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CHAPTER I

INTRODUCTION

In this thesis the term "plasma" is understood to mean a gas which
is sufficiently ionized so that its dynamical behavior is dominated by
electromagnetic effects. A "magnetoplasma" is a plasma with a magnetic
field impressed upon it. The study of the plasma state of matter is a
comparatively new branch of physics primarily because the natural
occurrence of plasma on the earth's surface is nearly non-existent
(excépt for transient plasmas caused by lightning) . However, the sun
and stars, interplanetary gases and the earth's upper atmosphere (iono-
sphere) are all examples of plasmas. In fact most of the universe is in
the plasma state.

The advent of radio and in particular radio astronomy made pos sible
the examination of these distant plasmas. In fact, it was in terms of the
interaction between radio waves and the ionospheric plasma that the
transmission of radio waves across the Atlantic was explained. More
recently, the use of satellite and rocket-borne probes have made in-situ
measurements possib‘le in many of these plasmas, and for the first time
many theoretical predictions about plasma behavior can be subj ected to
experimental verification. In addition to these naturally occurring
plasmas, there are now many man made plasmas, such as those produced
in gas discharge tubes and in high temperature plasma confinement
devices for use in the study of thermonuclear power generation, Conse-
quently, there is presently a great deal of interest in problems of radia-
tion both in and through plasmas. This thesis investigates the radiation
from sources which are moving in a warm magnetoplasma. In particular,

we are interested in radiation from sources which are imbedded in the

Note: Manuscript submitted February 7, 1975.




ionospheric plasma surrounding the earth.

Charged Particle Radiation in Plasmas

The study of the radiation resulting from the uniform motion of a
charged particle through a simple isotropic dieleciric medium dates back
to the experiments of Cerenkov during the period 1934-1938 and to the
theoretical investigations of Frank and Tamm in 1937 [ 21 1. Later,
when radio astronomy was still in its infancy, it was suggested by
Kiepenheuer that the non-thermal radio emissions from the sun might be
due to radiation from beams of electrons moving through the plasma
which forms the solar corona [ 36 ]. Also, the decametric noise bursts
from Jupiter were interpreted in terms of radiation from suprathermic
beams of charged particles streaming through plasmas [ 18 1.
Zheleznyakov [ 89 Jgives an extensive review of theory and experiment
regarding radio emission from the sun and planets and states (p.569)
that "... a noncoherent magne’co—bremstrahlungl is most promising for
interpreting the majority of the (solar) sporadic radio emission's compon-
ents of the continuum type...". "Noise" observed by satellite-borne
antennas in the magnetosphere has also been explained in terms of beam
plasma interactions [ 34 ]. Most of the theories cited depend in great
part on extending the original work of Frank and Tamm to include more
complicated dielectric media such as anisotropic plasmas.

The energy loss from an electron moving with constant velocity
parallel to the magnetic field lines of a magnetoplasma was first calcu-
lated by Kolomenskii [ 41 ] in 1956 using the Hamiltonian method.
Cohen [ 12 ] included temperature effects but treated only isotropic
plasmas. Tuan and Seshadri [ 81 ] gave some of the first numerical

results for Cerenkov radiation in a cold anisotropic plasma and later
1

Magneto-bremstrahlung is radiation caused by the accelerated motion
of charged particles in a magnetic field. Magneto-bremstrahlung caused
by relativistic electrons is usually called synchrotron radiation: the
radiation of non-relativistic electrons in a magnetic field is sometimes
called gyro-frequency radiation (since it occurs at the gyro-frequency
and its lower harmonics) or cyclotron radiation.




Seshadri [ 65 ] also included temperature effects. Cerenkov radiation
was studied via a kinetic approach by Kikuchi [ 38 ]. Sakurai and
Ogawa [ 62 7] solved for the far fields of the spiraling charge in a cold
magnetoplasma.

The present treatment differs from those given previously in the
following ways:

1) The effects of collisions between plasma particles is retained
in this thesis.,

2) Effects of a non-isotropic kinetic pressure tensor are treated.

3) Coherent radiation from bunches of charged particles is
examined.

4) The radiation from a charge spiraling in an anisotropic plasma
is calculated including both electron and ion temperature effects.

5) A comparison is made of results using different plasma models.

Several different models of plasmas are used in addition to the
popular cold plasma model. Model A is basically a quasi-cold plasma
model with first order temperature corrections introduced via non-
diagonal pressure tensors. This model can be derived from what is
often referred to as the "full adiabatic theory" [ 4 ]. Model A, for
certain frequencies where Landau damping is negligible gives results
identical to those obtained using a kinetic theory analysis of the prob-
lem[ 6 ]. Model H is a warm plasma with temperature effects included
via scalar pressures. This approach is essentially hydrodynamic in
nature, and consequently does not include the effects of Landau damping.
Also, we present some derivations based upon a kinetic theory approach,
referred to as Model K. The various models are all identical in the limit
of zero temperature and in this limit they reduce to the familiar “cold
plasma" model.

Numerical results based on the use of these models are presented,
and comparisons made with experimental data. In addition, some numer-

ical results are given for coherent radiation from a group of charges




where the assumption is made that the charges radiate as a single
macroscopic spheroid having a uniform charge density. MKSA units are
used throughout the thesis with exceptionsv denoted explicitly.

The thesis concludes with an evaluation of the models used, their
limitations and relative merits, and suggestions are made as to possible
future theoretical refinements and applications of the theory. Several

errors existing in the literature are also noted and discussed.

Antennas Radiating in the Ionosphere

Closely related to the free charge problem is that of an antenna
radiating in the ionosphere. Like the problem of the free charge radiator,
one is especially interested in the power fed into the surrounding plasma,
the types of waves excited and the structure of the far zone radiation
fields. However, when attempting to understand the operation of an
ionospheric-imbedded antenna there are several factors which serve to
complicate the analysis. The following is a list of some of these factors.

1) A sheath will form about the antenna. The sheath exists due
to the different mobilities of the negatively and positively charged con-
stituent particles of the plasmal77,86],due to v x B induced potentials
along the antenna as a consequence of its motion through the earth's
magnetic field [ 57 ] and due to any potentials applied to the antenna
terminals [54,59].

2) Since the plasma is not a perfect insulator, charges will flow
between the antenna and plasma complicating the already difficult prob-
lem of determining the current distribution along the antenna [ 13 J.

3) As a result of finite temperatures of the ionospheric components
acoustic type waves may also be excited and received by antennas[ 88 1.

4)‘ At the low frequencies ions can react to the antenna excitations
and their motion becomes important [ 9 7.

5) Collisions between plasma constituents causes damping of
waves and makes the concept of radiation resistance ambiguous [ 23 1.

Collisions also enable coupling between different plasma modes and




losses must be introduced in cold-plasma calculations to prevent certain
infinities [ 15 1.

6) Antenna motion causes Doppler shifts, in addition to spatial
inhomogeneities such as wakes and shock fronts [351.

7) In the presence of the earth's magnetic field the kinetic
pressure is more appropriately described by a tensor rather than by a
simple scalar pressure [ 67 1.

8) Very modest potentials applied to the antenna terminals result
in non-linear fields [ 49 1.

Presently, all treatments of the antenna problem have omitted
some, and usually most, of these effects. Consequently, analyses
tend to be too idealized to permit comparisons with experiment. In this
thesis, we shall concentrate most of our efforts on the problems asso-
ciated with items (3) - (7). Most of the other items are discussed in

 some detail in a paper by Baker, Weil, and Bearce [ 5 1.




CHAPTER 1I
GOVERNING EQUATIONS-HYDRODYNAMIC APPROACH

In this chapter we shall give the equations used to describe
radiation in homogeneous plasmas via a hydrodynamic approach. The
procedure will be to first calculate moments of the Boltzmann equation
for each species of particle in the plasma; the electrically charged
particles assumed moving under the influence of Lorentz forces. The
simplest possible models are used for the collision terms appearing in
the moments of Boltzmann equation in order to make the mathematics
tractable and still retain some collision effects.,

Using the Fourier-analyzed Maxwell curl equations and assuming
the properties of the plasma can be described by a mobility or dielectric
tensor, a "wave equation” is derived which gives the dependence of the
electric field in the plasma on the "external" source currents generating
this field. The resulting moment equations and the wave equation are
then linearized and expressed in terms of "polarized wave" coordinates.

These are the equations which form the basis for much of our work.

Moments of the Boltzmann Equation

The derivation presented here is very similar to that given by
Delcroix [ 141, and Shkarofsky et.al. [69 1. Our analysis begins with
the Boltzmann equation, which we assume to adequately describe the
motion of the plasma particles in phase space. For each species, s, of
particles of mass mS in the plasma there corresponds a distribution
function, fs' which in general will be a function of the position, r, and
velocity, w, of each particle as well as time, t. If Es is the force

acting on each particle, then the Boltzmann equation can be written




an _
df /pt+wevE+m E o« (f /dw)=(8f/08), . (_2.1)

where the gradient in velocity space is defined by

[ A ? A [} A o)
— =e T 1+ ¢ -— +-e -
oW Wy O Wy wy Jwy w, 0w, (2.2)
A A A . . . .
and e , € and e are unit vectors in velocity space. The inter-
Wy Wy w,

action term, (& fs/é’c)int , appearing in (2.1)represents changes in the

distribution function due to collisions between different species of par-
ticles as well as collisions between particles of the same species.

The force Es' under which the particles nf charge q are accelerated,
is the Lorentz force,

_]f—_‘s=qS (E+wxB) ( 2.3)

where E and B are the macroscopic electric and magnetic fields in the
plasma. Since each species of particles obeys equations of the same
form, we shall temporarily omit the subscript s to simplify the notation,
Using the convention of summing over repeated latin subscripts on vec-
tor or tensor quantities (i.e. EAJ. BJ. EAj Bj = AX BX + Ay BY + AZ BZ) ,

(2.1) is written

—1 —_
bf/bt+wj bf/bxj+m Fj of / bwj—(ﬁf/ét)int. ( 2.4)

Let A(r, w, t) be a general function of position,velocity and time,

and define the average, A(zr , 1), by

A(r,t)=N"* [ A(r,w,t)fdw, ( 2.5)
where N is the number density

N=[fdw . ( 2.6)




Here and elsewhere in this thesis, we use the convention that
when the integration limits are not explicitly given, they are to be
understood to span the whole space of the variable or variables involved.
We also take the liberty of writing a single integral sign to represent a
multiple integration whenever it is obvious from the form of the
expression involved that a multiple integration is required.

We define the average velocity, V, the kinetic pressure, P, and

the thermal energy flux tensor, Q, as follows:

V=N [ wf &Pw, (2.7)
P=m [(w-V)(w-V)fdw, (2.8)
gzmj(v_z—y)(_—l)(w_‘\l)f Fcw . (2.9)

Now to form moments of the Boltzmann equation, multiply ( 2.4 ) by A

and integrate over all velocities. Consider the various terms separately.

i

JA (d£/dt) EPw —g—t JAfd®w - [(dA/dt) fdw

d(NA)/dt-N (dA/ dt) (2.10)

il

_Q__ 3 _ 3
ijIijfdw j‘(bA/be.)wjfdw
b(NAw].)/bxj—N(bA/bxj) w, (2.11)

[ aw (05/0%) dw

m? J’APJ, (df/d Wj) PPw=m?* J [AFJ, (bf/bwj) dwj] dWk dwl, IEA SR

[ [AF £17 -
m* [ [ i 1, dw, dw,

-1 3
m j[b(AFJ.)/bwj 1£d®w

= - m?* Nb(AFj)/ bwj (2.12 )




Note that in ( 2.,12) we have set the term
Aij=O for wj=ﬂ:°°. (2.13)

This ensures that the moments of £ N, V, B, ... remain finite and

makes I [APJ. flm dw. dw1 = 0. We may write the Lorentz force as

k
Fj=q(Ej+€jkl W Bl) (2.14)
with Ejkl’ the Levi-Civita symbol, defined by
1 if jkl is an even permutation of xyz
gjkl = -1 if jkl is an odd permutation of xyz (2,15 )
0 otherwise.

We note that for the Lorentz force
bI—'J./bw].=0. (2.16)
Therefore the right side of (2,12 ) simplifies to
- N m’lm. (2.17)
Finally, for the interaction term, we define the interaction operator A as

— ATl 3
AA=N jA(éf/at)imdw. (2.18)

Collecting the various terms obtained we arrive at the macroscopic

equation
d (NA)/ dt - N dA/dt + d (NAWj)/bxj - N (bA/bxj) w,

—Nm‘l(bA/bwj)Fj=NAA. (2.19)
In the following sections we shall obtain the first three moment equa-
tions by setting A(r ,w, t) equal tol, mwand m (w - Vi(w - V),

respectively.
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Continuity Equation
Reintroducing the species subscript s, and putting AS =1 in
( 2.19), and inserting the averaged quantities NS and y_s, we obtain the

continuity equation for particle number conservation.

bNS/ ot + b(Ns Vsj)/bxj = Ns AS 1= (éNs/ét )in,E (2.20)

The source-term (6 NS/5 t)int which appears in the continuity
equation includes all short range interactions which change the number
density. For the ionosphere, these interactions can be divided into
two broad categories: those which result in production of ionization
(ionization processes) and those which result in destruction of ioni-
zation (recombination processes). Production processes are solar
photoionization and corpuscular ionization., The former is a result
of particle-photon interactions, while the latter is a result of high
energy particle-particle collisions. The primary recombination process
responsible for the loss of ionization in the ionosphere is that of
electron-ion recombination. Typical reaction times for these processes
are given by Rishbeth and Garriott [ 61 ]. For studying radiation phen-
omena in the ionosphere, the source-terms appearing on the right side
in (2.20) are small compared with the terms on the left since NS is
nearly constant over times of the order of a few typical radiation periods.
Therefore we can neglect the term (5 NS/G t)int in (2.20) and obtain the
familiar form of the continuity equation

X =0. (2.21)
bNS/bt+ b(NSVSJ.) /D ;
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Momentum Transport Equation

Setting AS =m_w in (2.19) gives

+ - T = . .

msb(NS v, )/ot+m b(NSlej)/b X, = NoEg N, m AW (2.22 )
. : : th . X

This is a vector equation which for the k== component is written

m E)(NS Vsk)/bt + m o (NS W Wj)/bxj -NSFSk= Ns mSAS Wy . (2.23 )

It is easy to show that

Wy w].= (wk- Vsk) (Wj - Vsj)+ Vskvsj . (2.24 )

Hence with the help of ( 2.24 ) and our definition of P, and inserting

the Lorentz force for _P_‘S, we can write (2.23 ) as
‘ + + -
m, e} (NS Vsk)/ dt+ 0 PSkj /0 xj m (NS VSk Vsj)/ bxj

= 2.25
N ag (Ek + € Vg Bm) N m A w,. ( )
If we make use of the continuity equation ( 2.21 ) this can be simplified

to
-1
ovsk/bt + Py stkj/bxj + vsj bvsk/bxj

= = 2.26
qS ms (Ek»-+ Eklm Vsl Bm) A‘s Wk ( )

where we have introduced the mass density, Py * To use this equation,
an explicit and mathematically tractable form for the interaction
operator AS wy must be found.

The most elementary technigque which allows us to include some
effects of collisions is the simple relaxation model, wherein the

interaction term assumes the form

(6f/61:)int=—u (f—fo) (2.27)
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where fo is sbme equilibrium velocity distribution and i/—l is the relax-
ation time for the distribution., This model is discussed at length by
Tanenbaum [ 78 ]. Our primary objective in using this simple collision
model is to ensure the proper selection of integration contours about
certain singularities appearing in various integrands in this thesis, and
pot to obtain quantitative measures of the collision effects such as
radiation absorption.

’ When the collision model (2.27) is used, we obtain for the inter-
action operator AS w

; -l _ 3 _
A, w= NS‘ j’vs(wfs wi ) dw= v, (U -V ) (2.28)

where yso is some equilibrium average particle velocity. Thus our

momentum transport equation becomes

1 ‘
-1 - -1
o Vsk/bt + p‘s E)Pskj/bxj +VSj bVSk/b Xj qq mg (Ek € VSl Bm)

=-v W -v_ ). (2.29)

Transport Equation for Kinetic Pressure
ReplacmgA bym (w - V M w -~ V ) in (2.19 ), the result is a
tensor equation., We 1ook at the equatlon for the (k,1) th element of this

. tensor, considering each term of (2.19 ) in succession,

(NA )/ dt=0P kl/ 2t (2.30 )
- N bAskl/ dt=0 (2.31)
b(N A w sk1 ¥ )/bx stklj/b X, + (bVSJ./ bxj) Psk1

+vsj bPSkl/ bxj (2.32 )

- Ns (bASkl/bxj) Wj = (bVSk/ bxj) PSl] +

P kj(Z)Vsl/ bxj) (2.33 )
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_ -1 b — —1
Ns ms (bAskl/ Wj) st qs ms €kmn Pslm Bn
_ —1
9 ™5 Smn Pskm Bn (2.34)
Ns As Askl=ps As (Wk~vsk)(wl—vsl) (2.35 )

Collecting these terms, we obtain the transport equation for kinetic

pressure

p ot + . .+
o Skl/ o) stlj/bx] ® Vsj/bxj) PSk + VSj bPSkl/bxj +

1

(bvsk/bxj) PSlj + PSkj bVSl/bxj +

—1
qs ms ( €knm Bn le + €lnm Bn Pkm)

= pg A by =V ) (w =V ). | (2.36)

As in the previous section, we again use the collision model
(2.27) to obtain a tractable form for the interaction operatbr. This
results in the relatively simple expression
A m (w-V)(w-¥)=-NFv (R -P ) (2.37)
where Eso is some equilibrium kinetic pressure. In general, the equili-
brium kinetic pressure =Pso will be a scalar quantity as indicated for
example in [ 66 ], However, in the ionosphere, the temperatures
corresponding to particle speeds parallel and perpendicular to the
Earth's magnetic field are often unequal for times on the order of many
cycles of the radiation. Hence, the unperturbed kinetic pressure in the
ionospheric plasma is likely to be a tensor quantity corresponding to
different pressures parallel and transverse to the Earth's magnetic field.
Thus for our purposes we freat __ESO appearing in (2.37) as the unper-
turbed kinetic pressure since, for the cases we wish to consider, the

unperturbed pressure represents a quasi-equilibrium state. This
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method of introducing losses into the kinetic pressure transport
equation is used by Sharma [ 67 1.

In order to close the set of moment equations we shall use the
adiabatic approximation v =QS = 0 as used for example in[10,82]. Then

(2.36) simplifies to

d Pskl/ Ot + (bVSj/bxj)Ps +Vs], bPSkl/ bxj +

k1

(bVSk/b Xj)Pslj+P bVSl/bxj+

skj

B B )

~1
ag m n Pslm + Elnm n Pskm

s s €knm

= - - ) .38
Vs (Pskl Psokl) (2.38)
An alternative procedure to closing the moment equations which does

not require setting v - Qs = 0 is given by Oraevskii, et. al. [ 56 ].
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"Wave Equation"

Before we can solve for the power fed into a plasma from a
radiating source it is first necessary to determine the dependence of the
electric field in the plasma upon the source current density J (eX)WhiCh we
often call the "external" current density. The purpose of this section is
to derive this functional dependence. The relation between the electric
field and the source current as derived here is often called the "wave
equation", for it is simply a generalization of the free space wave
equation to the case of complex dielectric media.

We begin the derivation by Fourier-analyzing the Maxwell curl
equations (MKSA units). Assuming that all field quantities can be con-
sidered to be made up locally of a superposition of plane waves exp

(ik *r -iwt) with k the wave propagation vector and « the radian

frequency, these equations can be written,

kx6=0wh (2.39)

and

Lo s (ex)
ipkxB= 1eom_d§+§ N qs_'_lfs+£ . (2.40)

where the convention will be to use script capital letters for the Fourier

transformed fields. g(ex) is the Fourier transform of an external current

density which for our purposes will be taken as flowing independently of
the plasma medium in which it is embedded, and NS qu[S is a Fourier
transformed convection current in the plasma. Fo and €, are the usual
permeability and relative permittivity of free space. The summation is
over all particle species in the plasma. If the plasma is described in
terms of a mobility tensor g which relates ‘Z_S to 8 via

Z:

- 8 (2.41)
S —_

=

S

then ( 2,40) can be written as




(ex)

i”(—)lkxg='i€o°’§+§Ns qsis'f+f . (2.42 )
The relation between the "induced" current ﬂs(m) and the electric field
given by
g(in)sN-q Y =g +8 (2.43 )
‘s s 's—s =s — :

defines the often used conductivity tensor __(__JS which is obviously related

to the mobility tensor by
o .=N_q_p_. (2.44 )
Defining the dielectric tensor K by

— s -1 — . -1
K—_£+1 (€o w) E NS A gs—; +1i (EO w) SE=o's, (2.45 )

(2.42) becomes

ip—oll_<_x_/§’=—-iw€o__1§-§+él(ex). (2,46)

Solving ( 2.39) for B and inserting the result into (2,46 ) gives the

single equation for ¢ , namely,

kx (kx8)+ (F/P)E 8 =-iop, g(eX) , (2.47 )

where ¢ is the velocity of light in a vacuum. Using the vector identity

kx(kx8)=k(k +8)-%* ¢ (2.48 )

we can write the "wave equation" for &

Sk (B 8)+ K 8- (F/ Pk 8 =iopn, g, (2.49)
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At this point we have only a formal relationship between the
electric field and the source or "external” current density, since we
have not yet specified the components of the dielectric tensor 5 . What
we are doing is putting all of the complexities of the plasma into this,
as yet unspecified, tensor, Provided that the dielectric tensor compon-
ents are independent of the electric field, the "wave equation™ can be
straight-forwardly inverted to yield an expression for the electric field.
When the dielectric tensor depends upon the electric field, the radiation
problem becomes an enormously complicated nonlinear problem. Such
situations are not at all difficult to realize in practice. For example, an
electric dipole will drive a plasma in which it is embedded in a nonlinear
fashion when only a few volts, i.e. 2 1 volt, are placed across its
terminals [49 1. In this thesis, we shall restrict ourselves to linear
plasma responses. Analyses of the nonlinear antenna-plasma problem
are given by Baker, Weil, and Bearce [ 5 ] and Shkarofsky [68 7] which
treat the problem of the input impedance of an antenna under large drive

levels,

Linearization and Transformation
Till now, all the field quantities E, B, P g ys , etc. have
referred to the total field. Now we wish to consider all field quantities
as being composed of an unperturbed part indicated by a subscript, o,
and a small perturbation caused by an external source which is written
without the subscript o. We shall assume that the present field quan-

tities can be replaced as follows:

N-N_+N , p p +p ., B, E*E . (2.50)

The first term to the right of each arrow represents the unperturbed value
of the respective field while the second represents only the perturbed

field. Note that when no source is present, the plasma is assumed to be
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at rest (yso = 0) with no ambient electric field(go = 0) but permeated by
a constant magnetic field (_liO = Bo é\z ) directed along the positive
z-axis. Retaining only terms to first order in the perturbation fields the

N / N ./ x, = (2 . 5 )

-1 _ -1
bVs]</bt+pso stkj/ij g ms (Ek+ Eklm Vsl Bom)

- _vs Vsk (2.52 )

bPSkl/ >t + (bVSJ./ bx].) Psokl+ (bvsk/bxj) Psolj +

-1
Psokj bvsl/ E)Xj + qs ms (€knm Bon Pslm + Elnm Bon Pskm+

€%nm Bn Psolm * 9nm Bn Psokm) =Tl Pskl * (2.53)

This amounts to a linearization of the moment equations.

We shall perform a double transformation of the moment equations
as follows: First, we shall Fourier-analyze them and second, we shall
express the resultant equations in terms of Polarized-Wave (P-W) space.
For a discussion of Polarized-Wave space see Appendix A. Field quan-
tities which depend on the Fourier transform variables (k , w) will be
designated by capital script letters as previously indicated.

The first two moment equations, (2.51 ) and (2.52 ), become

-w 7ZS+NSO k_y "Vsy=0 (2.54)
-3 +ipt - -1 + 3 ”
1o Wso l’Oso Qscr— v ky qs ms é,'c : owbs sg
=—vs 'l/'so_ . (2.55)

The radian gyrofrequency @y appearing in (2,55 ) is defined as

@i = qs Bo/ ms, and contains the sign of the charge.
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As in the case of repeated latin subscripts, we use the summation
convention of summing over repeated Greek subscripts on vector and
tensor quantities. In this thesis, Greek summation indices take on the

values +1, -1, 0. By way of illustration we write for vectors A and B

A+B=XA B =A B=A. B +ABi1+2A By. (2,56)
v v -V Vv

Greek indices can also appear as algebraic quantities.’ This feature

considerably simplifies the form of many equations. For example,

?vA_v ,SVA_ B =A1B -A B, . (2.57)

Note, however, that no summation is implied in the following examples

containing vectors A and B and Bessel function Ic:

B .58

since odoes not appear as a repeated subscript on vector or tensor

quantities.

In the transport equation for kinetic pressure (2.53 ), we first
Fourier-analyze this equation and then eliminate 8 by using the Maxwell
equation ( 2.39) and the identity ( H.46). Then transforming to P-W

space, realizing that in cartesian space fs is symmetric, we obtain

-3 i =i y/ -1 -
( foty +iep (0+>‘)>€)so)\ lk—'ny‘yPSOO')\ ”fsok-'ypsoyx
3 Ve - -1 -1 _
' Psocr— vy ky sa” I Mg @ <£ck—y Psoyk
+ - .
kc 6-)/ Pso;xk Psocr-'y ky é;)\ Psoc—'y éy k>\> (2.59)
Linearizing the constitutive relation (2,43 ) we get
él(in)=N q. ¥ =0_°8 (2.60)
Zs so ‘s —s =5 — = .
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Hence, in the linear regime

and from (2,45 ) the linearized dielectric, mobility and conductivity

tensors are connected by

I~

= i -1
1 +1(€Ow) SE N, a, g

_S=__§+i(€0w)"1§‘3__qs. (2.62)

The "wave equation" (2,49 ) looks formally the same after lineari~

zation. In terms of P-W space it becomes

2 _ _ o -1 g lex)
(n° I K n_ n__‘y)és"y i(w €O) ‘90 (2.63)
which is written using the refractive index vector n, defined by

n=ck/w. The quantity Icr— y is a component of the identity tensor in

P-W space. Ic —y = 1 if the algebraic quantity o~y = 0 and Io—'y= 0
if o -y# 0.
If ,g(eX) = 0, then the "wave equation" reduces to
n® 1 -K -n_n § = 0.
0 Ty Koy g Boy) € (2.64)

In order for there to exist non-trivial solutions to this equation, the

determinant of the matrix multiplying § must vanish, that is,
2 —
det (n Iy~ Ky n n )=0. (2.65)

This is referred to as the dispersion relation because it gives the
functional dependence between frequency and wave propagation or
refractive index vector,

The linearized and transformed equations given in this chapter are
collectively referred to as the "governing equations” - hydrodynamic

approach.




CHAPTER III
GOVERNING EQUATIONS-KINETIC APPROACH

In the previous chapter we obtained a set of equations used for
studying plasma phenomena which are based on a hydrodynamic approach.
In the hydrodynamic approach one does not work directly with the Boltz-
mann equation but rather with the moments of this equation. Hence, this
approach can not describe those phenomena which depend on the explicit
form of the distribution function rather than just on averages obtained
with it. However, in this chapter we shall work directly with the linear-
ized Boltzmann equation. We write down a formal solution of this equa-
tion and make the connection between the solution of the Boltzmann
equation and the expression for the dielectric tensor which describes a
warm magnetoplasma. Having obtained an expression for the plasma
dielectric tensor, we can then combine this with the Maxwell equations,
as done in the previous chapter, to get a set of equations governing
radiation in homogeneous plasmas based upon a kinetic approach.

A great deal of the material which appears in this chapter is based
on the numerous Russian investigations in this area; see for example the
book by Klimontovich [39 ]. We also found the papers by Bernstein
[ 7 7] and Kikuchi [38 ]to be extremely useful in this regard.

As in the previous chapter, our starting point is the Boltzmann

equation which we write in the form
>f/dt+w « vE+ m> q(E+ wxB)-(2f/dow)= (6f/6t)int ( 3.1)

where we use the same notation as in the previous chapter. An equation
of the same form holds for each species of charged particles in the

plasma.
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Using the simple collision model (2.27) to approximate
the interaction term and linearizing in a manner similar to that used in

the previous chapter with f - f + fo' we get
(df/dt)+w -vf+ mig (v_vxgo)' (f/dw)+uf=-mq (bfo/bw_.)-@+v_vx§) . (3.2 )

Note that in Klimontovich's book that his eqn. (9.4 ) is missing the
term -mq (bfo/bv_g) *w X B which occurs in our corresponding eqn.

(3.2 ). He claims that this term is identically zero if the distribution
function fo is of the form fo(w) =f (wf, Wz) . However, this condition
alone is not sufficient to guarantee the vanishing of the additional term.

To see this, consider the particular distribution function

f = e'awﬁ_'BWza.

. (3.3 )

Ifa# B, then bfo/ dw is clearly not parallel to w and therefore
(bfo/ dw) *w xB is not always zero. Hence this term must be retained
if we are to allow for such ambient undisturbed distribution functions
such as given by (3.3 ).

We find it convenient to express those terms which derive from

the Lorentz force in terms of "polarized-wave" space. Thus we write
s - 1
(bf/bt)+wj(bf/bx].)+1wb7vv_ y(bf/bv_\_r)y+vf = -mq(df /ow) _y[Eva_vx_B)y].( 3.4 )

From Appendix A we use the relation

i L i
(b——>s <y22‘2 ©  iiy oty '§—¢+(1-72>§W )elw’ (3.5 )
Z

dw 1
1

where the velocity is written in cylindrical (W_L, @, wz) coordinates,

to obtain
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(0f/ot) + w, cos ¢ (df/0x) +w, sin ¢ (Rf/oy) + w, (df/0z)

o (of/0d +yEs mta GLAw) B+ xB) | (3.6)

—

Consider solutions of the equations

dx/dt = w, cos ¢, dy/dt= w, sin¢, dz/dt= W,

dw. /dt= 0, d¢/dt= -w_, dw_/dt=0, (3.7)
L mb Z

which are the characteristics[32] of the homogeneous linearized Boltzmann
equation. - The solutions of these characteristic equations connects the
values of r, w at time t with the values of R, Wat time t'. Here, r, R

are position vectors with cartesian coordinates (x, v, 2 and X, Y, 2)
respectively and w, W are velocity vectors with cartesian coordinates

(Wx, Wy, WZ) and (Wx' Wy, WZ) respectively. Thus

R(t', t, w, r) = RO, t-t', w, r) and W', t, w) = w(o, t-t', w).
( 3.8)

The solutions of (3,7 ) are

x =X + mk“)l W sin@—w’bl w, sin [@ - wb(t_tl)j

= _ -1 -1 r _ — l_‘|
v=Y ©y WL.cosr:I) +mb chosLtb wb(t t)—:
z=Z+WZ(t—t')

w, =W,

o= & - wb(t—-t')

wo=W . (3.9)
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The inverse relations are
— -1 s b ' 7 -1 :
X—x—wb Wi51nL¢_mb(t_t)J+wb w, sin ¢ i
Y=vy+ mz)l w, cos [95- wb(t' -t)] - m};l w, cos ¢
Z=z+w_ (' -1
Z
W, =w
@ = ¢-—wb(1:'-1:)

W =w_ . (3.10 )
z z

Using the relations (3.10)we can now write the linearized Boltzmann
equation in the form

f({, WIt)= e—V(t—tO) f '/\.B'.(OI t—tol WI_I:)I W(Olt_tol W)l tO\«)

— t — (t"'tl) ' '
-m 1 v -
m?g J’t e (bfo/bvi)—'y,w—’v_v'(o,t—t',V_V‘){Ey@‘(o’t t,w,r),t )
o

+ [W(O,t—t',w) xB R(O,t-t', w 1), )]y} at' (3.11)

where we take t >to. To verify that (3.11) and (3.6 ) are equivalent,
substitute this expression for £(r, w, t) into (3.6 ) and differentiate

directly using the formula

ola) o(a)

Sl rala=tow, 920 (4, L@ [ g aiax
(@) b(a)

(3.12)
for differentiating a definite integral with respect to a parameter. In this
manner it can be readily shown that our expression for fr,w,t) does

indeed satisfy the differential equation ( 3.6 ).

The first term on the right hand side of (3.11) is determined by the

initial value of the function f, the collision frequency v ,and the time
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lapse t—to. Tt is the solution of the homogeneous equation obtained from
(3.6 ), while the second term is the solution of the non-homogeneous
equation (3.6 ). If t—to (to is the initial point in time) is greater fhan
the time required for the establishment of steady conditions, that is
t-t_>> 1/v, then we can make the initial point in time in (3.11)
approach -®. This defines the connection between the distribution
function and the electromagnetic field vectors E and B for a steady
(stationary) process. Below we shall take t = - <. In this case the
first term on the right hand side of equation (3.11) goes to zero.

Using the distribution function one may obtain the current density

J for a given species via the usual relation

_:[=qj‘v_vfd3w. (3.13 )

Reintroducing the subscript s to distinguish various species of charged

particles the total current density is written

IJ=Z 7T, (3.14)

(in)
s
electric and magnetic fields in the plasma, can be written

Using ( 3.11), the induced currents J , which are proportional to the

. t . 1 (F—t
]_(ln) =_m—s]_ qE j dt' J d3we Us(t t)w_(bfsJDW)

~8 S GO YW —’W(O,t_tl ,V_V)
(ROt ) 2 e [ WO, et ) 2 BR Ot war) )] b
N b 7.)
(3.15 )
Applying the space Fourier transform to our expression for the

induced currents J S'n) (r,t) and expressing E and B in terms of their

Fourier transforms in k -space, we obtain
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t
— =1 2 [ 3 A -
és k,t) = m* g J d’r .Lodt | dw w (bfso/bv_\r)

:V_V"’ W(Olt_t' I‘M)

) . e i ker b (e .
(27‘_) 3‘]\ dSk. el_ R(Olt t IV_V(_r_) ik_ X VS (t t){é. (k',t')
vy
+ | W0t w) x B &' o] (3.16)
. "
Noting from (3.10) that
R(O,t-t', w, r) =r+R(0, t-t', w, 0), (3.17)

changing the orders of integration, and performing the integrations over

d®r and d%k’' results in the following expression

t
— 1 2 ' 3
£s &,t) = Ms 9 I_mdt Jd w w (beO/bv'v)-‘Y:V_V‘* w(o,t-t',w)

elk ‘R(0,t-t', w,0) R (t-t')

. . v . ‘ b}
{57(15,t)+[vg(0,t-t ,vx)x_@(]i,t)]‘yf . (3.18)

Carrying out a Fourier transform of g S(&, t) with respect to time we

obtain

® . t
_ t
g ko) =-m*q® | atet | a [SCww f /,»
s s .‘[oo -J:m J. - ( SO/ w) )IV_V._’V_V_(O‘It-t.IW)

K R0, t-t', w, 0) -y (t-t')

{67@,1:')+[Y\_/'(0,t—t',v_\z) x_/g_(]g,t')] } . (3.19 )
Y
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We make the following change of variables:

T=1t-t
(3.20 )
g = {! ' .
which enables us to put ¢ s(k, w) into the form
k,o=-mrq® | dr | Pww
gs © s % “Yo -Y ww (bfso/bv—V) -y.w~W(0,7,w)
o Vs mHiwT+k *R(0,T,w,0)
d i
[ aefs o[ wiomwxako |}t (3.21)
Y
Noting that
[ ags & 0et-g k0 (3.22)
and similarly for 5 (k, &) and replacing the dummy variable 7by t,
we find that
k,w)=-m"q> | dt | PPww (f />
¥ s s Xo J (oo 0w) -v,w~ W(0,t,w)
e_.us1:+i<o’c+ik'_R_(O,t,_v_xz,O)
.(5 (-]S ) 0 S
{8, c,0) +[W0O,t,w) x 5k, ]y; : (3.23)

Eliminating Bby using the transformed Maxwell equation (2,39 )

and factoring the quantity cﬁy we obtain
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) e 2 3
$.&0)=-m?q® fodf- [eww Of /W) ) w-wio0,t,w)

UL ROLWO) [ [y, m)]

+ otk W oty é 3.24
Sk, W_ o tw)} e (3.24)

Comparing our definition of the conductivity tensor g o given by (2.43),
with (3.24) we find that

— el 3 [® 3
o =-m g Jodt jdwwpL (bfso(w)/bvi)_A

sSp-Yy ' W —'.W_.(O'tlﬂ)

e_ys t+ i(.d:""i_k_ .B (‘O,tp‘EIO) {Ik_y[l—w_lh . W_-'(Olt,w) :|

_1 ’
T kxw-y(ﬁ't'vl’)} : (3.25)

Using the expression for R given by (3.10 ) and expressing k in

cylindrical (kJ_, O, kz) coordinates, we can write

. — -1 3 -— - -al - -
k _I_{_(O,t,v_v,O)—k_L Wi W, sin{p=-¢ wbst) sin(p ¢)] kzwzt.(3.26)

Introducing the identity

s -1 . A @© : . AV
elkl “hs W, sinfp - ¢ wbst)= T Tk ot w )elp((p ¢ lpwbst
p= - p L bs 1L
(3.27 )
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and using the equality

_ gt
® fsé"_".)/bw) A WOt © “bs (bfso(w)/bvy_) ) (3.28)

which presupposes f’SO(V_V) = fso(v_\;) which is true for distributions of

the form fso(w e WZ) , we can now write the plasma conductivity as

= —mlg? v 3 ) Teive N
Ogumy™ M Iy JO dtjdw w, LA—’}/ fSO(V_V)_]e p{l___‘_wlp (&)
elp((p— ¢)-i €& sin (o- ¢)+[—vs+iw—i(p+'y) wbs—ikz wz]t (3.29)
‘where
=k 0t w ,
£ L bs L ©(3.30)

and A is the vector operator with components

1
= 0B -
Ail 2 I:(l ) kZ w

DA I
z) bW_L+w kZ Wi dw ] ! (3.31)

4
and
= gt —d- (N R
Ao” w"k, cos (p- ¢ wbst)[wz bW_L w, bwz _j+ bwz° (3.32)
Performing the integration over t gives
il 2 171 3 i -iy ¢
0y, = imy @ K [@w w [q £ ) e
S ipp - ) -1£ sin (o ¢)
ipl - ¢)-i& sin (-
NG ? (3.33)
p:-oo
where
r 1471

G, =lw, ~le+iv -G£V o )k | A, (3.3
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and
-—1 .
—i,1 —_— T i(e-9)
Co=tuw k, {[wz—(w+1vs (p+1) wbs)/kz J €
' iy - (o- T cile-ey o, D T
+sz_ (w-l-lvS (p-1) wbs)/kz | e } LVVZ CW_L w, bwz J!
- - o)
- 3 - 1
+ sz (0+iv - po, )/k_ J b, - (3.35)

Since we have already assumed that fSO is independent of the azimuthal
angle ¢, the integration over ¢can also be carried out at this time. Noting
the equality

2

27, ;
Jo el({, ¢>—£s1n¢)d¢= ZnI&(g) , (3.36)

the result of this integration can be written

— 12 1 iw-ye ? i i
Ogymy=1 arm g Koe I;é"'_m ‘lo dw, I_wdwz A SH Ip_p(é) Ip_,y(E,)
G - -
{ oy feo D_y[wl(bfso/bwz) w, f_ /ow )] | .57
wz-(w+ iv.-p wbs)/kz J .
where SpL defined by )
w =S e
w " (3.38)
is the ¢ independent part of wp. Thus
s =p? 2By +(1-p%) w 39
}.L p‘ L P- Z o (30 )

Similarly we have also used the vector operator Ga where Oa fso is
defined as the ¢ independent part of (bfso/bv_v_)a, assuming fso is

independent of ¢, hence

=2 0
O =32 z 0 32 (3.40)
\ X 2 +(1 A)OW .

dw
L
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Finally, we have introduced the vector D, defined by

____2-% -1 _3\® -1 41
DK X 22w kz+(1 k)pYSWL. (3 )

Having obtained an expression for the conductivity of a plasma, we can
then combine this information with the Maxwell equations, as done for
example in the previous chapter. The result is a set of equations
governing radiation in homogeneous plasmas based on a kinetic theory
description of the plasma. We call these the "governing equations"~

kinetic approach.




CHAPTER IV

DERIVATION OF DIELECTRIC TENSOR

The approach we have taken has been to restrict all of the medium
complexities to the dielectric tensor. Hence, by modeling the plasma,
we mean giving an explicit form to the dielectric tensor. This chapter is
devoted to giving alternative expressions for the dielectric tensor based
upon our different plasma models.

We are going to analyze three plasma models. The first model is
based upon a hydrodynamic description of the plasma using scalar pres-
sure theory., We call this Model H and refer to it as the Hydrodynamic
Model. The second model is based upon a kinetic description of the
plasma and is referred to as Model K or the Kinetic Model. The third
model we shall use is derivable from both the hydrodynamic and kinetic
approaches using suitable approximations but not limiting the pressure to

be isotropic. It is sometimes referred to as the Full Adiabatic Model [107;

our Model A. Model H

Model H assumes an isotropic pressure, that is,

1 0 0
P =P o 1 0. (4.1 )
=S %1 o o0 1

The scalar pressure PS is assumed to obey the adiabatic equation of

state

Py N;’s' = constant (4.2 )
where Ys 1is the specific heat. In the linear approximation

dP_ = (y; P/ N_)dN_ ( 4.3)

32
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where the equation

P =N KT ( 4.4)

relates the unperturbed pressure number density and temperature.

K is Boltzmann's constant. Rearranging terms
—_ ] = 2
dPS——'ySKTSdNS mSuSdNS ( a.5)
where uS is the "sound" speed defined by

u2S=yS'KTS/mS. ( 4.6)
The value of the specific heat ys' is a somewhat complicated function of
wave frequency and particle collision frequency [ 17 1, and different
values are obtained depending upon the assumptions which are made.
However, the various assumptions do not seriously affect calculated
results as long as one considers a linearized theory [ 58 1. The actual
numerical constant can be absorbed by using an appropriate sound
velocity. In our numerical calculations we use ys‘ = 3.

As a result of these considerations, the linearized continuity
equation can now be written as

2 P
N m, ul VeV dP_/dt. (4.7 )

Since we have assumed that the various plasma constituents obey
adiabatic equations of state, it will not be necessary to use the pressure

transport equation. The momentum conservation equation (2.55) with

st—c ]<;0 now replaced by QS k>\ becomes
s ; ~ -1 o _ i -1
(1w+vs+1>\wbs)’ys>\ qsms£>\ 1pson kk' (4.8)
or, solving for ’Vs X and introducing the notation
= i = = 4.9
I“s_1+1vs/<.o,YS c.obs/m,BS YS/I'S ' ( )
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we have

— _ =1 s
st"[msrs‘*’(l xp) ] g 6, +& k,/N_). (4.10)

Note that Ys' like Wpar contains the sign of the charge.

‘We can solve for 635 in terms of <5>\ by forming the dot product

k * ¥ using (4,10 ) and substituting for k » ¥ from the Fourier-

analyzed continuity equation which we write as

— 214-1
ke = (o, ul)™* 0o . (4.11)

As a result of this procedure we obtain the relation

— s 2, 2 _ -1
G’S/ Nso— (i a esc/w DS) k_y(l yBS) é;y (4.12)

where the complex normalized thermal speed squared is given by

Il

€ uz/(c'2 rs) , ( 4.13)

and the complex "gyro-element"” P is defined by

- _ a2yl
g = (1-p20" (14.14)
and

— _ 2 2
Ds—l € (nl gsx+nz ) . ( 4.15)
Combining equations (4,10 ) and (4.12 ), we get

—_3 - -1 _ -1 ~1
?/Sk—lqs [ms rs w(l - BS)J (£>L+ € (1 yBS) D, n/\ndyésy).( 4,16)

Therefore the mobility tensor elements p. SA- are of the form

n

_3 _ -1
B slaglm Too@-ap)I™0n,  +e ny _

SA-y

(l—yBS)"l/Ds ] ( 4.17)
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Defining the magnetoionic variable

- 2
=N o /e mow (4.18)

and the complex magnetoionic variable
2
o —XS/I‘S : (4.19)
the dielectric tensor elements obtained from ( 2,62 ) are given by

I

2 -1 — -1
X_y—SZ of (1-xBy) [Ik—y+€s n)\n_y(l 7 B,) /DS]- (4.20)

Kk- 'y=
In a cold plasma (i.e. one in which Es = 0), the dielectric tensor sim-

plifies to
X =K. I (4.21)

where

— 1 . 2 _ -1 =1 -
Kk—l Szas(l XBS) , (A=1,-1,0) (4.22)

is a diagonal element of the cold plasma dielectric tensor. Since Kxis
neither a vector or tensor quantity, the summation convention does not

apply to it. In terms of K)\' we can write ( 4,20) as

— - 2 - -1 _ -1
Koy =Kx Dy 7 G5 @ ABIT -y nyn_ /D (4.23)

Explicitly, for cylindrical (nl, O, nz) coordinates




— - a
K1—1 - Kl i n_L }‘
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/s ‘s a: (I-Bs)-z/DS

S

=K—n22 a® /D
Koo o} zstss/s

w _ L 3 i2¢ 2 _ 3y
K, = -2 e }; € o (1-5)) /D,
K =-2‘% n n ej‘pht o? (l-ﬁ)—l/D.
o MRy €7 ) €% L-B) /Dy

N .
=-2"% nd 2(1+8)/D_.
Ko = - 2 n n, e zsesots(l B /Dy

(4.24)

(4.25)

(4.26)‘

(4.27)

(4.28)

The remaining components of the dielectric tensor can easily be obtained

from these if we note from the general form of I%t-y that

*
K—A'}/ (E'w) =Kx—‘}/ (_I:l_'—w)o

(4.29)
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Model K
In Chapter III we derived an expression (3.37 ) for the plasma
conductivity tensor using kinetic theory. If we now assume that fso
can be described by the two-temperature Maxwellian distribution

2

2 2 P=4
fso= Nso(Zﬂ)"a/z u? uloe w /2 WZ/ZLIS“ (4.30)

sL s

with transverse and longitudinal thermal speeds defined by

2 = =
uy, KTSL/mS, ug, KTs"/ms ' (4,31 )

respectively, and insert this for fso into the conductivity equation

(3.37 ), we obtain

= 1 -5 2 1 -2 .1 _ilp-y)e T
GSH“V i (2m) € o kz us, uSII e ? JF dw J dWZ w
p:,_m O - CO

- 2 __2=2 2
I 1 o WL/ZuSL WZ/ZuS“

S
pOPTR PTY

{S v? -D w ow W?®-u®) }
it 4 sy -yt Z_ S| S L

Wy~ (w-l_“/s_p “bs)/kz

(4.32)

where usy (not a vector quantity) is defined by

usil = uS_L ! uso = Uy (4.33 )

We can reduce the number of tensor elements which we have to calcu-

late if we note the following symmetry property obtained from (4.32 ).
—_ * -
osu_y(_rl,w) US_M/(Q. w) (4.34 )
The dielectric tensor, which is related to the conductivity by

= i -1
K=I+i(e )" Zo, . (4.35 )

also obeys the symmetry relation
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- * -
Kp_y(g, w) K_w(g. w . (4.36)

Hence, we proceed to calculate only K,;, Ky, K11 ; K5, and K ; the
symmetry property makes it a trivial exercise to obtain the other ele-
ments of the dielectric tensor from these.

In ( 4,32 ), the integrals over w, can be expressed in terms of the
"plasma dispersion function" Z({¢) (see Appendix D), and the integrations
over w are all related to Weber's second exponential integral [ 85 ] and
are found in our Appendix D. Carrying out these integrations results in

the following expressions for the dielectric tensor elements

# g et E g .
Kiy = 1+ZxS 7%t af e sz_m[z €)+2%n, a2 (1-d_ /d )z |
[PIy G + (P ) T a4 ) ] (4.37 )

— _T\-‘ '# - ‘% M ' ' EM
Ko=1-Vx 782 aF s % ¢, 2, [1-p ¥, 0-a_ /a_) 1 )

S p=-®
N (4.38)
. i 1 _
et et ad o -
"'% % 1 ) T
2%, df (-d_ /4 )z )] (7] G- () ) (4.39)

@

= _olp T -3/8,-1 -1 31 BT g -
K o= -e P X Y 2%/Fn) o dsn e’s l_l pYS(l dsl/dsL)}

S p:-co
1] '— — 1 -.;
Z(Cp);_(p MS)Ip(}LS)*‘HSIp(MS)J (4.40)
Koy = -e“"}; X, Y, 7% 0} ot e"“spz_m z',)

2% 2 (1- ve )i T 1
2% n, dgu (1 ds_L/dsu) cp Z (?;p)_j l_(p-}-I,LS)Ip(}.LS) g Ip (ps)_j.(4.41)
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The argument Ep of the "plasma dispersion function" is given by

1
= n (a.42)

1 1
— . El = : _ =
Cp— (o +1vs D wbs)/ 2 kz usn (1 +1vs/w st)/Z dS” ,

and the argument By of the modified Bessel function Ip is given by
— 1R 2 2 = 2 2
=K uy Sep =nld, /YO, (4.43)

where dSll and dS‘L are the normalized thermal speeds defined by

- 2 -} 2
su_usn/C d dS_L_uS.L/C . (4,44 )
We also use the convention that
dZ(Cp)
et R Zl R
3 Cp (Cp) (4.45 )

with similar relations for I' (}LS) and I" (ps) .
Equations (4.37 ) - ( 4.41) are the dielectric tensor elements for

our kinetic model which we call Model K.
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Model A
The dielectric tensor for the Full Adiabatic Model* (Model A) is
obtained from approximate solutions to the "governing equations” which
were derived in the first few chapters. We find it illuminating to derive
this model from both the moment equations and the Boltzmann equation,
since such a procedure points out some of the similarities of the two

approaches.

Derivation of Model A From Moment Equations

Our starting point is the "governing equations" found in Chapter
II. We assume that the ambient plasma kinetic pressure is of the non-
shear type. This enables us to write the ambient pressure tensor as a
diagonal tensor. Allowing for differences between the pressure, PS“ R
along the magnetic field of our magnetoplasma and the pressures, PSL .

transverse to this field, we thus write

P 0 O P 0 0 P -P 0 o0
SL S sL 5|
=Pso= 0 PS_L 0l=]0 Psu 0l +|O0 PS_L— Psn 0o1. (4.46 )
0 0 P 0 0 P 0 0 0
Si| S|

This expression for gso has the same form both in the Cartesian and

P-W spaces. Evidently we can write

o® I (4.47 )

Psoa >\=Psu Ia)\ + PsA o

where
PiAa™ Poy ™ By - (4.48 )

Inserting this into equation (2,59 ), we have

1 The model is full adiabatic because an adiabatic gas law is applied to
all components of the pressure tensor rather than to a scalar pressure
only.
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P » -1 31D np- _

Qsc)\ L fo+v, +1mbs(0‘+>\)] { 1PSl| IO'A k—y sy
. 2

lPS o IO')xk

2
A P T _ ¥k

v -iP U k. -i -
-y sylsn so Al sA sO -y I‘)/>L

kv,-iP, o k_7 ., -
S S
=1 ~1 232 - 2 < - 2
wrg (P dX k) -P kX8 4P 0"k 6P 076k 1} (4.49)

From (2,55 ) we obtain the desired form of the momentum transport

ecquation.

(MlwtyHiow, NV =qm*é -p e

bs’ 'sa s s O sovso-kkk (4,50 )

Inserting for Qs)t-—‘y using (4.49 ) gives

k k
-1 5 _ p"l {iPs“ __0'___1_'_

-iw + +iogw r o= m -
( Vg™t O bs) so 9 Mg %™ Pso w+1VS

k K. I k_ k o’k _k
-A A o-¥v g -v ]7f +ip [—_—_M 0 2
w+ivs —wbs(o— M) w+ivs —mbs(c+y) sy T sA w+ivS

2 2
A k-xkklc -y o kok—

-}
, +— v
wHy o J(o=N) ey —wbs(o'+y)_l sy

+ag (msw)_l PsA

(3’2-02)1<ka_y (0 -N)k_ kI _
[w-l-il/ -w, (o+ )+ wtiy -w (0'0-.-)3 ]é’ } * (4.51)
s “ps?TY S bs Y :
Defining
2 =pt P =Km?T
sy, A, 1 7SO "gy,A,L s “s|,A,1L

(4.52)
and putting equation (4.51 ) into a form suitable for matrix inversion we

obtain
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Rk kT
!(—iww +icw, )1 +iu® | < —Y . " +
" S bs' ‘o-y s ‘_w+1us w+1vs~wbs (o-X)
k_k 2k k k kI
[ Bl 4 -|+iu2 [0 g -y X -AAo-Y +
wHy -0, (ory) 4 sALetiv wtiy -o, (0-))
P 2
o°k_k_ -
.0_7 :l’V =q ml{I s& X
wtiv -w, {o+ty) 1J sy “s s Lo-y w
s bs
2 =1 2 2
-9k k - k
[(7. c)o_y +(c )L)k_x)\Ic_y 1}6 (153)
w+1vs-wbs(o+y) oa+11,/S —wbs(c—)\) A Ty

The accurate inversion of this equation is a very tedious process.
Buneman [ 10 ] has pointed out that we may affect a first-order (i.e.
linear in temperature) inversion of this equation if, for those terms on
the left which contain components of the wave propagation vector k , we
substitute the expression for ?fsy obtained using the cold plasma approxi-
mation. The range of validity of this first-order inversion will be exa~-
mined further when we re-derive Model A using kinetic theory in the next
section. To perform this first-order inversion, in those terms which con-
tain k we use

Y*qg m? § (4.54)

(s +
(v ) (1m+vs iyo, s M5 6,

sy cold ~

which we get from (4.8 ) neglecting the pressure term. As a result we

can solve for v .
so
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2 2 _ .2
- k k
u by 0)0_

_ . - A 0%
= L (- + 1{ + =2 [ +
LA TR ( lw+y 1owbs) Io_y o °°+ivs—‘°bs(°+7)

™2 )k—xkklc-x _ T e s +
wtiy —o lo-)) -loty Hyw, e +tiv ,
k (kI 2
“AAO-Y kck-v 7 Tsa

+iy - (—x)+ +i o+y) & -iwty +i
wtiv -w lo wHy -, (o y) 4 —lety iy e

2 2 k. I ®k k
[0 ko k_y X k—)L “\o-y ok k_, ]1
w + 1ys w+1vs—wbs (o-A) w+1vs""°lbs(0‘+‘)’) J

57. (4.55)

From (2,41 ) it follows that the mobility tensor is identifiable with the
matrix multiplying § in ( 4,55). Therefore from ( 4,55) and (2.62) we
can write

(®*-0®)n_n_

= - 3 - -1 + o_-Y
Ko-y Io—y ;‘:Xs(lﬂzs UYS) Io—y dsA[1+iZS—(o+~y) YS

2 2
o°-X)n n1I d .n_n
( ) -A Mr—x}r Sl L g _-¥ .
HZ - -\ Y 2 1HZ -yyY L1+Z

[$) S S S S

n—knklo—y . n0 n_y ] dSA
117 (oo P e
1+iZ (o >\)Ys 1+iZ (cr+y)YS 1+17 v Y,

®n n 2Z I 2
[" P My | -y T ooy il ( |
7, [HZ - -0 Y, THZ -G, 4.56
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In writing (4.56 ) we have introduced the following new quantities:
Z, = VS/ w ,
uz /02 [ ] (4 '57 )

d =
si,sA,sL s|,sA,st

In cylindrical (nl, o0 ., nz) coordinates
n =2%n e , . =n_ . (4.58)

Hence, writing the components of the dielectric tensor in cylindrical

coordinates we get

B - 3 - -1
Ki-z = 1 Exs (1+1Z_-v) {1+dS
S

: _ -1
. 1+1i Zs Ys)

2 ( ; -1 . _ -1\, 2 : _ -1
n? (@+iz )+ (+iz -2y J+nZ (L+1Z_-v) ]

2 : - ~1 ’ 1 =1 3 — —'1_;
+dsAnL(1+1zS Ys) [(1+1zs) +(1+1ZS 2YS) |

td, m iz -v)T ), (4.59)
Defining

I"S = l+:i.ZS

o‘s'2 - Xs/rs ! Bs = Ys/rs

€ =d 4,60
S| .8A,s1L SII,SA,SJ./I‘S ( )

the expression for K, ; simplifies to
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_ 1 2 (1-@ V1. .- _n )2 _ -1
Kia=1-F e (g ive, o2 T (-p) Plira-25)7 ]

2 - 2 f1op Y -1
+e o [T (-p)a-g)|Fre 0 [T (1-p) |

1

[1+ (-28)7 [+ e 02 1-p)* ] . (4.61)
Also, we have from (4.56 )
Roo=1 -3 of {1+e, /T,)n2(1-8 ™ +(e /T )3n -

Leap(60/T |2 (- B | (4.62)
Ku=- T o (1= B)7He, +€,)n] eiz“’/l“S ~~ (4.63 )
Kio= W n n, ol® ? a? (1-p )™ {( &, eSA)[ 1+(1- Bs)ﬂ]/rs—

€ (-8 )'1} (4.64)
Kos= - 2'%nlnz e e z o {(ss”/rs)(1—;35)-1[1+(1—Bs)“1] +

€ (-7} (4.65 )

Noting from (4.56 ) that

K_M@l, co)=K’i_y(g, -w) (4.

66 )
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it is easy to obtain the four remaining components of the dielectric
tensor,

Defining the "gyro-elements"

ggy = (1£p)7

Iesp = (11255)“1 (4.67)
— 24\~

9y = (=807

and writing the components of the dielectric tensor in cylindrical

(I}_L, 0. nz) coordinates we finally obtain
S_

K, _ =-n° 2 + _T\ Y-
A n; “% o g’gs_ {esl (1 gs_z) /]."S }+ {1 ) el g
s

sA s &y 9se gs_/l“s)1 } (4.68)

K.y = -n? T a? 2 I + 1 { T 2
w ' g € 1 gs+ 2) /Fs J+ 1 1 o’s g
S

L /s s "st LUsi s+
s
(140 ( + T I '
I_ nZ €sA gs+ ESll gs+gs+/ s)j],r (4.69)
i2¢0 Esl
Kii=-n® & %% ) - g (4.70)
/e T S s¥X
s s
2 ~i2¢ T 1
Koio1 = =-n = g®
1-1 e /)_J rs Ols gsx (4,71)
S

1 . €
K — 2 10 2 _ St
10 n n 2 e z oy 9 _ [.ESA Iq. rs (1+ gs_)] (4.72)
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Koo = g nz 2™ e—l(pz az gs+ [ESA gs+_ —%J:_ (1+gs+):}
° ( 4,73)
Ko-» = -n n 2_% LA E—u
1z /5 s [esA Ie- +TS Ie- (1+gs—)]
(4,74)
Koy = -n n 2_% io T g2 fe Eiﬂ—
. 1 'z © Z. % [ssA gs++ T e+ (1+gs+):\
’ ; ’ (4,75)
Koo = ni z a; {ESA Iex ~ —I‘-? Isx } *
( “su
il—Z‘az [1+3nzi.,;‘-]} ( 4.76)

These are the components of the dielectric tensor for Model A
as obtained from hydrodynamic theory.

In the limit where collisions are neglected, that is VS = {,
these components simplify to

a=1- + 2 - 2 2 }
Ka =1 ZXS 9q- {1 dSIl nzg_(gs_1)+dSLn gs_+2n gs_2]

S b4 o4
(4,77)

= - -] -]

Koo = 1 sz{l+dsn [3n2 +n® g_ |} (4.78)
a2 iZ¢

K1 =-n e Z Xs ds¢ Iex (4.79)
_ _o-1% i’Q ‘ 1

Ko= -2"%n;n e ZSXS 9_ {dS_L+ dg. 9g- ] (4.80)
— _o 1% ip g

Koy=-2% n n_e Z.Xs g, 19..% 4, g, | (4.81)

where Y replaces Bs in the "gyro-elements”. The other com-
s
ponents can be obtained from these using the symmetry relation

— * —_
K_A‘y(g,w) KK—)/(E’ W) o




Kig

K1

Kio

{
KOl

i

in the form
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KX—'y= KXI)\—7+ n® K;\— 0%

A=y

_an® 2 2 -
sin”d T ol g _ le, (1+g ) /T 1]

o) 2
cos &;Z}as g, (

- 2 -
sin 0%065 (ssAgsx €

S.LgSX

2 2
cos® & T o 3 eS“/l“S

S

~sin® 92 T e a®g /T
S

i s
2% sindcosd @ T &® g [e¢
S S sS—

s1 S SX S

sA

¢, (+g ) /T ]

€

-

sl

Wi

. ip 2
sin # cos & e ?as [esAg

Iey (1+gs+) /I‘S ]

+
“sA 9s- Esu Is-

/T,) -

g

s+

contains the temperature dependent terms,

g,/ T)

S

+

from these with the aid of the usual symmetry relations.

Often it is of convenience to have the dielectric tensor components

expressed in spherical (n, #, ¢) coordinates. We write the components

(4.82)

where Kk is the cold plasma component of the dielectric tensor defined by
(4.22 ) and k'
perature dependent terms are easily obtained via equations (4.68 ) -
(4.76 )., They are

The tem-~

(4.83 )

(4.84)

(4.85)

(4.86)

(4.87)

The remaining components of the dielectric tensor are easily obtained

For the case when collisions are neglected, our expression for K

is consistent with the susceptibility matrix derived by Johnston [ 33 7.
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Derivation of Model A From Kinetic Theory
The starting point for the derivation of the dielectric tensor for
Model A from kinetic theory are the basic equations (4.37) through
( 4.41) which were obtained for the kinetic model (Model K). The

basic equations are rewritten, using the approximations

e 1>>1, po<<t . (4.88)

That is, Z(¢ p) and Z' (¢ p) are replaced by their asymptotic expansions
and Ip(p,) ; I‘p ), I'b(p) , e " are replaced by their small argument
expansions. The various expansions can be found in Appendix H,
Recall that if collisions are neglected

1

1 i
= (o3— 2 = (11— 2 2
= (w-p wbs)/z kZ ug, (1 pYS)/ 2 n, dSll . (4.89)

tp

while By remains unchanged. Thus le|>> 1 means, physically, that
the frequency is not too close to the pth harmonic of the gyro-frequency.
From our definitions of uESL and uzS | given by ( 4.31), we see that these
quantities are proportional to the temperature. Then the basic equations
are written in terms of these expansions and only quantities which are
first order in the normalized thermal speeds dSland dsn are retained
(sometimes simply referred to as first order in temperature) . The results
which are obtained are identical to those derived using a macroscopic
approach with suitable approximations (equations (4.77 ) through
(4.81)). As a result of retaining only those quantities which are first
order in temperature, only the terms in the infinite series, _g , with
|p |= 2 contribute to the final expression. From this manne—xz -o? deriving
Model A, it follows that Model A is a limiting case of Model K.

Unlike the derivation of Model A from the moment equations given
in the preceeding section, here the range of validity of Model A is given
explicitly by the conditions (4.88 ). These conditions specify the

regimes where Landau and cyclotron damping are negligible [37 1.




CHAPTER V
RADIJATIVE POWER LOSS

Free electric charges, both ions and electrons, which are moving
at suprathermic speeds through homogeneous magnetoplasmas lose some
of their kinetic energy due to the fact that they radiate. When the plasma
is very tenuous so that collision effects can be neglected, this becomes
the dominant source of energy loss. In this thesis we consider radiation
from both single point charges and also from macroscopic distributions of

‘charges. In the latter case we choose a distribution of charges which is
intended to simulate a bunching of suprathermic charged particles which
may then radiate coherently.

We shall also consider radiation from satellite-borne antennas.
Satellite-borne transmitting antennas in the ionosphere have radiation
characteristics which are often very different from their free-space char-
acteristics , especially when they are being driven at frequencies com-
parable to the natural frequencies of the ionospheric magnetoplasma,

In order to compute the radiated power from either a free charge or
an antenna, our approach is to compute the quantity ‘j‘l(ex) + E d° over

the volume of the source. The problem is simplified if we first Fourier

(ex) , and the macroscopic

transform the external current densities, J
electric field E in the plasma. This approach has been successfully
applied to radiation problems using cold plasma models [ 40 ], [50 1.
We will use this same method for warm plasmas. Therefore, in this
chapter we shall first compute the Fourier transform, g (ex) , for various

(ex)

radiating sources. Having obtained the Fourier transformed g and

using the formal expression for the Fourier transformed electric field &

obtained in Appendix C, we then write down the formulas for the power

50
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radiated by each of these sources. The chapter concludes with a dis-

cussion of reversible and irreversible power.

Source Currents and Their Fourier Transforms

Current Density for a Spiraling Point Charge

The current density, I(pt) , for a point charge of rest mass M and
charge Q (positive or negative) spiraling with velocity V about the z-
axis, which we take as being oriented parallel to the external magnetic

induction Eo’ is given by

I(10t)

(r,t) =QV ()0 (r-r (t) (5.1

where the position vector is given by

L(t):@xaycos (Qt/v)—/e\yaysin (Qt/'y)+/ézvzt (5.2

and the velocity is

A

A
e esz° (5.3

Vi) = - .V, s9n Qsin (Qy) - é\y V sgn Q cos Qt/y)+

0 is the signed gyro-frequency of the spiraling point charge Q= Q Bo/ M

(negative for electrons and positive for positively charged ions). The

non-relativistic gyro-radius a = Vl/ \-Q l and vy is the relativistic mass
1

correction factor given by y = (1 - Bi - B:)'E where Bl= V_L/C and

Bz

and -1 when £ is negative,

= Vz/c. The function sgn ) is defined to be +1 when ) is positive

In terms of P-W space, these equations can be written

1
2

-4 L1
r_(t) = éﬂ_ 2 ay e lﬂt/’y+ e_.l 2—2

ay elm/7+é‘ovzt (5.4

_]__- _-
V@) = -8, i 277 V sgn Qe iat/y

1Qt/7+/e\ vV . ( 5.5

A 1
e,12*V sgnQ e
L o'z
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More concisely, we can write

Vv(t) _ e—1v7r/2 ok "’V e—vat/'y (5.6 )

where the vector component Jv is defined by

ol

V. (5.7 )

— .2 .2
Jv—v Vl sgn Q+(1-v°) 2 2

These equations are used to compute the Fourier transform g(pt) . The
integration over space is trivial because of the delta function appearing
in ( 5.1 ). The result of the space integration is

~iker (t) +iwt

ﬂv(pt)(lg, w)=ijv(t)e dt. (5.8 )

Referring to Appendix A, we can write k * r () = k—v rv (t). Noting that

in terms of cylindrical (kl ' O kz ) coordinates

L
-2

ki1=2 kle , (5.9 )

equation ( 5,8 ) can be written using (5,9 )

ﬂy(pt) ko) = Q [dtV () oIk aycos (Q/y+ o) -1k V -at. oo

Using the property of Bessel functions that

ik aycos (Q/y+ ) =p=5w ok, ay) o PIZT YO gy

(5.10) can also be written

c?(pt)(]i,w) =Q ;; Ip(kl ay) e"ip((p+1r/2)
v g

i(w—kz VZ -pQ/ y) t. .

fdtVV(t) e (5.12)

Inserting for Vu(t) and integrating we get
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gl(/pt)(_]slw) = 2%11‘ Q Jv e—iv /2 ; Ip (k_L ay)
p=-m
oiplo+ 1/2) ok V -+ 1) Q/7) (5.13 )

In terms of the refractive index, n, this becomes

(p}) Jn/2 e

g, @0 =25 1Q, T T
o-ip(p+m/2) 6(wn_ ©B_~(o+v) O/ y) (5.14 )
where
u=kla'y=nla'yw/c. (5.15 )

Cerenkov radiation corresponds to V_L = a = 0, which means only

the fundamental (p = 0) will be non-zero.

Current Density for an Extended Charge

In order to gain insight into the problem of coherent radiation from
a bunch of charges, we shall also consider the problem of Cerenkov
radiation from a uniformly charged ellipsoid {(el) of revolution of mass M’
whose center of mass, located at x=0, y=0, z = Zo' is moving parallel
to B_ with a velocity V,, 8, as depicted in Figure 1. The ellipsoid is

assumed at rest with respect to its center of mass.

Fig. 1 . Sketch of geometry of charged ellipsoid.
The ellipsoid is fixed relative to its center of mass
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The axes of the ellipsoid are of lengths g and h as shown so that
the volume of the ellipsoid is given by 7= (4/3) 7 g®h. If Q' is the
total charge contained within the ellipsoid, then the current density for

such a source is given by

(1) (QY/NV () jinside ellipsoid
I () = (5.16 )
0 s,outside ellipsoid.

If Q'/M' = Q/M, which is the case we wish to study, then our previous
formulas for the position and velocity of a point charge apply here to the
center of mass of the ellipsoid.

(el)

The Fourier transform of J is given by

J' d°r e"lh -r_+iwt. (5.17)

of el.

ﬁ(el)(_k_, W= (Q'/r) [ dtV(@)

vol.

In order to perform the last integration we need the equation for the sur-

face of the ellipsoid as it moves. This is given by
&* +¥°)/g%+ (z-z )%/h® = 1 (5.18)

wherez =V t,
0 z

Making the change of variables

n=z-z_, (5.19)
. (el)
the Fourier transform of T becomes
£ (e]-) (]ilw) ___(Q./,r) j‘ . dt _\l(t) e"l(kz VZ_ 0)) t
dx dy d ne—lkx x—1ky y-ik,n (5.20)

vol, of el,

which is nearly identical to what we had for a non-spiraling point charge

with the exception of the integration over the ellipsoid volume. In fact,
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it will be convenient to write

(el) (pt)

§ 7 =Dlg,h) § (5.21)
where, in k-space,
D= (L)t [ axdydne Iy (5.22 )
) vol, of el.
Switching to cylindrical coordinates via the transformations
kx=klcos<p : ky=kl sin ¢, kz=kz
(5.23)
x =pcos®, y =psin® , n =1
and making use of the identity
cos (A -B)=cos Acos B+ sin A sin B (5.24)
our expression for D(g,h), which we will call the "form factor”,
becomes
g 2T +/i(p)
D(g,h) =Q'@QM)™ [ pdp [ d® | dn
o o -/(p)
o-ik, pcos (- ®)-ik, n (5.25 )
where, on the surface of the ellipsoid,
n=+h/1- p?/o° = = /£(p) . (5.26)

The integration over 7is straight-forward, while the integration
over ® is given by

21 -
jﬁ oiki poos (@ - @) gq_ 2n]_ (<, p)e (5.27)

o
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Hence, the "form factor" becomes

Dg,h) =4r Q' @7 k)™ [7 dp pT  (k p) sin (hk /1-p%/g%).
(o]

(5.28)
From [ 26,p.761 ] we find that this integral is evaluated. Hence
we can write
Dlg,h) =3 (@/Q /2% x2T, /s (x) (5.29)
where
X= (3 g+ 12 19)F = (0/0) (0 o® + i 1*)E. (5.30)
Note that in the limitg- 0, h—- 0
Ts /2 ~ (2/m)E ¥2/% /3 (5.31)

so that for a point source with Q' = Q, the form factor D(g,h) - 1.

Current Density for an Electric Dipole Antenna

For the calculation of many physical quantities, like the fields
at great distances or the real power radiated, many current configur-
ations_I_ (r,t), which are concentrated in an electrically small region,
can be considered equivalent to an elementary dipole (see e.g.[767]).
Therefore we shall examine the radiation from an oscillating point

dipole whose dipole moment P is specified
_13=P_coswot6(r_) (5.32)

where wg is the angular operating frequency of the antenna and P is the
static dipole moment. The equivalent static dipole moment is given by
p=[r p(r,t)dr, (5.33)

where t' assumes the value which maximizes the integral. We can also

think of p as being equivalent to two point charges +Q and -Q separated
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by a distance d, such that

P=Qd (5.34)

where the vector d extends from the negative to the positive charge.

Assuming that the charge density varies in time like P, we can also
write

p=-Q[6(£+%g)—5(;‘_—%g)]coswot. (5.35)

The current density associated with this oscillating dipole is given by

J=0R/dt=-0 psine to(L). (5.36)

Allowing our dipole antenna to move with the non-relativistic

velocity V with respect to the undisturbed plasma, the current density
then becomes

Tz, t)=-wogsinwot 6(r - Vt) -

QVcosw tLo(r+Ed-¥t)-8 (c-3d-Vt) 1.  (5.37)

Treating the case of a dipole oriented parallel with Eo and moving along
. : —n A a3 A —v A _
B, (i.e. lettingp=p_¥¢_, d=d, e, and V=V, ez) , the current den
sity is written

Tx(_I;, t)=I,Y (r, =0 (5.38)

AN 1 N A
| ‘ = - i ( -V Yes Vv ‘ + 4 =V t -~
r, t) w p Sll’lwtﬁ r te | Q cos w t G(I‘ gd € te)

5 (r -

nj=

A A
dzez 'Vztez)]' (5.39)

Applying the Fourier transform to the 1)15111 component (P-W space)

of the current density and performing the space integrations with the aid
of the delta functions, we obtain




58

Lk, =g,k =0 (5.40)
. -ik _V_t+iwt
§o (&, w)=-wopz f51nmote z'z dt -
C -ik_V_t +iwt
VZQZlSIH(kZ%dZ)ICOSCOOtelZZ Ot gt (5.41)

Since we are assuming our dipole is very small, we take
|3 k d, | << 1. Therefore, 2Q sin (% k, d ) can be replaced by

kz D, Thus we can then write
fo (k, ) = - w, P, ‘r sin ooot ei(w‘ szz)tdt -

V ik p J‘cosw tel(w‘kzvz)tdt° (5.42)
z" "z z o

The first term represents a current density which will excite radiation due
the oscillating dipole moment, while the current density represented by
the second term will excite Cerenkov radiation. In most cases, the
second term is negligible, however, at very low frequencies and small
wavelengths w, can become comparable to VzkZ and in that case the
Cerenkov confribution to the radiation becomes important. Thus the
Cerenkov term will manifest itself first in its effects on thermal mode
excitation, since these modes have the shortest wavelengths.,

The remaining integrals over time can be expressed in terms of

delta functions, so that we finally obtain
Jok, w=inmw w, P, (8 (w+wo - kz VZ) - G(w—wo- szz) 1~
i'rrkZpZVz[G(co+wo—kZ VZ)-l-G (w—wo—kzvz) ] (5.43)

or, in terms of the refractive index and the normalized velocity B=V/c,
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go(n, @ =im( p ~n p wp)0 +w -n B o

—ivr(wopz+anZsz)é(w—wo—nz Bzw). (5.44)

Current Density for a Loop Antenna

The current density for a stationary filamentary loop antenna of
radius ro, oriented with its symmetry axis parallel to the magnetic field
Eo can be written in cylindrical (p, ¢, z ) coordinates as

G(p—ro)

— —9 A
_T.(L’ 1:)—IorO > 5 (z) coswote¢ (5.45)

where W, is the radian operating frequency and IO is the maximum current

in the loop. When the antenna has a translational velocity V = Vz ’éz,

the current density becomes

6(p-r,)
_I_(_r_, ty=1 r — 6(z—-VZt) cos mc;c

A ]
0 0 P e . (5.46 )

¢

The unit vector /e\ is related to the Cartesian unit vectors via

¢

A . A A
e =-s 2 +tcosgpe .
5 in¢ € o) . (5.47 )

Expressing é\x and @y in terms of the basis vectors for P-W space, we

get
é¢=/‘}2— [ef? 4, -e™t%4, 1. (5.48 )

Therefore in P-W space we have for our loop

vi ivg 6(p-r)
IU(_g,t)=72— e Ioro—“-;)—-—-—ﬁ(z~vzt) coswot. (5.49 )

The Fourier transform is given by
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8, k, 0= J’pdpdgbdzdtlv(;, 1)

e—i(kx pcos ¢+ ky psin ¢+ kzz—w'l:). (5.50)

Inserting for Iv and performing the p and z integrations leaves
-3
4, k, = I r vi?2 ‘fd ¢dt cos ot
e—l(ero cos ¢+ kyro sin qs—vgb)—l(kzvz— w)t ] (5.51)

Expressing k in cylindrical (kl, ©, kz) coordinates, we can write

e_l(]g{ro cos ¢+kyr0 sin ¢)= e_lk..L ro cos ((p_ ¢) . (5.52)
Using the identity
e—lk.!.ro cos (w_ <Z))= z T (k_L ro)e—lp((p— ¢+7r/2) (5'53)
p= -— 00
the integration over ¢ is easily performed yielding,
-

8, (k, o) =TI r vi2®a T, & )

gvietn/2) J at cos w_t etk Vz - w) t (5.54)

The remaining integral over time can be expressed in terms of delta

functions

1
= -
é’,/(_]S: w)—Iorousz

2
7, &)

dvle+n/2) (0t =k V) +8(w-u -k V)l (5,55)

In terms of the refractive index, this is
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1
2

$, @ @) =1 r vi2 %7, W

Jvlo+ w/2) (8(w+w -n, wB)+d (-0 -n_ wB )l (5,56 )

where the argument of the Bessel function is

u=n wr /c , (5.57)
L O

and B, = VZ /¢ is the normalized velocity.

Power Loss Formulas
This section contains the formulas for the power radiated by the
various current sources treated in the previous section. The formulas
are derived in such a manner as to be independent of the particular model
(A or H) chosen for the plasma. For each source considered the power
loss is written in terms of a single integral which can be readily eval-

uated numerically.

Power Radiated by Point Charge
The rate at which energy is radiated from a current source

]__(ex) (r ,t) is expressible as
P = 'fl(ex)(ir t) E(r,t dr. (5.58)

The superscript (ex) indicates that this current is external to the plasma
in the sense that it is not used to compute the medium constitutive
relations. In terms of polarized-wave space the radiative power loss

becomes

P =-] Ifej) (£, O B, (L, 1 d. (5.59 )

Representing Ifix)and Ev by their Fourier transforms, we obtain
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P = - (27)® fdar d®k dw d%' do' (Qfe:{) k', w" é‘u k, v

e1(]_5 +k e r-ifw+wt . (5s.60)
In terms of the refractive index, this is
P = - (2n)® ¢® f d’ d°n do &®n' do' [&® || \gfelj{)(g', w')

é;u(_rl' @) ei(g_'w'/c+£1_co/c)'_I_'_—i(w'+o.))1: . (s.61)

Changing orders of integration and integrating over r, we get the factor
(2m)®8 (n' w'/c+nwc)=(27c)® e |6 @ +1n ww) (5.62)
which enables us to integrate over n' getting
P =-(27)° ¢ 2 j'dsn de de' | | g_(ix) (-n w/w', ')
—i(w + Wt
¢, @, e . (5.63)

(ex)

Inserting for ézv using { C.5 ) and substituting for gz_v our expression

(5.14 ) derived for a spiraling point charge, the power loss becomes

- - 2 a 3y-1 3 ¢ 2 -
iQ~ (16w €Oc) fdndwdww sgnc;g=-éva’c

ei(v -o+p-p)n/2 o iw'+ W)t e—i(p'+ p-v+0o)o

—1 [ - - ] - ~(p' o, .
XV—O']-pIp' A 6w+ n wB, (P-V)Q/y) 8 (w n, wp, (@' +0)Q/y)
(5.64)
The argument of the Bessel functions is u = nL ayw/c. Expressing d°n
asn dnL do dnz, the integration over ¢ gives a factor (27) when

p'=-(p - v+ o) and zero otherwise. Hence,
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o - . 2 i(v-o)
P=-10Q° (8r° € c3)? jnl dnl dn, de do w° sgn wpf_me
. "i(wl"l'w)t -1 ' - (-
s, 7 e Mg KT Tpo g O+, 0B, - (0 V) /)
G(w—nZwBZ+(p—v)Q-/'y). (5.65)

Integrating over «' reduces our expression for the power loss to

P=-iQ% (8r% ¢ c°)* J n dn dn do « sgn w ;_'o) S ei(v— o)m
o 4 1 Z p:—oo"V o
A )\v_ GTpIp-v+06(w n . BZ +(p-v) O/ v)
cilemngwp, + -v)Q/y 1t (5.66)
Writing
(o] w
=f de+f < dw, (5.67)
-— 00 o)

assuming that Xv-o 0, w= X e (n, -w), and‘making the following
changes of variables w = -w, V==-y, 0 °~-0, P~-D in the integration

over negative frequencies, we find that

fee] o« @©

P= [ J*do+| L dw=2Re [ 4 duw. (5.68)
o] o (o]

Thus

©

— s 2 2 34y-1 2
P=-ReiQ° (4n Goc) fodwjnldnldnzw

@«

S S S AL lv-o) T
-V O A xv—c IpIp—v+(7e

p=—oo

6(w-n_wp_+(-v) /Y grilongwby + (-1 /v (5 69
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Replacing pby p+ v, we get

— . 2 2 3y~ ® 2
P ReiQ® (47 €, c®) Iodmfnldnldnzw
© -1 i(V—O')'IT
p:z—oo J—v Jcr >kv-cr A I1C>+v I1D+cre
d(w-n, 0B +Dp0/y) eTHemnz 0Bz +p /Yt (5.70)
If BZ#O,

6 (w- n,wp, + pO/y) = || |BZ ) (nz— B;l(1+pY/y)) (5.71)

which allows us to integrate over nz . Thus for Bz #0,

=-ReiQ® (4r? € |VZ |c®) IO do [ n dn w

o
R D U S I . Ll
p=-w» ~V 0O "v-0 p+vV pto nz=3;1(1+pY/y)
(5.72)
where
nz=Bz‘1(1+pY/'y) (5.73)

is the so-called emission equation for a spiraling charge. Here

Y=0/w. (5.74)

The only plane waves which can exist in the plasma are those
whose refractive indexes satisfy the dispersion equation A= 0. Knowing
the roots of the dispersion equation, which we assume can be written as
a polynomial in the variable n"i . the fundamental theorem of algebra
allows us to write

A.=C(w)rl;ll(ni-nim) (5.75)
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th . R \
where nim represents the m= root of the dispersion equation. Hence

we write the power loss as:

_ : 2 2y @ @ - i(v-o0)m
P = -ReiQ? (4r € \Vz le®)? jodw jodnLnlwpz_?_m e

2 _ ae -1
Syt A, @I W - 91T T .

n = 6;1 (1+pY¥/v)

(5.76)
Write the power loss as

P=-ReiQ®@r” ¢ |V, |c*)™ [ do 62@) z J_vycel("‘o)"
° p=

- 00

@ N, T J
I vop+vm-cndn

l.'[(ni—n2 m) L i
m + nz=B;1(1+PY/‘>’)

. (5.77)
(@]

From Appendix C we note that the terms of the adjoint matrix have the
form nlfc-'- 2k where k=0, 1, 2 ... . Referring to Appendix D where

we have evaluated the integral

@ otl Tp+u(ax)Ip+g(aX)
I (x°-2°)
m m

dx (5.78)

and settingp=v - o+ 2k, x = n o, etc. we find that the power loss can

be expressed as

P=Re Q° (87 ¢ \V \cz)‘l Idwz <L _ 5 J o ei(v—o)vr
° Z o ] ©

Clw —_ _ -vo
HY |, Imn >0
A . N (@*-n? )] PO J . (5.79 )

v-0 p+Vm?£j 1] im (_DH(Z) , Im n-Lj < 0

— n~l
n, =8, (L+pY/v)
See the paragraph following eqn. (5.81) for a discussion of the expression

for P corresponding to (5.79) when Im nth =0,
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The Hankel functions have the same argument as the ordinary Bessel
function, namely u = nayow /c.

The subscripts j and m range from 1 up to the number of wave
modes which can exist in the plasma at any given frequency. For a
cold plasma there exists two modes, for a plasma with only warm
electrons there exists three modes, and for a two component plasma
with both ions and electrons warm there may exist up to four wave modes.
When we do not allow for losses in the plasma, the imaginary part of
n‘Lj is either zero or else the roots occur in conjugate pairs. Suppose

the roots n | and n  are conjugates and let £ be defined by

11
© n

P=Re [ I 4 dw. (5.80)
o j=1

Comparing (5.79 ) and (5.80 ) and assuming n = nfe we can write

o« n o n
P=Re [ [w-b*+ 3 4 ldo=Re | T 4 do. (5.81)
o) j=3 o j=3

Hence, complex conjugate roots contribute no net radiation losses.
The case when Im n“. = 0 is more difficult because the integrand
of (5.77 ) has a singular point on the axis of integration. Several
methods are available for determining how to deform the contour of
integration so as to avoid this singularity. Perhaps the most direct
method is to allow for small collision losses in the plasma in order to
determine how the poles nlj move off the real axis. This then indicates
how the contour of integration should be deformed. Once the proper
integration path is determined, we can return to the limit of a lossless
plasma [ 24 ]. Another method is to represent the electric field excited
by the source as a superposition of plane waves and require that each
constituent plane wave carry energy away from the source [ 20 ], Still
another methbd is to invoke causality which requires that the source

current must preceed the excited field [ 79 ]. These are all examples
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of what is usually called the "radiation condition” and they all give

equivalent results. The "radiation condition" must be invoked in order

to determine which solution (equations (5.79 )) is physically correct.
Electric fields which obey the "radiation condition" are often

referred to as "retarded" or "outgoing" fields and denoted by -E-ret or

E

out’

to as "advanced" or "incoming" fields and are denoted by E orE, .
=adv  ~in

Note that in (5.79) one equation represents a power loss due to the work

Fields which do not obey the "radiation condition" are referred

done by "retarded" or "outgoing" electric fields while the other equation
refers to the work done by the "advanced" or "incoming" electric fields.
In the section on reversible and irreversible power which appears in

this chapter, we discuss the computation of power loss using "incoming”

and "outgoing" electric fields.
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Power Radiated by Extended Charge Source

For the extended charge source discussed in the first part of this
chapter and for a collisionless plasma, the power loss formula is given
by the p = 0 term of equation (5.79) with the quantity D?(g,h) (see
equation 5.29) multiplying the integrand.
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Power Radiated by Electric Dipole Antenna
The physical quantity we wish to compute is the time average (over

a period Zw/wo) of the power lost through radiation, F. This is given by

_ ZTr/ooO
P = - (w/2m) | 3, ® - E(z, t) &°rat. (5.82)
(¢]

Expressing the dot product in terms of P-W space, applying the Fourier
transform to land E, writing the result in terms of the refractive index,

and integrating over r and n' as done for the case of a spiraling charge,

we obtain

— Z'IT/wO .

P = -(2m)° ¢® @y J‘ dt J nldnl dnz do do de'|w |
o

~i(w' + w) ‘l:. (5.83)

g, (-n w/w', w') ¢, (@, w) e

Consgidering the case of an elementary electric dipole antenna
oriented parallel with Eo and moving along the direction of the magnetic
field of an anisotropic plasma, we substitute expression (5.44 ) for the
current density into ( 5.83 ) and replace 51/ in (5.83 )by (C.5 ) to

obtain

_ 2‘1T/wo
P =i(64 n*c® eo)"l o j’o dt [ &n dedo' | |

[(wo p+n, pZmBZ) d (o +wo+nz Bz w)
- (wopz—nszsz)G(m' - +nZ Bzw)]

-.'I'.((.A)' +(.0)t -1 -1 _ _
e Gt A Xoo[(wopz nzpszz)G(w'*'wo n, Bzw)

- (wo pz-l-nZ pzcb Bz)é(w—wo -n, Bz w ] . (5.84)
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Integrating ’with respect to w and ' using the delta functions and per-

forming the time averaging results in the expression

s _ . 3 .3 -1 3 2 2 2 -3
P = -{i@B27%¢c Eo) J'dnw sgn o’ pzll—nzszl

A™ Ao}

-7}

w= (.oo/(l—nZ Bz) W= = /(l—nz BZ). (5.85)

Expressing the index of refraction in terms of cylindrical (nl, ©, nz)
coordinates, the integration over ¢yields an additional factor 2r. The

symmetry properties of the integrand allow us to write the result as

T oo _ s 2 .3 -1 2 2 _2
P Rei(8rn°c €) ‘rn‘L dn dn, o® w® p? Mo

(1-n_ B ) = A1 . (5.86)
zz c«>=mo/(1-nZ Bz)

‘Writing the determinant A as

n

_ 2_ .2

A=C(w) II'TII(nL nlm), (5.87)

we see that the integral is closely related to ( D.1 ) when the

plasma is collisionless. To see this set s=1=0in (D.1) and then

take linbit Re 1 x(D.1}). Evatuating the integral over n in this manner
a—)

we obtain the following result for a collisionless plasma
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D = 3 -1 z 2 .2 _ -3
P = :!:jE(lG'n’C €.) jdnzw P, % Ao 1 n_8)

[c(m)mll';;j n®, -n® )17° - (5.88 )
‘ w= oao/(l—nZ BZ)

The sums and products range over the various propagating modes which
can exist in the plasma. The sign of ( 5.88) is chosen so as to satisfy
the radiation condition. The remaining integration can easily be performed
numerically to vield the total radiated power from this antenna.

Note that when n = 1/Bz, the integrand has a singularity. This
singularity can be removed by allowing for a dipole of finite size.
These findings are in agreement with those given by McKenzie (53 1

for the case of a cold uniaxial plasma.
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Power Radiated by Loop Antenna

The time averaged power loss P can be expressed as

= limit 1 3T
P=- T fl dtfdsrl(g_, t) «E(r, 1.
-gT

Following our usual procedures, we write this as

= limit 1 3T N .
P=-10a - jz dt [ (2m)7® ¢® & dw de' | [°

ﬂ_u (-n w/w', w') é‘v (n, « e‘i (0 + w) 1;.

Treating the case of a filamentary loop antenna oriented with its

symmetry axis parallel to the magnetic field -Blo and moving with a

(5.89)

(5.90)

velocity V = v, é\z, we substitute for gl_vﬁ‘om (5.56 ) and insert for csv

from (.5 ). The resultis

= Izorzi 1 (®
P = - limit ———2p— 2 dt [ &n do do
T 16w ¢ EO T }oar o
R

2 1 ipto)n/2 -i(w't )t
W sgn w v]'v AV—O‘ UI_G K- e e

{5(@' +wo+nszZ) §(w+wo—nszZ)+

0 (w‘+mo+nszZ)6(w—wo—nszz)+

6(0)' _wo+nszZ)5(w+wo—nszz)+

6 (‘w'—mo+nZQBZ)5(w—wo—nszz)} .

(5.91 )
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Performing the time and radian frequency integrations and taking the
limit, we obtain

Ig rzi

mm € [ d°n |1n B, |7t o® sgn o v\ _ 0T A?

Fo=-

i(v+ o) n/2 _
e } = 0 (1- n, BZ)_l

{"} . (5.92)

_ _ -1
B ('oo(1 Py Bz)

Assuming the usual symmelry property, Kv_o_(_ll, w) = K’f_vo(g, -w) for the

components of the dielectric tensor, the power loss can be written

_ Ig r'z i
_ _pa 0 O _ -1
P =-Re g3 ¢ InldnLdnz de (1 n, BZ)

P I A oI A7 ro)n/2 (5,93 )
choo/( l—nZBZ)

Writing out the summations and performing the trivial integration over ¢,
it is easily verified that
I 4
0 ©
2c%¢
(o}

— 2 a-1
P = -Re [n dn dn o A

2 xyy (1-n_6) ~

. (5.94 )
w= wo/ ( 1—nZ Bz )
Since the integral over nlis of the form assumed in ( D.1 ), this inte-

gral can be evaluated. The expression for the time averaged power loss
then becomes
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_ n 1(2) rz m n .
— L2 Y = 2 _ -1
P = ji s < Re fdnz T (uj) X [C(wr)mlt'/lj(nlj nlm)]

Hl( 1 (u])

- 'ITm n . >
(1—nZBZ) 1 1 0

~H,8 (u,) Imn ., <0 | (s.95)
Uy 1]
w= wo/(l—nz Bz)
The argument of the Bessel functions is

u,=n . wr_/c.
O

i (5.96)

The sum over j is a sum over the various propagating modes which can
exist in the plasma.

When Im nlj = (0, the appropriate expression for P is the solution

given in (5.95) which satisfies the radiation condition.
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Reversible and Irreversible Power
Previously, we wrote the expression for the power radiated

(ex)

from a point charge source J as

(ex) |

P = —jl E d (5.97)

and we required that E obey the "radiation condition". Thus, we actually use

- (ex) | 3
p=- |1 E_,. dr. (5.98)

For a point charge spiraling in a vacuum, a different formula is
customarily used, namely [64],
p=-3 (7@ g _E ) g% (5.99)
=y 2 out —in * c
In this section we intend to show that both formulas (5,98) and (5.99)
vield identical results for a lossless plasma.
Having already evaluated (5.97), the proof that (5.98) and (5.99)
are equivalent for a charge spiraling in a lossless plasma is rather simple.
From (5.79) we find that the two expressions ,[ ]_(ex) .E &®r and

II(eX) . B, d°r are givenb out
N Zin g Y

2]

+Q°@Bre |V |AT T do =7
o' 'z o C () ;

2 _ 2 -1
>tv—cr IP+1/ IP+cr ml;lfj (n_Lj nlm) (5.100)

where one sclution correspoiids to using —E-out aud thie other corres-
ponds to using E—in’ Since the two solutions are negatives of each

other it follows that (5.99) is equivalent to (5.98).
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We should note that this question of what is the proper expression
to use for calculating radiation losses in a magnetoplasma is not new.
Several years ago Lee and Papas [46 ] suggested that the so-called
"infinity catastrophe" which predicted infinite power radiating from a point
dipole located in a cold magnetoplasma [ 15,73,87 ] was due to using
only outgoing waves as in (5.98 ) instead of using the "correct" com-
bination of waves as in (5.99 ) when computing radiation losses. The
question was vigorously argued in a series of articles which appeared
shortly thereafter [44,45,72,83 ]. More recently, the issue was re-settled
by Snyder and Weitzner [71 ] who showed that the assertion made by Lee
and Papas was false, and that as far as real radiated power from a Hertz
dipole is concerned, both formulations give the same results. Hence,
our similar findings for a spiraling charge source are not completely
unexpected. Thus it follows that for both antennas and free charge
sources, either formula (5.98 ) or (5.99 ) may be used for computing

the radiation loss.,



CHAPTER VI
NUMERICAL RESULTS

In this chapter we present some numerical results for free charge

sources obtained by using the plasma Models H and A described in this
thesis.

Results Using Model H
The background plasma chosen for this model is composed of
thermal electrons and protons with an isotropic temperature of ZOOOOK.
As pointed out in the discussion following equation (4.6), the value of
the specific heat y's is somewhat arbitrary. Our results might also be
thought of as representing a 6000o plasma with 751 = 1, All our calcula-

tions are for the "operating line" R® = (fge/f;e) = 0.4 as shown in Fig. 2.

10°
o’ L
10°
e
10
10!
| | | |

ol 1ot 103, 105 107 109
Xe

Fig. 2. Sketch of the "operating line" R® =

superimposed on the CMA diagram
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The "operating line" intersects the principal cutoff and resonance lines
at the pointsshown on the CMA diagram of Figure 2. The corresponding

values of Xe at these intersection points are given in Table 1.

TABLE 1

VALUES OF X, CORRESPONDING TO PRINCIPAL RESONANCES
AND CUTOFFS FOR THE OPERATING LINE R®*= 0.4

Xe Name of Cutoff or Resonance | Log X,
.537 Electron cyclotron cutoff |-0.27
.714 Upper hybrid resonance -0.15

1,00 Plasma cutoff 0.00
1.86 Ion cyclotron cutoff 0.27
2.50 Electron gyro-resonance 0.40
6.43 x 10° Lower hybrid resonance 3.81
8.43 x 10° Ion-gyro resonance 6.93

Figure 3 gives the power spectral density for a non-spiraling
electron. For the non-spiraling electron, the total power spectral den-
sity consists only of the Cerenkov term p = 0. As expected from cold
plasma results [ 52 1, [ 80 ], there are peaks in the power spectrum at
the upper and lower hybrid resonances. The cold plasma results vield
infinities in the calculated power spectrum at these resonances. Most
noticeable when thermal effects are included are the additional modes
which appear. These are mode 4, and an extension of mode 3 to frequen-
cies above the UHR. The numbering scheme used here is of no particular
physical significance, but rather for convenience in discussing the
results. Note that a considerable proportion of the total power is in
the form of radiation in the thermal mode at frequencies just above the
UHR. This thermal mode has its origin in electron temperature effects

whereas mode 4 here has its origin in the ion temperature.
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LOG POWER SPECTRAL DENSITY

MODEL H

-381 p=0
B,=069  B=0
-39 RZ= 04 fo = 229 KHz
-40- T,=2000°K T, =2000° K
— | | | i 1 1
06 1T 2 3 4 5 6 1
LOG X,

Fig. 3 . Power spectral density for a non-spiraling electron

Figure 4 shows the effects caused by the spiraling motion of the
source charge. Two very pronounced effects are immediately noticed:
first, the power spectrum exhibits an oscillatory pattern and secondly,
the spectral power density in the thermal modes is greatly reduced from
the non-spiraling case shown in the previous figure. The oscillatory
pattern is due to interference between waves excited at different points
on the orbit of the spiraling charge, and the overall decrease in the
spectral power density amplitude for modes 3 and 4 is due to the apparent
charge smearing effect the rotational motion gives. This apparent
smearing effect is very similar to that obtained by considering finite vs.
infinitesimal electric dipole antennas [ 73 1, and most affects those
waves which have small wavelengths in the radial direction, Note that
the upper envelopes on the oscillatory patterns somewhat resemble the
shapes of the corresponding curves for the non-spiraling charge. We

should point out that in certain frequency regimes relatively few points
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have been plotted which accounts for the rather jagged envelopes in the
oscillatory patterns for Xe less than 0.5 or greater than 2.5. In parti-
cular, the behavior of mode 2 near the LHR CXe ~6 x 10°%) is not ade-
quately shown in these figures due to the fact that the plasma index of
refraction is rapidly changing with frequency near the LHR.

LOG POWER SPECTRAL DENSITY

MODEL H
p=0

B, 0169
RZ-=04 o = 229 KHz
T, =2000° K T, = 2000° K

Fig. 4 . The contribution to the total power spectral density
due to Cerenkov radiation from a spiraling charge
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Figure 5 shows the contribution to the spectral power density due
to normal Doppler emission at the harmonic p = -1, Note that in the
regime between the electron gyro-frequency and the LHR mode 2 shows
a lower radiation loss as compared with the Cerenkov contribution p = 0.
This is consistent with cold plasma calculations at these frequencies
which show that the Cerenkov term is the dominant one [48 1. Also note
that for frequencies below the LHR two new modes appear. These modes,
which are due to thermal effects, show a relatively low power density.
Figure 6 shows very similar results for anomalous Doppler emission at

p=1.

LOG POWER SPECTRAL DENSITY

MOCEL H
p=-l

B,=0169 B,= 0097
RZ=04 fy = 220 KHz
T, =2000° K  T; = 2000° K

2 3 4 5 6 17
LOG X,

Fig. 5 . Contribution to the total power spectral density
for a spiraling electron due to normal Doppler emission

at the harmonic p= -1
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LOG POWER SPECTRAL DENSITY
& oo
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| MODEL H
p=i
B8,=0169 B,- 0097
R%=0.4 6, = 229 KHz
-40 T, =2000° K T, = 2000° K

_4 ' | L i 1 "
-0 | 2 3 4 5 6 7
LOG X,

Fig. 6 . Contribution to the total power spectral density
for a spiraling electron due to anomalous Doppler emission

at the harmonic p=1

The directions of the phase velocities for the excited waves
corresponding to the power spectra shown in the previous figures are
shown in the next figures. The curves are obtained by first solving the
emission equation for n, and then using this value for n, in the dis-
persion equation to find n . The phase velocity direction is then given
by #= tan? (nl/nz) . The phase velocity direction, #, is independent of
the radial velocity VL of the spiraling charge, since the emission equation
does not depend on Vl. For Cerenkov radiation, Figure 7 , the wave
phase velocity component along the magnetic field is in the same direc-
tion as the particle velocity Vz . Such is not always the case for
magneto-bremmstrahlung, as noted, for example, by comparing Figures

8 and 9.




33

T o0
o O O
T T

Y DIRECT
3= ®
o O O
T T T

o]
[e]
T

PHASE VELOCIT
MR O~
OO0 O0O0O0O0
T T T T T I

o

o
T

MODEL H
p=0
B,=0169
R%:= 04

T, = 2000° K

fo, = 229 KHz

T, = 2000° K

LOG X,

4 5

6 7

Fig. 7 . Phase velocity directions of the various waves
excited by Cerenkov radiation
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Fig. €. Phase velocity directions of the various waves
excited by normal Doppler emission at the harmonic p= -1
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Fig. 9 . Phase velocity directions of the various waves excited by
anomalous Doppler emission at the harmonic p= 1
When discussing the propagation of radiation in an slowly varyving

inhomogeneous magnetoplasma it is important to know in what direction
the waves which are excited propagate. Herein lies the usefulness of
these plots. However, in addition to specifying the directions in which
the excited waves propagate, we must also determine the direction of
energy propagation in order to trace the path of the radiation. Generally
the wave phase velocity direction and the group velocity or Poynting
vector are not colinear in a magnetoplasma, In Appendix B we gave the
method for finding the direction of energy flow. Applying this method we
obtain Figures 10 through 12 which show the direction of energy flow for
the various modes at the various frequencies corresponding to the param-
eters used previously. The angle 0° represents energy propagation par-
allel to the magnetic field. The negative sign before an angle indicates
that the radial component of the group velocity (\_/‘gl) is antiparallel to the

radial component of the associated phase velocity. Note that the
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direction of energy flow is strongly affected by the frequency of the
emitted radiation. Note also that for the low frequencies mode 2 exhibits
a strong guiding effect which tends to keep the energy propagating along
the magnetic field. This is the familiar Whistler mode of propagation
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Fig, 10 . The direction of energy propagation associated with the
various waves excited by Cerenkov radiation. Negative angles
indicate oppositely directed radial components of the phase
and group velocity vectors
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Fig. 11 . The direction of energy propagation associated with the
various waves excited by normal Doppler emission at the harmonic
p= -1, Negative angles indicate oppositely directed radial
components of the phase and group velocity vectors




GROUP VELOCITY DIRECTION

180
160
140
120
100

87

. ‘l\ N\
= 3:'\ \4
L SN
L ’ -4
B MODEL H
p=l

B B;=0.69
- R2:0.4 fp, = 229 KHz
F Te =2000° K T, =2000° K

1 I\\'2 do i 1 2 ]
i 0 2 3 4 5 6

LOG X

Fig. 12 . The direction of energy propagation associated with the
various waves excited by anomalous Doppler emission at the harmonic

p = 1. Negative angles indicate oppositely directed radial
components of the phase and group velocity vectors

The power spectra which we have shown thus far have been for a

single electron. We consider now what happens when we have a bunch

of electrons moving together. Many of the resulting phenomena can be

understood by analyzing the simple case of particles moving parallel to

the magnetic field and bunched in the form of a sphere of uniform charge

density Nb and radius g. The mathematical result of this bunching is

that our expression for the spectral power density (the integrand of

equation (5,79 )withp= 0) has now to be multiplied by the form factor

D(g) squared, where from (5 .29), we have for g = h that

D(g) = N (2r g/K)% To/z (gK)

(6.1

)
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The propagation vector k equals 2n/)\ where \ is the wavelength in
the medium. Trhus if there is only a small fraction of a wavelength in the
dimension 2wg, then gk << 1 and the Bessel function can be replaced by

its small argument approximation, In this case
D2=[Nb (4rg®/3)1° (6.2)
= [ total number particles in bunch]® , kg << 1,

which we quite expect. On the other hand if there are many wavelengths
in a dimension 2wg, then gk >> 1. Since JI; /= is a rapidly oscillating
function for large arguments consider only the envelope of maximas,

D‘va. If we do this using the asymptotic form for J; 4 , we get

2
D
env

[Ny (4ng®/3)1°%/ (k2 g°/ 3)"

[total number particles in bunch1%/(k?¢/3)%,kg> > 1. (6. 3)

Now if the particles in the bunch were radiating incoherently, then the
spectral power density would be increased by a factor equal to the total
number of radiating particles, in our case, Nb (4wmg®/3). Therefore, if
for some wave (k® g°/3)% > N, (4mg°/3) = number of radiating particles,
then the power radiated into that mode is less than it would be if the
charges were not bunched but rather were radiating incoherently.

Figure 13 illustrates these conclusions, The curves marked a are
for a single electiron while those marked b and ¢ are for spherical charge
bunches of radii 10 cm and 1 meter respectively having a uniform charge
density of 10° particles per cubic meter. Note that for most frequencies
and modes the greater the number of radiating charges, the greater is
the radiation loss. However, at the very high frequencies (Xe ~0.1),
and for the modes having spectral power densities ~ 10~ 32, we see that
bunching sometimes causes less energy to be radiated than for a single
charge. These are the thermal modes having very short wavelengths,

The point to be made here is that there is a limit to the size of our

—
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bunch, beyond which the charges radiate even less at a given frequency

and into a given mode than they would if they radiated incoherently. In

a magnetoplasma this critical size is a function of the shape of the

bunch as well as of the magnitude and direction of the wave propagation

vector k.

LOG POWER SPECTRAL DENSITY

1 1 )
3 . s . 4 s
LoG X,

Fig. 13. Comparison of the power spectral densities for a) a point
charge source, b) a spherical source of radius 10 cm and uniform
density Ny, and c¢) a spherical source of radius 1 m and

with a uniform number density Nb
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Results Usding Model A
From our derivation of the dielectric tensor elements for Model A
using the kinetic theory approach, we find that this model is valid pro-

vided that the following inequalities are satisfied,

I?;p|>>1 and pg <<1 , (6.4 )

where for a collisionless plasma
1

— 2
Cp— (1 - st)/nz (2 dS”_) (6.5 )

and = p?
By N

dsl/Y: . (6.6 )

We shall only show numerical results for the Cerenkov radiation from a
particle. We shall also restrict ourselves to the high frequency end of
the power spectrum where ion motion can be neglected. Therefore, the

emission equation we use is given simply as

n, = ,s*zl . (6.7 )

In our computations the Model A is assumed to be valid for
< 0.5. 6.8
€ 122 and  w so.5 ( )

Using the emission equation, this requires that

i
]

[1-py 222 g@ )% . (6.9 )

For an unperturbed temperature Teu = TeL= 60000 hence isotropic unper-
turbed pressure to compare with the Model H results, and a particle

speed Bz = 0.169, we have that
l1-pY | 2 1.7x1072 (6.10)
and, from R = 0.5, we also have that

n® < 5x 108 Yze. (6.11)

2
L
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In terms of our abscissa variable Xe, these inequalities become

1
|1+0.63 pX2 |=1.7x107 (6.12)
and
2 5
n® < 2x10° X, (6.13 )

for the operating line R®=0.4. Thus |Cp |=2 for all valges of Xe except
for values which lie very near to the harmonics of the electron gyro-
frequency, that is, Xe = 2,50, .625, .277, .156, .100, etc.
The power spectral density for a non~-spiraling electron as calcu-

lated from this model is shown in Figure 14. The dashed portions of

the curves indicate where the adiabatic model fails, that is, at least
one of our inequalities was not met in those regimes. The most note-
worthy result is that there are two modes excited in the regime between
the UHR and the electron plasma frequency having nearly the same power
spectrum. In fact, on the scale of our graph it is difficult to distinguish
the two curves. Howevier, their existence is readily apparent in the
plots of phase and group velocity directions. When we compare Figure

14 with Figure 3 for the hydrodynamic model, we see that only one such
high energy mode was predicted by Model H. (Note: 1) the various mode
numbers used in the two models bear no relation to each other and 2)
mode 4 of Model H is due to second order temperature effects, while
Model A retains only first order temperature effects. Thus we do not
expect any mode corresponding to number 4 of Model H for the Model A).
Also note from Figure 4 that there exists a frequency band between

Xe ~ .62 and Xe ~ +72 where no radiation occurs as predicted by Kikuchi
[ 38]. This is in contrast to the continuous specitrum shown in Figure

3 for Model H. Also different in the two models is the appearance of

a radiated wave in the regime below the electron plasma frequency and

above the electron gyro-frequency for Model A,
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Fig.1l4 . Power spectral density at high frequencies for Cerenkov
radiation from a non-spiraling electron obtained using

Model A. Dashed lines indicate regions
where model is not valid
Figure 15 shows the power spectrum for a spiraling charge. As with

Model H we see the effects of wave interference manifested in the
oscillations of the power spectrum. Similar differences to those noted
previously for the non-spiraling electron are found on comparing Figure
15 with the corresponding Figure 4 obtained with Model H. As also
noted for Model H, the rather jagged upper envelopes on the curves is

due to the rather limited number of abscissa points plotted.
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Figure 16 gives the spectrum of phase velocity directions excited
by the Cerenkov emissions. This spectrum is'quite different than the
one obtained for Model H (see Figure 7). This is expected because of

the additional high energy mode and the emission gap at .62 < Xe < .72
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which we find in Model A,

180

160 |

140 b
<
z
=120k
(&)
ul -
&100
o -
. .3 2
5 80f \
o L MODEL A
ul 60 . O
>

I 0.4 f =229 kHz

& pe
B a0l 0.169
T =T =6000°

ool et

0 1 ] 1
0 0.5 1.5 2.0 2.5

Fig. 16. High frequency spectrum of phase velocity directions
excited by Cerenkov emissions obtained using Model A.
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Figure 17 shows that the new mode 2 propagates with a group velo-
city which has a radial component antiparallel to the radial component
of the associated phase velocity vector. This is indicated by the

negative angles in Figure 17.

160 L
0 | MODEL A
Z 120 __J p2= 0
P " 3 R?= 0.4 f = 229 kHz
e e
§ go L B= 0.169°
a - T =T =6000°
40 b= eyl el

>-
}-:. -
(@)
5 ° %
tl o 7/
> .40 s
s T 2 -7
S -80} .-
@
(&) -

-120 b

-160 |

[ 1 ] {
0 0.5 N 1.5 20 25
e

Fig. 17. High frequency spectrum of group velocity directions
excited by Cerenkov emissions obtained using Model A,
Dashed lines indicate regions where model is not valid




CHAPTER VII
POTENTIAL APPLICATIONS OF THEORY

In the previous chapters we developed a theory for computing the
radiation losses from free electric charges and antennas moving through
a warm magnetoplasma. Here we discuss some areas where this theory
is applicable. We first discuss its possible application to explain noise
generation in the ionosphere, and secondly we discuss its potential
application to the problem of radiation from satellite-borne antennas in

the ionosphere. .

Noise Generation in the Ionosphere
The main coniribution to the natural atmospheric noise observed
at low frequencies using ground-based receivers is caused by lightning.
When a lightning flash occurs, the electromagnetic noise which it
generates can propagate to a distant receiver by different paths. Figure
18 depicts the"direct"path from the lightning flash, L. to the receiver,
R, and Figure 19 shows the so-called Whistler path in which the

IONOSPHERE

IONOSPHERE

N\ P

FIELD LINE

Fig.18 . "Direct'path from L to R Fig. 19, Whistler path from L to R
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noise from L penetrates the ionosphere near the source and then travels
along the Earth's magnetic field to a receiver located near the opposite
end of the same field line. Along that portion of the Whistler path which
is in the ionosphere, the higher frequency components of the noise
travel faster than the lower frequency components. If a high gain audio
amplifier is connected to the receiving antenna R, a descending tone can
be heard--hence the name Whistler. While studying Whistlers, inves-
tigators noted that there also existed a continuous component of atmos-
pheric noise at frequencies below 10 MHz that appeared to be of cosmic
origin [ 60 ]. Ellis [ 19 ]discussed the possibility that the portion of
this noise at frequencies of hundreds of kilohertz was due to Cerenkov
radio emission by auroral particles approaching the Earth. He concluded
that the flux density of this radiation might be as high as 1072 Wm?
Hz*. Such power flux densities are well above the minimum observable.
Subsequent analysis of natural atmospheric noise showed that much of
the discrete VLF (30 kHz to ~ 3 kHz) noise observed also had its origins
in the exosphere rather than in lightning bursts [25 1. However, com-
parisons between theory and observations were largely speculative at
that time since no direct measurements of suspected source currents in
the exosphere were available.

Experiments performed aboard the Earth orbiting Injun 3 satellite
indicate that VLF hiss emissions are often correlated with precipitated
high energy electrons [28 ]. In one of the cases cited in [ 28 ] (March
3 event), the energy balance is as follows: VLF energy flux le’ss than
10 kHz = 8.0 x 1077 erg em™® sec’?, electron energy flux equals 10 ergs
cm® sec’t. In addition, observations seem to indicate that VLF hiss is
generated near the high-latitude (or large Ll) boundary termination of

particle trapping by the Earth's magnetic field.

1 1f the Earth's magnetic field is approximated by a dipole field, the L
value is equal to the distance from the center of the Earth measured in
Earth radii, at which a particular magnetic field line crosses the mag-
netic equator. Further discussion of this quantity can be found in
McIlwain [ 51 J.
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Liemohn [ 47 ] applied the results of the theory of Cerenkov and
cyclotron radiation in a dispersive medium to the interpretations of the
very-low-frequency (VLF) and low-frequency (LF) emissions from the
magnetosphere (3 to 300 kHz) using the following assumptions:

1) The source of the noise was postulated to be suprathermic
electrons streaming through the ambient plasma and radiating incoher-
ently.

2) The energy radiated by each electron into the Whistler mode is
assumed to propagate along the Earth's magnetic field lines.

3) The Earth's magnetic field is approximated by a dipole field.

4) The total spectral power density observed near the base of the
ionosphere is taken as

P(f) NQ 'VB

where P(f) is the average power loss per electron at the frequency f as
calculated using cold plasma theory, NQ is the number density of supra-
thermic electrons and V., is the volume of the flux tube containing the

B
source electrons. Liemohn took P(f) ~107° WHz™, N_ ~0.1 electrons/

cm® and VB ~10% cm® (corresponding to L = 3)., With &ese rough approx-
imations, the incoherent radiation flux at the base of the flux tube (cal-
culated to be ~10™* W/cm® Hz) was found to be several orders of mag-
nitude below the observed power level (taken as 107 W/cm® Hz).
Several years later, Jorgensen [ 34 ] performed very similar calculations.
The reason for doing the recalculation was based on the following three
reasons:

1) The observed power with which the calculated power was com-
pared was claimed to be 107° Wm™> Hz™, whereas preliminary results
obtained by the VLF experiment in the OGO 2 satellite, which are reported

in [34], indicate a maximum spectral density of about 107%® Wn 2 Hz"* .
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2) Although the noise was observed at latitudes where the magnetic
shell parameter L is about 7 and higher [ 28 1, the tube of lines of force,
the volume of which was used in the total power calculation, was
located by Liemohn at L. = 3, and so the volume used was much too
small,

3) The density of the energetic particles was taken to be 0.1 cm™,
but densities of electrons with energies between 1 and 10 kev observed
in the auroral zone have been found to be almost 2 orders of magnitude
higher.

In view of the factors discussed above, the models used in earlier works
considering Cerenkov radiation as a mechanism for VLF and LF emissions
probably were unrealistic, and so the new attempt was considered worth-
while. In summary, Jorgensen points out that typical noise specira in
the VLF and LF ranges observed from the ground (Byrd Station) and in
space (OGO 2) exhibit similar characteristics with a peak spectral den-
sity near 10 kHz. Maximum spectral densities observed on the ground
and in space are about 107 and 107 Wm™® Hz™*, respectively, but
usually the peak spectral densities observed are one or two orders of
magnitude lower.

Jorgensen does not consider the difference of about 2 orders of
magnitude between the maximum observed spectral density (1072 Wm™®
Hz ') and the maximum calculated spectral density (107 Wm? Hz ) as
a serious problem because the calculated noise spectrum is based only
on radiation from energies above 1 kev. The contribution to the radia-
tion from electrons with energies below 1 kev were not included in his
calculations because at the time Jorgensen's calculations were performed,
knowledge of auroral electrons with energies below 1 kev was poor.
Jorgensen concludes that the emission known as auroral hiss and polar
lower hybrid resonance noise may be generated by an incoherent Cerenkov

process in contrast to the earlier work by Liemohn [ 47 ] and others.
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Lim and Laaspere [ 48 ] extended the theoretical computations of
Cerenkov noise emission to include the low energy particles neglected
by Jorgensen. In addition to including the very soft electrons in their
calculations, they also made their calculations for a magnetic latitude
of 78o as opposed to the 70o latitude used by Jorgensen. While
Jorgensen's value is appropriate for auroral hiss observed near midnight,
they point out that satellite results have shown that these emissions are
most intense at about noon magnetic local time! in the region of the day-
time "polar cusp" at about 78° invariant latitude®

In the course of their study, they became aware of a weakness in
the cold plasma theories which is generally called the "infinity catas-
trophy", and is caused by the fact that as the eleciron energy E
decreases, the intensity of Cerenkov radiation from it increases as E"%.
They note that the E"% dependence of the radiated power cannot continue
without limit as E decreases, since net radiation from an electron
should certainly cease as the electron's energy becomes comparable to
the thermal energy of the background electrons.

There is experimental evidence that similar phenomena occur at
frequencies just below the upper hybrid resonance frequency, around a
few megahertz [ 27 ], [ 29 ]. In this regime of the CMA diagram, the
cold plasma refractive index surfaces are unbounded in certain resonance
directions resulting in infinities in computed power spectra similar to the
previously discussed case of the lower frequencies.

The source of the "infinity catastrophe" lies in the shape of the
cold plasma refractive index surfaces in regimes of the CMA diagram
where resonance cones exist (see e.g. Figures30and32). Note that
in the resonanée regimes there is no lower limit on the electron parallel

velocity which satisfied the Cerenkov radiation condition Vz =c/ nz:

1 Magnetic Local Time (MLT) is defined as the local time at the inter-
section with the magnetic equator of the field line passing through the
satellite.

® The invariant latitude of a satellite is the magnetic latitude at which
the magnetic field line passing through the satellite intersects the
Earth's surface.
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no matter how small VZ is, one can always find a real n such that the

emission equation is satisfied. As VZ - 0, n -»=in these regimes. We
shall examine this problem in the light of the theory developed in this

thesis.

We can classify the methods for eliminating the "infinity catas-
trophy" into two categories. In the first category are those methods
which seek to prevent n »« by.making the mathematical model of the
plasma more realistic. These methods likely include the allowance for
collision and/or thermal effects in the description of the plasma. The
second category contains those methods which allow n ~«but limit the
amount of power which can radiate into directions where n is very large.
This is the technique most often employed. Generally, in this approach
one simply neglects the radiation into directions where n is greater than
some cutoff value. Another possibility, using this kind of approach, is
to allow for sources of finite size. When the sources can be modeled in
this way, the "infinity catastrophe” is eliminated in a more consistent
and realistic manner than is possible by simply imposing a cutoff on n.

Consider these methods in more detail. First consider the case

when thermal effects are included in the description of the plasma as in
our Models A and H but collision effects are neglected. The refractive
index for such cases is not always finite. That this is so, can be seen
by examining the refractive index surfaces for Models A and H a]:&ven
in Appendix G. For example, when Xe = ,8 Model A has resonance cones
(n » =) as shown in Figure 52. Note, however, that at the same value of
Xe' Model H has bounded refractive surfaces. The surfaces for Model H
are not bounded for all values of Xe’ however, as seen for example in
Figure 42. Therefore when collisions are neglected, the inclusion of
plasma thermal effects in the manner of Models A or H will not lead to
the elimination of the "infinity catastrophe" for a point charge source.
‘When collision effects are introduced into Models A and H, the
refractive index is likely to remain finite everywhere as it does for the

case of a cold plasma with collisions [ 15 J. However, in the magneto-
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-spheric plasma surrounding the Earth, collision frequencies are often
very low. The introduction of such small collision losses into Models
A and H may still lead to unrealistically high values of the refractive
index. In these cases one should use improved models for the plasma,
such as our Model K, or else allow for sources of sufficient size such
that the power which is radiated in the form of waves corresponding to
very large refractive indexes is negligible.

For example, consider radiation from an extended charge source.
In Chapter V we give the power radiated by a uniformly charged ellipsoid

of revolution which is moving along the magnetic field of an anisotropic
plasma. Such a source might approximate a collection of point charges
in a beam which have been bunched by plasma waves.

For very large refractive indexes, the Fourier transformed current
density for this source behaves like l/nz or like sz if one uses the
Cerenkov condition n, = c/VZ. Since the power radiated goes like the
square of the current density, we find that for an extended source the
power decreases like Vz3 instead of increasing like l/VZ which is the
case for a point charge. Hence, such an extended source has a finite
power spectral density irrespective of any infinities which exist in the
refractive index. ,

While studying the problem of radiation from spiraling charges we
noted that Model A predicted that a relatively large portion of energy
could be radiated into the thermal mode at frequencies near the upper
hybrid resonance. Since there appears to be an enhanced band of noise
in the ionosphere at these frequencies, it would appear from our numer-
ical results using Model A that part of this noise (sometimes referred to
as "region 3 noise" [ 42 1) may have its source in Cerenkov and
cyclotron radiation from suprathermic electrons radiating into electro-

acoustic (thermal) modes.
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To check such a hypothesis would require that the source of the
"noise" be located and described. When studying VLF hiss, most
investigators assume that the source electrons are located approxi-
mately on the same field line as the receiver, since VLF Whistler mode

radiation often propagates nearly along the magnetic field lines. At
frequencies near the UHR, the calculation of the trajectory of radiation

propagation is quite complicated, especially if thermal effects are taken
into account [ 4 ] (which could be important). Because of the difficul-
ties involved in tracing a ray backwards from the receiver to the source
electrons at these UHR frequencies, our knowledge of the location of the
source of this noise is very poor. Thus an adequate check of the results
predicted by Model A regarding region 3 noise must await the develop~
ment of a theory for locating where the sources are; a search of experi-
mental data concerning the description of the sources isthen in order.
Once the sources are described the theory given here may be applied.
The radiation from free charges also has potential as an element of
a communications system (so-called free-charge antennas). The feasi-
bility of using freecharge-radiators in a controlled manner has recently
been examined using cold plasma theory [ 16 ]. The warm plasma theory

developed in this thesis can be applied to this problem.

Antennas in the Ionosphere

The theory given in this thesis can likewise be applied to commun-
ication systems which involve a source antenna in the plasma. In parti-
cular, our treatment of this problem differs from most previous studies
[ 53], [ 70 ]in that we have treated antenna motion and plasma thermal
effects simultaneously.

The study of the radiation losses from a transmitting antenna are
important for an understanding of antenna efficiency. Thermal mode
excitation could be a major limitation to the maximum realizable
efficiency of an antenna in the ionosphere. Using the formulas developed
in this thesis, loop and dipole antennas can be compared with one

another with regard to their susceptibility for exciting thermal modes.
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Although we have derived expressions for the total power radiated
by various antennas, it is sometimes more useful to obtain radiation
patterns for these antennas, If the antenna is located high up in the
ionosphere so that the energy propagation can be described by "ray
theory", then it is often most convenient to obtain these radiation
patterns in terms of wave normal space (k-space). Only slight modi-
fication of several formulas given in this thesis are necessary to
obtain expressions for k-space radiation patterns for the loop and
dipole antennas.

In our expressions (5.95) and (5.88) for the power radiated by
moving loop and electric dipole antennas, we note from the emission
equation that a band of frequencies are emitted. The width of this band
depends on the magnitude of nZ. Those modes which have nz very large,
such as the thermal modes, will show large frequency spreading. The
formulas given in this thesis allow for the systematic study of the com-
plex phenomenon of Doppler shifted radiation from sources moving in

warm anisotropic plasmas.




CHAPTER VIII
CONCLUSIONS

Before presenting our conclusions we first review both the moti-
vation behind this study, and its objectives. The motives for this study
are found in both experimental observations and in paradoxical theoretical
predictions. The experimental observations we refer to are the discovery
of rather intense radio noise' in the ionosphere at frequencies below the
upper hybrid resonance frequency and above the electron plasma frequency
(84, 31, 27, 1], This noise has been coarrelated with fluxes of supra-
thermic electrons also observed in the vicinity of the intense radio noise
L42 1. It was suggested that these energetic electrons may be the source
of this radio noise via the Cerenkov and cyclotron radiation which they
emit. However, theoretical estimates of the amount of Cerenkov and
cyclotron radiation emitted by an electron in this frequency band, based
upon cold plasma theory, lead to the paradoxical result that the energy
radiated becomes infinite as the particle speed approaches zero
("infinity-catastrophe") [ 63 1, [48 1. The original objectives of this
study were: 1) to modify the cold plasma theory so as to eliminate the
"infinity catastrophe" and, 2) to apply the improved theory to test the
hypothesis that the observed "region 3" radio noise is due to Cerenkov
and cyclotron radiation.

In order to eliminate infinities in computed power spectra, it was
decided to discard the cold plasma model in favor of a more realistic
plasma model which would allow for thermal effects. In addition, the

new model was to include collision effects. As a further means of

1 This is sometimes referred to as "region 3 noise" because it relates
to region 3 of the CMA diagram.
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eliminating power infinities and at the same time treat the case of
coherent radiation from charge bunches, it was decided that the problem
of Cerenkov radiation from an extended source would also be investi~-
gated. Since there are several ways in which plasma thermal effects
can be modeled, an additional objective developed; to compare Cerenkov
and cyclotron radiation spectra as computed using the various models.

Due to the unforseen complexity and magnitude of the work
required to modify cold plasma theory as indicated in objective 1), very
little effort was given to applications of our theory as related to the
previously stated objective 2). However, we believe that the theory of
Cerenkov radiation and magneto-bremstrahlung developed in this thesis
is the best theory currently available for analyzing "region 3 noise" in
terms of these processes.

Modifications of cold plasma theory to allow for finite plasma
temperatures are generally made using either hydrodynamic or kinetic
theory. The hydrodynamic theory is based upon equations derived by
taking successive velocity moments of the Boltzmann equation. In order
to close the set of moment equations the assumption of negligible heat
flow is made (adiabatic approximation). The kinetic theory is based upon
computation with the Boltzmann equation directly instead of working with
its moments. As is usually the case for both the hydrodynamic and
kinetic theories, the governing equations were linearized in this
thesis.

We found that by transforming the governing equations to Polarized-
Wave space and working in this space, we were often able to express ‘
rather complicated results very concisely.

The conductivity tensor and the closely related dielectric tensor are
of the utmost importance in our theory, since they determine how the
plasma is modeled. Consequently, we have given very detailed deriva-
tions of the dielectric tensor for the various models, and we have indi-

cated where errors exist in previous published derivations. Note that
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although the dielectric tensor for Model A is derivable using either a
macroscopic or kinetic theory, the latter theory also gives the regions
of validity of this model very straightforwardly.

The tractability of analytic solutions to many problems involving
radiation in plasmas, depends largely upon the complexity of the dielec-
fric tensor. Note in particular, that the dielectric tensor for our Models
A and H allow us to perform the integrations required to obtain the power
spectral density from a radiating charge without resorting to difficult
integrations involving branch points and branch cuts. Such is generally
not the case when working with the full kinetic expression for the dielec—-
tric tensor. However, we wish to point out a potentially promising
extension of our results which might allow for some of the features of the
kinetic theory such as Landau and cyclotron damping.

Kikuchi [ 37 ]in a very interesting paper gives various explicit
formulas for the dielectric tensor which include the effects of Landau
and cyclotron damping. These formulas are obtained starting with the
dielectric tensor of kinetic theory. Kikuchi then takes various expansions
of the transcendental functions appearing in this tensor. Substituting for
these functions the proper expansions, and neglecting high order temper-
ature effects, he is able to obtain fairly tractable formulas for the dielec-
tric tensor. It appears possible that using Kikuchi's formulas, the power
spectral density of radiation from a charge spiraling in a homogeneous
magnetoplasma can be obtained analytically in a relatively straight-
forward manner. This would include the phenomena of Landau and cyclo-
tron damping, which we have not been able to treat in this thesis.

In the opposite case, where thermal effects are completely negli-
gible (cold plasma theory), we have shown that our simplified formula
for the power spectral density for a spiraling point charge is identical
to that obtained by Trulsen and Fejer (TF) [ 80 ]using a different
approach. Since (TF) and Liemohn [ 47 7 are in disagreement as to this
formula, our results support the conclusion that the formula of TF is

correct and that of Liemohn is incorrect.
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By including finite size charge sources we have been able to
eliminate the "infinity catastrophe" independent of whether a cold or
warm plasma model is assumed.

In addition to Cerenkov and cyclotron radiation via the cold plasma
modes, our numerical results clearly show that there are also emissions
into the new thermal modes described by warm plasma theory. It is also
obvious from our results that the radiating bands for the cold plasma
modes and the thermal modes are not identical. Indeed, there are even
differences in the radiation bands for the thermal modes depending on the
particular warm plasma model used (i.e. Model A or H).

Most cases which we have studied predict significantly greater
radiation losses into the cold plasma vs. the warm plasma modes. A
noteworthy exception occurs in "region 3" of the CMA diagram when Model
A is used. Recall that this is the regime where excessive radio noise was
observed in the ionosphere. In this regime radiation losses into the
thermal modes may be a very significant part of the total energy radiated.
Because the cold and warm plasma modes have very different propagation
characteristics in this regime, the thermal mode contribution to "region 3
noise" observed by a receiver in the i onosphere and the comresponding
contribution to this noise due to the cold plasma modes will likely have
different. source locations. Hence, thermal effects may be very important
in understanding the mechanism of "region 3 noise".

During our study of Cerenkov and cyclotron radiation we did not’
find any significant changes in computed power spectral densities for
spiraling charges when we replaced the scalar pressure with an anisotropic
pressure in Model A. The anisotropic pressure model, however, was not
extensively tested so that no general conclusions were obtained.

With regard to the "infinity catastrophe" we wish to point out that
in both Models A and H there exist certain modes having resonance
directions such that the refractive index n »« in these directions.  We
find that the cold plasma index infinities at the LHR and UHR are elimin-
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ated by allowing for plasma thermal effects; however, the thermal modes
themselves have resonance cones which may lead to an "infinity catas-
trophe".

Refractive index plots for Model A seem to indicate that this model
is strictly valid only in the vicinity of the upper and lower hybrid reson-
ances. Away from these frequencies the refractive index is so large that
the basic approximations used to derive the model are no longer valid.

We find that the results of computations based on Models A and H
can often differ drastically from one another. In particular, large differ-
ences were noted at frequencies near the upper hybrid resonance.

The method of ahalyzing radiation from spiraling charges was found
to be easily adapted to the study of radiation from moving antennas.,
However, in the expression for the power radiated by a moving point
dipole antenna a singularity was noted for those cases where n = 1/ Bz.

It was noted that by a slight alteration of our derivation of the
power loss formulas radiation patterns in wave normal space could be
obtained. These are particularly useful as inputs to ray tracing theories.

The Doppler spread of frequencies caused by antenna motion can

be analyzed straightforwardly using the formulas given in the thesis.




APPENDIX A
POLARIZED-WAVE (P-W) SPACE

In solving problems involving anisotropic plasma media, it is
often the case that the equations which must be manipulated are greatly
simplified when expressed in terms of "polarized-wave" space. This
appendix is devoted to a discussion of "polarized-wave" space insofar
as is required for understanding its use in this thesis.

The underlying reason that the equations simplify when written in
P-W space is that the curl operator (/éz %) which appears so often in
problems involving anisotropic plasmas becomes a diagonal tensor in
P-W space as shown in the next section. The transformations relating
quantities in Cartesian space to corresponding quantities in "polarized-
wave" space are given in this appendix along with the explanation of why

it is referred to as "polarized-wave" space.

Diagonalizing the Matrix for (é\z x)

Consider the vector product ’éz x e. This product may be written

0 -1 O07re
X

/éxg= 1 0 o0 ey | - (a.1)

0 0 0 e
z

We seek eigenvectors and eigenvalues ()\) such that

0 -1 0 e e

b X
1 0 0 e = )\ .

v ey (a.2)
0 0 0 e e

z z

This system of equations has a non-trivial solution only if
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X (A\*+1)=0 . ( A.3)

Thus there are three possible eigenvalues, namely, A=+i, -i, or 0,
The corresponding eigenvectors e

fied by

e., <« (Q -i%@
~4l X

Lt 8,8, have directions speci-

A A
_e__l o (ex+ i by)
A
e, = €, (A.4)

where we shall fix the proportionality constants by requiring these vectors
to be of unit norm.

If e is a complex vector

e=g +ig" (A.5 )
with ¢' and e" real, then we define the norm of e, e ll, as
1 =
Hell=+@* %=+ (% +e" , (A.6 )

which is a positive real number. The length of e, l_e_ | , is defined as

eles@fas - ofms(e - e rize c et (A7)

which is a complex number, sign undetermined.

A)

X N .
The eigenvectors of unit norm, A e_r e have cartesian

+1 '
components

A _oB A A

e, =2 (eX i ey)

4 =228 +18)

-1 X Y

A A

e =% . (A.8 )

(¢] z
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They are linearly independent and can therefore serve as a set of basis

vectors. In terms of this set of basis vectors, the cartesian unit vectors

are given by

A 2_—5— A )
ex B (e+1 + e—1
% -3 A A
= 2 _
ey =12 * (e - e_l)
A A
e, =e . (A.9 )

Transformations Between Cartesian and "Polarized-Wave" Spaces

A vector, E, will have components

N A A
E=FE €1 + E, e +Ej e,
=E & +E & +E &
X X Yy ¥ zZ zZ
= . A -% . A A
= 2 2 -
2 (Ex+1Ey) e + 2 (EX 1}3y)e_1 + Ez e, (A.10)

which leads to the vector transformation matrix, I.

E 1 i 0 E E
X X
1
—_ -2 -3 —_
E—l - 2 1 1 Ol Ey "Z. Ey “ (A.].]. )
E 0 0 2%} E E
O pA zZ

» 2'1 is given by

E, 1 1 0 E, E
E | = 5| - i ol E =T |E.f . (a.12)
E 0 0 2% E, E,

ikz-iwt

Suppose E (r,t) =8 (k,») e represents the electric field
associated with a plane wave of real amplitude § propagating along the

z-axis. From our transformation matrix
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_ -3 - — B e s _
8,=2 (6, + 1<sy), 64=2"7(6, mry), ¢ =6,. (A.13)

Therefore, § 1 # 0,8, = 60 = 0 refers to a left circularly polarized (LCP)
fransverse electromagnetic (TEM) wave. Similarly, &; # 0, 61=<So= 0
and 62 # 0, 8, =48, = 0 refer to waves which are right circularly polar-
ized (RCP) TEM and longitudinally polarized respectively. By definition,
the electric field of a RCP wave rotates in a clockwise manner when
viewed looking in the direction of the magnetic field, conversely the LCP
wave rotates counterclockwise., For this reason the coordinate system'
having (éu . /é_l R é\o ) as basis vectors is sometimes referred to as the
"polarized-wave" (P-W) coordinate system. ’

If G is a tensor in Cartesian space and K is its transform in P-W

space, then

-1

5 = and

=
no
]
2

- T—l

=

T . (A.14 )

Tensors written in P-W space are arranged as follows. Rows are
labeled in the same manner as column vectors. Hence the top row is
the +1 row, the middle row is the -1 row and the last row is the 0 row.q
Columns are labeled in such a manner that the product of a tensor _5 #hd

a column vector E obeys the relation
K+E=K E . (pn.15)

According to this scheme the columns are ordered -1, +1, 0 when read
from left to right.
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If
B R Kio XX ny Cz
K= [Kya Kia Kaol and G = GYX CYY Cyz
Ko Ka Koo Cox Czy Coz
(A.16)

then the components of Kand ¢ are related as follows:

— ~1 2 n-l -
Ko = 2 (CXX + CYY) +1i2 (ny ny)

ki = 27 (G, - cyy) +127 (ny+ ny)

Kiqn= 27 (c:XX - cyy) -i2t (cYX + ny)

Kir= 27 (C + ny) -iz2? (oyx - ny)

Ko = 2”% G, *+1i cyz)

Koo = 2'% (N cyz)

Koa = 2“% (sz -i Czy)

Ko = 2"% C, +1i czy)

Koo = C (A.,17)
or Inversely,

C, = 270 Ky + Ko +Kog +Kay)

ny= 27 (K -Kig '—111_1 +Ky1)

CZZ = KOO

Cpy = 127 (K - Ko +Kag -Kan)

—_ — 4 91 - -

Coy = i 271 (K +Ky -Kao -Kay)

C,, = 2% (Ko +Kup)

sz= 2—% Koa + Ka )

cyz =i 2—%("K10 +Kao)

Cy= 172 Ko ~Kn) (A.15)

————————————
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Note from the previous relations that QT corresponds to gT where the

transpose of R is defined by

T
=R
(R, ) ve (a.19)
or more explicitly,
Che Cyx  Cux Ru Ru  Ra
T T
C =[Cy Cyv Cuy R ={Rsn  Ra  Rea| - (a.20)
CXZ Cyz Gzz Rio Rio Roo

With this definition of the transpose, ET is not equivalent to the matrix
R with rows and columns interchanged.

Sometimes a vector k is most conveniently expressed in either
cylindrical (kl, kz, o) or spherical (k, ¢, ¢©) coordinates, hence we
also use the transform from Cartesian to P-W space to write

ki1= 2_% k Fieo 2'%k sin ¢ eii(P !

ko=kz=kcos§. (A.21)

Vector and Tensor Algebra in P-W Space

The dot product of two vectors V and B is given by

VeB=V_B .
= = -V

As usual, the summation convention is used with Greek indices ranging
over the values +1, -1, 0. Similarly for dot products between vectors
and tensors of arbitrary rank we define the dot product in P-W space as

B+R=B__R .
B-R=B R ... (A.22)
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Another form of the dot product frequently encountered isk V « R,

which in P-W space is the tensor

kc V‘)’ R'YV

(A.23)

Using the transformation I, the cross product B x V becomes

B 0
o
I'(_B_XV)=1 0 -Bo
-B-: B
also
Bo 0
T* BxV* =1 0 -Bo
-B B
Note that if B=B & =B B
= o gz o o

- N
T - (ezxy)] =ivv

-B
B,

0

By

(v=+1, -1, or 0).

Vi
Va : (A.24)
Vo
*
Vo
*
Vi . (A.25)
*
Vo
(a.26)

‘When transforming vectors involving cross products, it is often conven-

ient to express the cross product as a tensor.

coordinates (Qz X) is equivalent to

For example, in Cartesian

(a,27)
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Hence, in P-W space this tensor transforms to

1 0 0

TE xT =1 |0 -1 0

Il %1 . (A.28)
0 0 0

The identity tensor =I keeps the same form in P-W space which

it had in Cartesian space as do the related tensors I N and ; I defined by

1 0 O© 0 0 0
I,=10 1 0 : =I|| = 0 0 O . (A.29)
0 0 0 0 0 1

When expressed in terms of Greek subscripts the tensor elements for
1, ; L and ; ' become

. I =p® 8 ;I =(1-p?0 . (A.30)

I =90
By p-v 1pv p-v "t T b-v

Here 5[& -y has the usual meaning of the Kronecker delta, namely,

. (A.31)

The quantity GM v is not to be taken in the sense of a component of a

tensor even though we write it with subscripts similar to tensors.

Vector Analysis in P-W Space
The gradient, divergence and curl operations can also be trans-
formed into the P-W space representation. In terms of cylindrical

(p, 2, ¢) coordinates the gradient operator becomes

1 N
(Iv) =(2=) =[y22% Szt ——+(1~y2)§;JeW¢. (a.32)
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The divergence is written

o

voé:(b__r)-'yA'y .

The curl is somewhat more complicated, taking the form

(- wear], =i )2 - (&), 20}

+ (1—72){<g—£>+1}\.1 —<%£>_1A+1 b

(a.33)

(A.34)




APPENDIX B
BASIC MAGNETO-IONIC THEORY

This appendix is intended as a brief description of those elements
of basic magneto-ionic theory which are of use in making the remainder
of the thesis more understandable. Also, since the notation used in
this thesis may differ somewhat from that with which the reader is
familiar, it seems reasonable to include this discussion of the simpler
plasma concepts to supplement the more complex analyses. In this

appendix collision effects are neglected.

Dispersion Relation
At the end of the second chapter we wrote down an expression for

the dispersion relation, namely,

det (n’?IO_y-K )= 0. (B.1 )

~-nn
o~y 0 =¥
which gives the functional dependence between frequency and wave
propagation or refractive index vector. In this section we write the
dispersion relation in a form which is more suitable for analysis. By

writing the refractive index vector n in spherical (n, #,0) coordinates

and letting S = sin ¢, C =cos &, we can express the dispersion relation

as

014G Ky e, -2 n?scelx,
Aw)=|-2n% 82 ®P-x,, %n° (1+C?) K, _rEn®sc e S

- 2“%°E_n2 SC e"jieKc,_1 -2*%119&; e]'%D_KOI n?S® Koo
=0 (B.2 )

where the parallel lines about the matrix indicate the determinant of the
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matrix is to be taken. The angle #is measured from the z-axis to k or
n and the angle ¢ is measured from the x-axis to the projection of kor

n on the (x-y) plane. The dispersion relation can now be written in the

form of a polynomial in n®,

ant*+BnP+C= 0 ( B.3)

where

ad= - ‘% Sing D) [:Kl—l + K—ll + elZ(P K—l—l + e_iZ(p K]_]_ }“ 0052 ’l’Koo

P sin 9 cos & [e'i‘P(Kol + Ko ) + & (K_10 + Ko_l)] ( B.4)

6= sin® 9 K1 Koy ~ K Kooy + % Kio Koss + % Kno Kat = 3Keo Kony
-2Ko K1 +3 e_iZ(p (Koo K11 - Kio Ko )
+3 6 MoK ~Kao Kou) | +
2_-%L sin ¥ cos 19[e_i(p(Klo Kaip + K Ka - Koo K1 - Ky Koo )
+ ei(p (Koi Komw +Koo Ko - K141 Koy - Kig Ky ) ]

- Kio Komu - Koo Ko + Koo Koy + Koo Ky ( B.5)

C=Ka Kio Ko +Kag Ko Kii -Ka0Koy Kig

+ Ko Kayg Kooy -Kga Kg Kio - K1 Ka: Keo ( B.6)

Similarly, in cylindrical (nL, 0, nz) coordinates

; 1 .
=n? 102 102 o129 -3 i
2nL+nz -Ki -zh, e -Ki1 -2 21’1_1_ l’lz e (’D—Klo
Alw)= | -1 n2 129 K. 1.2, 2 -5 “ip
(w)= -zn e —Kaa §nl+nz—K’-H -2 n_‘_nze -K
1 . 1 .
B - 1 -2 2
2%nn_e Pk, -2 nlnzeup—KOI n? - Ko

=0 , ( B.7)

and we obtain a polynomial in n
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a n‘i+ d'ni +[-}ni+/5"nl+(’/= 0 ( B.8)
where
7 = -3Ka +Ko) - (2P Ky + e PRL) ( B.9)
a'= -n, 2‘%[(K_1O+Ko_l)ei‘p+ (Kol+K10)e_i‘P] (B.10)

; -i2 i2
= naz [-Koo = 3 Ki-1tK 1) +3 (-e ' (pKn - el (pK—l—-l)] +

®©
|

%K1 Koo +Kit Koo-Koro Kot = Kor Kio+ 2Kg1 Ko 2K K

(K2 2 Koo ~K-10 Kou) eiZ(p+ (K11 Koo - Kor Kio) e—i?.(p] (B.11)

B = -n; Z"% [(K_10+K0_1)ej“p+(1<01 +Kyo) e—i‘p]+

n_ 78 [ Ky Kim - Koa K = Koo Kup + Koy Kiod e -@

(Koro Kim - Ko Ko + Koy Kou - Koay Kao) €] (B.12)
c = —n‘; Koo + nz (K1 Koo + K1 Koo = Ko K — Ko Kio 1+

(K1 Ko Kio - K1 Koo K + Kogo Kg Ky + Kyy Ky Ko

-Kiu KaoKoa -~ K Ky Ky e (B.13)
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Cold Plasma Dielectric Tensor
Assuming that v - =P S = 0 and neglecting collision effects, the

momentum equation ( 2.5 2) becomes
— -1
OV /ot =q m E+V xB), (B.14)
or, if we are working with the Fourier-analyzed equation ( 2,55 ),

-9 - ~-1 - ’y . {
1w’2fsv quS (61/ 1VmbS SV) (B,15)

The mobility tensor p S follows straightforwardly by solving the force
equation for;'l_fS in terms of §. This results in the following diagonal

mobility tensor

(1—YS)‘1 0 0
— 3 -1 -1
g =iq, (m_ o 0 (1+v)) 0 (B.16)
0 0 1
where
YSE q, Bo/ms w= wbs/w. (B.17)

From our relation between the dielectric tensor X and the mobility

tensorp , i.e. eqn. ( 2 62), we find that
gs M

1-ZX (1-y )*? 0 0
s S S
K = 0 1- X (14+Y)y* o0 (B.18)
= g S S hd
0 0 1-Z X
s
where
— 2 2
XS—NSOqS/eoms w® . (B.19)
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It should be noted that the reason K has the simple diagonal form
shown is because we have chosen to express our equations in terms of
Polarized-Wave space. We find that many of the equations relating to
phenomena in anisotropic plasma are greatly simplified when expressed
in terms of P-W space. We have expressed the dielectric tensor using
the normalized gyro, Ys' and normalized plasma, XS, frequencies. In
order to avoid confusion when comparing our equations to those given

elsewhere, one should note that our definition of YS includes the sign

of the charge of g . The dielectric tensor given here is usually referred

to as the cold plasma dielectric tensor.
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Cold Plasma Dispersion Relation
Having obtained the explicit expression for the cold plasma
dielectric tensor in the previous section we can substitute this into

(B.3)-(B.6 ). The result is
dn4+Bn2+C';=O (B.ZO)

with the coefficients @, B, and ¢ simplifying to

a= -K sin® 9-K_cos® 9 (B.21)
B= (K Ka-K K) sin® 9+ 2K K (B.22)
C= -K Ka K_, (B.23)
where
-1 _ - -1

KV_l % X, (1 vY) (B.24)
and

K =3 Ki+Ky) . (B.25)

This is usually referred to as the cold-plasma dispersion relation.

Now cutoffs are defined by n® = 0 while resonances are defined by
n°= » , The principal cutoffs and resonances correspond to #= 0 and
#=m/2. Setting #= 0 and 1/2 and solving the resulting forms of the

dispersion relation yields the following table of cutoffs and resonances.

TABLE 2
PRINCIPAL CUTOFFS AND RESONANCES FOR A COLD PLASMA
CUTOFFS RESONANCES
#=0 Ki=0,K_; =O'Ko=0 Ki= @, K1 ==
3=7/2 K—1=0,K_.1=0,KO=0 K_L=0
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CMA Diagram

The CMA diagram is a convenient tool for presenting much of the
information contained within the cold plasma dispersion relation of the
previous section. The letters CMA refer to Clemmow, Mullaly and Allis
who introduced the method of analyzing the dispersion relation which we
are going to discuss in this section[ 11 ], [ 3 1.

The CMA diagram is a plot of the principal resonances and cutoffs
inX_, Y; coordinates. The result is that the X _, Yg plane will be
divided into a finite number of regions. Within each region the topology
of the refractive index surface is the same [ 741].

For a two-component ion-electron cold plasma the subscript s takes
on the values e, for electrons, and i, for ions. From our definition of
YS', it follows that Yi = —Ye me /mi . Hence, for a two species plasma

the components of the dielectric tensor become

K, = 1-X, (1+me/mi) (B.26)
K =1-X_ [(1-Y) 7 +m (m+Y m)™ (5.27)
K_=1-X ((1+Y) 7 +m_(m - ¥ m)™ | (g.28)

and also
K =1-X [(1 - Y2 hm m (2 - Y2 mZ)—l :l . (B.29)

For the range of the parameters shown in Figure 20, we can

approximate Ko, X, , Ka, and K_L very well by

Ko~ 1-X (B.30)

K~ 1-X_ (1—Ye)_l (B.31)
-1

K ,~1-X_ (1+Y) (B.32)
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K ~1-X (1-3{5)‘1 (B.33)

since me << mi. Figure 20 shows the principal resonances and cutoffs
in this high frequency regime. The various regions of the CMA diagram

have arbitrarily been numbered for later reference.

o~

Fig.20. Graph of principal cutoffs and resonances for high frequencies

At these high frequencies the curves for the principal cutoffs and reson-
ances become nearly straight lines or parabolas.

Figure 21is a plot of the principal cutoffs and resonances for the
hydrogen-electron plasma for the frequencies Y: =1, Xe > 1. The axes

are log-log scale and the various regions have been arbitrarily numbered.
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Fig.21 . Graph of principal cutoffs and resonances
forXe z 1 and Y: =1.

The various principal resonances and cutoffs have names which are given

in Table 3.

TABLE 3
NAMES OF PRINCIPAL CUTOFFS AND RESONANCES

Curve Name
K; =0 Ton cyclotron cutoff
Kai=20 Electron cyclotron cutoff
KO =0 Plasma cutoff
Ky == Ion gyro-resonance
Ky=@ Electron gyro-resonance
K, =0 (Yez <1) Upper hybrid resonance (UHR)
K = 0 (Ye2 > 1) Lower hybrid resonance (LHR)
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We indicated earlier that within each of the numbered regions of
the CMA diagram the topology of the wave phase velocity surface is
unchanged7 Table 4 lists sketches of the phase velocity surfaces along
with the corresponding refractive index surfaces for the regions of the
CMA diagram which we have shown. The magnitude of the refractive
index is simply given by the reciprocal of the magnitude of the wave
phase velocity times the velocity of light in a vacuum. The dashed
circles represent reference surfaces for waves propagating in free space.
In Table 4, the magnetic field Eo is assumed to be pointing vertically
upwards. R and L refer to right and left circularly polarized waves while

O and X refer to ordinary and extraordinary waves.
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TABLE 4

PHASE VELOCITY AND REFRACTIVE INDEX SURFACES
FOR VARIOUS REGIONS OF THE CMA DIAGRAM

Phase Velocity Surfaces
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Ray Direction in Anisotropic Plasmas

For a cold lossless magnetoplasma the direction of energy flow
associated with a given plane wave propagating at an angle # with
respect to the magnetic field is given by the perpendicular to the refrac-
tive index surface for that wave together with the requirement that the
angle o between the group velocity and the phase velocity (or n) be an
acute angle [ 20 ]. However, for more complicated plasma models this
may be an obtuse angle as is evidenced by the work by Bitoun et. al
[ 8 J. In such cases the ambiguity as to the sense of \_/'g can be resolved

by determining the sign of ( dw / dk).

Bof /

Fig.32 . Geometrical relation between direction of the group
velocity and the refractive index surface

The angles o and # shown in Figure 32 are related by [74 ]

__4ion
tang = - =~ = (B.34)
where the angle « is taken to be positive if the vector n lies between yg
and go [75 1. Therefore for a given propagating plane wave, the angle

6 at which the ray propagates is given by

0= 9 + a . (B.35)
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For a cold plasma we showed in the previous section that the

dispersion equation can be written

adn* + Bn® + C = 0 (B.36
where
7 = s 2 - 2
a K sin® & -K_ cos® 9 (B.37
- — ] 2
4 =K K sin® d + K K (1 + cos® ») (B.38
¢ =-K K_ K . (.39
Using this dispersion equation we get after taking 6‘3‘
[ dn . B o) c
> O +4n3'&9—61+°7n2+2ngr; /3+§—:’j=0. (B.40
o5 _ . s 2
Since >0 0, this simplifies , after dividing through by n°, to
DA o 2 1 On ] 1 ?
T+ 4 oy g < 24
5o n > ¢t a +z£9nw_o. (B.41
. 1 ?
Solving for n g% gives
A 2 Vb
1w "
n %% 4d n® + 20 : (B.42
From (B.37) and (B.38)
144 ,
o = (K0 - K_L) 2 sin & cos @ (B.43

23 _
29 = K Ky K K)2sind cos? (B.44
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Hence,
— - 2 — - 3
tano = [(Ko Kl) n° + K1 K__1 KO KL J 2 sin® cos @

[— 40° (K sin® # + K_ cos® #) + 2K; K., sin® &

+ 2K_ K (1+cos® 0)]‘1 . (B.45)

Thus for a cold plasma we have a rather simple formula for determining
group velocity direction as a function of # when the components of the
dielectric tensor are known. For our numerical studies we use a similar
method to find the direction of \_fg for a warm plasma. For our warm
plasma Models A and H, equation (B.36 ) is replaced by (G.17) and
(G.5 ) respectively. As noted by Allis, et. al. [ 2 1, v_g corresponds
to the direction of the sum of the Poynting flux and the acoustic energy

flux in a warm plasma.




APPENDIX C

ADJOINT MATRIX

x)

The equation which relates the excitation current { (e to the

excited field § is the "wave equation”

A6 =i(e o)yt gl (c.1)

V-0 O o v .
where the "wave matrix" A is given by
—_ 2 — -—

A, =L, -non_ -K . (c.2)

Solving for the eleciric field, we have
- ~1 (ex)
8, i(e o A) .y . (c.3)

Here (dc_v) is the adjoint matrix of (Av—c) and A is the determinant of

(A,
The purpose of the present section is to analyze the explicit forms
of the adjoint matrix for Models H and A, Note that these models differ
only in the explicit expressions used for the dielectric tensor components
K .
V-0
Before we consider each model separately, we shall discuss some
properties of the adjoint matrix which are common to both. Using cylin-
drical (nL, O, nz) coordinates, the ¢pdependence of Av—o is simply
given by et¥~9)® for all models. Therefore the adjoint do-v varies
iflo-v)

like e © while the determinant A is independent of ©. Separating

the pdependence, in the adjoint, we can write

_ ilo-v) o
., 0n)=x_ (.,n)e . (c.4)
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Hence, the electric field év can be written

8,=i(e wA)™ 1-0ley g(ex). (C.5 )

The matrix ()\o_v) is the adjoint of (A'v_c) where the latter

matrix is defined by the equation
A=A oo (C.6 )
v-o V-0

That is, ,A'v—c is Av_0 with the ¢ dependence removed. In many cases
( A’V_o) is a symmetric matrix and in these cases ()\v_o) is also sym-
metric.

In addition, for each of our models the following symmetry holds
KV -0 (n,w) = Kfvcr (n , -~w). Therefore, it follows that we also have
Av-o n, w)= Afvc (n,~w). If \is written in terms of k instead of n,
then k must change sign also when using these symmetry relations.
These symmetry properties of the matrix (xv_c) reduce to only four or
five the number of components of this matrix which must be worked out
in detail. Consequently, there results an enormous savings of compu-
tational labor. For example, if we compute M1 , M1, Ao and Ago
explicitly and the adjoint matrix A is symmetric, then the remaining
components can be obtained from the relations A.y; (n, w)=>\*1_1 (n,-w),

Aaga =X, doa = Nos Ao (0, 0) = X’ICI.O (0, -w) and Ay = Ao o

The Adjoint Matrix for Model H
We are going to give here the explicit expressions for the compon-
ents of the adjoint matrix using the dielectric tensor of Model H. More
precisely, we are going to give the components of the matrix obtained by
multiplying the adjoint matrix ( )‘v-o) by De Di where, you recall, we
had (4.15)

— _ 2
D 1 € (nl g

< +n22),(s=eori). (C.7 )

SX
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The reason for multiplying each adjoint element by DeDi is to obtain
simple polynomials in n . whereas the adjoint elements by themselves,
are more complicated functions of n .

Using the definition of A - along with our expressions for the
dielectric tensor X for Model H (Chapter IV), and applying some matrix

algebra we find that we can write

DDA =X +Z e [-i®g _+n?)X +a® ) 1+
e i"v-o V-0 s L “sx z' “y-0o s "sv-0o
2 2 2 21,0
€e Ei (nJ. gex * nz )(nJ. gix+nz)>§}—c+
2 2 " _ 2 2 1 + : .8
{Eeeiae[ai Mer-o (0] 9y ¥ 1’lz)kev—cy]} fe—il. (C.8)

The quantity ()\(;_0) is the adjoint matrix one would obtain for a cold

incompressible plasma. Explicitly, it is obtained from-

By =20t + ¥ [En-Ky-2K |- 03 K+kak (g.9)

Mo =nZ [n2- & J+nf - 202K +KK, (c.10)
o _ i .4

N = 3 n_L + 3 ni (nz -K) (c.11)
c -5 3 % 2

o=27%1n2n + 2% n n (@-Ki). (c.12)

Note that DeDi >‘U—c is written in such a form that we can use it for
dealing either with cold plasmas (Ee = Ei = () or single component warm

plasmas (ee # 0, Ei = () or two component warm plasmas (Ee #0, Ei # 0).
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For the temperature dependent part of De Di (x v-o) we have

' = 4 2 i .2 2 _ 2 | 2 (2 _
lsl—l % n gs + 3z n? [nz (1+ 2gs+) Ko gs_l___|+nz (nZ ( K_l))
C.13

— 4 2 1 2 2 2 2 _ 2 - 2 ]
Nooo = mt g2+ 02 @+ )R, kL 0] (©.19)

S T i .2 2 _
M=o B g il (02 (1-20 )R g ] (.15)

e

v — 273/2 2y _ -3 2
Mo = 2 nlnz(-BgSX+ Ioy) ~ 2 non (07 -K,) g,_-(C.16)

In addition,

Ag-r =% 0 n® g (G, — 9;,) (C.17)
Noo = % R I Iis) (C.18)
A1 = & n® n g (9;, = 9. (C.19)
Mo = 273/2 nyn, g 9. (o, -9.) - (C.20)

These expressions give us the explicit forms for DeD i i,
DeDi Aoo s De Di A1, DeDi Mo. The remaining components can be easily
obtained by use of the symmetiry properties of é . In particular note that
A is a symmetric matrix for Model H.
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The Adjoint Matrix for Model A

The adjoint matrix for Model A is obtained by forming the adjoint of the
matrix A' given by equations (C.6) and (C.2). The dielectric tensor to be
used here in the expression for é': is the one derived for Model A, that is,
equation (4.56).

Defining the quantities®

-1 =ZZXS 9._9s-2 (ds| + d

l »)
— 2
cra=3X 9% g 9.+ dg)

%00~ z'Xs Isx ds“ ' S0~ 32"><st||

du = sz Iex (dsn + dgp)

N .
bio =7~ X, g, {d, Q+g. )+ dsA} (C.21)

the explicit expressions for the components of the adjoint matrix A, for
the case of a lossless plasma retaining only terms to first order in

temperature, are the following
(o]
N = Mg +nf{ % (aoo+ a~11)}

2 i
+ nf {nzz [ 1-Ka ) aoo - Koa._11+ 2R by + 3 Coo+ ca1] }

4 _ 2
+n2 C o n’ [Ko C-n + Kac ] (C.22)
(o]
Mo=ro+ ni & (@ataw+ an

+ nJ_z {ng [ (l—Kl) a.i1 + (]. -K _,1) a;—, + % (01-1+ C_ll) ]}

+n;L [cia + Ceg3 1 = nzz [Kicar + KgCrag ] (C.23)
M1 = AL+ nf {%aoo - an}

+ni {n? [-2—%(b10+ boo) + gc 1)+ k an : (C.24)
Mo = Mp + nf {nz[z—%(a_n - au) - % (bwo+ by}

+ne {n® [-byp + 2-%ca ]+ n_K_ b} (C.25)

The remaining components are obtained via the usual symmetry relations,
hoting also that for the lossless plasma Kand hence ) is symmetric.

TThese quantities cbey the symmetry property av_o(u) = a*_v - (-w) with

similar relations for b,, ; and ¢ -




APPENDIX D

EVALUATION OF SELECTED INTEGRALS
A Useful Integral

® 241 . n 2_.23y_1 Ry n 2__24y7-1
j'odxx IS(aX)It(ax)/lI'TII(x zm) 27r1szjIS(azj)En;[j(zj zm)]

HY (az,),Imz,>0
t ] )

X (D.1)

OH® (az,),Imz <o
t ] J

provided 4+s-t is an even integer and |t|-|s| -2<4<2n-1
and ]zm | is bounded.

Proof. Following Watson [ 85, page 428] . we first consider the integral

J‘ f(z) dz where f(z) = 2 Ty (az) Ht(l) (az)/ I?In (z° - Z?n) ( D.2)
c

and the integral is evaluated over the contour ¢ = ¢, + R +c_+cr

shown in Figure 23. im z

Re z
Fig. 23 . Integration Path for the Integral ( D.2 )
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The advantage of choosing this particular contour lies in the
property that, under certain conditions, the integral over the large
semi-circle vanishes as R » « while the integral over the small semi-
circle vanishes as r— 0. In order to determine the range of parameters
for which this occurs, we need the expansions of the Bessel functions
for both small and large arguments. For integer s and lw l<< 1, we

have
T, W)~ w/2)5/s ! ., s20. (D.3 )

Since, for integer s,

I =T W, s>0, (D.a)

then for negative integer orders, the small argument expansion of

]'_S (w) is simply

W0 w/2%st  , s>o. (D.5 )

The Hankel function H(l) is related to the ordinary Bessel function

t
]'t and the Neumann function N ¢ by the equations

o ()

¢ (D.6 )

= + .
It :lNt

1
Since, for very small arguments, Ht( )

we can use the small argument expansion of Nt , for t an integer,

varies essentially like i Nt'

to write
5 o~ - tn e DMt Lt 0 (p.7)
HS) W rizrt [ o (w/2) +C ] (D.8 )

where C here is the Euler-~-Mascheroni constant,
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Using the relation

(@ _ itm ()
HY = e H, ©.9 )

allows us to write

0

- 3 t
YW -in k-t e T/, 10, (D.10)

For|w|- « , |w|>>|s |, and |arg w |< ® we canuse

the asymptotic expressions for the Bessel functions,

1
2

.o W ~ (2/Tw)® cos w¥ 7s/2-1/4) ., s=0 (D.11)

wl-

H,fl) (w) ~ (2/7 w)* exp i w-mt/2 - 17/4)] , > -5 . D.12)

For negative integer orders, we have

Hglt) (w) ~ (Z/ﬁw)% exp i_l(w +7Tt/2 - ﬂ'/4)], t> -%. (D.13)
Note that
Ili.imit H.El) [® e+iz9) =0 (D.14)

if 0 <9<, that is, H,El)

vanishes over the large semi-circle in the
upper half plane.
Inserting the small argument expansions into the integral over c.

we find that

[ t@azls [l £@laz |
CI‘ Cr
| el sl-t] , t#o
< const (D.15)
‘ I'LL+2+ ls l -




141

Therefore

fi_,mi; jcf(z) dz = 0,14 4> [t |- |s|-2. (D.16)
r

Similarly, for the integration over the contour using the asymptotic

expansions, we get

‘J f (z) dz ‘ < const * R{"H“zn (D.17)
°r
Therefore
Limit
Roe o f(z)dz =0 if, ¢ <2n-1. (D.18)

R

We consider two cases corresponding to whether a particular root

z, has a positive or negative imaginary part, If zj is pure real, we

i

consider the contours passing either above or below the singularity zj .

If zj lies in the upper half plane the integral (D.2) becomes

@)

n
+ (a Zj)/H (Z? - an) +27 i1 (sum of residues at other

Ti z{:'I (@z.) H
J s J .

m#j poles) . (D.19)
When zj lies in the lower half plane - zj falls in the upper half plane and

(D.2) becomes

Ti (-Z.)& J (-az) H(l) (~az)/ rl'll (2z® - 2z° W 271 i (sum of residues at
) s it j j m
m#j other poles).

(D.20)

Making use of the symmetry relations (H.21) and (H.22k with

s and t integers, (D.20) becomes

LAs+t

-wi() z;' Is (a Zj) H,Ez) (a zj) / Irl1 (’zjz - zfn)+21r i (sum of other

153 residues).
(D.21)
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Finally, we can write

. n -
jdz z}('-H]'s (az) Hél) (az)/ 1 (£ - zfn) = E f(z)dz=71i ) z;' T (azj)
c m c j’

n HY (az,) , Imz, >0
H (Z? - 22 ) :]-1 t ] ]
X s ] m » (D.ZZ)
m#j (_)L+s+t+1Ht(z>(azj)l Im 3 <0

To relate this answer to the integral we are trying to solve, namely,

J‘ dx x'{'-‘h1 Is (ax) It(ax)/ Ir-} (x2 - zfn) , we write, forr-0andR~- =,

o m (D.23)
O o]

[f@dz= | feax + | £60ax . (D.24)

J — o

o

In the integration over x < 0 replace x by -x, then we get

@

- - n
j f(z) dz = V dx x'ﬁ-*-1 T (ax) LH(J‘) (ax) + eiﬂ‘(’HS ) H(z)(ax) ]/n (xz- za).
J s t t m
c o] m
&) (2) . . (D.25)
Replacing Ht and Ht by ]'t + 1 Nt we obtain the relation

in(+s-ty/2 2 2, 71
o)

jf(z) dz = dexxmh1 Is (ax) e
o m

c
X 2 { I, (ax) cos L (L +s-t) w/2 J + N, (ax) sin B&+ s-t) w/Z]} - (D.26)

If £+s-tis an even integer, then this reduces to

IS
i

Jf(z)dz=2 jﬂ dx x
c o

n
L T (ax) T, (ax)/ 1 (xz— z‘fn) . (D.27)
m
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Therefore, we finally arrive at the solution we were seeking, namely,

jjo ax x 7, (@) 7, (@0/ 1?1; & -2)=fwi

i\\/j =)

L
zy Is (a Zj)

e

(1)
H (az,) , Imz,> 0
n t 0% j
[ m -2 | (D.28)
TR me- (~) Hi(:z)(azj) , Im zj< 0,

provided L+ s - t is an even integer and, |t|- |s |[-2< 4 <2n-1,

Integrals Related to Weber's Second Exponential Integral
Weber's Second Exponential Integral is defined as [ 85, p. 395 ]

[ee)

2= T2 @urdt=art @M @%/20) | (.29

To cut down on the amount of relatively simple algebra presented, we
indicate only the METHOD of evaluation used for each integral. Also,
in this section the argument of the modified Bessel function is to be

understood to be given by p. = a%/2q .

" emat? ) P dt = (/) a1 ap ]
Joe In(at) ]‘n (at) t?dt = (a/4q°) e 5 In+In; (D.30)

METHOD: Take & &/ %a.

R - - - B - 1
J o qt® Ifl (at) t° dt=(2qd e [(1 ) In+uInJ (D.31)
]

METHOD: Taked«£/ dqg.

&)

i -— 2 — B
eI @) @) ¢ dat= - (207 e (1 - 2p - 0%4) T+ (L42u) T |

o
o (D.39
METHOD: Eliminate I;'l using Bessel's equation ( H.28 ), and use(b,)

to obtain the result shown.




144

J e”-q“e T° (at) £ dt = (2¢°)7 e [(—nz/zp) I+ (=) +p It ]

(o]

METHOD: Form %°4/da® and use c. (D.33)
© —q-tz B _ _ ) | i

fo e I, @t T, (&t t?dt = (2aq)™ e [(n ) I Ful | (p.34)

METHOD: Replace ], , (at) by + I (at) + (n/at) T, (at) and use(aJand &

to evaluate the resultant integrals.

S -
g

¢ _ - .
| e @) T,_; @) € dt= (/20 e ™1 -1 ] (D.35)

METHOD: Solve (In_1 -

n+l

2 1 2

In+1) =4 In for In+1 J

into the original integral, and use(b)and(dJ) .

J TR ey £ dr= (2 q7) e'”{inx #1 - p F) 4y I }

o ntl a - n prn n L
(D.36)

METHOD: Use(h)with n + 1 replacing n, and express all modified Bessel

-1 substitute this

functions in terms of nm order Bessel functions using the standard

recurrence relation =unI +
a “Inzl:l |J.In+nIn.

Integrals Related to the "Plasma Dispersion Function"
The "Plasma Dispersion Function" Z(¢) is defined by

o —Xz
j_m -Q—-Q‘—X = (D.37)

-

Z(f)=7"

for Im £ > 0 and as the analytic continuation of this forIm £ = 0,
The "Plasma Dispersion Function" satisfies the differential equation

[ 2217.
Zt=-2(1+22) . (D.39
This property and the definition of Z are all we need to evaluate the

following integrals. As in the preceeding section, we shall only
indicate the METHOD of solution.
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2
J«m X e"X dx

— =-%:'fr% z' (¢) (D.39)

METHOD: Take the derivative of Z, perform an integration by parts on

(a.) and compare the two results.

2
© 5 =X

I e = paf ez () (D.40)

METHOD: First perform two successive partial integrations on (b.) and
note that the remaining integral is proportional to Z" as obtained from
our definition for Z, then eliminate Z" by using the differential equation
satisfied by Z.




APPENDIX E
SPECIAL CASE

For the special case of a non-relativistic charge spiraling in a
cold collisionless plasma our formula (5.79 ) for the power loss simpli-

fies to

ns

P=Q®@mre |V |c¥* 3
o =z j#m p=-® o

5,7 el v-0 p+v Jp + G[Kl(nij e (E.1)
where j and m represent two various modes in a plasma and n, is to be
replaced by B; (14 pY) in the integrand. The purpose of this section is
to show that this formula for the power loss is equivalent to that derived
by Trulsen and Fejer [ 80 ], hereafter referred to as TF, as given in
their formulas on pp. 833-834,

Letting

L= sgn Q (E.2)

and writing out the summations over v and o using the fact that O"V-cr) is
a symmetric matrix for the case of a cold collisionless plasma, we

obtain

= 02 | 2y-1 rm 2 _ 2 -1
P Q® (4w EO ‘ Vz IC ) ) ; Z J do w ‘K.L (nJ-j nl m)\ X,
‘ j#m pP=-* O

- 2% VOV Lo T T

1I p "p+l

12 2 2
|2V_L A ]-p+l+V_L A1 Ip+_ p-1

2 5 |
+';J§‘VJ_ A1 Ipz_l' 2% V_L VZ L Aa Ip Ip—1+ V; Aoo ng - ( E.3)
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Eliminating the Bessel functions of the form Ip 11 using the identity

Pz
T @ =577 ] (E.4 )

results in the expression

z j dwle (n® -n® )|
5w Yo L7 im

p = Q%*(4n €O\Vz |c®)™* ;
2

j#m
rvapa ZV V p i
\]'; i :2 5 <>\1-1 + 2 M1 +>\—11>-L '_'LTI_Z_Z 2 <>\IO+ Aa >+VZ >\00}
2Ve p
/ N -5 1
+TpIi>{i uL %\Al_l_x’u)*-lva.Vsz2i<—>‘l°+>\°1>ft

+]'p2 {V_Lg 5 ()\1—1 - 2M1 + a1 >}| . (.5 )

This can be expressed much more compactly by introducing the cartesian

form for the adjoint matrix as given in Appendix A . Thus,

«©

P =Q%Ume |V |3 [ © 2 _ 2 -
g Ol Zlc)jzm ;_m Jodw lK.L(nLj nlm)ll

Ve p? 2V V_p
L Z

2 = < - _— 2 l
”p{ u? Txx ¢ u >\xz-“vz Xzz)
) Zpr
] 3 s - 1 2 2 6
+1 T 0 >‘xy+12VLVz“\yz}”p vl (B8

Since TF have expressed their results in terms of the wave propagation
vector k whereas we have used n, we transform to their notation using the

relation n = ck /w. Thus our adjoint matrix A is related to their adjoint

matrix A by

- (
é:;z E.7 )

Q
>
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Likewise, if we use their relation
kij=(2 &€)*®+R), (=1,2), (g.8 )
since our Kl equals €; of TF, we have
|Kl(nij—nim)|=R c?/uF. (g.9 )

Finally, we need touse u=k, VL/| Q| which follows from ( 5,15 ) for a

non-relativistic particle. Inserting these expressions into (g, ) we

obtain -
P=0Q%re |V_ | & z ® do o|R ol
OI z | modes p=-« ‘ro | |
2V_pQ
Qzﬂg, zZ 2 2
I{ kl Axx— kl sz+vz Azz} Ip

_a _RQ_ _ ] 1 2 v 2
12V_LL{ 3 Ay Vy A PT T +VEA T2 | (E.10 )

Recall that our quantity Qcontains the sign of the charge whereas in

TF it is always a positive quantity. It is to be understood that in the
integrand kz is replaced by (@ +p Q)/ VZ from the emission equation.
This agrees with the expression which TF use for the emission equation

only if we are considering a negative source charge. Hence for Q <0

we get
P =Q°WUre |V |c®P) T z ” do o|R?/c?|
Q<0 oz modes p= -« ‘ro
2 P ZVZpIQ\ . .
I{ ki Axx-l- kl sz+vz Azzjr Ip
. (P §ZJ _ I ' 2 12
H2V T Ay, A, p T TtV AL T (g.11)
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This agrees with the formula obtained by TF if one allows for differences
in the physical units used by making the replacement € " (4r)™, whi;:h
allows us to re-express our results, derived using MKS units, into the
gaussian units used by TF. When Q >0, we can put our emission
equation into the same form as TF by making the replacement p - - p.
Doing this we obtain

P =Q®*4nre IV |c®)T T z i dw w|R &*/c? |
Q>0 oz modes D=-® Jno |

2Vzp Q

r PP 2 1 +2
H\ ki Ascx+ kl AScz-*-vz AzzJ’Ip

_yoy {RE -V A 1I)I'+V2A 73| (E.12)
llkl AXY z ‘yzl'pp L “yy’p )

which also agrees with the expression obtained by TF after replacing
€ by (4m)™ .




APPENDIX F
THE EMISSION EQUATION

From ( 5.79) we find that the condition which must be fulfilled in
order for there to be radiation from a spiraling charge moving through a

plasma is that
— i
n, =g (1+pY¥/y). (F.1)

This is known as the "emission equation". If we write ( F.1 ) in terms
of the wave propagation vector instead of the refractive index and con-
sider non-relativistic particles, then
_ w+Dp Q
k, =~ - (F.2 )
z

Now throughout this thesis we have assumed that all of the field quan-
tities can be described by a sum of plane waves of the form

eJ.k,:x+:lkyy+:lkz z-iwt . (F.3 )
Therefore equation ( F,2 ) tells us that a spiraling charge in a magneto-
plasma can only excite those plane waves whose propagation vector
component along /e\z (the direction of the magnetic field in the magneto-
plasma) satisfies the emission equation. In this appendix we will
examine the meaning of this equation and explore some of its conse-
quences.

In order to learn more about the meaning of this equation, we

shall show alternate methods of obtaining it, first by studying Doppler

effects, and second by using quantum mechanical considerations.

150




151

Doppler Effects and the Emission Equation
Consider the following situation. Suppose we have two coordinate
systems, %, v, zand x', yv', and z', and let us assume that the primed
system is moving with respect to the unprimed system with the velocity
VZ as shown in Figure 24.

X x/
VZ

— ————-

y y!

Fig.24 . Geometry for obtaining the emission equation
via Doppler effects
Then if we have a radiator of frequency w' moving with the primed coor-
dinates, it will emit radiation which can be understood by an observer
fixed in the primed system as a superposition of plane waves of the form
ik! o' ~iwt'
e (F.4 )

The question arises as to what these plane waves will look like as
viewed by an observer in the unprimed system. This is, of course, a
straightforward problem involving Lorentz transformations.

Because the phase of a plane wave is the same in both the primed
and unprimed system, it follows that since (r, ct) is a four-vector
then (c k , w) must also be a four-vector. The Lorentz transformation-
allows us to relate vectors in the primed and unprimed coordinate sys-

tems as follows:
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[cky] [1 0 0 0O
cky 0 1 0 0
ck; %, 0 0 -'yzB
L W' .J L 0 0 -y BZ Y,
or inversely,

" ck, ] 1 0 0 0
cky 0 1 0 0
ck, Yy 0 0 ysz

L o] LO 0 'yZBZ Y,

[ ck, T
ck,

ck,

(p.5 )

(r.6 )

1
where y_ = (1-52 )" with B, = Vz/c. From ( F.5 ) we get the equation

relating w to &',

w=kZVZ+w/'yz .

(F.7 )

This says that the frequencies ' appear to be Doppler shifted to an

observer at rest in the unprimed coordinate system. Neglecting relativ-

istic effects and expressing ( F.7 ) in the form of ( F.2 ) gives

(pr.8)

Identifying «' with the frequency -pQ, we obtain the emission equation

( F.2 ). Hence, the emission equation is another manifestation of the

Doppler effect.
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Quantum Mechanics and the Emission Equation
In this section we present another derivation of the emission
equation. We shall use a quantum mechanical approach to analyze the
radiation process. Suppose that the spiraling charge is in the state s
specified by the energy Es. From relativity theory we have the relation

between total energy ES and the momentum components,

1
E = (M?c*+p° c®+p° c®)%. (r.9 )
s z L

Now the energy eigenvalues for a charged particle spiraling in a
constant external magnetic field are well known [ 55 1, [ 43 1. They
can be written in the form of ( F,9 ) with the transverse momentum, P

related to the quantum number s by

pi=MlQ|ﬁ(Zs+1), 5=0,1,2 ... (r.10 )
Here s is the quantum number associated with the state s and 4 is 27w
times Planck's constant h.

If the spiraling charge emits radiation spontaneously, then the

particle will go from the state s, specified by the numbers

{pz ' S} (F.11)

to the state s' specified by
{pz, s }={pz-ﬁ kz.s-p} . (r.12)
By conservation of energy
I 2 ~ =
he=E-E =E_- [M® c* +c? (p,~R k) +c® M|Q |h (25-2D+1) F
—_r _ B 2 2 223 2 _
Es Es[l 2 ¢ ‘ﬁkaZ/ES+c il kz/Es

1

2B M[Q |h cg/EZ . (F.13 )
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If the particle energy (ES) is much greater than the photon energy f w,

we can write

~c? _ A2 2 + % 2 )
waC pzkz/ES c ‘hkz/ZES DMIQlc /ES ( F.14)
Using the relativistic expressions for Es and P,

E =Myc® , ( F.15)

( F.16)

and taking the classical limit 4 - 0, the expression for the frequency

of emitted radiation is

exV, k +5[Q|/y. ( F.17)

For non-relativistic particle speeds this becomes

omvzkz+p|9, . (F.18)

From ( F,18) ard (F.10 ) we find that B >0 correspords to a
decrease in the perpendicular component of angular momentum while
¥ < 0 means that the transverse momentum increases. 5 >0 is called
normal Doppler emission and P <0 is called anomalous Doppler emission,
If D = 0 the transverse momentum is unchanged. Comparing ( F.18) with
the emission equation ( F,2 ), we see that for a positive charge (i.e.
Q >0), p=7, and for a negative charge (i.e. < 0), p = -¥. Table 5

summarizes these conclusions.
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TABLE 5

SUMMARY OF SIGNIFICANCE OF POSITIVE AND NEGATIVE HARMONICS

FOR SPIRALING CHARGED PARTICLES

HARMONIC TRANSVERSE DESCRIPTION
(® MOMENTUM (DOPPLER)

a P NEG. INCREASING ANOMALOUS
S @ ZERO UNC HANGED NORMAL

3 POS. DECREASING NORMAL
S);’ o NEG. DECREASING NORMAL
z g ZERO UNCHANGED NORMAL

3 POS. INCREASING ANOMALOUS
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Connection Between the Emission Equation
and the Refractive Index Surfaces

The emission equation can be quite useful as an aid to under-
standing the frequency spectrum of radiation excited by a spiraling
charge when it is used in conjunction with the refractive index surfaces.
For our present purposes it is sufficient to consider the simple case of a
cold plasma. The refractive index surfaces for a cold collisionless
electron-proton plasma corresponding to the "operating line" R®=0 .4
shown in Figure 2 are given in Appendix G.

From the curves presented in the appendix, we see that for a cold
plasma there are three topologically distinct refractive index surfaces
which can occur. These three surfaces are sketched in Figure 25. The
vertical direction in Figure 25 is the direction of the external magnetic
field go; the radius from the center of each figure to the surface is equal
to the refractive index n. These diagrams are really cross-sections of
the true surfaces which can be obtained by sweeping the curves 1800

about the vertical axis.
of Bof

ANV
N2

Fig. 25. The three topologically distinct refractive index surfaces
which exist in a cold collisionless magnetoplasma. The external
magnetic field is in the vertical direction. A radial from the origin
to the surface represents the magnitude of the refractive index
in the radial direction

Bo1

1o

N
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The simplest surface to analyze is the closed surface shown in

Figure 25 and shown enlarged in Figure 26.

Bol |z

Fig.26 ., Typical shape for a closed refractive index surface
with the critical index nch indicated

This surface closely resembles the refractive index surfaces of
ordinary solid dielectric materials. Hence we would expect Cerenkov
radiation along those portions of the "operating line" where we have
such surfaces, provided the particle speed is large enough.

For a given frequency, harmonic number and component of non-
relativistic particle velocity along _]_3_0, the emission equation specifies

the allowed value of the z-component of the refractive index, namely,

nz=(1+pY)/BZ. (F.19)

In order to have radiation in these closed surface modes the inequality

In, | =n . (F.20)

must be satisfied where n ié the largest positive value of nz for our

zcl
surface, as illustrated in Figure 26. Substituting for n_ from the emission
equation, this inequality can be expressed as a bound on the allowable

harmonics for which radiation is possible. When [3220 this range is given by

-(@+p,n ) <_pY<ff1-BZanl). (F.21)
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In many cases there do not exist any values of p which satisfy this
inequality and in these cases no radiation is emitted.

The next surface we consider is shown in Figure 27, where we
have also indicated two waves which might conceivably be excited by
particles having different velocities. Note that wave 1 has a component
of group velocity ygl in the direction in which the particle is moving,
whereas wave 2 has a component of group velocity ygz antiparallel to

the particle motion.

z2

zl

Fig. 27. Typical refractive index surface for modes which are
evanescent in the direction of the magnetic field
Also note that in those regimes along the "operating line" where
the surfaces are open along the magnetic field, Cerenkov or magneto-
bremstrahlung radiation will occur for any particle velocity Bz and for
all harmonic numbers p, since n is real for every n, which satisfies

the emission equation,
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The last surface we must examine is shown enlarged in Figure 28
with the critical indexes L and nch illustrated. Such surfaces are

open in the directions transverse to the magnetic field. In those regions

Fig.28 . Typical refractive index surface for modes which are
evanescent in directions perpendicular to the magnetic field

of the “"operating line" having this kind of surface, there are several

possibilities for radiation. Consider the following cases.

Case 1. \nz\ <n, (F.22)
‘When Case 1 applies there is no radiation.

Case 2. \nzl>nzcz (F.23)
In this case there is radiation, but only one wave is excited.

Case 3. n, s < \nz l=n, (F.24)
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When lnz | lies between n, .3 and R two waves may be excited

at the same frequency. One of these waves will have the radial com-
ponent of \_fg in the same direction as the radial component of the phase
velocity vector while the other wave will have the radial component of
yg antiparallel to the radial component of the phase velocity vector.
The inequalities given in (F.22 ) - (F.24 ) can be used in a manner
similar to that used in discussing closed surfaces, to generate allowed
ranges for the harmonic p.

In the case of a cold plasma it is possible to express the critical

indexes n c2? and nZC3 in terms of the magnetoionic variables Xe

, n
and Y: . ;?uis tli.{e locus of points corresponding to these critical indexes
can be plotted on the CMA diagram. The intersection of these surfaces
and the "operating line" determines the frequency spectrum of the radi-
ation. The interested reader is referred to the paper by Sasiela and

Friedberg [ 63 ] for details of this procedure.



APPENDIX G
REFRACTIVE INDEX DIAGRAMS

The following is an extensive listing of refractive index diagrams
obtained using: 1) a cold plasma model, 2) Model H and 3) Model A.
All surfaces are for a plasma having R®= f;e/fse = 0.4 which corres-
ponds to the operating line shown previously in the CMA diagram of
Figure 2. -

Cold Plasma Real Refractive Index Surfaces

The dispersion relation for a cold plasma is given by (see Appendix

B)
an* +Bn°+C=0 (G.1)
where
a= -K sin® 9 - K_ cos 29 (G.2)
B= (K1 Ka-Kj Kl)sin2z9+2KoKJ_ (G.3)
C= _Kl K._]_ KO ° ( G'4 )

The surfaces shown in this section were obtained using this form
for the dispersion equation.

The plasma is assumed to be composed of electrons and protons.
Collision effects have been neglected. All Index Surfaces have cylin-
drical symmetry about the magnetic field direction; only cross sections
of these surfaces are shown.

The figures are in order of decreasing frequencies which are indi-
cated on the graphs by the values of Xe. At any given frequency there
are at most two real refractive surfaces for this model. The surfaces are
somewhat arbitrarily numbered by subscripts on the value of Xe so as to

assist in the identification of modes.
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Fig. 29, Cold plasma refractive index surfaces for frequencies
above the upper hybrid resonance., Curves are labeled
according to values of Xe with R® = 0.4,
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Bot

~

Fig.30,Cold plasma refractive index surfaces for frequencies
between the upper hybrid resonance and the electron
plasma frequency. Curves are labeled according to

values of x; with R® = 0.4,
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Bot
1.2,
"
1.6,
]
}* "‘ % - 1
N
N e /
S .4
e n __’/’
B aad

Fig. 31. Cold plasma refractive index surfaces for
frequencies between the electron plasma frequency and
the ion cyclotron cutoff frequency. Curves are labeled by values of
Xe with R®= 0.4.




1000,

-
=

e

Fig. 32. Cold plasma refractive index curves for
frequencies between the electron gyro-resonance and the
lower hybrid resonance. Curves are labeled by values-

ofxe with R® = 0.4,

el




166

....‘+-,,..-.,.n_...-..._.{

Fig.33. Cold plasma refractive index surfaces for
frequencies between the lower hybird resonance and the ion
gyro-resonance. Curves are labeled by values of Xe with R® = 0.4.
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l._......,,,- —— _..},.....‘._. e ._‘.{_ SRUIUENNSUNSE SV A SE—— -ml. .,.._.___..A---_‘l

Fig.34,Cold plasma refractive index surfaces for a frequency
below the ion gyro-resonance. Curves are labeled by
values of X_ with R® = 0.4.
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Refractive Index Curves for Model H
We shall assume a plasma containing only two charged species,
namely, electrons (s = e) and one type of ions (s = i).
The dispersion relation for Model H in both spherical (n, &, ¢)

and cylindrical (nL . O, nz) coordinates is given in the form of poly-

nomials

Ssnf+8, n°+S;n*+8,n°+8 =0 (ag.5)
and

Cs n_8L+C-4 ni+Csn‘j_+Cz ni+Cl= . (g.6)

Multiplying equation (B.3 ) byISI DS , inserting for X the appro-
priate expressions for Model H and abbreviating sin 4 by S and cos @
by C we find after extremely tedious algebraic manipulations that

SS= -K K XK (G.7 )

Sz

+K K-, S?+K, K (1+C®)+

wnl~~]

¢ KKK (g 57 +C%)

+of [1Kes” (0 ¢%, +Ks 62) +K K, 07 |} (G.8 )

[ 2 2
85 ="K 5°- Ko C -Z {0, 5°+ ) [ ks S+ K, 1 +G?)]
+of [4K (g, 52+ C*P+ 5K, (g, 87+ C%)2+ K, C? |
21 2 2 2 R
+ol 3R 57 g . 824 (7, + 03 )(1-35°) |}

- €, § {Kl Ka Ko (gex S*+ C?) (gjx 8%+ C?)

O
+) o

) 2 (0, 87+ C®) 13K 8% (K 02 + K 02 )+ K Ky c? ]

1 .2 o2 @2 2 - 2 -

rhofafs ; [k CPa,, (g4 -9 *KaC’g (g, -9 )
2 (2 2 3

+3K 5% (@3 g, -9, gtx)] t (G.9 )
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= 2 2 2 2 2y ~2
Se = ) es(gSX S +C)[(K-L+as gSX)S +(K°+as)C J

L
S

—-— 2 2 2 2 ; 2

€, € {09, 52+ C?) (9, 5%+ C°) [k K, 8%~ KK (1+C?) ]
- 2 2 2 1 2 242 1 2 o2
S3_;"-(tocs(gtxs +C)[§K1(gs+s +C®)°+3K, (gs_,s + C?)%+

R,O% +3K 8% g +3K S (1-35°)(%, +o2 ) |

_9_-%9_ 9. +#g°

s+ “t+ s~

+o® a® 8® lq2 M2 -
@y o 8 Z#t [zs C (gs— It tgs

+ 2 _ _ 2 _ -
B9y, -9, "9, 9, ~0,, 9 +2

X s~ “t+ )+

gsx gtx

1 4 2 2 T
1g5(~ + 102 —q® - o }
8% %-%+ gsxgtx) +zC (gs+ I + Ig- T ~ I s+) ,l

(G.10)
= - ! 2 2 3 2 2 2
Se € € 109, S + C®) (9, 8° +C?) K, 8°+ K, C?)
" 2 2 2 ‘ 1
+z % (g . 8%+ C?)?(g, 82 +C?) | (G.11)

s#Ft
Similarly', for cylindrical coordinates, using IT Ds times equation
S

(B.8 ), we have

C. =—Ko(n; -X ) (n; —K_1)+Z € n; (nz—Kl)(nZ - K4 ) K +a:) -

4 (.2 _ 2 _
o €11 (nz K) (nz K.) (g.12)
= - n2 < ([ a 2
Cs nz(1<o+Kl)+K1 K'1+K°K1+L‘sinz (Zas gsx+Kl+K°+
2 - 2 2 2 2
ol +K°gsx) n_ K X, +Klas +Ka e g +K s g,

+ + 2 L2 2 R
KKa+3Ko of o°_+% K af o +2K Ko )+

K— 2 2 kN 2 2
B Kaof ol +ik Kol o +RK.iKg  }

r — al
+e€ € {-n° [ 2 2 ]
e €1 JL nz 1+ K.L+s;t (K° gsx-wzs gtx+2as gsx) +

n‘; |_K1K—1+K0Kl-a20£f(ge_gi_+g )+

e+ gi+




170

1 2 L2 2 42 4+ 2 +
Y K o g5 +hKo of 93, +K, 0f g9
s%#t
=] 1 3 2 2 1 2 2 -3

K 0Ls gs++ Eae oy gs—-'--gae oy gs++
K o® +K, K. g +2K g o®) L+

i 78 1 “sx L7t s 7

n® {aa a® K, g g, +Kk g, 9., )~

z e "1 U Te- Yi- et “it

S o 3 .2 1 2 .2 240° g +
s/#(zKo Ko Ots gs_+§KoK1 o gs++%K—1 Oleﬂligs_

2 2 2 2 —!} -
%Klote Oti gs++K1 K—lKOgS}:'Kl Ko gtxas _l (G.1C
- - ‘ 2 2 42 2 -
Cs KJ-+'§__ 3 {nz ®Ro+togge ™ 20 I T KL gsx+K°gsx)
o 2 2 1 2 .2 2 2
EKa oL gs_+2K1 o gs++Koas gSX+K1 K gsx+K°KJ- gsx)}.+

a T, N 2 2 2
4- + +
€ { n, 1K KoGex I ¥/ (as Isx 2 oS Isx T

2
2g .9, 0O +gtxa +Kog K_Lgsx)]+

ex “ix s
21 -
n, ‘,2 K°Klgix Tex % % 2 Fex gix+
_1 AR 2 1.2 2 2 _ 2 2
E( z 0y O gs+gt-+zae % 9o - T % o 9s- gt-/4+
s#t
1.8 AR 42 PN - R 1 2 2
pad of 92 _g,, -ofof gs+gt+/4+zK—1 ol gg_t
3 2 2 2 2 2 2
%Klas Iop TR0y T T O Iex TR K Iex T
2

KK gx+K-—1 gtxas gs + K g‘b{ gs+ +

2 2 '
K, 9, 02 Ko gy, % 95_+ + % Ko gtxa g )
1 2 2 -
30, 0 Ko 9oy Jix K Ki,Kg,, 9
\ 2 =2 3 + 1 2 4
) (e of Koo g /4+3KKag, o g
s#t
gKoKlg a g )} (G.14)
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Q
»
|
0™ )
m
0
,_.L_
R
Q
+
~
-
Q

o2 [ —0® g® - -
€ €5 4 nz[ Tex gix o +K"') +§¥t( % Isx K.L Isx

2 2 2 T
gtxms gsx+ zg\tx ots gsx)_]-‘-

9o Tixe -3 of +k Ka+KK)+
YV @ o g ¢ /4 +3Kag,. o o
:;,7!1: e 1 “s- “tt 2 -l Bix s Ts-
1 2 2 2 2 4y .
tikog o g tK o g g )} (G.15)
_ - ¢ % 2 2 }
Cs € € igexgixKi"' s)f#t Y Tox %s (G.16)

Real refractive index surfaces for the case where only first order
temperature effects are retained (i.e. terms containing ei €e are
neglected) in eqn. ( G.5 ) follow. These surfaces are for a lossless,
electron-proton plasma with Te = Ti = 2000%K.

Refractive index surfaces are presented in order of decreasing
frequencies which are indicated on the graphs by the values of Xec At
any given frequency there are at most three refractive index surfaces for
this model. The real refractive index surfaces are somewhat arbitrarily
numbered by subscripts on the value of Xe s0 as to assist in the identi-

fication of modes.

———
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Bo!

Fig.39 Refractive index surfaces obtained with Model H (first order
in temperature) for frequencies between the plasma cutoff and the ion
cyclotron cutoff, Curves are labeled according
to values of X _ with R® = 0.4.

e
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= =

1

Fig.40 Refractive index surfaces obtained with Model H (first order
in temperature) for the higher frequency portion of the band between
the electron gyro-resonance and the LHR, Curves are labeled according
to the value of X, with R® = 0.4.
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Refractive Index Surfaces for Model A
- (4.87) and (4.77) - (4.81)

By substituting our expres sions (4.82)
) - (B.6) and

for the dielectric tensor elements into equations (B.3

(p.8) - (B.13. respectively, we obtain the dispersion relations for

Model A. In spherical {n, &, @) coordinates this dispersion

relation can be written
S4 n6+Sg n4+Sg nz +Sl= 0 ) (G.l?)

where¥*
Se= - bsirf® [Ki-1 + K-11 + e @ K'-1-1 + e™?P K |

_1 -
—cosziiK'OO -2"% sindcosd e (K'or + Kilo)

+ eitp(K'_lo + K' )] G0

0-1

§s= - K sin® 9 - Ko cos® d+ sin® & [Kl K'ay + Kby Ko
Ko Ka1 -5 Koo Ko - Ko Kim -5 Ko K
e—12<P Ko K1 + 3 elZ(p Ko K- :\

i+

+ 3

+ 2_% sin & cos ¢ [e’i@ (Ko Koy +K Ko )

+ e (K Kby +Kio Ki) | +Ko Ky +Kbo Ko

+Ky Kinn +Kbo K (G.19)
S; = sin® 9 |K Ka-Ko Ky l+2% K,

- Kl Ko Ko-K K K-k Ky Ko (G.20)
S = -K Ka K . G.21)

In cylindrical (n;, n_, @) coordinates, the dispersion equation (with

no collisions) can be written

Co 08 +Cs nf +Cz n] +C = 0 (G.22)

where
* Only terms linear in temperature are retained ; this is consistent with

the derivation of the corresponding dielectric tensor elements (see

especially p.42).
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Ci=nf co - n7 [Ko+ Ko (Cn + Ci1 ) + 2K, Coo ]

+ n? [2K. K, + KiK, c1g + KiK, cog3 + Ki Koy oo ] -~ KaKey Ko (G.23)
Cz = n la, + 278 (bio + bugo) + % (Coa + ca1) + Coo ]

-n? [K + K, + 2K, a,, + K, {8,y + a_nn) + 2%

(K1 bio + Kibio) + 3K, (c1a + caa) + Koy cia + Kicn

+ KiCpol+ KK, + Ky Ky # 5Ky K, aig + 3KK an

+ KyKjag (G.24)
Co = 17 [aw + aw + 2% (b + bao) + % (caa + c11) ]

- K. -3%K, + Ky) a1 - 2K, + K3) a;; - Koajp - Kiage (G.25)
C,= % (@1 + a4 + an (G.26) -

where we have used the definitions (C.21).

The following real refractive index surfaces shown in this section
were obtained from (G.17), for the case where collisions are neglected.
The plasma is taken to be composed of electrons and protons at a
uniform temperature of GOOOOK. Refractive index surfaces are presented
in order of decreasing frequencies which are indicated on the graphs
by the values of Xe . At any given frequency there are at most three
refractive index surfaces for this model. The real refractive index
surfaces are somewhat arbitrarily numbered by subscripts on the value

of Xe so as to assist in the identification of modes.
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Fig,57 Refractive index surfaces obtained with .Model A for frequencies
between the ion cyclotron cutoff and the electron gyro-resonance.
Curves are labeled according to values of Xe with R® = 0.4,
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Fig.64.Refractive index surfaces obtained with Model A for frequencies
between the LHR and the ion gyro-resonance. Curves are labeled
according to values of X with R® =0.4.
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APPENDK H

RELEVANT FORMULAS, DEFINITIONS, AND PHYSICAL CONSTANTS

Physical Constants (MKS units, degrees Kelvin)

Charge of a proton, g

Mass of an electron, me

Mass of a proton, mp

Boltzmann's constant, K

Speed of light in vacuum, ¢ = ([J.O 60)'%
Planck's constant, h

Planck's constant divided by 27, &
Permittivity of free space, €o
Permeability of free space, o

Electron to proton mass ratio, me/ mp

Proton to electron mass ratio, mp/ m,

Electron charge to mass ratio, q/me
1
Free space wave impedance, Z,= (po/ 60)2

Conversion Factors

1 weber/m® = 1 tesla = 10* gauss
1 gamma = 1 nano-weber/m”

1 joule = 107 ergs

1eV=1.6x 107" joules

192

1.602 x 107%°
9.109 x 10~
1.673 x 107 ¥
1.380 x 107=
2.998 x 10°
6.625 x 1073
1,054 x 10724
8.854 x 107*?
41x1077
5.445 x 10™*
1837

1.759 x 10*
377
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Plasma Parameters (MKS units and degrees Kelvin
unless otherwise indicated)

Electron cyclotron frequency, |wce |=q B/me
lo |=1.76 x 10** B rad/sec
ce

f =lw |/2r=12.80x 10 B Hz.
ce ce

o

_ 2
Electron plasma frequency, wpe (Neq 4 m, eo)

1
= 2
Electron Debye length, ADe (KTe/me) /wpe

wH

xDe =69.0 (Te/Ne)

wj=

wpe = (K Te/me )

Electron thermal speed, Vthe= ADe

. . — 2 _ '
Electron kinetic energy, Ekin =m_c (v-1)

(5.7 )
(Hg.8 )
(H.9 )

(H.10)

i
where y= (1 - v?/¢c®)7® is the Lorentz factor for a particle moving at the

speed Ve

Epin = 8,187 x 107 ( v - 1) joules = 0.5117 (y-1) Mev

(g.11)
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Formulas Involving Bessel Functions (Integer s)

This section contains those formulas involving Bessel functions

which are pertinent to this thesis. We use the notation that IS and NS

are Bessel functions of the first and second kind, respectively, H(Sl)

and H;?’) are Hankel functions of the first and second kind and IS is the

modified Bessel function.

a. Interrelationships:

7, @ =% E 1]

1

Hs(a)(z) =T (z) *iN_ (z)

I, (2) = i7s Ty (i z) (-7 <arg z < &7

b. Recurrence relations for Isl

T @ = 5 1, @1, @ ]

L@=3 {1, @-T, @ ]

s-1

5

J (2)

[SE=

I, (@ + T, (2)

c. Recurrence relations for Is

!

Z

—_
——
N
=
]
ol

[Is_l @)+ 1, (2 ]

I (2)

=
—
N
S
I

= I's (z) +

N |n

(H.12)

(1.13)

(11.14)

(H.15)
(H.16)

(H.17)

(g.18)
(H.19)

(H.20)

1 The same recurrence relations apply to T N, Hél) , and H(:) .
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d. Symmetry properties
_ (.S
T, (-2z) = (-1) Tg (z)

H(l) (ei‘n'z) - - e—iﬂ'S (3 (2)
S S

H (2) (e_iTr z) = - eimj HY (2)
S s

I (-2) = (-1)° 1, (2

I (2= Is (z)
e. Differential equation satisfied by IS
nog S 2 _ L= —_
Zz Jo+z] +(27-s%)T =0
f. Differential equation satisfied by IS
z°I" +zI' -(2°+s®)I =0
s s s

g. Relations involving fractional orders

1, @~/ [ #2% - cosz]

h. Sums of Bessel functions

e1LsmM _ T)‘ Is © eisM
s‘:J—oo

(o]
e-lL sin M =§ TS(L) e-1sM

S= -

TS(L) eis(M+ w/2)

e—is (M+w/2)

(H.21)

(Hg.22)

( H.23)
(H.24)

(H.25)

( H.26)

(g.27

( m.28)

( 1,29)

( H.30)

( H.31)

( g.32)

( H.33)

( m,34
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i. Integrals related to Bessel functions
[,2

o

T,
oo shne) g oy,

J.“chos 0 ei(&(p - a sin @)

o

dp = (2m 4/a) J, (a)

j. Small argument expansions

«© _Lzak
I, (@ = %migok!(s+m! , 820
bl k
s T %22
IS(Z)=;§Z) kéo k!(s+k)! ISZO

In particular, for |z | << 1

Io (2) ~ 1+ 2° /4 + z* /64
o (2)~ z/2

I3 (2~ 4%

Liz) =1 (2) ~2/2 + 2° /16
I @=1 @&~3%

I'(z) =15 (z) » 32/8
Io(z)=I1-2(z) ~ 2° /8

I (2) =1 (z) »2/4

2 (2 =1% (2)~%

I (z) =1 (2) ~ Z° /48

I (2) =15 (2) ~ 2° /16

2 (z) =1"5 (z) ~2/8

(H.35)

(H.36)

(H.37)

(.38)

(m.39)
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Formulas Involving the Plasma Dispersion Function Z({)

a. Definition: The plasma dispersion function Z( ) is defined by
-3 i‘w e_xz 5 -r® .
2g) =% | dx Zm =in” e [1+erf(1c)] (H. 40)
for Im £ > 0 and as the analytic continuation of this for Im £ <0,
b. Symmetry properties:

2 =-[z 0) | (5.41)

c. Differential equation characterization

Z'=-2(1+€2)

1 (H.42)
zZ©) =1imw®
d. Power series
i _Cz r .
Z@=ir"e " -2¢[1-222/3+42%/15- .. (H.43)
e. Asymptotic expansion
i -Cz _
Z@)~11% ot ~g M1+ 12224 3/48%+ . L . ] (H.44)
where
0,Imf>0
o= 1,Iml=0
2,Iml <0
Vector and Tensor Identities '
Ax (BxC)=@°'C)B-(A'B)C (E.45)
(AxB)xP=BA'E-AB P (H.46)
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Formulas Involving the Dirac Delta Functions

«©

[ ™ ak = 27 6 (H.47)

[ %D e = @2n6 (r) (H.48)
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