0, and a time averaging, Eq. (A4) reduces to the lossless case

-s Q*~2X H~)+ (7rt
2Cw2 (A5)

which is Eq. (3.9) of Ref. 8.

A second formula needed in the analysis, Eq. (3.14) of Ref. 8, has been modified in
a similar manner using the weak-decay assumption. For example,

and

D ,, + , eiwt[e-(at+a )t _ e-at]
-c co w co + (w; t) ;~ + other terms

2iw(a - a' - a...)[(Co ")2 - (Co + C0')2 ] +Ar m

-7T [e-(a +af)t - e--at]
e--Cl t (a -', c" c + g t) = [5(w " + W' + c)]2 '(C,-jC",W+C' 4wj(w + wj')(a -a' -a"')

+ 6(C"- w'- W)] + otherterms, (A7)

where a, a', and a"' are the damping rates of the waves co, co', and c"' respectively. -

Of course, Eqs. (A4) and (A7) are approximations which apply for a weakly decay-
ing process. A more exact analysis would actually result in the broadening of the delta
functions, and resonances would disappear because of the viscous terms in the angular
frequencies.
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APPENDIX B
COVARIANCE PRODUCTS

To apply the analysis on forced vibrations with small dissipative forces (Appendix A)
to the nonlinear energy transfer in gravity-capillary wave spectra, we use the following
approximate representations for the first lowest order terms in the velocity potential
(neglecting quadratic contributions of v):

1Ak = 1 'Is e-21k 2 te-is(wk teik x;

2~~~'k = ~~~D~Sly2e~2v(k2+k2 )t ei(lw'kis 2 (Wkz)tlk lo k

k1+k2=k [w)k- (s1 Wkl + S2Wk) + 4iV(S1 Wkl + s2 wtk )(kl2 +k - k2) + OQ'2h4)]
S

1
,52 ff.S la 2 ,S+

2
21k

2
)t k'S 

1
t e-*~k'2~ktA,11k

k~~~ k2 1 2 ~ ~ ~ 1 2 

3¢k = £..s k1 , k2,k 2 1 2 3)t e-i( ickl+S2Wk 2S3Swk3)t la'~k1 '02 1 5k3
kl+k2+k2=k [wk -(sl2 k +S2&k +SS k) + 4iv(sjwk1 +S2dk2 +S3Wk )(k1 + k+ -k

2) + Q(k 2k4)]

(B1)

(B2)

(B3)

where the notation follows Ref. 3.

Using the formulas derived in Appendix A, it can be shown that

12 Ok 12 L~Y1+

kl+k2=k
S1 S52

7r1D SlS2 2 (S 12 I~c?212kCl,k2 |Ii l | 2

W 2Wk

and

2 A e (1 0-k 0) = -

e-4vk2 t e-4v(k2+k2

4v(k2 + k2 - k2 )

27r I1 (D+kF 12

kl ,s1

6 (cWk +Sl Wk, +S2C5k2)

k1 12 { -klI( k+kl k ,k
k, Cjk(lck + S1 Cok, )

X 5(cwk+kl - Wk -s lkl)

+ D1klk+kDkk1 I(wk+k, + Ck +Sik)
Cjk((ljk + S1 Cok, ) k+k t +1 k)
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e-2vk 2 t [e-2v(k2+ Ik +kI)2t - e-2Vk2 t (

2k -k2 _ lk + k,1 2) (B5)

Obviously, now the energy transfer will be time dependent, and we must investigate
its magnitude as a function of time.

For small times, 4vk2t < 1, and 4v(k2 + k2)t < 1, the inviscid results should follow.
For intermediate time, such that 4vk 2t < 1 but 4Uklt > 1 and k 2 k2, we find

t( 2 12) 0 - W 2 (B6a)

and

a [2 ' - * (B6b)

Thus for intermediate times for relatively small Ik I and large Ik,1 I 1k21 the energy trans-
fer for gravity-capillary wave spectra should be reduced in magnitude and reversed in sign
from the inviscid result. These conditions apply for difference interactions with k in the
gravity region and k1 , k2 in the capillary region, which indicates that in practice a decou-
pling of gravity and capillary waves will occur because of viscous effects. For very large
times the energy transfer will vanish, as it should, unless a positive source function is
introduced.
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