
HONEY S. ELOVITZ

Benchmark 12 - Beam Forming, Octave Filtering, and FFT

This benchmark is a combination of benchmark 10 (beam forming) and benchmark
9 and as such requires the initiation of the FFT macro in the SPAU. The approach taken
is identical with that of benchmark 11 - form a beam, initiate an octave filtering and
complex demodulation by the SPAU on that beam, and form the next beam in parallel
with the SPAU's execution of the octave filtering. When a SPAU interrupt occurs, the
interrupt routine determines whether an FFT on an octave is to be performed or whether
the SPAU is free to begin an octave filtering and complex demodulation operation the
next time the MCU attempts to initiate one. At the conclusion of seven FFT calcu-
lations, the results are output as the MCU proceeds, in parallel with both the selector
channel controller and the SPAU, to compute the next bearn.

After examining the time required by the MCU to compute the beams and the SPAS
to perform octave filtering, it is evident that the SPAU will be idle while the MCU finishes
forming the next beam. Consequently, the running time for benchmark 12 is dependent
on the time the MCU takes to execute the beam-forming benchmark.

Table 16 gives the computation times. Fig. 16 is a flowchart for the benchmark;
it is followed by a source listing.

124

Table 16
Times for Benchmark 12

J JTimes
Function Performed | Breakdown | Calculation (Clock Cycles)

Form one beam See benchmark 10 70,144

Execute octave filter and complex See benchmark 7 16,422
demodulation macro

Perform 7 FFTs on octaves See benchmark 9 7 X 12 + 3665 3749 + a +
+ a + b + c b + e

Total time for benchmark 12 Beam-forming time 2,293,760
Final octave filter and complex 16434
demodulation execution
Final FFT execution on last 3749 + a +
7 octaves b + c
Final output of last set of FFT 1036
results
Total 2,314,979__________j + a +b + c

$A

'Ž3

z

CO
Lo

I

HONEY S. ELOVITZ

.OUT

Fig. 16 Benchmark 12 flow diagram (one of two pages)

126

.START

.READ

WAIT

.RENIT

SPAUSTART

NRL REPORT 7832

.SPAULINT

Fig. 16 - Benchmark 12 flow diagram (second of two pages)

127

HONEY S. ELOVITZ

0 6 ** *****************i* * **** ***** ****** * * ***~* ************
0 7

0 8 EQU CCONTROLC = HEX B002 $ CHANNEL CONTROL
0 9 **SET UP CONTROL CONSTANTS
0 10
0 11 EQU CCONTROLN = HEX A002 $

0 12 EQU SPAUCONG - REX B012 $ SPAU CONTROL
0 13 EQU SPAUCONN HEX A012 $
0 14 EQU IODONE = LSB(9) $ SET UP FOR INTERRUPT FLAG
0 15 EQU SPAUDONE LSB(4) $
0 16 EQU SPAUC = LSA(8) $ CONTROL WORD FOR SPAU
0 17 EQU SPAUN = LSA(9) $
o lS EQU IOC LSA(10) $ CONTROL WORD FOR CHANNEL
0 19 EQU ION = LSA(1I) $
0 20
0 21 **JUMP AROUND INTERRUPT VECTOR TABLE
0 22 JUMP TO START $
1 23 JumP TO MCUINT $
2 24 JUMP TO SPAUINT $
3 25 JUMPTO IQINT $
4 26 **SET UP THE INTERRUPT ROUTINES HERE
4 27
4 28.70INT IODONE = 1 $ SET T/OFLAG
5 29 INTRET $ RETURN
6 30.MCUINT SPAUDONE = 100 $ SOME ERROR OCCURRED
7 31 INTRET $
a 32.REJECT Z = 200 REJECT IMPLIES ERROR
9 33
9 34 **5ET UP CONTROL CONSTANTS IN LOCAL STORE
9 35.START IOG CCONTROLC $

10 36 ION - CCONTROLN $
11 37
11 38 ** START THE READ OF THE INPUT DATA
11 39
11 40 **SET UP EQUATES FOR COMMANDS TO BLOCK TRANSFER IN
11 41 **THE REAL DATA ARRAY SIGN EXTENDED TO A 16 BIT VALUE
11 42
11 43 EQU CCWI HEX 8004 4
11 44 EQU CCW2 = 31 $ TRANSFER 16 VALUES SIGN EXTEND SO
11 45 *NED TWO BYTES PER VALUE
11 46 *THIS IS THE TEST NUMBERS
1L 47 * EQU CCWZ 32767 $ 16K POINTS TO TRANSFER
11 48 EQU CCW3 = (0,0,0) $ PLACE INTO BUF 0 LOG 0
11 49 *ANTJOVERFLOW INTO BUF 1
11 50 EQU CCW4 = HEX 6001 $ SIGN EXTEND THE 8 BIT VALUE
11 51 EQU CCWS = 0 $
11 52 EQU WTPTR = (2,0,0) $ DELAY TABLE POINTER
11 53 EQU ANSPTR - (3,0,0> $ BEAMS STARTED TO STORE HERE
11 54 EQU RESULTTP = (3,511,0) $ FIRST OF RESULTS
11 55 EQU I = LSA(12> $ CHANNEL NUMBER
11 56 EQU J = LSB(2) $ BEAM NUMBER
11 57 EQU K = LSA(1) $ TIME SAMPLE NUMBER
11 58 EQU ANSADR = LSB(8) $ FREE LOCATION FOR BEAM POINT
11 59 EQU OUTP = LSB(5) $
11 60 EQU TT - LSA(4) $
11 61 EQU LOGNOPTS = LSB(1) $
11 62 EQU NOPOINTS = LSB(10) $
11 63 EQU CFFT = 60 $ COUNT 60 CLOCKS TILL DONE
11 64

128

NRL REPORT 7832

11 65 EQU SCRATCH = (2,2046,0) $ GIVE SPAU ROOM TO PLAY
11 66 EQU IMPOCT = LSA(5) $ POINTS TO DATA TU PERETUR OCTAVE
11 67 EQU RESULT + LSA(6) $ POINTS TO WHERE THE OCTAVES ARE
11 68 EQU ONEFFF = HEX 1FFF $ USED TO ISOLATE ADR BITS
11 69
11 70**START THE READ OF THE INPUT DATA
11 71
11 72.READ Z = CCWI $
12 73 I/0(10,REJECT)$
13 74 Z = CCW2 $
14 75 I/0(10,REJECT) $
15 76 Z = CCW3 $
16 77 I/0(10,REJECT) $
17 78 Z = nCWr 1,0
XI 7C . ~.W I.

18 79 I/0(10,REJECT) $
19 80 2-CCWS $
20 .81 I/O(10,REJECT) $
21 82 I/0(I1,REJECT) $
22 83
22 84 SPAUN = SPAUCONN $
23 85 SPAUC = SPAUCONC $
24 86 SPAUDONE = 8 $ SET UP FOR FIRST TEST TO START SPAU
25 87
25 88 **DO SOME INIT FOR BEAM FORMING
25 89 K,J = 0 $ INIT
26 9g BARB = WTPTR $ POINTS TO DELAY TABLE
27 91 INPOCT,ANSADR = ANSPTR $ PUT BEAMS HERE
28 92 RESULT = ANSADR + 1023 $ POINT RESULT BUFFER TO FIRST
29 93
29 94 **WAIT FOR COMPLETION
29 95.WAIT Z = IODONE $
30 96 IF NOT LEAST THEN JUMP TC WAIT $
31 97
31 98
31 99
31 100 * THIS IS THE BEAM FORMING SEGMENT
31 101 ***SET UP THE EQUATES
31 102
31 103 EQU XTOP = (0.0,0) $ WHERE THE X VALUES ARE STORED
31 104 EQU JMAX = 3 $ SET UP LOOP LIMIT
31 105 *FOR REAL RUN THIS IS 31
31 106 EQU KMAX - 4 $ SET UP LIMIT FOR BENCH 1024
31 107 EQU KMAX1 = 3 $ USED TO TEST END OF LOOP
31 108 EQU [(POWER = 2 $ 2**KPOWER = K
31 109 *FOR REAL PROGRAM THIS IS 10
31 110
31 111
31 112 EQU SUM = LSA(2) $ ACCUMULATES THE SUM OF THE POINTS
31 113 EQU T = LSB(3) $ CONTAINS THE ENTRY FROM THE STEERING
31 114 *DELAY TABLE
31 1i5 EQU SUBS = LSAt7) $ CONTAINS TLE COMPUTATION OF WHICH TIME
31 116 *SAMPLE IN THE I TH CHANNEL REQUIRED
31 117 *RETRIEVE 4 PER BUFFER MEMORY WORD
31 118 EQU ANS = LSB(6) $ ANSWER TO BE OUTPUT
31 119 EQU X = LSB(7) $ THE RETRIEVED VALUE BASED ON THE FSU FIELD
31 120
31 121.REINIT BARA,I = 0 *RESET TO ACCUMULATE THE VALUE
31 122 CTR = COMP2 31 $ DO LOOP FOR 32 CHANNELS
32 123 SUM = I "INIT SUM TO ZERO"
32 124 SAR m KPOWER "SET UP FOR SHIFT TO COMPUTE TABLE ADR"
32 125 INPUT(BUF(BARB),T) "READ IN THE TABLE ENTRY FOR IJ"
32 126 INC BARB $ PREPARE FOR NEXT READ

3 1297

33 128.COMPUTE SUBS = K - T $ COMPUTE THE TIME SAMPLE WANTED"

129

I

HONEY S. ELOVITZ

35 132 IBARA = I + KMAX $ ADJUST TO TOP OF NEXT CHANNEL
36 133
36 134 SUM = SUM + X "ACCUMULATE SUM"
36 135 INPUT(BUF(BARB),T) "READ IN NEXT DELAY VALUE"
36 136 INC BARB
36 137 IF NOT CTROU THEN JUMP TO COMPUTE $
37 138 *fNO NEED TO LOOP COMPUTE NEW ADR FOR WT RETRIEVAL
37 139
37 140 BARB = J LEFT "J*1024"
37 141 SAR = 5 $ SET UP FOR DIVIDE BY 32
38 172 BARB = BARB + WTPTR $ ADD IN BASE ADDRESS OF TABLE
39 143 ANS = SUM RIGHT "DIVIDE BY 32"
39 144 ASCAR = OUT $ SET UP FOR JUMP OUT
40 145
40 146 BARA = ANSADR $ SET UP TO STORE ANSWER
41 147 OUTPUT(ANSRUF(BARA)) "READ OUT THE BEAM POINT"
41 148 ANSADR = BARA + 1 $ READJUST POINTER TO FREE LOC
42 149
42 150 T - K - KMAXI $ SEE IF LAST TIME SAMPLE
43 151 IF NEG THEN JUMP TO REINIT "START OVER AT 1=1"
43 152 K - K. + 1 $ INC TIME POINTER
44 153
44 154 ** EXECUTION OF THE FOLLOWING INSTRUCTION INDICATES THAT
44 155 ** J MUST BE INCREMENTED AND TESTED
44 156
44 157 T = J - JMAX $ SEE IF MORE BEAMS TO BE FORMED
45 158 IF NOT NEG THEN JUMP TO ACSAR "QUIT GO TO OUT"
45 159 BARB = BARB + KMAX $ ADJUST ADDRESS OF TABLE ENTRY"
46 160 J = J + 1 "INC BEAM POINTER"
46 161 ACSAR = REINIT $
47 1652
47 163 **CALL THE SPAU TO PERFORM THE DEMODULATION
47 164
47 165.SPAUSTART Z = SPAUDONE - a SEE IF SPAU DONE WITH ALL FFT
48 166 IF NOT ZERO THEN JUMP TO SPAUSTART $ "WAIT"
49 167 Z = 30 $ SEND THE ADR OF THE MACRO FOR THE SIMULATION
50 168 *THIS IS JUST THE NUMBER OF CLOCKS
50 169 I0(8,REJECT) $ SHOULD SEND ADR OF WHERE INPUT IS
51 170 Z - 512 $ SEND THE NUMBER OF POINTS
52 171 IO(CS,REJECT> $
53 172 Z = INPOCT $ FASS BEAM ADR
54 173 IlO(B,REJECT) $
55 174 Z = RESULT $ PASS ADE OF WHERE RESULTS TO BE PUT
56 175 I/O(BREJECT) $
57 176 Z = SCRATCH $ PASS WHERE SRATCH STORAGE IS
58 177 I/O(9,REJECT) $
59 178
S9 179 NOPOINTS = 64 $ SET UP FOR EFT CALL
60 180 LOGNOPTS 6 $
61 181
61 182 Z = INPOCT AND ONEFFF $ ELIMINATE BUF NUMBER
62 183 KSPAUDONE = 0 "RESET LOOP INDEX AND INTR FLAG"
62 184 I ZERO THEN SKIP $ "SEE IF NEED TO SET TO 2 ND BUFFER"
63 185 ANSADR,INPOCT = ANSPTR *POINT TO NEXT BEAM BUFFER
63 186 JUMP TO ACSAR $
64 187.BUF2 ANSADR,INPOCT - INPOCT + 512 *POINT TO 2ND BUFFER
64 188 JUMP TO ACSAR $ RETURN
65 189
65 190
65 191
65 192.SPAUINT Z = SPAUDONE - 6 $ SEE IF ALL FFT DONE
66 193 IF ZERO THEN JUMP TO IOUT "THEY'RE DONE OUTPUT"
66 194 SPAUDONE - SPAUDONE + i a
66 195

130

NRL REPORT 7832

67 196
67 197.STARTSPAU Z = CFFT $ CALL FFT
68 198 I/O(8,REJECT) $
69 199 Z = NOPOINTS $
70 200 I/0(8,REJECT) $
71 201 Z = LOGNOPTS $
72 202 I/0(8,REJECT) $
73 203 Z = OUTP $
74 204 I/O(8,REJECT) $
75 205 Z - OUTP $
76 206 I/O(9,REJECT) $
77 207
77 208 SAR = 2 "PREPARE FOR DIVISION"
77 209 LOGNOPTS = LOGNOPTS - 1 $ SEE IF ANOTHER OCTAVE
78 210 TT = NOPOINTS LEFT $ ADJUST SO THE NUMBER OF POINTS
79 211 OUTP = OUTP + TT $
80 212 NOPOINTS = NOPOINTS RIGHT $ NEXT OCTAVE HAS HALF
81 213 *NUMBER OF POINTS PREVIOUS OCTAVE
81 214 INTRET $ RETURN TO PROCESSING
82 215
82 216
82 217 **SET UP THE EQUATES
82 218 EQU CCW05 = 0 $
82 219 EQU BULKADR = LSA(3) $ POINTS TO FREE LOCATION IN BULK
82 220* EQU CCWO2 = 2039 $ TRANSFER 510 POINTS EACH 32 BITS
82 221 *THE SPAU OUTPUTS 510 VALUES FOR
82 222 *THIS BENCHMARK
82 223 EQU CCW02 = 31 $ ONLY 16 POINTS FOR TEST
82 224 EQU CCWO1 = 4 $
82 225 EQU NOWRDSTR = 32 $ NO.WORDS TRANSFERRED
82 226 EQU CCW04 = HEX 1010 $
82 227.IOUT Z = CCWO1 $
83 228 I/O(10,REJECT) $
84 229 Z - CCWO2 $
85 230 I/O(10,REJECT) $
86 231 Z - RESULT $
87 232 I/O(10,REJECT) $
88 233 Z = CCW04 $
89 234 I/O(10,REJECT) $
90 235 Z = BULKADR $ SEND ADR TO PUT INTO
91 236 I/O(10,REJECT) $
92 237 IODONE = 0 $ SET FLAG THAT I/O STARTED
93 238 I/O(11,REJECT) $
94
94
95
96
97
97
98
99

100
100
101
102
103
104
105
105
105
105
106

239
2 40'VA BUL tA = DHT VAVD +)J7flPnSTf $ NC FREE T nP O

241 SPAUDONE = SPAUDONE + 1 $ INDICATE THAT LAST FFT DC
242 Z = RESULT - RESULTTP $ SET UP FOR ADD OR SUBTI
243 IF ZERO THEN SKIP "DON'T REINIT JUST ADD"
244 OUTP,RESULT 5 RESULT + 1023 $ POINT TO FREE
245 OUTPRESULT = RESULTTP $ REINITIALIZE
246 INTRET $ RETURN FROM INTERRUPT
247
248.OUT CALL SPAUSTART $ PROCESS LAST BEAM FORMED BY HCU
249,WAIT7 Z = SPAUDONE - 8 $ WAIT FOR ALL FFT DONE
250 IF NOT ZERO THEN JUMP TO WAIT7 $
251.WAIT8 Z - IODONE $
252 IF NOT LEAST THEN JUMP TO WAIT8 $
253
254 **ALL DONE
255
256 Z = 999 $ DUMMY INSTRUCTION
257 END $

INTER
)NE
RACT

SPOT

131

HONEY S. ELOVITZ

0i 106

SYMBOL TABLE
SYMBOL VALUE

ANSPTR 24576
ANSADR LSB, (8)
ANS LSB(6)
BUF2 64
BUJLKADR LSA(3)
CCONTROLC 45058
CCONTROLN 40962
CCWI 32772
CW2 31
CG43 0
CCW4 24577
CCW5 0
CPFT 60
COMPUTE 33
CCWo5 0
CCW02 31
CCWOKI 4
CCW04 4112
IODONE LSB(9)
IOC LSA(10)
ION LSA(11)
IOiNT 4
I LSA(12)
INPOCT LSA(5)
IOUT 82
i LSB(2)
JMAX 3
K LSA(1)
KNAX 4
EMAX1 3
KPOWER 2
LOGNOPTS LSB(1)
MCUINT 6
NfOl7?POIT Cfo

NOWRDSTR 32
OUTP LSB(5)
ONEFFF 8191
OUT 100
REJECT 8
RESULTTP 25598
RESULT LSA(6)
READ 11
REIN'IT 31
SPAUCONC 45074
SPAUCONK 40978
SPA~rOONF LSB(41
SPAUC LSA(8)
SPAUN LSA(9)
START 9
SCRATCH 20476
SUM LSA(2)
SUBS LSA(7)
SPAUSTART 47
SPAUINT 65
STARTSPAU 67
TT LSA(4)
T LSB(3)

132

NRL REPORT 7832

WTPTR 16384
WAIT 29
WAIT7 101
WAIT8 103
XTOP 0
X LSB(7)

NO COMPILATION ERRORS ENCOUNTERED

FIELD UTILIZATION STATISTICS IN PER CENT
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

__

31 22 6 4 6 19 25 1 0 67 67 38 22 19 25 77

COMPILATION TIME = 7.99 SECONDS
END .

SS 10.647 SECS.

RUN COMPLETE.

BYE

50413D LOG OFF. 15.30.44.
SS 10.647 SEC. $ 4.15

133

.....

HONEY S. ELOVITZ

SUMMARY

The implementation of the benchmarks previously described suggested changes in the
design of the Selector Channel Controller design and the FSU. During benchmark pro-
gramming, previously undefined specifications of the MCU interfaces to the SCC and SPAU
were specified, resulting in revaluation or confirmation of that design.

In addition, the benchmarking effort significantly influenced the design of the micro-
programming lauguage and of the simulator for the MCU.

ACKNOWLEDGEMENTS

I am grateful to the members of the Information Processing Systems Branch, who
helped me understand the details of the MCU and the SPE. I especially wish to thank
D- Edmund ItFlA VreemaL and Li. J¶hJL LA. a&fS11JLreCf L'SL elp Wrh Oh Pe.L A% e tJLL

and for encouragement and aid throughout the benchmark implementation. Special
mention must be made of W. David Elliott, and John P. Ihnat. Finally, I would like to
thank John D. Roberts, for patiently making many changes to the MCU simulator to
make my job easier,

REFERENCES
'1 U? P Q-.,4l I 'D Thr 1- 'P U C-44-b XT XS t-1r.A 1r P PrnnrrV C Uhi Ofl

TV.Xl. LlvtLS, t. . 11tna4t k4.AX J1iLLht N> Yi* eatI- ., t. t-reIX - . J. -l L S

B. Walk, "AN/UYK-17(XB-1) (V) Signal Processing Element Architecture," NRL
Report 7704, June 7, 1974.

2. J.P. Ihnat, W.R. Smith, J.D. Roberts, Jr., Y,S. Wu, and B. Wald, "Signal Processing
Element Functional Description, Part 1, Microprogrammed Control Unit, Buffer
Store, and Storage Control Unit," NRL Report 7490, Sept. 12, 1972.

3. J.D. Roberts, Jr., "Microprogrammed Control Unit Programming Reference Manual,"
NRL RT nrrt '71A Alitr ItF 1-?79

4. W.R. Smith and H.H, Smith, "Signal Processing Element Functional Description,
Part 2, Signal Processing Arithmetic Unit," NRL Memorandum Report 2522, Oct.
1972.

5. H.H. Smith and L.E. Russo, "Microprogrammed Benchmarks for the AN/UYK-17(XB-
1) (V) Signal Processing Arithmetic Unit," NRL Report 7831, in preparation.

6 IuV.It PSmith -and JJP. fmr.nt, "Sign-,n Prnoessing Element UTser' Afl'e.rnr -nTaL"
NRL Report 7488, Sept. 5, 1972.

134

Appendix A

BENCHMARK SPECIFICATIONS

INTRODUCTION

A group of processing functions has been selected as a representative sample of the
operations to be carried out on the PROTEUS Analyzer and are presented here as bench-
mark problems. Each problem stresses one or more of the major analyzer capabilities
(arithmetic operations, logic operations, and general data handling operations).

The results of these sample problems will be used in evaluating running times and
overall capabilities of the proposed analyzer. in some instances the timing UdU storage
performance for a particular problem will be used to project overall performance for that
class of problem. The responses to these problems should be in a separate enclosure
from the responses to the main body of the specification.

GUIDELINES

Problems should be implemented as if they were to be called from an overallexecutive ;.r, t or, i -f 4..A-4.v,*A frro some reious ru ne or va- on int+rrun+ Tn
C& LAbiY LMLUULLIC tJL, IL JLM CL~tI..aii4A .LJAAII ifl411t FJ.-3YJW.JL A.J.LII -V- k VJS. W-lAU±A-F. T

either case, the implementation should include storage of "working registers" and any
other overhead functions such as initializing tables, reformatting input or output data,
and setting up I/O buffers.

The hardware and software configuraitons used for the benchmark problems must
be identical to those proposed for the actual system, unless specified otherwise.

The solutions to the problems must be carried out using the problem organization
that ics defainaA The nrvnrantnr may wrenfina nr rorloian any nf fhe nrohlems (acllmndn-A

the same tasks are accomplished) if the modification results in a specific advantage for
his machine. The modifications must be documented in detail, and the resulting
advantages must be demonstrated.

FUNCTION BENCHMARKS

Levels of Response

Two levels of response will be considered.

Minimum Required Response - The following response is required for each of the
functional benchmark problems.

1. A detailed flow diagram of the program at the instruction level and a prose
description of the solution

135

HONEY S. ELOVIrZ

2. The overall problem execution time. Memory access time and individual
instruction execution times should be itemized. Time required for any overhead functions
shall be included.

3. Storage allocation in terms of total storage used and percentage of storage
avlamlbalJe AtQ ill. !L p he IiU uatt1e Lh iiiIiUfIaalt l>e!o

4. A symbolic instruction listing in the analyzer language with comments

5. A definition of each instruction (or each statement at each language level, if
more than one level is used)

6. Execution times for each equation major loop or program segment

7. A detailed description of each special instruction or macro, including its purpose

S. Microprogram assembly and simulation, including (a) translation of the micro-
instruction source language into the pattern of control bits to be used in a microprogram
memory (All translator documentation outnuts shall he nrovidledA. and (ht simulation
of the microprogram on a general-purpose computer. (TIhis simulation should produce
statistics on the execution of the microprogram, such as control memory size, timing, ete.j

9. Program assembly and simulation, including (a) assembly of the source, code
with all assembler outputs, and (b) simulation of the program on a general-purpose compu-
ter. (This simulation should produce statistics on the execution of the program, such as
memory use and timing.)

-1. The nMor am r namoet of contractor personne wrho can he contacted for ansrwers
to any questions of a technical nature regarding the method of problem solution.

Optional Responses - The contractor may wish to present his capabilities by
executing the program on analyzer hardware, interfaced with a general-purpose computer
to provide statistics and input/output capabilities. This response is not man datory but
is desirable to help evaluate the current state of system development.

Function Benchmark Problems

1. Data Array Demuttiplexing - A 3200-point array consisting of 25 channels of
time-multiplexed complex data (packed one complex sample per 32-bit memory word)
(Fiv Alal shall he demultinlexed into 25 arrays of 12R complex points each tFig. AIbl.
The input data shall have previously been located in bulk memory, and thie output shall
result in 25 contiguous arrays in bulk memory.

2.. Data Array Demultiplexing - Follow the steps of benchmark 1, assuming a
32,768-point input array consisting of 32 channels of time-multiplexed real data with
8-bit precision.

136

NRL REPORT 7832

A. Input Array

Channel

1

2

3

25

1

2

3

25

1

2

3

25

Sample

1

2

1

1

2

2

2

2

128

128

128

128

Word

I

2

3

128

129

130

131

256

3073

3074

3075

3200

B. Output Array

Channel

1

1

1

1

2

2

2

2

25

25

25

25

Fig. Al - Array demultiplexing input and output arrays

1 t-7

Word

1

2

3

25

26

27

28

50

3176

3177

3178

3200

Sample

1

2

3

128

1

2

3

128

1

2

3

128

HONEY S. ELOVITZ

2. Data Array Demultiplexing - Follow the steps of benchmark 1, assuming a
32,768-point input array consisting of 32 channels of time-multiplexed real data with 8-bit
precision.

3. Complex Fast Fourier Transform - The input data consists of 4096 complex
values residing in bulk memory (packed one 32-bit word per complex sample). A 4096-
point complex FFT shall be performed on the input data, and the results shall be returned
to the same area of bulk memory that contained the input data.

4. Real Fast Fourier Transform - The input data consists of 1024-point real
values, with 8-bit precision, residing in bulk memory. A 1024-point FFT shall be per-
formed on the input data, and results shall be returned to a different area of bulk memory
(packed one 32-bit word per complex sample).

5. Data Array Demultiplexing and FFT - Cornhine benchmarks 2 and 4 and
perform FFT on 32 channels of time-multiplexed real data.

6. Weighting Function With Irregular Addressing - Apply a weighting function to
an input data array using a predefined irregular addressing pattern on the input. This type
of weighting function is used in forming constant-percentage resolution filters from con-
stant-resolution FFT outputs. The input data will consist of an array of 1024 complex
values formatted as shown in Fig. A2 and stored in bulk memory.

16 Bits 16 Bits

Word I Real Part Imaginary Part

Word 2 Real Part Imaginary Part

Word 3 Real Part Imaginary Part

Word 1024 Real Part Imaginary Part

Fig. A2 - Input data array

The output will be an array of 512 complex values stored in bulk memory in the
same format as the input data. The algorithm to be carried out is given by

4

Yi=E C~if Ad + k _ 1 i= 1,2, ... ! 512

k = 1

where Yi is the ith complex output value.

The Q\k are the complex weighting factors stored in bulk memory as specified in
Fig. A3.

138

M I

NRL REPORT 7832

Table Al (Continued)
Definitions XJi

i Ji | Ji i Ji | Ji

98 138 118 166 140 199 162 241

99 139 119 167 141 201 163 243

100 140 120 169 142 202 164 246

101 142 121 170 143 204 165 248

102 143 122 172 144 205 166 250

103 145 123 173 145 207 167 253

104 146 124 174 146 209 16 255

105 147 125 176 147 210 169 258

106 149 126 177 148 211 170 261

107 151 127 178 149 213 171 265

108 152 128 180 150 215 172 267

175 276 129 181 151 216 173 269

176 279 130 183 152 218 174 273

177 281 197 343 219 407 241 466

178 284 198 345 220 409 242 469

179 287 199 348 221 413 243 471

180 291 200 352 222 416 244 473

181 294 201 oc l 245 476

182 297 202 358 224 421 246 478

183 299 203 361 225 424 247 480

184 303 204 364 226 426 248 483

185 307 205 367 227 429 249 485

141

HONEY S. ELOVITZ

Table Al (Continued)

ji j~~~~~fpiniirn VS j

186 310 206 371 228 431 250 487

187 313 1 207 373 229 434 251 491

188 316 208 375 230 436 252 49

189 319 209 378 231 439 253 496

190 322 210 380 232 441 254 500

1 jflg non t41L_ 004ol I 000 AAA - tv

*192 329 212 387 234 447 256 508

193 332 213 389 235 450

194 335 214 392 236 454

*195 337 c 215 395 237 457

196 339 216 399 1238 459

217 403 239 461

218 405 2 40 463j

7. Complex Demodulation and Octave Filtering - The input will consist of a 1024-
point real data array, packed as four 8-bit samples to a 32-bit memory word, residing in
bulk memory (Fig. A4). The contractor will perform complex demodulation and Octave
filtering with decimation and scaling to form eight continguous 1-octave bands. A func-
tional flowchart of the operations to be performed is presented in Fig. AS. All filters will
bei .4 .nla, Asan anrcsr filinrc ...- Fh rurnAi-rM 'tfl a~ rVhc cnini*call ho L+nvrfA

in bulk memory as eight separate arrays with one 32-bit complex output per word. All
coefficients and results will be 16 bits for each of the real and imaginary parts.

142

NRL REPORT 7832

Word Real Sample

Wordi 1 2 3 4

Word 2 j 5j j 6 1 7 1 8

Word 3 | 9 I 10 I 11 I 12 |

Word 256 E1021 102 1J302 11

Fig. A4 - Contents of 1024-bit real data array

143

HONEY S. ELOVITZ

OCTAVE 7

i43

sinn W'

.2

Cos w2 t

l ' .4~~
sin Nt

~~~ = 4~~~

EC~~~~o

2:~~~3

LX- ~~~~43

Fig. AS - Cmplex demodulationl and octave fIltering

144



NRL REPORT 7832

8. Complex Demodulation and Octave Filtering - Combine benchmarks 2 and 7
and perform complex demodulation and octave filtering on 32 channels of time-multi-
plexed real data.

9. Demultiplexing, Octave Filtering, and FFT - Follow the steps of benchmark 8
and then perform FFT on all channels and all octaves. The frequency domain output
shall be stored in bulk memory packed one 32-bit complex output per word.

10. Beam Forming - Perform delay-sum beam forming on time-multiplexed input
array as defined in benchmark 2, using the following formula:

32

Yj (t) = 32 E WijXi,(t - TU)

where

Xi(tk) = ith input channel, Kth time sample

Yj(tk) = jth beam output, Kth time sample

Tij = steering delay

Wii = arbitrary scale factor

i = 1t ... , 3 2; j = 1, ... , 3 2; K = 1, ..., 1024.

Wj1 and T1j shall be a 1024-word (each word has 16 bits) stored table with 10-bit relative
table address defined by ij such that the storage content of the table address ij has the
following format:

Wij 'I1
0 78 15

The 32-beam output arrays shall be in contiguous time samples packed four 8-bit samples
per 32-bit word and stored in bulk memory.

11. Beam Forming and Octave Filtering - Combine benchmarks 7 and 10 and
perform complex demodulation and octave filtering on 32 beams.

12. Beam Forming, Octave Filtering, and FFT Follow the steps of benchmark
11 and then perform FFT on all beams and all octaves. The frequency domain output
shall be stored in bulk memory packed one 32-bit complex output per word.

13. Sensor-Input, Beam-Output Cross-Correlation - Compute the following cross-
correlation function:

145



HONEY S. ELOVITZ

$smP(Wk) = Ymtw&}efcis&T2mL~r~w&)

where

Y m tIf J -m Lfe1A1 UWII Al eU4 y

ejtwTm = complex spatial term with respect to Trnm

Trn = steering delay

4 (o k = kth input channel, Kth frequency sample

£ = 1 ..., 32; m = 1, ..., 32; K 1, .., 1024.

(XQj and (Y2 ) are packed, 32-bit complex words stored in the bulk memory. Com-
putations of { ejwc k 7z'm should be carried in at least 8-bit real and imaginary parts of a
complex number. (F14m) output shall be stored in bulk memory packed in 16-bit words
(S-bit real and imaginary). It is acknowledged that the proposed basic analyzer unit
configuration may not have sufficient bulk storage to execute this benchmark program.
However1 computer simulation of this program should adequately demonstrate the bulk
memory expansion capability, dynamic paging and overlaying between bulk memory and
the analyzer unit, and overall system throughput.

14. Gram Thresholding and Formatting - The input will be an array of 256 real
data points (specified in Table 2) representing the outputs of the STI processor, as
specified. The input data shall be stored in bulk memory as two 16-bit values per data
wod The nrohlem iR to quantizie the STT autnuth hy commpting a moving windlow noise
mean for each input data point and use the noise mean to threshold the data to a 2-bit
amplitude. The algorithm to be used is defined in the specification, with the following
parameter definitions:

W = 32

Ket,= (specified by user)

= speuniuu LUy uivJ

N 256

KI (specified by user)

K2 = (specified by user)

K - (specified by user)

The output shall be 128 values packed as sixteen 2-bit amplitudes formatted into eight
32-bit words and returned to bulk memory as shown in Fig, AG.

146



NRL REPORT 7832

Output Array

1 | Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y1S Y161

2IY17 Y18 Y19 Y20 Y21 Y22 Y23 Y24 Y25 Y26 Y27 Y28 Y29 Y30 Y31 Y'321

81 Y113 .... Y127 Y128

Fig. AG - Output array for gram thresholding and formatting

15. Bearing Computation (DIFAR) - The input to the bearing computation shall
nncss o+nf two ooray each. n 10 A2 points ,n km mllemno-n , representing " 04 poins,
of the sine and cosine channels, respectively, after LTI. The format of the input data
shall be as in Fig. A7. The algorithm shall be as specified. The output shall be a 512-
point array consisting of four 8-bit bearing outputs per 32-bit word in bulk memory.
The format of the output shall be as shown in Fig. A8.

Word 1
Word 2

Word 1024

Word 1025
Word 1026

Word 2048

| North 1 1 North 2 1

1 North 3 1 North 4

I North 2047 North 2048 1

I East I I East 2 l
I East 3 | East 4

I East 2047 | East 2048

Fig. A7 - Input format for bearing calculation

Word 1 | Bearing 1 | Bearing 2 | Bearing 3 | Bearing4 1

Word 2

Word 512

I Bearing 5 | Bearing 6 |Bearing 7 | Bearing 8 |

|Bearing 2045 T Bearing 2046 | Bearing 2047 | Bearing 2048 |

Fig. A8 - Output format for bearing calculation

147

Word


