HONEY 8. ELOVITZ

Benchmark 12 — Beam Forming, Octave Filtering, and FFT

This benchmark is a combination of benchmark 18 {(beam forming) and benchmark
9 and as such requires the initiation of the FFT macro in the SPAU. The approach taken
is identical with that of benchmark 11 — form a beam, initiate an octave filtering and
comaplex demodulation by the SPAU on that beam, and form the next beam in paratiel
with the SPAUls execution of the octave filiering. When a SPAU interrupt oceurs, the
interrupt routine determines whether an FFT on an octave is to be performed or whether
the SPAU is free to begin an octave filtering and complex demodulation operation the
next time the MCU attemapts to initiate one. At the conclusion of seven FFT calcu-
lations, the results are output as the MCU proceeds, in parallel with both the selector
channel controller and the SPAU, to compute the next beam.

After examining the time required by the MCU to compute the beams and the SPAU
to perform octave filtering, it is evident that the SPAU will be idle while the MCU finishes
forming the next beam. Conseguently, the running time for benchmark 12 is dependent
on the time the MCU takes to execute the beam-forming benchmark.

Table 16 gives the computation times. Fig. 18 is a flowchari for the benchmark;
it is followed by a source listing.

124

Ge1

Table 16
Times for Benchmark 12
Times
Function Performed Breakdown Calculation (Clock Cycles)
Form one beam See benchmark 10 70,144
Execute octave filter and complex See benchmark 7 16,422
demodulation macro
Perform 7 FFTs on octaves See benchmark 2 TX 12+ 3665 3749 +a +
+a+b+c b+e
Total time for benchmark 12 Beam-forming time 2,293,760
Final octave filter and complex 16434
demodulation execution
Final FFT execution on last 3749 +a+
7 octaves b+c
Final output of last set of FFT 1036
resulis
Total 2,314,979
+a+b+c

€8 LHO4dd TUN

START

READ

WAIT

RENNIT

SPAUSTART

Initialize 1/O
cordrol words

3

Send commands to
SE€C to read data

1

initiatize SPAY
conirol words

?

tnitialize pointars
1o beam addresses

.

Wait for O to
complete

Farm a tiearm &5
in benchmark 10

Are there more
beams to be
formed?

Wait for SPAU to
compilete alt
8 FFT's

HONEY S. ELOVITZ

Send commands to
5PAL ta perform
actave filtering

i

Set up pararnelers
for FFT caiis
on gctaves

Seg it need to
point to 2nd
buftfer

Point to
buffer two

Point ANSADR
and INPOCT to

fext beam

SPAUSTART
calied as
subrouting?

QuT

Fig. 16 — Benchmark 12 flow diagram {one of two pages)

126

Returm

Catt SPAUSTART
Process last
heam formed

i

Wait for all FFTs
o comgtete

g

Walt for ait HO to
complete

SPAUINT (ENTER

)

h J

ACUT

NRL REPORT 7832

computed?

Ha"emes
FFTs been

Increment number
of times SPAU
completed

{

Send commands
to SPAU to
compute another
FFT

i

Adjust parameters
to FFT for next call

|

Return from
interrupt

Fig. 16 — Benchmark 12 flow diagram (second of two pages)

Send commands to
SCC to output
answer that was a

result of FFT

}

Adjust painters to
free locations
in bulk

)

Increment flag
indicating 1/0
being done

Datermine if must
reinitialize address

Do not initializc_a_

painter or increment
to next block of
answers

Initialize

Reset QUTP
and RESULT
to beginning

Adjust pointers

Return from
interrupt

127

MAD D O =L I W N SRR TS S S S TR SIS S T S S

HONEY 8, ELOVITZ

FKARKARAHARKARERIRRAIIALIR BRI AL LR Ak R AR AR AR AR AR Thhhiki

EQU CCONTROLC = HEX B@$2 $ CHANNEL CONTROL
*%SET UP CONTROL CONSTANTS

EQU CCONTROLN = HEX Af@2 §
12 EQU SPAUCONC = HEX B@1Z § SPAU CONTROL
13 EQU SPAUCONN = HEX Af12 $

14 EQU TODONE = LSB(9) § SET UP FOR INTERRUPT FLAG
15 EQU SPAUDONE = LSB4)} §

16 EQU SPAUC = LSA{8) § CONTROL WORD FOR SP4Y
17 EQU SPADN = LSA{9} $

18 EQU I0C = LSA(1#) % CONTROL WORD FOR CHANNEL
i9 EQU ION = LSA(I1) §

28 .

21 *%JUMP AROUND INTERRUPT WECTOR TABLE

22 JUMP TO START §

23 JUMP TO MCUINT §

24 JUMF TO SPAUINT §

a5 JUMP TO IOINT 3

26 #%%3ET UP THE INTERRUPT ROUTINES HERE

7

28,T0INT IODOKE = 1 § SET I/OFLAG

29 INTRET $ RETURN

3%.MCUINT SPAUDONE = 14§ $ SOME ERROR OCCURRED

31 INTRET §

32.REJECT Z = 29§ § REJECT IMPLIES ERROR

33

34 R%5ET UP CONTROL CONSTANTS IN LOCAL STORE
35.START 10C = CCONTROLC §

is ION = CCONTROLE $§

37

38 4% START THE READ OF THE INPUT DATA

KL

4B **SET UP EQUATES FOR COMMANDS TQ BLOCK TRANSFER IN

41 **THE REAL DATA ARRAY SICN EXTENDED TO & 16 BIT VALUE
42

43 FQU ©CWl = HEX B#S4 § :

4l EQU CCWZ = 31 § TRAWSFER 16 VALUES SIGN EXTEND S0
45 #NFED TWO BYTES PER VALUE

45 *THIS IS THE TEST NUMBERS

47 % EQU OCWZ = 32767 § 16K POINTS TO TRANSFER

48 FQU CCW3 = (@,%,#) § PLACE INTO BUF § LOC

49 #AND OVERFLOW INTO BUF 1

of EQU CCW4 = HEX 6P@Pl $ SIGN EXTEND THE 8 BIT VALUE
51 EQU oCW5 = @ §

52 EQU WIPTR = (2.8,8) § DELAY TABLE FOINTER

53 EQU ANSPTR = (3,8,4) § BEAMS STARTED TO STORE HERE
54 EQU RESULTTR = {3,511,8} $§ FIRST OF RESULTS

55 EQU I = LSA{1Z) § CHANNFEL NUMBER

56 EQU J = LSB(ZJ § BEAM NUMBER

37 EQU K = LEA(1) $ TIME SAMPLE NUMBER

58 BEQU ANSADR = LSB({8) § FREE LOCATION FOR BEAM POINT

59 EQU OUTP = LSB(5) $
6f EQU TT = LSA(4) §

&1 EQU LOGNOPTS = LSB(1) §

&z EQU NOPOINTS = LSB(1#) $

63 EQU CFFT = 6§ 5 cOUNT 64 CLOCKS TILL DONE
&4

128

65
66
67
68
69

NRL REPORT 7832

EQU SCRATCH = (2,2046,0) § GIVE SPAU ROOM TO PLAY
EQU IMPOCT = L,SA(5) $ POINTS T DATA 10 PERFORM OCTAVE
EQU RESULT + LSA(6) $ POINTS TO WHERE THE OCTAVES ARE
EQU ONEFFF = HEX 1FFF & USED TO ISOLATE ADR BITS

7¢**START THE READ OF THE INPUT DATA

71

72.READ Z = CCWL §

88
89
op
91
92
93
94

I/0(1f, REJECT)
Z = CCWZ $
1/0(1¢,REJECT)
Z = CCW3 $
I/0(16,REJECT)

T o= TIk 8 TN
L T OuuWgd 9 LW

I/0(1#,REJECT)
Z = CCWS §

1/0{(19,REJECT)
I1/0(11,REJECT)

BT Y S - S <

SPAUN = SPAUCONN §
SPAUC = SPAUCONC $
SPAUDONE = 8 § SET UP FOR FIRST TEST TO START SPAU

**D0O SOME INIT FOR BEAM FORMEING
K,J = @ § INIT
BARB = WTPTR $§ POINTS TO DELAY TABLE
INPOCT,ANSADR = ANSPTR $ PUT BEAMS HERE

RESULT = ANSADR + 1§23 § POINT RESULT BUFFER TO FIRST

**YATT FOR COMPLETION

95.WAIT Z = ICDONE $

96
97
98
99

196

161

162

183

1p4

145

166

187

198

169

118

111

112

113

114

iis

116

117

118

119

128

IF NOT LEAST THEN JUMF IC WAIT §

* THIS IS TEE BEAM FORMING SECGMENT
**4SET UP THE EQUATES

EQU XTOF
EQU JMAX

(#,8,8) § WHERE THE X VALUES ARE STORED
3 § SET UP LOOP LIMIT
*FOR REAL RUN THIS IS 31
EQU KMAX = 4 § SET UP LIMIT FOR BENCH 1§24
EQU KMAX1 = 3 § USED TO TEST END OF LOOP
EQU KPOWER = 2 § 2%%*KPOWER = K
*FOR REAL PROGRAM THIS IS 1@

n

EQU SUM = LSA{2) $ ACCUMULATES THE SUM OF THE POINTS
EQU T = LSB(3) $ CONTAINS THE ENTRY FROM THE STRERING
*DELAY TABLE
EQU SUBS = LSA(7) § GONTAINS THE COMPUTATION OF WHICH TIME
*SAMPLE IN THE I TH CHANNEL REQUIRED
*RETRIEVE 4 PER BUFFER MEMORY WORD
LSB(6) § ANSWER TO BE OUTPFUT

EQU ANS =
= LSB(7) $ THE RETRIEVED VALUE BASED ON THE FSU FIELD

EQU X

121.REINIT BARA,I = § *RESET TO ACCUMULATE THE VALUE

122
123
124
125
126

127
i

CTR = COMPZ 31 $§ DO LOOP FOR 32 CHANNELS
SuM = I "INIT SUM TO ZERO"
SAR = KPOWER "SET UP FOR SHIFT TO COMPUTE TABLE ADR"
INPUT(BUF (BARB),T) "READ IN THE TABLE ENTRY FOR IJ"
INC BARB § PREPARE FOR NEXT READ

128.COMPUTE SUBS = K = T $§ COMPUTE THE TIME SAMPLE WANTED"

129

132
133
134
135
136
137
138
139
14
141
172
143
144
145
146
147
148
149
154
151
152
153
154
155
156
157
158
159
166
161
162
163
164

1585, SPAUSTART

186
147
158
169
178
171
172
173
174
175
176
177
178
179
184
181
182 z
i83
184
185
18

187.BUF2 ANSADR,INPOCT = INPOCT + 512 *POINT TO ZND BUFFER

188
189
198
i91

19Z.SPAUINT Z = SPAUDONE - & § SEE IF ALL FFT DONE
IF ZERG THEN JUMP TO IOUT “THEY'RE DONE OUTPUT"

193
194
195

HONEY 8. ELOVITZ

I,BARA = I + KMAX § ADJUST TO TOP

StM = SUM + X "ACCUMULATE Sum™

INPUT{BUF{BARR},T} "READ IN NEXT DELAY VALUE"

INC BARB

OF NEXT CHANNEL

IF NOT CTROU THER JUMP TO COMPUTE §

#%40 NEED TO LGP COMPUTE NEW ADR

BARB = J LEFT "J*18247

FOR WT RETRIEVAL

5AR = 5 $ SET UP FOR DIVIBE BY 32

BARB = BARB + WIPTR $ ADD IN BASE ADDRESS OF TABLE

ANS = SUM RIGHT "DIVIDE BY 32"

ASCAR = OUT § SET UP FOR JUMP OUT

BARA = ANSADE $ SET UP TU STORE ANSWER

OUTPUT {ANS,BUF (BARA}Y "“READ OUT THE BEAM POINTY
ANSADR = BARA + 1 $ READJUST POINTEE TO FREE LOC

T = K - KMAXL § SEE IF LAST TIME SAMPLE

IF NEG THEN JUMF TO REINIT "START OVER AT I=1"

K=K+ 1§ INC TIME POINTER

#% EXFCUTTON OF THE FOLLOWING INSTRUCTION TRDICATES THAT

% J MUST BE INCREMENTED AND TESTED

T =J ~ JMAX § SEE IF MORE BEAMS T¢ BE FORMED
IF HOT NEG THEN JUMP TG AGSAR "QUIT 60 TO OUT"
BARE = BARB + KMaX $§ ADJUST ADDRESS OF TABLE ENIRYY

J = J + 1 "INC BEAM POINTER"
ACSAR = REINIT $§

*%CALL THE SPAU TQ PERFORM THE DENODULATION

Z = SPAUDONE - B $ SEE IF SPAU DONE WITH ALL FFT
IF NOT ZERO THEN JUMP TO SPAUSTART § "WAIT"
Z = 3¢ % SEND THE ADR OF THE MACRQ POR THE SIMULATION

*PEIS I8 JUST THE NUMBER OF CLOCKS

I/G{(8,REJECT} § SHOULD SEND ADR OF WHERE INPUT IS

2 = 512 § SEND THE NUMBER OF POINTS

I/0{8,REJECT} S
Z = INPOCT § PASS BEAM ADR
1/0(8,RETECT} &

Z = RESULT § PASS ADR OF WHERE RESULTS T{ BE PUT

1/0(8,REJECT) $

Z = SCRATCH § PASS WHERE SRATCH STORAGE IS

I/0(9,REJECT) &

NOPOINTS = 64 § SET UP FOR FFT CALL

LOGNOPTS = 6 §

= INPOCT AND ONEFFF § ELIMINATE BUF KUMBER

K,SPAUDONE = ¢ "RESET LOOP INDEX AND INTR FLAG"

IF ZERO THEN SKIP $ “SEE IF WEED TO SET TC 2 ND BUFFER"
TO NEXT BEAM BUFFER

ANSADE, INPOCT = ANSPTR *POINT
JUMP TO ACSAR §

JUMP TO ACSAR § RETURN

SPAUDONE = SPAUDONE + 1 §

130

186

NRL REPORT 7832

196

197.STARTSPAU Z = CFFT § CALL FFT
198 1/0(8,REJECT) §

199 Z = NOPOINTS $

2pp 1/0(8,REJECT) §

2@1 Z = LOGNOPTS §

2p2 1/0(8,REJECT) $

243 Z = QUTP §

204 1/0(8,REJECT) %

2¢5 Z = OUTP §

206 I/0(9,REJECT) §

207

298 SAR = 2 "PREPARE FOR DIVISION"

299 LOGNOPTS = LOGNOPTS - 1 § SEE IF ANOTHER OCTAVE

214 TT = NOPOINTS LEFT § ADJUST SO THE NUMBER OF POINTS
211 QUTP = QUTP + TT $

212 NOPQINTS = NOPOINTS RIGHT $§ NEXT OCTAVE HAS HALF

213 *NUMBER OF POINTS PREVIOUS OCTAVE
214 INTRET § RETURN TO PROCESSING

215

216

217 **SET UP THE EQUATES

218 EQU CCWO5 = # §

219 EQU BULKADR = LSA(3) $ POINTS TO FREE LOCATION IN BULK
22¢* EQU CCWo2 = 2¢3% § TRANSFER 51@ POINTS EACH 32 BITS

221 *THE SPAU OUTPUTS 51§ VALUES FOR
222 *THIS BENCHMARK

223 EQU CCWO2 = 31 § ONLY 16 POINTS FOR TEST

224 BQU CCWOl = 4 §

225 EQU NOWRDSTR = 32 § NO.WORDS TRANSFERRED
226 EQU CCW04 = HEX 1419 $

227.10UT Z = CCWOl1 §

228 I/0(16,REJECT) &

229 Z = CCWO2 §

23¢ 1/0(1p,REJECT) $

231 Z = RESULT $

232 I/0(18,REJECT) $

233 Z = CCWO4 $

234 I1/0(1¢,REJECT) §

235 2 = BULKADR $ SEND ADR TO PUT INTO

236 I/0(1@,REJECT) $

237 TODONE = @ $ SET FLAG THAT I/Q STARTED
238 I/0{11,REJECT) &

2

22; BULKADR = BULKADR + NOWRDSTR § INC FREE LOC POINTER
241 SPAUDONE = SPAUDONE + 1 $ INDICATE THAT LAST FFT DOME
242 Z = RESULT - RESULTTP § SET UP FOR ADD OR SUBTRACT
243 IF ZERO THEN SKIP "DON'T REINIT JUST ADD"

244 OUTP,RESULT = RESULT + 1$23 § POINT TO FREE SPOT
245 OUTP,RESULT = RESULTTP $ REINITIALIZE

246 INTRET $ RETURN FROM INTERRUPT

247

248.0UT CALYL SPAUSTART § PROCESS LAST BEAM FORMED BY MCU
249 ,WAIT? Z = SPAUDONE - 8 § WAIT FOR ALL FFT DONE

259 IF NOT ZERO THEN JUMP TO WAIT7 §

251.WAITSB Z = T0DONE §

252 IF NOT LEAST THEN JUMP TO WAIT8 §
253

254 **ALL DONE

255

256 Z = 999 § DUMMY INSTRUCTION

257 END §

131

g g

SYMBOL TARBLE

SYMBOL

BULKADR
CCONTROLC
CCONTROLN
CCW1
cewz
CCW3
CEWh
CCH5
CFFI
COMPUTE
£EWOS
CoWo2
£CWo1
COWO4
TODONE
Ioc

10N
I0INT

1

INPOET
0T

I

JHAX

K

KMAX
FMAX1
KPOWER
LOGNOPTS
MCUINT

WOEOTNTS

HUFULINT G

NOWRLSTR
oUTP
ONEFFF
QUT
REJECT
RESULTTP
RESULT
READ
KEINIT
SPAUCONC
SPAUCONN
SPAUDONE
SPAULC
SPAUN
START
SCRATCH
S

SUBS
SPAUSTART
SPAUINT
STARTSPAU
T

T

VaLUE

Lsafl 3)
45658
43962
32772

31
A

&
24577

¢

68

33

8

31

4

4112
LEB{ o)
LSA(1@}
LSA(11)
4

LSA(32)
LSAL 5}
82

LSB{ 2)
3

Lsal 1)
4

25598
LSA(6)
11

31
5674
43978
L8B{ 4)
LSA{ 8}
1S4 9}
9

28476
Lsal 23
L8A{ 7)
47

65

67

LA 4)
LSB{ 3)

HONEY 8. ELOVITZ

132

NRL REFORT 7832

WIPTR 16384

WAIT 29
WAIT? 1p1
WAITS 143
XTOP 4]
X LSB(7)

NO COMPILATION ERRORS ENCOUNTERED

IN PER CENT
19 11 12 13 14 15 16

FIELD UTILIZATION STATISTICS
5 6 7 8 9

31 22 6 4 619 25 1 P 67 67 38 22 19 25 77

COMPTLATION TIME = 7.99 SECONDS

END,

85 18.647 SECS.
RUN COMPLETE.
BYE

SE413D LOG OFF. 15.39.44.
§S 10.647 SEC. § 4.15

133

HONEY 8. ELOVITZ

SUMMARY

The implementation of the benchmarks previously described suggested changes in the
design of the Selector Channel Confroller design and the FSU. During benchmark pro-
gramming, previously undefined specifications of the MCU interfaces to the S€C and SPAU
wete specified, resulting in revaluation or confirmation of that design,

in addition, the benchmarking effort significantly mﬂuenced the design of the miero-
programining iauguage and of the simulator for the MCUL

ACKNOWLEDGEMENTS

I am grateful {o the members of the Information Processing Systems Branch, who
helped me understand the details of the MCU and the SPE. I especially wish to thank

T BAdmwima Fyaomian and The Tabka T Qhavsa Far aln writh ocovoaral of tha sloarithmmo
A1 . DUEIIEIAte 2 AT ALy LJL, ULl L., DLIUIU, LSt lxcly ¥itdl OT VLI L2 WAT WARLFLLNALLY

and for encouragement and aid throughout the benchmark implementation. Special
mention must be made of W. David Elliott, and John P. Thnat. Finally, I would like {o
thank John D. Roberts, for patiently making many changes to the MCU simulator to
make my job easier. '

REFERENCES

1. WR Smith IP Thnat H Sm{{- N M Hoand 11- T Frasman V.S. Wi an

LA YL ;_usx‘.'u.-x;, .5, 1ian qv, 2E.a0. LESLULL, L9,i¥l, 110 GRA, L.y L. CACCILICksy < ¥ ady 3

4
B. Walk, “AN/UYK-17(XB-1} (V) Signal Processing Element Architecture,” NRIL,
Report 7704, June 7, 1974,

2. 1P, Thnat, W.R. Smith, 4.D), Roberts, Jr., Y.5. Wu, and B. Wald, “Signal Processing
Element Funetional Description, Part 1, Microprogrammed Control Unit, Buffer
Store, and Storage Conirol Unit,” NRL Report 7496, Sept. 12, 1972,

J.D. Roberts, Jr., “Microprogrammed Control Unit Programming Reference Manual,”
NRL Report *m*m Aug. 15, 1972,

i At

4. W.R. Smith and H.H, Smith, “Signal Processing Element Functional Description,
Part 2, Signal Processing Arithmetic Unit,” NRL Memorandum Report 2522, Qet.
1972,

5. H.H. Smith and L.E. Russo, “Microprogrammed Benchmarks for the AN/UYK-1T(XB-
1) (V) Signal Processing Arithmetic Unit,” NRIL Report 7831, in preparation.

[#1]
#
£v)

g

&
2
3

134

Appendix A
BENCHMARK SPECIFICATIONS
INTRODUCTION

A group of processing functions has been selected as a representative sample of the
operations to be carried out on the PROTEUS Analyzer and are presented here as bench-
mark problems. Each problem stresses one or more of the major analyzer capabilities
(arithmetic operations, logic operations, and general data handling operations).

The results of these sample problems will be used in evaluating running times and
overall capabilities of the proposed analyzer. In some instances the timing and storage
performance for a particular problem will be used to project overall performance for that
class of problem. The responses to these problems should be in a separate enclosure
from the responses to the main body of the specification.

GUIDELINES

Problems should be implemented as if they were to be called from an overall

R tivrn wonitina ar 1if indisatad fram coma nr NS
eXeCurive rouliiie or, 1 maicawveq, irom seme k.ue'v'lcus routine or via an lnteu.upt In

either case, the implementation should include storage of ‘“working registers’ and any
other overhead functions such as initializing tables, reformatting input or output data,
and setting up 1/O buffers.

The hardware and software configuraitons used for the benchmark problems must
be identical to those proposed for the actual system, unless specified otherwise.

The solutions to the problems must be carried out using the problem organization

that ic defined. The contractor mav redefine or redesion anv of the nrobhleme fagseuming

A% VASLIBAL UL LG AT ALIIT L ATRATOIRAE Gy WL il A L TARAD \ B uiiali g

the same tasks are accomplished) if the modification results in a specific advantage for
his machine. The modifications must be documented in detail, and the resulting
advantages must be demonstrated.

FUNCTION BENCHMARKS
Levels of Response
Two levels of response will be considered.

Minimum Required Response — The following response is required for each of the
funcuional benchmark problems.

1. A detailed flow diagram of the program at the instruction level and a prose
description of the solution

135

HONEY 8. ELOVITZ

2. 'The overall problem execution time. Memory access thime and individual
instruction execution times should be itemized. Time required for any overhead functions
shall be included.

. Storage allocation in terms of total storage used and percentage of storage

sirailahla faw annah AF tha Andtn oealPlaiont ond misssressgenes s s scelan
1d0i€ 1O eadinn o1 e PiUE.Lﬁli) LR, VUDLLILICIIL dilll LT U UE8I Rl DHTEIULICS

4, A symbolic instruction listing in the analyzer language with comments

5. A definition of each instruction {or each statement at each language level, if
more than one level is used)

6. Execution times for each equation major loop or program segment

......

7. A detaiied descnpnon of each special ingtruction or macro, mcmamg itg purpose

3. Microprogram assembly and simulation, including {a} translation of the micro-
instruction source language into the pattern of control bits to be used in a microprogram
memory (All translator documentation outputs shall be provided.}, and (b} simulation
of the microprogram on a general-purpose compuier. (This simulation should produce
statistics on the execution of the microprogram, such as control memory size, timing, ele.}

9. Program assembly and simulation, including (a) assembly of the source code
with all assembler outputs, and (b} simulation of the program on & general-purpose compu-
ter. (This simulation should produce statistics on the execution of the program, such as
memory use and timing.)

ersonnel who can he contacted for ar Wwors

prf KoL 0 5 5 34 LSS X LA

T
I3 b
to any guestions of a technical nature regard he method of problem solution.
Optional Responges — The contractor may wish to present his capabilities by
executing the program on anatyzer hardware, interfaced with a general-purpose computer
to provide statistics and input/output capabilities. This response is nof mandatory but
is desirable to help evaluate the current state of system development.

Function Benchmark Problems

1. Data Arrcy Demultiplexing — A 3200-point array congsisting of 25 channels of
time-multiplexed complex data {packed one complex gsample per 32-hit memory word)
(Fig. Ala) shall be demultiplexed into 25 arrays of 128 complex points each {Fig. Alb).
The input data shall have previously been located in bulk memory, and the cutput shall
result in 25 contiguous arrays in bulk memory.

2. Data Array Demultipiexing — Follow the steps of benchmark 1, assuming a
32,768-point input array consisting of 32 channels of {ime-multiplexed real data with
8-bit precision.

136

NRL REPORT 7832

A. Input Array B. Qutput Array

Word Channel Sample Word Channel Sample
1 1 1 1 1 1
2 2 2 2 1 2
3 3 1 3 1 3
25 25 1 128 1 128
26 1 2 129 2 1
27 2 2 130 2 2
28 3 2 131 2 3
50 25 2 256 2 128
3176 1 128 3073 25 1

Cat
=1
~
~]
[
—h
N}
&
(24
[=
]
i
™
[44}
N

3178 3 128 3075 25 3

3200 25 128 3200 25 128

Fig. Al — Array demultiplexing input and output arrays

[y
(¥ %)
-3

HONEY 8. ELOVITZ

2. Datae Array Demulliplexing — Follow the steps of benchmark 1, assuming a
32,768-point input array consisting of 32 channels of time-muliiplexed real data with 8-bit
precision.

3. Complex Fast Fourier Transform — The input data consists of 4096 complex
values residing in bulk memory (packed one 32-bit word per complex sample). A 4096-
point complex FFT shall be performed on the input data, and the results shall be returned
to the same area of bulk memory that confained the input data.

4. Real Fast Fourier Transform — The input data consists of 1024-point real
values, with 8-bit precision, residing in bulk memory. A 1024-point FFT shall be per-
formed on the input data, and resuits shall be returned to a different area of bulk memory
(packed one 82-bit word per complex sample).

5. Data Array Demuitiplexing and FFT — Combine benchmarks 2 and 4 and
perform FFT on 32 channels of time-multiplexed real daia.

6. Weighting Function With Irregular Addressing — Apply a weighting funetion to
an input data array using a predefined irregular addressing pattern on the input. This type
of weighting function is used in forming constant-percentage resohition filters from con-
stant-resolution FFT outputs. The input data will consist of an array of 1024 complex
values formatted as shown in Fig. A2 and stored in bulk memory.

16 Bits 16 Bits
Word 1 { Reaf Part | Imaginary Part |
Word 2 LFlea{ Part L imaginary Part -i
Word':i | Reai Part { lmaginary Part |

Word 1024 | Real Part | Imaginary Part |

Fig. A2 — Input data array

The output will be an array of 512 complex values stored in bulk memory in the
same format as the input data, The algorithm to be carried out is given by

4
Yi= E C?i,kXJ"-!'k—l i=1,2, .., 512
k=1

where Y; is the ith complex ouiput value,

The C;p are the complex weighting factors stored in bulk memory as specified in
Fig. A3.

138

NRL REPORT 7832

Table Al (Continued)
Definitions XJ;

i Ji i Ji i J; i J;
98 138 118 166 140 199 162 241
99 139 119 167 141 201 163 243
100 140 120 169 142 202 164 246
101 142 121 170 143 204 165 248
102 143 122 172 144 205 166 250
103 145 123 173 145 2017 167 253
104 146 124 174 146 209 16 255
105 147 125 176 147 210 169 258
106 149 126 177 148 211 170 261
107 151 127 178 149 213 171 265
108 152 128 180 150 215 172 267
175 276 129 181 151 216 173 269
176 279 130 183 152 218 174 273
177 281 197 343 219 407 241 466
178 284 198 345 220 409 242 469
179 287 199 348 221 413 243 471
180 291 200 352 222 416 244 473
181 294 201 356 223 419 245 476
182 297 202 358 224 421 246 478
183 299 203 361 225 424 247 480
184 303 204 364 226 426 248 483
185 307 205 367 227 429 249 485
141

HONEY 8. ELOVITZ

Table Al (Continued)
Definitions XF

TALITIIWILAIS AW I

i J; i J; i 2 i J;
186 310 206 371 228 431 250 487
187 313 207 373 229 434 251 491
188 316 208 375 230 436 952 493

189 319 209 378 231 439 253 496
190 322 210 380 232 441 254 500
191 326 211 384 233 444 255 504 |
192 329 212 387 234 447 256 508
193 332 713 389 235 450
194 335 214 392 236 454 £
195 337 215 395 237 457
196 339 218 399 238 459

217 403 239 461
218 405 240 463

7. Complex Demodulation and Oectaye Filtering — The input will consist of a 1024-
point real data array, packed as four 8-bit samples to a 32-bit memory word, residing in
bulk memory (Fig. A4). The contractor will perform complex demodulation and octave
filtering with decimation and scaling to form eight continguous l-octave bands. A func-
tional flowchart of the operations to be performed is presented in Fig. A5, All filters will
4-zero recursive filters with nontrivial coefficients. The output shall he stored

in bulk memory as eight separate arrays with one 32-bit complex output per word. AR
coefficients and results will be 18 bits for each of the real and imaginary parts.

ho A.onals
e T Evl\l,

142

NRL REPORT 7832

Word Real Sample
Word 1 1 2 3 4
Word 2 5 6 7 8
Word 3 9 10 1 12

Word 256 | 1621|1022 [1023 |1024

Fig. A4 — Contents of 1024-bit real data array

143

HONEY 8. ELOVITZ

€05 wigh
K MEMORY
RIRIRIA r———
HIR

Fig. Ab — Complex demodulation and octfave filtering

LPF \-——b‘ SCALE
+4 l
R
LPF — :\——D SCALE
CCTAVE 7
LPF b—— :—b SCALE
. 3 L
Y
LPF p—— \—-——b SCALE
+q
OCTAVE |
LPF —— \—h SCALE
+4
LtPF — .\———U SCALE
<4

144

NRL REPORT 7832

8. Complex Demodulation and Octave Filtering — Combine benchmax.‘ks 2 and_ 1
and perform complex demodulation and octave ‘filtering on 32 channels of time-multi-
plexed real data.

9. Demultiplexing, Octave Filtering, and FFT — Follow the steps of benchmark 8
and then perform FFT on all channels and all octaves. The frequency domain output
shall be stored in bulk memory packed one 32-bit complex output per word.

10. Beam Forming — Perform delay-sum beam forming on time-multiplexed input
array as defined in benchmark 2, using the following formula:

32
Y; (tk) = é Z WyXi(tk - Ty)
i=1
where
X;(tk} = ith input channel, Kth time sample

Y;(tk) = jth beam output, Kth time sample

Ty; = steering delay

Wy = arbitrary scale factor

i=1,..,82, j=1,..,82; K=1,..,1024.
W;; and Tj; shall be a 1024-word (each word has 16 bits) stored table with 10-bit relative |

table address defined by i such that the storage content of the tabie address ij has the
following format:

Wij 4
0 78 15

The 32-beam output arrays shall be in contiguous time samples packed four 8-bit samples
per 32-bit word and stored in bulk memory.

11. Beam Forming and Octave Filtering — Combine benchmarks 7 and 10 and
perform complex demodulation and octave filtering on 32 beams.

12. Beam Forming, Octave Filtering, and FFT — Follow the steps of benchmark
11 and then perform FFT on all beams and all octaves. The frequency domain output
shall be stored in bulk memory packed one 32-bit complex output per word.

13. Sensor-Input, Beam-Output Cross-Correlation — Compute the following cross-
correlation function:

145

HONEY 8. ELOVITZ

Prmlwr) = Yip(wglefwp TomXelwr)

where
Yo (wg) = mth beam, Kth frequency
gjwpToym = complex spatial term with respect to Ty
Tom = gteering delay
Xplwg) = {th input channel, Kth frequency sample

£=1,..,32, m=1,.,382 K=1,..,1024.

{Xy) and (Y;) are packed, 32-bit complex words stored in the bulk memory. Com-
putations Of{ij}gTQ m} should be carried in at leagt 8-bit real and imaginary parts of &
complex number, (I1®¥m} output shall be stored in bulk memory packed in 16-bit words
{8-bit real and imaginary). It is acknowledged that the proposed basic analyzer unit
configuration may not have sufficient bulk sforage to execute this benchmark program.
However, computer simulation of this program should adequately demonstrate the bulk
memory expansion capability, dynamic paging and overlaying between bulk memory and
the analyzer unit, and overall system throughput.

i4. Gram Thresholding and Formatting — The input will be an array of 256 real
data points (specified in Table 2) representing the outputs of the 87T1 processor, as
specified. The input data shall be stored in bulk memory as two 16-hit values per data

word. The problem is to quantize the STI outputs by computing a moving window noise

moiiuldl MIC O L1 Ullopeilios

mean for each input data point and use the noise mean to threshold the data to a 2-bit
amplitude. The algorithm to be used is defined in the specification, with the following
parameter definitions:

W = 32
Koy = {specified hy user}
Bry = {specified by user}
N =258
Ky = {specified by user}
Ky = {specified by user}

Kg =, {specified by user)

The output shall he 128 values packed as sixteen 2-bit amplitudes formatted into eighi
32-bit words and returned to bulk memory as shown in Fig. A6.

146

Word

NRL REPORT 7832

Output Array

1|¥Y1

Y2 Y3 Y4 Y5 Y6 Y7

Y8 Y9 Y10 Y11 Yi2 Y13 Y14 Y15 Y16

2l¥17 Y18 Y19 Y20 Y21 Y22 Y23 Y24 Y25 Y26 Y27 Y28 Y29 Y30 Y31 Y32

< 8 T Y127 Y128

Fig, A6 — Output array for gram thresholding and formatting

15. Bearing Computation (DIFAR) — The input to the bearing computation shall

aict
v

"
LILIQD

nf twn arrayvc an
WAL UVY AT LAY Oy cvll vl oL

h ~f 1094
v

X

nainte in hull
(81953 .4

Puriiing, ALl

ONAR nninteo

mAamAary ranvacoanting
LARILIAIL Y o LGP OWRINLLE LWV pFUaLLLD

of the sine and cosine channels, respectively, after LTI. The format of the input data
shall be as in Fig. A7. The algorithm shall be as specified. The output shall be a 512-
point array consisting of four 8-bit bearing outputs per 32-bit word in bulk memory.

The format of the output shall be as shown in Fig. A8.

Word 1
Word 2
Word 512

Word 1
Word 2

Word 1024
Word 1025
Word 1026

Word 2048

[North 1 | North 2

[North 3 | North 4

| North 2047 | North 2048
East East 2
East 3 East 4

| East2047 | East2048 |

Fig. A7 — Input format for bearing calculation

Bearing 1 Bearing 2 Bearing 3 Bearing 4
Bearing & Bearing 6 Bearing 7 Bearing 8
Bearing 2045 Bearing 2046 Bearing 2047 Bearing 2048

Fig. A8 — Output format for bearing calculation

147

