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CRYPTOGRAPHIC DIGITAL COMMUNICATION

INTRODUCTION

There are many ways of safeguarding the transmission of secret information. Cryp-
tography is employed when unauthorized personnel have the technical capability of in-
tercepting and correctly interpreting a secret message. A cryptographic analog communi-
cation system, such as the interchanging of frequencies to disguise a voice message, usually
requires expensive and complicated instrumentation. Due to the availability of the digi-
tal computer, cryptographic digital communication systems are more readily automated.

Cryptographic digital communication is accomplished in two ways. Coding consists
of the substitution of groups of bits of variable length for plaintext groups of variable
length. Encipherment consists of the substitution of fixed-length groups of bits for fixed-
length plaintext groups. In general, coding is too slow for high-density data transmission.
Another disadvantage is the technical difficulty entailed in the frequent code changes nec-
essary for secrecy. For these reasons, enciphering systems, which provide high-speed cap-
abilities and are easily modified, are used in most practical cryptographic digital
communications.

There are two basic types of encipherment - the stream cipher and the block
cipher. The stream cipher is bit-by-bit encipherment which results when a binary symbol
is added, modulo two, to each bit of plaintext. The complete set of binary symbols or
the rule for generating it is called the key. Deciphering is accomplished by adding the
key to the corresponding enciphered bit. The more random the key, the more difficult
it is for a cryptanalyst to decipher an intercepted cryptogram. Algorithms exist for gen-
erating long pseudorandom keys from two or more short streams of digits. However, an
algorithm implies a degree of regularity, which enhances the possiblity that an unauth-
orized cryptanalyst may discern the pattern and duplicate the key generator.

A block cipher is defined as the conversion of m plain bits simultaneously into n
enciphered bits. Each of the enciphered bits is a function of all of the plain bits. For
unambiguous deciphering, it is necessary that n > m. For ease of automation, it is pref-
erable that n = m. Since knowledge of the conversion of one block of bits reveals little
or nothing about the conversion of another block, the block cipher can be made secure
by employing large values of n. A practical difficulty is the large number of wires re-
quired in the implementation of such a cipher. One might try to circumvent this problem
by employing a block cipher which merely transposes the plain bits. However, the sim-
plicity of form of such an enciphering system makes it vulnerable.

Note: Manuscript submitted April 16, 1975.
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Many automatic electronic cryptographic systems use a stream cipher which incor-
porates some of the useful aspects of the block cipher. The technique is to use a pseudo-
random key which is a function of the plaintext itself. Thus each enciphered bit is a
function of many preceding plain bits. A drawback of this system, which we shall call a
data-keyed cipher, is that a single erroneous bit entering the deciphering system causes
many additional bit errors down the line. In stream ciphers with data-independent keys,
a single error is confined to a single position; in a block cipher, each error may affect any
of the other bits of the block.

To consolidate the understanding of the definitions, they shall be put in a more
mathematical form. A block cipher is defined to be a rule for associating with each
block (xi, xi+1, ... , xi+,) of plaintext, a block (yi, yi+, -yi+,) of cipher text.
Thus we can write

Yk = fk(xi, Xi+l, *--, xi+,), i < k < i + n,

where the fk are functions. A stream cipher is defined to be a rule for associating
with each stream (x1, x2 , ... , xi, xi+1, ... ) of plaintext, a stream (Y1, Y2, -- yi, Yi+1 ) of
cipher text, subject to the restriction

Yk ,.fk(Xk-n+l. Xk-n+2, Xk), k > n;

k(X1, X2, ... ,Xk), k < n.

In addition, Yk is often a function of certain initial conditions in the enciphering and de-
ciphering systems.

Most modern cryptographic systems fit into these two broad categories or represent
a hybrid of these two ciphers. For example, the Vernam or one-time system is a stream
cipher with a data-independent key; thus, Yk = fk(xk).

A special case which aids in the intuitive understanding of the preceding ideas is the
linear data-keyed cipher. Figure 1 shows an implementation of a linear data-keyed cipher
in which a four-stage shift register of type D flip-flops and exclusive OR gates are used.
For each distinct setting of the switches, there is a different enciphered output stream.
The corresponding deciphering system is shown in Fig. 2. The extra flip-flop is included
for synchronization purposes. The switches must be set in the same manner as those of
the enciphering system. A proof of this statement shall now be given.

We define p(t) as the input sequence of plain bits into the enciphering system and
c(t) as the corresponding output. Similarly, c1 (t) is the input sequence of enciphered
bits into the deciphering system, and p1 (t) is the corresponding output. We define the
operation "+" as modulo-two addition. The multiplication is defined as usual.

The operation D is defined by Dp(t)=p(t - to), where to is defined such that t - to
is the time of the clock pulse immediately preceding the time t.
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_+ _ 0- CRYPTOGRAM

CLOCK

Fig. 1 - Linear data-keyed enciphering system

CRYPTOGRAM

Si S2 S3 S4

-F1 FF2 + FF3 FF4 FF5 PLAINTEXT

CLOCK

Fig. 2 - Linear data-keyed deciphering system

The discrete variables si may take the values 0 or 1, depending on whether the cor-
responding switch in the enciphering system is open or closed, respectively. The discrete
variables so refer to the deciphering system and are defined analogously. With the pre-
ceding definitions and the system of Fig. 1, we observe that during steady-state operation,

c(t)=Dp(t) + s4Dc(t) + s3 D2c(t) + s2D3 c(t) + slD 4c(t). (1)

Looking at Fig. 2, we can write

P1(t) = Dc1(t) + s4D2 c1(t) + s'D 3c1(t) + s2D4c1(t) + s1D5 cj(t). (2)

In modulo-two arithmetic, a + b = c implies a = b + c. Using this simple fact, Eq.
(1) yields

Dp(t) = c(t) + s4 Dc(t) + s3 D2 c(t) + s2 D3c(t) + slD 4c(t). (3)
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We observe that c1 (t) = c(t - r), where r is the delay due to transmission. Suppose s
= si for i = 1, 2, 3, 4. A comparison of Eqs. (2) and (3) then indicates that

P1(t) = D2p(t - r). (4)

Thus the output of the deciphering system is a delayed version of the input to the en-
ciphering system. The proof for the general system of n shift-register stages is analogous.

In the absence of an input, the system of Fig. 1 behaves as a pseudorandom word
generator. The maximum length of the output sequence before pattern repetition is 2n
- 1 bits, where n is the total number of functioning shift-register stages. The maximum-
length sequence will occur only for certain switch settings and only if the initial flip-flop
states are not all zero. For example, in Fig. 1, switch S1 must be closed if a pseudo-
random sequence of length 15 is to be generated. If S1 is open, the maximum possible
length is 7. If n = 20, a pseudorandom sequence of over a million bits in length may be
generated. It would seem that enciphered bits produced by such a system would be un-
decipherable with less than 2n - 1 intercepted bits; cryptanalysis would be hopeless if
n > 20. However, we shall show that the key can be broken with as few as 2n bits.

Consider the discrete times ti, where ti+1 = ti + T, and T is the clock (bit) period.
In the general case, we have the following steady-state relations analogous to Eq. (3):

Dp(ti) = c(tW) + SnDc(ti) + ... + sDnc(t,),

i = 1, 2,... ,n. (5)

Since Dc(ti+1 ) = c(ti), the n equations represented above contain the n unknown values
of si and 2n values of c(t). It follows that it is possible, under the appropriate conditons
and with knowledge of the 2n values of c(t) and the n values of Dp(tj), to solve the sys-
tem of equations for the si.

As an example, consider the case where n = 4. Suppose we acquire the following
sequences of plaintext and enciphered bits:

c(tj): 1 0 0 1 0 0 1 1 1

Dp(ti): 1 0 1 0 1 0 1 0 1

The first four values of Dp(ti) do not help us, since we cannot construct all the terms on
the right side of Eq. (5). As a matter of fact, Eq. (5) may not be valid for the first four
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values of Dp(ti) since we have not been told whether the steady state has been reached.
If the clock of the enciphering system has just started at t1 ,then the four values are de-
pendent on the initial states of the flip-flops. From the second set of n = 4 observations,
Eq. (5) yields

1= s4 + s1, (6)

0 s 3 , (7)

1 =1 + S2 , (8)

and

0 =1 + S 4 + S1, (9)

which imply that S2 = S3 = 0, but do not tell us uniquely the values of s, and s4. If we
use the final observation, we obtain

1 = 1 +S4 +s3, (10)

which now allows us to assert that s4 = 0 and s1 = 1. Note that n + 1 = 5 known plain
bits and 2n + 1 = 9 enciphered bits were used. However, if we had originally used Eqs.
(7) - (10) instead of Eqs. (6) - (9), we could have obtained the solution with n = 4
known plain bits and 2n = 8 enciphered bits. Once the switch settings have been deter-
mined, it is easy to solve for the initial states.

If the switch S1 is open, the first flip-flop is nonfunctional, and we have an encipher-
ing system with only three shift-register stages. However, the cryptanalyst usually does
not know a priori the number of shift-register stages. Consequently, he must allow for the
largest number of stages possible while attempting to break the key.

There are certain bizarre circumstances under which the key cannot be broken,
despite an indefinitely long, known set of plain and enciphered bits. For example, sup-
pose we have the periodic patterns

c(ti): O 0 1 1 0 0 1 1 ... O 0 1 1

and

Dp(ti): 0 0 0 0 0 0 0 0 ... 0 0 0 0.

It is readily verified that there are two possible solutions, no matter how many of these
patterns are observed.
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Since it readily can be cracked under certain circumstances, the linear data-keyed
cipher is not a very practical system for high-security purposes. It can be reasonably ef-
fective for infrequent, low-security operations if the number of stages is large and if the
user is careful not to use plaintexts of many consecutive zeros or ones, too systematic a
formatting of frames, or indications of where words start and end. For high-security pur-
poses, nonlinear systems based on operations other than modulo-two arithmetic can be
designed to make code breaking extremely complicated and expensive. A block diagram
of a general data-keyed enciphering or deciphering system is shown in Fig. 3.

INPUT R ,,, OUTPUT

an t KEY BITS

Fig. 3 - General data-keyed enciphering or
deciphering system

In any digital communication system, the transmitted bits and words have certain
error rates. Except for stream ciphers with data-independent keys, encipherment causes
these error rates to increase if other system parameters remain unchanged. In block ci-
phers, each deciphered bit is a function of all the transmitted enciphered bits in the cor-
responding block. Therefore a single erroneous received bit is practically certain to cause
many erroneous deciphered bits. For the data-keyed system of Fig. 3, the degradation is
due to the presence of the shift register. A received bit error due to random noise is car-
ried through the shift register, causing additional bit errors down the line. We shall obtain
quantitative measures of the degradation for general stream and block ciphers.

It can be verified easily that the roles of Figs. 1 and 2 can be interchanged; that is,
the system of Fig. 2 could serve as an enciphering system with the system of Fig. 1 as the
corresponding deciphering system. However, this choice is not a good one for a practical
communication network, since a single bit error at the input of Fig. 1 will cause an in-
definite number of further errors at the output. In the original configuration, only four
output bits at most are affected by a single input bit error at the deciphering system.

ERROR-RATE BOUNDS FOR STREAM CIPHERS

We shall designate by Pb the probability of bit error for an unenciphered communi-
cation system. We shall assume that the bit errors resulting from transmission occur in-
dependently of each other. It follows that the word error rate is

PI = 1 - (1 - Pb ) , (11)
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where k denotes the number of bits per word. We now investigate what happens when
a stream cipher is added to the communication system.

Suppose an enciphered bit is erroneously received as a result of random noise or
other interference. As the erroneous bit proceeds through the deciphering system, each
of n consecutive output bits will be affected. We define a train to be this set of n con-
secutive bits emerging from the deciphering system. For a stream cipher with a data-
independent key, n = 1. For a data-keyed cipher, n > 1.

The k bits of an enciphered word entering the deciphering system shall be referred
to as the input word. The corresponding k plain bits emerging from the deciphering sys-
tem shall be designated the output word. The probability of a word error, PCW' is defined
to be the probability of one or more erroneous bits in the output word. We shall say that
a train is of external origin with respect to an output word if the first bit of the train
occurs before the first bit of the word. The joint probability of a word error and a train
of external origin extending into the word is denoted by P(w, t). If no train of external
origin extends into the word, the conditional probability of word error is denoted by
P(wlt). The probability that a train of external origin does not extend into a word is de-
noted by P(t). With these definitions and notation, we now derive a decomposition which
will be useful in our analysis of stream-cipher error rates.

From the theorem of total probability,

Pcw = P(w, t) + P(wIt)P(J). (12)

A train will extend into an output word if, and only if, one of the n - 1 input bits
immediately preceding the corresponding input word is in error due to random noise.
Thus, assuming bit errors are independent,

P(t) = (1 -Pb)n- (13)

When no train is present, an error in one of the bits of the input word causes an error in
the corresponding bit of the output word. Thus P(wlt) is the same as the probability of
a word error for plaintext; that is,

P(wlt) = 1 - (1 - Pb)k. (14)

To determine P(w, t), additional notation must be introduced. If i bits of a train of
external origin extend into a word, we denote this condition by the symbols tb = i. For
example, P(tb = i) denotes the probability that a word contains i externally generated train
bits. Since P(w, tltb = i) = P(wltb = i), we can write

7
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P(w, t) = P(wltb = k)P(tb = k)

P(wltb = i)P(tb = i). (15)

If at least one of the n - k bits preceding the corresponding input word is in error
and n > k, it is clear that tb = k. Thus

1 - (1 - Pb)ln-k n > k;
P(tb =k) = ko, n < k . (16)

For tb = i, where 1 < i < k, it is necessary that there be an error precisely n - i bits
prior to the word bu no erroneous bits among the next n - i - 1 bits. Therefore, for
1 < i < k,

= pb(1 _ pb )n -i-l, n > i;

0, n < i. (17)

Substitution of Eqs. (13) through (17) into Eq. (12) yields the decomposition

Pcw = P(wItb = k) El -(1 - Pb )n-k] u(n - k)

m in (k -1,n -1)

+L , P(wltb = i)Pb(1 - Pb)n-i-l+ [I - (1 - Pb)k] (1 - Pb)n-1
i=1

(18)

where u(n - k) is a step function, that is, u(n - k) is 0 for n < k and is 1 for n > k.
Note that in the summation term, i extends to the least of the two integers k - 1 and
n - 1.

To evaluate the decomposition, the exact configuration of the cryptographic system
has to be specified. However, a tight upper bound can be obtained by simply observing
that P(wltb = k) and P(wltb = i) must be less than unity. Therefore

min(k-1, n-1)

Pcw < [1 - (1 - Pb) n-] u(n - k) +2 P b(1 -Pb)n-i-

i=l

+[1 -(I - Pb )k] (1 - Pb )n - 1 (19)

8
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After some algebraic simplification, Eq. (19) reduces to the compact expression

P'w < 1 - (1 - pb)n+k-l. (20)

We shall now show that there is a simpler bound

PCW < (n + k - I)Pb. (21)

Consider the function of Pb defined by

y = (n + k -1)Pb - 1 + (1 - pb)n+k-l. (22)

Clearly y is zero at Pb = 0. Since n + k > 2, y has a nonnegative derivative for all Pb such
that 0 < Pb < 1. Thus for all possible Pb, y > 0. We conclude that

(n + k - 1) pb > 1 - (I - pb)n+k-1. (23)

Combining Eqs. (20) and (23) yields Eq. (21).

Using k = 1 in Eq. (21), we obtain the companion inequality

Pcb < nPb- (24)

A binomial expansion indicates that the bound of Eq. (21) is almost as tight as the bound
of Eq. (20) if

Pb << 2(n + k - 2)-1, n + k > 2. (25)

ENSEMBLE-AVERAGE ERROR RATES FOR STREAM CIPHERS

A second measure of error-rate performance is obtained by considering ensembles of
stream ciphers characterized by a specific value of the parameter n. In what follows, we
indicate an ensemble average by a bar over the P. Let the symbol X denote the ensemble-
average probability that a bit which is part of a train of external origin is in the correct
state. Before deriving an expression for PCW we shall first investigate what value X
might have.

For linear systems, X is one-half, independent of the input word and the other out-
put bits. This statement is also true if a bit is simultaneously part of two or more trains.

9
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To see the truth of this assertion, consider the linear system of Fig. 2. Suppose that
after n correct input bits, an erroneous input bit is received. The corresponding output
bit is then in error, and a train is started. Over the ensemble of deciphering systems of
the form of Fig. 2, it is equally likely that S4 will be open or closed. If S4 is closed and
the next input bit is correct, it is seen that the next output bit is in error. Similarly, if
S4 is open and the next input bit is in error, the next output bit is in error. Thus if the
next input bit has an error probability Pb, the error probability of the next output bit
is (1/2) (1 - Pb) + (1 /2 )Pb = 1/2. Continuing this reasoning leads to the conclusion that
X = 1/2:

It is believed that X is one-half with respect to the ensemble of all possible stream
ciphers, independent of the input word and the other output bits. Referring to Fig. 3,
notice that over the ensemble an enciphered input can be applied simultaneously to any
number of the shift-register stages and combiner elements. Also, any number of the
shift-register outputs can feed the combiner. Because of the nonlinear operation of the
combiner, an error in one or more of the bits feeding it may or may not produce an er-
roneous key bit. Thus in the ensemble there are deciphering systems in which a single
erroneous input bit causes several bad bits to be fed into the combiner during most of
the key production, and the nonlinear operation causes the subsequent bit error rate to
be greater than one-half. Clearly, in the ensemble there are other systems about which
the opposite is true.

Although X is one-half for the complete ensemble of all possible stream ciphers, it is
possible that for a subset of nonlinear stream ciphers, X is different than one-half with
respect to the restricted ensemble. However, the most important practical stream cipher
subset is the subset of secure ciphers, that is, those systems for which cryptanalysis is
very difficult. Setting X equal to one-half for this subset is an excellent approximation.

When k = 1, P(wltb=k) = 1 - X. Thus it follows from Eq. (18) that

Pcb = (1 - X) [1 - (1 - pb)n 1] + Pb(1 - Pb) 1 (26)

In this equation we have kept the unspecified parameter X because its retention does not
complicate the expression significantly. However, for the reasons mentioned and to facil-
itate the derivation, we shall always assume X = 1/2 in determining the ensemble-average
word error rate.

We denote the condition that one or more of the first i bits of an input word is in
error by the symbol ae and the absence of the condition by oa. Using the theorem of
total probability, we can write

P (wItb = i) = P (w,cxItb = i) + P (wx Itb = i). (27)

If tb = i, the ensemble-average probability of no error in the first i output bits is (1/2)i,
independent of the input bits and the other output bits. If a is false and tb = i, the last
k - i output bits are not part of a train generated by the first i bits. Consequently the
first error in the last k - i input bits is added to a good key bit. Therefore, the probability

10
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of no error in the last k - i output bits is equal to the probability of no error in the cor-
responding input bits. We conclude that

P(wjtb=i, a) = 1 - 2 -i(l - Pb)k-i. (28)

From the independence of bit errors, we have

P (&Wjtb = i) = ( 1 - Pb)i. (29)

From the definition of a conditional probability and Eqs. (28) and (29),

P(w,Yltb = i) = ( 1 - Pb)z - 2-i( 1 - Pb)k. (30)

In almost all practical systems, we have n > k. Thus, deferring consideration of the
more complicated general case until later, we assume that n > k and determine
P(w,altb = i) in a manner similar to the derivation of Eq. (30). Clearly

P(cxltb = i) = 1 - ( 1 - Pb)i. (31)

If a is true, n > k, and tb = i, then every output bit is part of a train. Consequently the
ensemble-average probability of no error for each output bit is 1/2, independent of the
other output bits. It follows that

P(wltb = i, ae) = 1 - 2-k, n > k. (32)

From the definition of a conditional probability and using Eqs. (30), (31), and (32) in
Eq. (27), there results

P (wltb = i) 1- 2-i( 1 - Pb)k - 2-k [1 - (1 - Pb)i], n > k. (33)

From this relation or by direct reasoning it follows that for n > k,

P (wltb = k) = 1 - 2-k. (34)

Substitution of Eqs. (33) and (34) into Eq. (18) gives the ensemble-average word error
rate. After performing two easy summations and regrouping, we obtain

PCW = 1 - 2-k + k2-kPb( 1 - pb)n - (1 pb)n+k- l

k-l
+ 2-k ( 1 - pb)n - 2-iPb ( 1 pb)n+k-l. (35)

i=l

11
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Although we shall soon apply it in the present form, this equation can be made slightly
more convenient for computation by performing the remaining summation to obtain, for
n >k,

= - 2-k +k 2-kPb(1 -Pb)n-1 -(1 - Pb)n [( pb)k 2k] P 1/2 (36)

- 2-k ,1Pb = 1/2 (

This formula is still tedious to use in manual computations. Fortunately, a simple asymp-
totic expression is highly accurate over the usual range of interest. The approximation can
be obtained by employing a Taylor-series expansion about the point Pb = 0 and dropping
the higher order terms. However, the condition for the validity of this procedure is too
complicated for quick verification. Consequently, we use an alternative method which
yields a simple sufficient condition of validity. Each of the factors in Eq. (35) of the
form (1 - Pb)m is approximated by 1 - mPb; a sufficient condition for this approximation
is Pb << 2(m - 1)-1 if m > 1. Each factor of the form Pb(1 - Pb)m is approximated by
Pb; a sufficient condition for this approximation is Pb << mn1 if m > 0. With these ap-
proximations and some algebraic simplification, Eq. (35) reduces to

P n + k - 2 - 2-k (n - k - 2) Pb n > k. (37)

Combining all the conditions which arise, it is found that the single condition

Pb << (n + k - 2)-1 , n + k > 2, (38)

suffices; that is, Eq. (38) is a sufficient condition for the validity of Eq. (37). Using the
same method on Eq. (26), we obtain

PCb ' [n( 1 - X ) + X]Pb- (39)

For later comparison, we note that the asymptotic form of Eq. (11) is

PW a kP (40)

It is readily verified that Eq. (38) is also a sufficient condition for the validity of Eqs.
(39) and (40).

To include the possibility that n < k, we must employ more intricate reasoning. Let
the symbol j3 = I designate the condition that the last bit error among the first i input
bits occurs at input bit 1, where 1 6 1 6 i. Iff = 1, then a is true; thus we make the
decomposition

12
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P(w,altb = i) IP(witb = i, / = I)P(j3 = lltb = i). (41)

1=1

Clearly the probability of /3 = 1, given tb = i, is equal to the probability that input bit I
is erroneous and input bits 1 + 1 through i are correct. We conclude that

P(O = Iltb = i) = Pb(l - Pb)i-1, I 616 i. (42)

When tb = i, the probability that the first i output bits are correct has an ensemble aver-
age equal to 2-i. The probability that the last k - i output bits are correct depends only
on the condition 3 = 1, which implies that a train of n + I - i - 1 bits extends into the
final k - i bits. Let wk-i denote an error in a word consisting of k - i output bits. From
the previous discussion it follows that

PF(wjtb = i, ,B = 1) = I - 2-i [1 - P7(Wk-jjtb = n + I -i-1].(43)

Substituting Eqs. (42) and (43) into Eq. (41) gives

P(w, a(|tb = i) = PbEI(1 - Pb)il 1 [1 - 2-i + 2-i P(wkiltb = n + I - i - 1)] . ( 44)

1=1

Using Eqs. (44) and (30) in Eq. (27), we obtain

P(wltb = i) = 1 - 2-i(l - pb)k - 2-i 1 - ( 1 - PbO]

+ 2-iPb (1 - Pb)i1P(wkjIltb = n + I - i - 1). (45)
1=1

This expression is valid for all n. When n > k, P(wk - Itb = n + I - i - 1) = 1 - 2-(k-i),
independent of 1. Consequently Eq. (45) reduces to Eq. (33). However, when n < k,
P (wk-i Itb = n + I - i - 1 ) must be evaluated by the same procedure as that leading to Eq.
(45) itself. In general, we have a finite hiearchy of equations, with the number of equa-
tions depending on k - n. The general ensemble-average cryptographic word-error-rate
formula follows on substitution of Eqs. (34) and (45) into Eq. (18).

To obtain an asymptotic expression for PCW when n < k, we note that the last term
in Eq. (45) does not contribute to the final equation even if P(wk - I tb = n + 1 - i - 1 )
= 1. Then, applying the method described previously to Eqs. (45) and (18), we obtain

13
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P7C W[n + k - 2 (1 - 2-n)]Pb, n < k, (46)

where Eq. (38) provides a sufficient condition.

ERROR-RATE BOUNDS AND ENSEMBLE AVERAGES
FOR BLOCK CIPHERS

In the conventional block cipher, a plaintext block of m total bits, comprising an
integral number of words of k bits each, is enciphered as a block of n total bits. After
transmission and reception, the plaintext block is restored as the output of the decipher-
ing system. Clearly no output words will be in error unless the received enciphered block
contains an error in at least one of its n bits. Thus we can write

Pw= P(wlbe) [1 - ( 1 pb)nl , (47)

where P(wlbe) is the probability of an error in an output word, given that there is a block
error at the input of the deciphering system. Setting P(wlbe) = 1 and using Eq. (23), we
see that Eq. (47) yields the upper bound given by

PCw < nPb (48)

If k > 1, this upper bound is less than the corresponding upper bound for the stream
cipher, given by Eq. (21). Since the parameter k does not appear in Eq. (48), the right-
hand side provides an upper bound for Pcb also. For Pcb the upper bound is the same as
that indicated in Eq. (24) for the stream cipher.

Usually block ciphers do not involve a size change, that is, n = m. We proceed to
obtain the ensemble-average cryptographic error rates for this case. Due to the one-to-
one correspondence between the enciphered and plaintext blocks, an error in a received
enciphered block is certain to cause at least one erroneous bit in the output block. Con-
sequently, over the ensemble of block ciphers there are 2n - 1 equally likely output
blocks corresponding to an erroneous enciphered block. Consider any fixed bit in these
output blocks. In 2n-1 - 1 of the possible output blocks, this bit will be correct, that
is, in the same state it would have been if no error had occurred in the enciphered block.
We conclude that given a block error, there is an ensemble average probability that a bit
is correct equal to (2n-1 - 1)1(2n - 1). Consider a second fixed output bit. Given that
there is a block error and that the first fixed output bit is correct, it follows from an ex-
tension of the previous reasoning that there is an ensemble-average probability that the
second fixed bit is correct equal to (2n-2 - 1)1(2n-1 - 1). If x1 , x2 , ... Xn are events,
the probability of all these events can be described as follows:

P(x1, x2 , .. , Xn) = P(Xnlxn-1, --. x1 ) ... P(X21X1)P(x1 ). (49)

Using Eq. (49) and repeating our analysis for successive output bits, we conclude that

14
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-k 2n+-i - 1
P(w lbe) =1 - iIIl nl

2n( 1 -k)
2= - 1 (50)
2n - 1

Combining this relation with Eq. (47), we obtain the ensemble-average cryptographic word
error rate for block ciphers

= ( 1 - 2-n)-1 (1- 2-k) [I 1 -Pb)n]. (51)

The ensemble-average cryptographic bit error rate for block ciphers is

Pcb = 1/2 ( 1 - 2-n)- [I1 -(1 - Pb)n] . (52)

Under the condition that

Pb << 2(n - 1)-1, (53)

we obtain the asymptotic formulas

P b -- (1 - 2-n)- 21Pb (54)

and

F (1 - 2-n)-1(1 - 2k)nPb. (55)

Although these formulas hold for all values of n and k, it should be remembered that
n > 4k is usually required to safeguard against the frequency analysis of block patterns.
We shall compare the error rates of block and stream ciphers in the next section.

DEGRADATION DUE TO CRYPTOGRAPHY

The bit error rate for ordinary transmission is a function of the modulation system.
For most modulation systems, when white Gaussian noise is present, the bit error rate
has the functional form specified by

b f () , (56)

where f is a function, No is the noise power spectral density, and Eb is the mean energy
for a bit in the one state. If this equation is substituted into Eqs. (26) and (36), or Eqs.
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(51) and (52), there result formulas in terms of Eb. By comparing these formulas with
Eqs. (11) and (56), we can determine the increase in Eb required to obtain the same er-
ror rate from a cryptographic system as the corresponding plaintext system. This increase
provides a quantitative measure of cryptographic degradation. Let PCw denote either PCw
or the upper bound of PCW. Then the degradation in decibels is defined to be

Eb Eb Eb
D = 10 log10 - - 10 logl0 - = 10 logl0 - , (57)

No No Eb

where Eb is the energy required to produce a value of PCW which is equal to the value of
Pw when the energy is Eb.

As an example, suppose we wish to calculate the degradation of the ensemble-average
bit error rate of a block cipher relative to the plaintext bit error rate. Suppose Eq. (56)
is plotted empirically. Then we can also plot Eq. (52). For each value of Pb, we can read
a value of Eb /NO from the first plot and a value of EL /NO corresponding to Pcb = Pb from
the second plot. Substitution into Eq. (57) yields D.

Rather than employ the graphical method, it is often convenient to have a simple
approximate formula for degradation. To derive such a formula, note that with the help
of Eq. (40) all our asymptotic error rate bounds and ensemble averages can be written in
the form

PC, = g(n, k)Pw, (58)

where g(n, k) is the corresponding function of the parameters n and k. According to the
definition of Eb, it is implicitly related to Eb by

Pcw,(Eb) =Pw (Eb). (59)

Combining Eqs. (40), (56), (58), and (59), it follows that the degradation can be deter-
mined analytically by solving

g(n, k)f )- f ) (60)

For conventional, ideal, coherent modulation systems, we can write

/ Eb 2cEb 1/2 / cEb(
[I- Vt ~~exp I -,(61)

\No/\No /2o
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where c is a constant depending on the modulation type. This relation depends on the
asymptotic approximation

erfc (x)-- 1
V 2 7fX

e X2dx exp
V§x 

(62)

which can be employed with negligible error when cEb/No > 10. For conventional, ideal,
noncoherent modulation systems, we can write

fn E' ) -xp
( cEb'\

2AN0/
(63)

where no approximation is necessary. For coherent phase-shift-keyed (PSK), coherent
quadriphase-shift-keyed (QPSK), and noncoherent (differential) PSK modulation, we have
c = 2. For coherent and noncoherent amplitude-shift-keyed (ASK) modulation, we have
c = 1/2.

Substituting Eq. (61) into both sides of Eq. (60), taking the natural logarithm, and
rearranging, we obtain

cEb / E,
ng(n, k) - cNb Eb -1) =

We now approximate the right-hand side by the first term in
that is, we use

In Eb = In [1 +( Eb 

a Taylor-series expansion;

Eb
Eb

(65)

which is reasonably accurate if

E'Ek <1.5.
b

(66)

Substituting Eq. (65) into Eq. (64), solving for EbIEb, and employing the result in Eq. (57),
we obtain

DC = 10 log 0 In g(nk) l

L~~ 2 ~ + i'

(67)
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where the subscript C is a reminder that this formula holds for coherent modulation sys-
tems. Using our solution of Eq. (64) in Eq. (66), the condition for the accuracy of Eq.
(67) becomes

Eb> 4 In g(n, k) - 1 (68)
No 

For noncoherent modulation systems, we obtain in a similar manner

DN = 10 logl0 F1+ 2 In g(n, k) (69)LcEb j
Equation (69) is exact, since neither Eq. (62) nor Eq. (68) is required to derive it. The
expressions for DC and DN and Eqs. (61) and (63) indicate that, for a fixed plaintext
word-error-rate, the degradation is a function of coherency rather than specific modula-
tion type. In other words, the three basic types of coherent systems have the same deg-
radation, and the two basic types of noncoherent systems have the same degradation.

The degradation equations facilitate comparison between block and stream ciphers.
An important observation is that for most practical values of n and Pb, the ensemble-
average bit-error-rate of block ciphers is nearly the same as that of stream ciphers with
X = 1/2.

To illustrate some other aspects of block and stream ciphers, an example of nonco-
herent system degradation shall be studied. Combining Eqs. (40), (63), and (69), we have

DN = 10 logl0 1 - In g(n, k) (70)

Figures 4 and 5 are plots of this equation with respect to bit and word ensemble-average
error rates when n = 50. In Fig. 4 we set k = 1 and Pw = Pb, and plot DN as a function
of Pb. The function g(n, k) is determined by Eq. (54) for block ciphers and by Eq. (39)
for stream ciphers. In Fig. 5 we set k = 10 and plot DN as a function of P,. The func-
tion g(n, k) is determined by Eqs. (40) and (55) for block ciphers and Eqs. (37) and (40)
for stream ciphers. It is seen that stream ciphers with X = 3/4 cause somewhat less bit-
error-rate degradation than the block ciphers. However, the word-error-rate degradation
due to block ciphers is lower than that of stream ciphers with X = 1/2 over the range of
interest. In Figs. 6 and 7 we see the effects of increasing the parameter n when Pb or
P, is fixed. Since n is a measure of the security of the cryptographic system, it appears
that the price paid in degradation for increased security is not exorbitant. An interesting
observation is that the ensemble-average word-error-rate degradations of block and stream
ciphers converge as n increases.
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Fig. 4 - Degradation of bit error rate as a function of Pb for a non-
coherent system with n = 50. Solid curve: block cipher or stream ci-
pher, X = 1/2. Dashed curve: stream cipher, X = 3/4.
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Fig. 5 - Degradation of word error rate as a function of Pw for a non-
coherent system with n = 50 and k = 10.
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Fig. 6 - Degradation of bit error rate as a function
of n for a noncoherent system with pb = 10-5. Solid
curve: stream cipher, X = 1/2. Dashed curve: block
cipher. Dot-dashed curve: stream cipher, X = 3/4.
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Fig. 7 - Degradation of word error rate as a function
of n for a noncoherent system with P, = 10-4 and
k = 10.

A comparison between Eqs. (48) and (55) reveals that no member of a block-cipher
ensemble suffers significantly more word-error-rate degradation than the ensemble average
for n > 3, k > 3, and most practical values of Pb. However, one or more members of a
block-cipher ensemble may endure considerably greater bit-error-rate degradation than the
ensemble average. For example, with coherent PSK modulation and n = 60, it follows
from Eq. (67) that some member of the associated block-cipher ensemble may have an
extra bit-error-rate degradation ranging from approximately 0.3 dB to 0.2 dB as Pb varies
from 10-3 to 10-6. Similar statements can be made for stream-cipher ensembles when
X= 1/2.

Suppose a cryptographic system is provided with the additional power necessary to
obtain the same word error rate as the corresponding plaintext system. The question
arises as to whether the performance of the cryptographic system is now as good as that
of the plaintext system. To answer this question, note that a word error in a plaintext
system usually involves one or two erroneous bits. On the other hand, a cryptographic
word error usually implies many erroneous bits. Relative performance must be evaluated
by determining the additional cost, if any, of multiple bit errors within an erroneous
word.
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