
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NRL Report 7809 |

4. TITLE (.nd Sbtitle) 5 TYPE OF REPORT & PERIOD COVERED

EFFECTS OF A FLUCTUATING TEMPERATURE FIELD Interim report on a continuing
ON THE SPATIAL COHERENCE OF ACOUSTIC SIGNALS NRL Problem.

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

M. J. Beran, J. J. McCoy, and B. B. Adams

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Naval Research Laboratory NRL Problem S01-55
Washington, D.C. 20375 XF52-552-700

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Department of the Navy May 22, 1975
Naval Electronics Systems Command 13. NUMBER OF PAGES

Washington, D.C. 20360 48
14. MONITORING AGENCY NAME & ADDRESS(If diff.r.nt from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified
15s. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entored in Dl-ck 20. If difforent free Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Contine on reverse side If necessary and identify by block number)
Acoustics
Fluctuations, effects of
Scattering (of sound waves)
Sound propagation
Wave propagation

20. ABSTRACT (Continue on re-erse aide if necessary mnd Identify by block number)

A theoretical model has been developed for predicting the loss of spatial coherence of
moderately low frequency acoustic signals (50 to 300 Hz) that results from the presence of a
fluctuating temperature field caused by internal waves and by ocean turbulence. The model has
been used to estimate limitations on the maximum useful length of a horizontal, linear, phased
array the performance of which is degraded by the presence of the fluctuating temperature field.
With the use of reported environmental data, this maximum length can be estimated by a simple
algebraic formula: Lx = 1.1(AA) L exp(- 3/2)(R) exp(- 2/3)

DD F ORM 1473 EDITION OF I NOV 65 IS OBSOLETE
S/N 0102-014- 6601 1

SECURITY CLASSIFICATION OF THIS PAGE (Wten Data Entered)



-LUIJRITY CLASSIFICATION OF THIS PAGE(Wh-n Date Entered)

20. Abstract (Continued)

where LX and R are measures of optimum array size and range, respectively, expressed in units
of acoustic wave number (2pi/wavelength) and (AA) L is a combination of environmental
terms. The parameter A squared, (AA), is a measure of the strength of the horizontal spatial
sound speed fluctuations and L is the average vertical correlation length; both of which are
a result of the temperature microstructure.

Questions of the limits of both the theoretical model and of knowledge of some aspects
of oceanic environmental conditions have been raised. Recommendations have been made for
a series of future studies.

ii
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)



CONTENTS

INTRODUCTION . ......................................... 1

LOSS OF SPATIAL COHERENCE DUE TO SCATTERING BY
THE TEMPERATURE MICROSTRUCTURE ..... ........... 4

CONCLUSIONS AND RECOMMENDATIONS ..... .............. 13

APPENDIX A - Single Scatter Solution ...... ................... 15

APPENDIX B - Multiple Scatter Solution ...... ................. 22

APPENDIX C - A Numerical Study ....... ..................... 30

APPENDIX D - Effects of Nonhomogeneity, Reflection,
and Source Size ............. ........................... 37

APPENDIX E - Background Discussion of Aperture Problem .... .... 43

iii





EFFECTS OF A FLUCTUATING TEMPERATURE FIELD ON THE
SPATIAL COHERENCE OF ACOUSTIC SIGNALS

INTRODUCTION

A careful examination of sound-speed measurements taken at sea reveals the presence
of weak fluctuations about an averaged, or mean, sound-speed profile. Because the cause
of these fluctuations rests in variations in the temperature field, it has been commonly
accepted to refer to the fluctuations as the thermal or temperature microstructure. Inas-
much as the length scales on which the fluctuations are measured range through thou-
sands of meters, this appellation is something of a misnomer. However, we will retain
the accepted terminology in this report.

An acoustic signal that propagates through the ocean will interact with the temperature
microstructure, resulting in a scattered field that is characterized by irregular spatial and
temporal variations. Although the local scattering is expected to be weak, by virtue of
the weakness of the sound-speed fluctuations, the effects of this scattering are cumulative.
Thus, the presence of the temperature microstructure results in an ultimate limitation on
the detection capability of long-range sonar surveillance systems. In this report we in-
vestigate the question of range limitation as a consequence of the loss of spatial coherence
of an incident signal that is scattered by the temperature microstructure. This loss of
spatial coherence results in an upper limit on the useful size of a receiving array. Arrays
of sizes larger than this useful limit will contain elements that will receive signals that are
uncorrelated with one another, at the limiting pair separation distances, thereby precluding
the possibility of coherently summing these signals to increase signal gain or to determine
more accurately their direction of propagation.

At short ranges one can, by virtue of the weakness of the sound-speed fluctuations,
obtain estimates of any desired statistic of the scattered signal by making use of a single
scatter theory. Although the single scatter theory cannot be validly applied in the situa-
tion of interest to us, long-range propagation, it is still of indirect use because it can pre-
dict the local nature of the scattering phenomenon. Thus, for example, the single scatter
solution illustrates that a characteristic of the ocean temperature microstructure of great
importance as to its effects on acoustic signals is its strong anisotropy. This anisotropy
is such that measured correlation lengths of fluctuating sound-speed records obtained from
horizontal tow runs are orders of magntiude greater than any estimate of the largest cor-
relation length for vertical lengths. It is not surprising, therefore, to find that the angular
distribution of the locally scattered radiation field is anisotropic, with a much greater
angular spread measured in a vertical plane than that measured in a horizontal plane.
This conclusion leads to the further conclusion that the loss of spatial coherence with
range will be much faster for receivers separated along a vertical line than it will for
receivers separated along a horizontal line.

Manuscript received November 25, 1974.
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The dependence of the angular distribution of the locally scattered field on the
signal wavelengths relative to sound-speed correlation lengths is considered in detail in
Appendix A. The major conclusions for our studies are for the cases in which

Q VM «<<Q2 Hm

where X is a characteristic signal wavelength, kVM is the maximum vertical sound-speed
correlation length, and QHm is the minimum horizontal sound-speed correlation length.
For a signal incident in a horizontal direction it is shown that the locally scattered
radiation field is confined to horizontal angles of the order of X/27rQHm and vertical angles
of the order of (X/27rQHm )1/2. Thus, we see that the angular spread in the horizontal plane
is indeed much smaller than that in the vertical plane. However, we note the additional
result that, although vertical scattering covers a wider angle than does horizontal scattering,
it is still essentially a forward scattering. The vertical scattering is controlled by the ratio
X/27rQHm and not X/27rQvM, as one might intuitively expect. This result is important be-
cause it indicates that a considerably larger amount of acoustic energy will reach the
receiving array than would be the case should the vertical scattering be isotropic, as one
might suspect from comparing the sizes of X and 9 VM. Parenthetically, we might remark
that the assumption that the local scattering is forward directed is crucial to the subsequent
development of the theory that is the basis of this report.

Obtaining quantitative estimates of the loss of signal coherence over long propagation
distances requires the identification of a suitable measure of coherence and the develop-
ment of a theory capable of making predictions of this measure in the multiple scatter
region. The measure of spatial coherence in terms of which our theory is formulated is
the mutual coherence function, defined for narrowband signals by

F(xl, X2, )I}={p(Xl,i3)P*(X2, V)} . (1)

where xl and x2 are the two positions of interest and v is the central frequency of the
narrowband signal. The quantity p(x) is the complex acoustic pressure at position x.
The braces { I indicate an ensemble average; the asterisk indicates complex conjugation.
Our reasons for the choice of this measure of coherence are threefold: (a) for the signal
detection problem it is a recognized function appearing throughout the literature; (b)
for the resolution problem it is, along with its Fourier transform, a most suitable mea-
sure of a coherence; (c) it is only in terms of this measure that valid multiple scatter
solutions have been obtained.

For an infinite, coherent plane wave incident at the vertical plane, z = 0 (see Fig. 1);
we have

A A

(F (X1T, X2T, 0; ;)} = I

where X1T and X2T denote position vectors locating two points in the z = 0 plane and
I is the intensity of the plane wave signal. In the case of a statistically homogeneous
sound field {Fl(x1T, X2TIV)} measured at two points in the same vertical plane,
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DEPTH DIRECTION
Y

(HORIZONTAL PLANE)

INCIDENT WAVE DIRECTION

Fig. 1 - Problem geometry and choice of coordinate axes

perpendicular to the incident wave direction and located a distance z into the medium, is
a function of transverse coordinate differences alone, provided z is large compared to the
maximum horizontal correlation length: that is,

{ r(x 1 , X2; i)}={r(s, z; v) }
where S = X1 T A X2T, provided z> QHM. The value of {F(s, z; v)} falls off, from a maxi-
mum value of I at s = 0, with increasing IsI. A signal coherence length Us defined by the
condition that (F(s, z; v)} be less than some prescribed percentage of I for all Isi greater
than this length. (We note that the coherence length defined in this way depends on
the direction of s). Signals received by hydrophones separated by a distance that is
greater than this coherence length are said to be uncorrelated. The coherent summing of
such signals to increase the signal-to-noise ratio is, therefore, to no avail. Thus, the
coherence length so defined is, in fact, an estimate of the maximum useful length for
increasing the signal gain of a line array.

Furthermore, the two-dimensional Fourier transform of { F(s, z; v3) }, denoted by
{F(kT, z; v) }, where kT is the transverse wave number, gives the plane wave angular
spectrum of the acoustic signal crossing the plane. The principal effect of the scattering
by the temperature microstructure is to smear out the spatial delta-function dependence
of the incident plane wave spectrum. This smearing represents an uncertainty in the
direction of the incident plane wave signal and is the cause of the resolution limitation
due to the scattering. The resolution limitation leads to a maximum useful array size
because it is to no avail to construct arrays that are large enough to resolve angles smaller
than the uncertainty that results from the scattering. (Larger arrays could prove useful
for surveillance systems that use additional signal processing.) It is not difficult to show
that the size limitation defined by the signal-detection problem is of the same order of
magnitude as the size limitation defined by the resolution problem.

3
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The signal coherence with the separation distance measured along a line that coincides
with the original propagation direction is expected to be much greater than that measured
along lines orthogonal to this direction. Although one might not expect to improve the
resolution problem by using arrays that are alined in this direction, it does appear that
greater signal gains might be achieved.

In the next section, we discuss in detail the dependence of {Fl(S, z; 1) Ion the ocean
temperature microstructure. Emphasis in this report is placed on separation distances
measured along a horizontal line, consistent with the expected principal applications. An
extremely simple expression, Eq. (17), that gives{ F (x1 2 , 0, z; i)) in terms of signal fre-
quency, range, and a single microstructure parameter, is obtained. Here, X12 is the hori-
zontal separation distance. The development of the theory required for this discussion is
given .in Appendix B.

A summary, conclusions, and recommendations are given in the concluding section.

The report contains five appendixes. Appendixes A and B have already been men-
tioned. Appendix C presents the results of a numerical study in which the acoustic
model was applied to some typical sea conditions. Appendix D is devoted to a discussion
of the effects of a finite beam width, an inhomogeneous mean sound speed, and inhomo-
geneous statistics for the sound-speed fluctuations. Appendix E contains a brief discus-
sion of prior work on the problem of interest.

LOSS OF SPATIAL COHERENCE DUE TO SCATTERING BY THE TEMPERATURE
MICROSTRUCTURE

In this section we discuss the loss of spatial coherence of an original plane wave
signal due to scattering by the temperature microstructure. The measure of spatial
coherence chosen for our analysis is the mutual coherence function defined, for a time
harmonic signal, by

Frxl A2 v}=p*(Xj, ) *(X2,V)(1

where (x1, and x2 are the two positions of interest, 7 is the central frequency of the
narrowband signal, and A(x, 1) is the complex pressure field at position x. The original
direction of the plane wave is restricted to lie in a horizontal plane. The coordinate axes
used in presenting our results are illustrated in Fig. 1. The z axis lies along the original
propagation direction; the x axis is orthogonal to the z axis and lies in a horizontal plane;
and the y axis is orthogonal to the x and z axes, i.e., it is in the vertical, or depth,
direction. The requisite theory for discussing the mutual coherence function for pairs of
points located in a plane orthogonal to the original plane wave direction is developed in
Appendix B. This theory is suitable for estimating the expected performance of either
line arrays, or of billboard arrays.

We present the following results of the theoretical development in Appendix B to
serve as the starting point for our discussion. For two points separated along the hori-
zontal, or x axis, we have
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{ F (X1 2 , 0, Z)) I exp (-[a 2 (0, 0) a2 (X1 2 , 0)] Z), (2)

whereas for two points separated along the vertical, or y axis, we have

A - 672 ~(0, y12) + 2 (0,0Y1) ex - 0 0' 3
r (0, Y12, ')}=(t 2 (0, 0) [ 02 (0, (°2) Iex [3)

We have suppressed the F. The separation distance between pairs of points are denoted by
x12 (horizontal separation) and Y12 (vertical separation); the original plane wave intensity
is indicated by ?; and, z denotes the range, or horizontal propagation distance. The
temperature microstructure is described by the function 62 (x12 , Y12), which is given in
terms of the correlation function associated with the sound speed fluctuations i.e.
a (x12, sy, s,) according to

c osk( Y12 7\ 00

(2 \11 -k3 f Cos 2 s, 4 ) 
(J2 (X1 2 ,Y1 2 ) = - J _ a (x 12, sy, s,) dsydsz . (4)

VT! 4 (kS S)'h' 0

Here, k = 2ir/X denotes the wave number of the acoustic signal. The theory assumes a
microstructure that is statistically homogeneous and does not include a mean sound pro-
file or any boundary. These, and other factors not explicitly incorporated in the theory,
are discussed in Appendix D. A detailed discussion of the approximations incorporated
in the theory is given in Appendix B.

Both Eqs. (2) and (3) lead to the conclusion that the mutual coherence function
reduces to I for zero separation distance. As noted in the introduction, and discussed
in detail in Appendix A, the local scattering by the temperature microstructure is essen-
tially a forward scattering. This fact, and energy conservation requirements, necessitate
that{ F(O, 0, z)}= I for all ranges. Further, noting that 2 (x12 , Y12) approaches zero for
large enough separation distances for all physically realistic temperature microstructures,
we see that Eqs. (2) and (3) reduce to

{F (x12, 0,z)}Z (of Y12 , z)}Iexp[- 02 (0, 0) Z], (5)

provided that the separation distance s is large enough. The form of the r.h.s. of this
equation is that of the mutual coherence function of a plane wave signal with intensity
equal to I exp [-a 2 (0,0)z]. This form suggests our interpreting the r.h.s. of Eq. (5) in
terms of the relative amount of energy remaining in the completely coherent plane wave
signal. Thus, 1/iJ2(0,0) may be interpreted as a decay length; i.e., it gives a measure of
the range at which a significant amount of energy has been scattered from the completely
coherent initial signal into the partially coherent fluctuating signal. It, therefore, provides
a measure of the limit of validity of the results based on a single scatter theory.

The degree of coherence of the fluctuating signal and its dependence on separation
distance is seen to differ for separation distances measured along a horizontal line (the
x axis) compared to distances measured along a vertical line (the y axis). This anisotropy
is to be expected because the statistics of the sound-speed fluctuations causing the
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scattering are likewise anisotropic. Careful consideration of Eqs. (2) through (4) allows
the conclusion that the loss of coherence with separation distance, at a given range, is
much greater for distances measured in the vertical direction than it is for distances
measured in the horizontal direction. This result is in agreement with the conclusion,
based on a single scatter calculation, that the angular distribution of the locally scattered
field is broader in a vertical plane than it is in a horizontal plane.

In the subsequent discussion, we limit our attention to the loss of spatial coherence
for points separated along the x axis. It is this loss that will determine the limitations
in the ability to resolve the azimuth of the original signal. It is also this loss that will
determine the limit of the ability to detect the presence of the signal in a noise field by
coherently summing the signals received by the elements of a horizontal line array
positioned normal to the incoming signal direction. A similar discussion, concentrating
on points separated along the y axis, is possible. Order of magnitude estimates based on
Eq. (3), however, indicate that the falloff of spatial coherence with vertical separation
distance is great, so that for the ranges and signal frequencies of interest in our studies,
considerably less signal gain may be achieved by vertical extension of an array.* For this
first report we turn to Eq. (2), which indicates that the relevant quantity for our study is

k3 1
02 (0, 0) - a2 (X12 , 0) = 41I/2 .1(k sz)'A

(6)

fJ [a(0, sy, sZ) - a (X1 2 , sy, sz)] dsY) dsz
_00

Since the experimental data required to make detailed predictions of index-of-re-
fraction fluctuations with depth are largely lacking (almost all reported data are based
on horizontal measurements, giving information only for a(x 1 2 , 0, sz)), it is fortunate
that our acoustic model does not require this detailed information but only requires the
integral of a(x12, sy, sz) over the depth coordinate. Although a simple relation need
not exist between this integral and a(x 1 2 , 0, sz), we shall assume that one does,** and,
in particular, assume that

f a (x1 2 , sy, sz) dsy = QyM a (X 1 2 , 0, sZ) (7)

where 9yM is a weighted-average correlation length for measurements taken in the depth
direction. In addition, we shall assume that the statistics of the microstructure are isotropic
for measurements taken in a horizontal plane; i.e.,

2 2
a (x 1 2 , 0, sA) = a x 12 + sZ, 0). (8)

Introducing Eqs. (7) and (8) into Eq. (6) gives

* Noise rejection as contrasted with path resolution may call for exploitation of available vertical coherence
to increase signal to noise gain.
**For example, a sufficient condition for Eq. (27) is the independence of the fields in the vertical and hori-
zontal directions.
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k3 ~yM f
a2 (0,0)- i2 (X12,°)= 80) = | ,(sZO)- a( , 0) dsz. (9)

- 00 (ksZ) 1I2

Although the loss of spatial coherence can be discussed with the use of this expression,
it proves convenient to discuss sound-speed fluctuations in terms of the one-dimensional
spectrum; i.e., in terms of 'j1(P), given by

1
I)1(P) =- I a(q, 0) exp (ipq) dq (10)

27r J_

where

q + . (11)

The spectral function 1'1 (P) has the intuitively satisfying significance of subdividing the
power of the fluctuations field into characteristic size intervals; eddy sizes, in the tur-
bulence terminology.

By introducing the inverse of Eq. (10) into Eq. (9) and assuming that the orders
of integration in the resulting expression can be interchanged, we can carry out the
integration over sz. The result is written

k~-1 5/kyM X1 2 '
a2 (0, 0)- 02 (X1 2 , 0) = J F (pX1 2 )'F1 (P) dp (12)

where Q)

F (px) = 2 (px12)1/4 J-3/ 4 (PX12). (13)(px 12 )lI 2 23/2

Here, F (1/4) is a Gamma function and J-3/ 4 is a Bessel function. A graphical representation
of the kernel function F(px 12 ), is given in Fig. 2. We shall use Eq. (12) and (13) and Fig.
2 in discussing the loss of spatial coherence due to scattering by the temperature micro-
structure.

Equation (12) indicates that the entire one-dimensional power spectrum contributes
to a degree to determining the coherence at any given separation distance. However, we
would now like to show that all portions of the power spectrum do not contribute to
the same degree to determining the coherence for a given separation distance. Rather,
it is possible to identify a limited portion of the power spectrum as being dominant in
determining the coherence for a given spearation distance. The specific portion that is
dominant will be shown to depend on the separation distance. These conclusions are
crucial for the theoretical results represented by Eq. (12) to be of much value and they
are crucial for the subsequent development of a more computationally useful acoustic
model.

7
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x~~~~~~~~~~~~~~~~~~~~~~~~~~~2. 0/EA 0\ 

4. V '8. 16, V 20.

-x -1.0

-2.0

Fig. 2 - Kernel of integral that relates signal coherence to
fluctuation power spectrum

Presenting the arguments that lead to the desired conclusions require that we have a
visualization of a typical power spectrum. We present Fig. 3 and note the presence of two
characteristic wave numbers (PM, Pm) that span the correlation lengths within which most
of the energy is contained. Typically, PM- >Pm 1 . (In the ocean, estimates of pM- 1
range upward from several tens of kilometers, while p-m1 could be as small as meters or
less.) The power spectrum decreases monotonically, from its maximum value at PM, with
increasing p. The range of values between its maximum and the value at its high wave
number cutoff is, typically, several orders of magnitude. Exterior to the range pM- 1 >p- 1
>Pm- 1, we shall assume the falloffs to be rapid enough that we can treat these values as
cutoff values.

The relationship between signal coherence, separation distance, and 4)1(P) is given
by the integral in Eq. (12). We shall interpret the role of the separation distance, in
determining the value of this integral, as one of setting the scale factor for viewing
F(px 1 2) as a function of p, the variable over which the integration is to be taken. Thus,
decreasing X12 is interpreted as stretching the abscissa for viewing F as a function of p
(see Fig. 4). We now incorporate this interpretation of the role of x1 2, our visualization
of a typical power spectrum, and the graphical representation that shows F(Px 1 2 ) to be
a decaying oscillatory function of px 1 2 and construct the following qualitative description
of the scattering. Consider a value of X12 = 2.5pm1 1, which corresponds to a separation
distance approximately equal to VHM/2 .5 where QHM is the maximum horizontal cor-
relation length. For this separation distance, the first maximum of F(px 1 2 ) occurs at
P = PM, which is the location of the c)1 (p) maximum. This situation is illustrated
schematically in Fig. 4a. From this figure, it is clear that the dominant contributions to
the integral come, for this separation distance, from values of p in the vicinity of p = PM.
For values of X12 that are smaller than 2.5 PM, the first maximum of F occurs at a value
P>PM (see Fig. 4b), indicating that the larger p values (smaller correlation lengths) will
play a more significant role for smaller values of x1 2. Further, we note that the monotonic

8
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z0
H-

CIz

PM P.
WAVE NUMBER, p

Fig. 3 -Schematic representation of temperature spectrum

decrease of F(ptx12) from the first maximum with decreasing p indicates that the role
of the larger size scale fluctuations (i.e., smaller wave number values) will lessen with
decreasing X12- Whether the role of the low-wave-number spectral components will be
completely suppressed for small separation distances can be determined only by comparing
the relative rates of the decrease of ( 1 (p7) and the increase in F(p~x12) with increasing p.
For a simple power law behavior for ( 1 (p7), (D1 (p) -Ap- n,where A is a constant; the
contribution of the lower wave numbers will be suppressed for small enough wave-number
values if n<2.5. In summary, then, we can conclude that, for a given separation distance,
there is an upper wave number limit (of the order of 2.5 x12) to that portion of the
refractive index spectrum that offers a significant contribution to the signal coherence.
The question as to whether there is also a lower wave-number limit depends on the rate
of falloff of )1 (p7) with increasing p . For falloffs whose rates are less than p- 2.5, a lower
limit is also indicated. This presence of a lower limit is fortunate for studies in ocean
acoustics because most of the reported data (and the theories that have been presented in
explanation) on the dependence of 4) 1 (p) with p for small p values, i.e., large size scales,
exhibit a falloff that is a good deal slower than pi- 2.5. This would indicate that detailed
information of these very large scale variations is not needed for estimating signal
coherence at the smaller separation distances.

We now intend to develop a more computationally useful model than that given by
Eq. (I12) by introducing a specific functional form for @D1 (p). The form should, hopefully,

9
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(a)

WAVE NUMBERp

Fig. 4a - Schematic line graphs to demonstrate the effect of changing
the separation distance on the kernal function in Eq. (10). x1 2 = 2.5/

PM t 0.4 QM.

I0J

(b)
WAVE NUMBERp

Fig. 4b - Schematic line graphs to demonstrate the effect of changing
the separation distance on the kernal function in Eq. (10). x12 = 0.5/
PM = 0.08 2MY

possess some degree of universality; i.e., it should be able to reproduce a variety of experi-
mental results for an important class of environmental situations. Specification of 4) 1(p)
would then be accomplished by specifying a limited number of parameters, which might
be termed environmental parameters. These environmental parameters should be mea-
surable under field conditions. Finally, it would be extremely advantageous to be able
to justify a functional form that renders an analytic evaluation of the intergral. An
example of a useful functional form is given by

2

'F1 (P) = A,
(p2 + pM 2)n

= 0

P<Pm
(14)

P>Pm

where PM P- I Pm- 1.

10
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Here, A, and n are constants. This assumed form for 4'1(P) gives a simple power law
variation for PM- 1'p 1 >pm- 1. It also contains the high wave number cutoff at p = Pm
that was described in the typical spectrum. Further, it replaces a more realistic low-wave-
number cutoff with a leveling off. This step is necessitated by the desire to obtain an
analytic evaluation of the integral in Eq. (12). Our previous discussion further indicates
that the replacement will not cause serious error for separation distances that satisfy
PM- 1>x12 if n<5/4. Introducing Eq. (14) into the integral, we find that the integration
can be carried out, provided X12>Pm-l. We present, here, the following expression
obtained for n = 1; i.e., a -2 power law:

A2 - / F___2
a2 (0, 0) U-2 (X1 2 , 0) = 0.641 A2 5/2 kyMI 1.216

(15)~~X M12 3/L4M 31

- 1.19 i K3/4(PM X1 2 )1. 

Here, K3 /4 is a modified Bessel function. Eq. (15) can be considerably simplified by now
introducing the restriction on the separation distance to values x 12 <<pgfl. The sim-
plification is then accomplished by expanding the Bessel function as a power series and in
truncating after a single term. Thus, we obtain

2
02 (0, 0) - &2 (x1 2 , 0) = 1.1A 2 RyM k5/2 X12

3 /2 (16)

Use of Eq. (16) in Eq. (12) leads to the following extremely simple expression relating
signal coherence to signal wavelength, range, horizontal separation distance, and environ-
mental parameters:

{ fl(S, R)} R) I exp (-E S312R), (17)

=11 2
where E = 1.1 A2 kyM is a nondimensional environmental parameter, S = kx1 2 is the non-
dimensional separation distance, and R = kz is the nondimensional range. The environ-
mental parameter is expressed here in terms of measurable field data of the refractive-index
fluctuations. In terms of temperature fluctuations data it is necessary to introduce a

2
scale change for the A2 term. Thus, we write,

ll a C \2 2
E = 41.4 ( a -T) AT QYM

where AT is a parameter taken from temperature data and T is the temperature. For T;
150C, a salinity content of 36 ppm, experimental data indicate

1 c
c T t 2 X 10- 3 /0 C,

11
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which leads to

E = 1.76 X 10-5 AT QYM

where AT is to be expressed in units of (OC)2/length.

A characteristic coherence length can be defined somewhat arbitrarily by the condition
that it be the separation at which the coherence falls to 1/e of the zero separation value.
We write,

LX = E- 2/3 R- 2/3 (18)

where LX = kkx is the nondimensional coherence length. In Fig. 5 we present plots
of LX as functions of R on a log-log scale for several values of E that might be encountered

103 -JQ3

106105
kZ

Fig. 5 - Nondimensional signal coherence length Lx as a
function of the nondimensional range R
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in the ocean. The E values chosen correspond to an QyM value of the order of 10 m,
and the A T values were chosen to encompass the reported data (see Appendix C). Thus,
E = 10- 8 corresponds to what might be termed a strong fluctuational field, E = 10- 9 to
a moderate field, and E = 10- 10 to a weak field.

It is well to emphasize at this point that all results starting with Eq. (15) depend on
the validity of the -2 power law as a representation of b 1(P)- In Appendix C we consider
this question in considerable detail from both an experimental and a theoretical point of
view. We also present the results of a numerical study that was carried out by using the
presently available best estimates of b 1(P)- Further, we compare these numerical results
to corresponding values obtained by using a simple -2 power law. In all the cases con-
sidered, the - 2 power law estimates were definitely acceptable. Thus, for the range of
environmental parameters considered, Eqs. (16) through (18) can be expected to give valid
estimates of signal coherence for separation distances that range from values of the order
of 100 or less to values of the order of 1 or 2 km.

We conclude this discussion of the loss of spatial coherence due to scattering by the
temperature microstructure by considering the effects of diffraction, refraction, and in-
homogeneous statistics for the fluctuating field. In Appendix D we consider these questions
in some detail. Here we shall list some of the highlights of that more detailed discussion.
Refraction effects result from the presence of a depth-dependent mean sound speed. In
Appendix D we show that the presence of a depth-dependent mean sound speed has no
effect on the averaged azimuthal scattering. (Average here refers to an average over the
depth coordinate.) The potential effects of depth-dependent statistics for the temperature
microstructure are far more significant. One cannot, in general, average out the effects
of these on the azimuthal scattering. If, however, the acoustic signal followed a single
propagation path, or, if the multipath structure is such that the fluctuations encountered
over the different multipaths are statistically similar, then one can remove the effects of
depth-dependent statistics on azimuthal scattering by averaging over the depth coordinate.
Diffraction effects enter if the initial radiation is not a plane wave. Previous work that
has appeared in the optics literature leads to the conclusion that the characteristic cor-
relation length Lx for nonplanar initial conditions differs from that for the plane wave
case by a factor of the order of 1 to 3. In all cases the plane wave case gives an under-
estimation of the characteristic correlation length. The effects of diffraction, refraction,
and inhomogeneous statistics on azimuthal scattering as measured at a fixed depth are
much more difficult to ascertain and are left for a future investigation.

CONCLUSIONS AND RECOMMENDATIONS

We repeat the more significant results and conclusions of our study and present
recommendations for future courses of actions.

1. The limitations on vertical resolution, which are due to the temperature micro-
structure, will be much greater than corresponding limitations on horizontal resolution.

2. In the multiscatter region, horizontal resolution is affected by the statistics of
the temperature microstructure measured along a vertical line. The theory identifies a

13
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characteristic correlation length, measured in the depth direction, which is an important
factor in controlling the azimuthal scattering. Thus, we recommend the gathering of
more data that would reveal the dependence of the spatial correlation of the fluctuating
temperature field on separation measured in the depth direction.

3. Horizontal resolution in the multiscatter region is affected to some degree by
all size-scale temperature fluctuations measured in a horizontal plane. The degree to
which a specified size scale affects this resolution depends on factors such as strength
of microstructure, range, and acoustic frequency. The theory indicates that for ranges
of 500 to 1,000 n. mi., for a frequency range of 100 to 300 Hz, and for microstructures
of the strength commonly encountered, the larger size scale fluctuations that are presently
attributed to the presence of internal waves have a dominant effect on resolution. The
smaller size fluctuations that are attributed to ocean turbulence will be important for
much longer ranges or, for much higher frequencies. We recommend, therefore, that
future studies of the temperature microstructure concentrate on larger horizontal size-
scale fluctuations than have been studied in the past.

4. A depth-dependent horizontal temperature spectrum could have a significant
effect on horizontal resolution. Because theoretical considerations and some experimental
data show the importance of the Brunt-Vaisalat frequency profile in controlling this
spectrum, an improved acoustic model that incorporates these data is desirable. A
theoretical basis for incorporating the effects of depth-dependent statistics, together with
the effects of diffraction and refraction, is provided in Appendix D. We recommend that
an acoustic model based on this theory be implemented.

5. The present report does not explicitly consider the potential utility of the
vertical resolution of a billboard array in isolating multipaths. It seems clear, however,
that the isolation of a single multipath could affect horizontal resolution in one of two
situations. The first situation occurs when the two multipaths are so close that the
acoustic signals that traverse them encounter essentially identical microstructure fields.
The scattered wave energies for the two multipaths could be expected to be strongly
correlated in this case. Interference effects might then be expected to affect horizontal
resolution. In the second situation the two multipaths are of widely differing orders, or
are such that the acoustic signals that traverse them encounter microstructure fields that
even differ widely in a statistical sense. The azimuthal scattering of the signals that
traverse the two multipaths would differ in this case. The importance of either of these
situations can be studied using the extended theory that we recommended previously.

6. While the end results of the derivation are contained in some surprisingly
simple equations, the derivation itself is highly complex. Accordingly, it is important
that an experimental program designed to test the acoustic models be undertaken, and
this we recommend.
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Appendix A

SINGLE SCATTER SOLUTION

A simple way to determine the angular spectrum resulting from the scattering of a
plane wave by a random medium is to consider the geometry, given in Fig. Al.

I .

- (SCATTERING VOLUME -

CHARACTERISTIC SIZE D.

WHERE k D >> 1; D/M» >> 1)

INITIAL PLANE WAVE

Figure Al
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A time-harmonic plane wave impinges on a finite scattering volume. We calculate the
intensity of the scattered radiation at a very distant point (R ,O) where R > kD2. For an
isotropic random medium we find the well-known result that scattering angles 0 are limited
to

if k Am > 1; that is,

{Is(RO)}, 0,

for

0>
k Am

A
where 15 is the intensity of the scattered radiation. On the other hand, { Is (R,O )} is
independent of 0 if k Qm 'g 1. In the present study we are interested in an anisotropic
medium with different characteristic correlation lengths associated with differing directions.
We thus have three pairs of lengths (QxM, Qxm), (QyM, kym) and (QzM, kzm). We shall
study combinations of conditions to show the nature of the problem, but in this
appendix we shall be particularly interested in the case kkyM < 1, kQxm > 1, kkzm > 1.
Here we will find that scattering is significant only where

ox = O(iQZ m

L2zm

The angle Ox is measured in a horizontal plane; 0y is measured in a vertical plane.

The equation governing the propagation of a pressure signal in water with a variable
index of refraction is taken to be

1 a2p
V 2 p = -(Al)

c2 (X) at2

where p(X,t) is the pressure field and c2 (x) is the variable speed of sound. There are a
number of approximations* necessary to obtain Eq. (Al). In particular we choose
here c2 (x) rather than c2 (x,t) because we will use ensemble averaging and can choose
the properties of the water to be fixed in each realization of the ensemble. It is convenient
to rewrite Eq. (Al) as

*L. Chernov, Wave Propagation in a Random Medium, McGraw-Hill, New York 1960.
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V2 p = O [ + Cy (x)]-a 2p (A2)

where the braces { } indicate an ensemble average. The term { c } is the mean sound speed and
p (x) denotes a centered stochastic process of unit variance defined by the randomly varying
index-of-refraction field. The term { n2 } is given by

( n2) ( c)2 / (c2 ), (A3)

and e is a measure of the strength of the index-of-refraction fluctuation field. In all of
our studies we shall assume that e<1. To first order in e, {n2 } = 1. Therefore we can
replace the {n2} in Eq. (A2) by 1.

For narrowband signals with central frequency v it is convenient to introduce the
approximation

p(x,t) = Re[p(x,F) exp (27riit)] (A4)

A
where p (x v) is the complex pressure field. Substitution into Eq. (A2) yields

V2 p + k2 [1 + ellI(x)]p = 0 (A5)

where

k = 27rTL/{c} (A6)

The single scatter solutions are obtained by writing the solution in the form

A~~~~~~~~~ p (x) = P, (x) + e P p1(x) (A7)

where Po (x) and pA (x) are independent of e and where all terms proportional to e2 and
to higher powers of e have been dropped. The v argument has been suppressed. For an
initial plane wave incident on the scattering volume we have

PO (x) = (1)1/2 exp (ikz) (A8)

whereas P 1 (x) satisfies the equation

V2 PA + k2 P1 = -k2 p(x) p0 (X)
_ _ ~~~~~~~(A9)

= -k2 p(x) 11/2 exp (ikz).

In Eq. (A8), I might be termed the intensity of the initial plane wave, although this
definition differs slightly from the usual definition in acoustics studies. The solution
of Eq. (A9) is to satisfy the radiation condition far from the scattering volume and we
write the result as
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A -k2:1/2 )fexp (ik[r(x,x') + ]) z (x') dx' (AlO)
PI W = 47T f ~~r(x,x') j~' x AO

where r(x,x') is the distance between x and x'. The integration is over the scattering
volume.

Defining the intensity of the scattered radiation field by

( IS(X)) e2 (A (x).(X) (All)

one obtains the following expression for ( IS
A( k4I exptik [r(x,x') - r(x,x") + (z'-z")])

PS ) =(47r)2 ff r(x,x') r(x,x")
(A12)

X a (x',x") dx' dx"

where

a (x',x") = e2 (I(x') ,.z(X")l (A13)

is the spatial correlation function a defined on the index-of-refraction fluctuations.

Introducing homogeneous statistics and the far field approximation enables us to
accomplish a partial integration* of the right-hand, side of Eq. (A12). We write the result

(I~s )= a(u) exp [i -Rdu (A14)

where u = x'-x" is the difference coordinate. We shall make use of Eq. (A14) to demon-
strate the dependence of the angular variation of the scattered intensity on correlation
lengths defined by the index-of-refraction fluctuation field.

Toward this end we use a sample correlation function a(U) of the following form

a (u) = aO exp - ( + 2)] (A15)

(We emphasize that Eq. (A15) is not meant to give a realistic description of the index-of-
refraction fluctuation field that is caused by the ocean temperature microstructure but
is introduced only to provide the insight we require.)

*M. J. Beran and G. B. Parrent, Jr., Theory of Partial Coherence, Prentice-Hall Inc., Englewood Cliffs,
N. J., 1964.
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Substituting Eq. (A15) into Eq. (A14) and integrating yields

1IS W I 1T3 1 2 Q Q 6xp{ 4 R2 2 (12 Z (A16)(4g7)2R2 4R2 2R )

In spherical coordinates; i.e. x = R sin 0 cos p, y = R sin 0 sin so, z = R cos 0,

IS(X)) = 7r3/2 Qy Qz exp - (,X2 cos2% +QY2 sin2o) sin20

+ Qk2 (1- cos 0)2]

Now consider a few possibilities:

(i) Qx = Qy = kz = Q where k Qk 1

This case is the usual one discussed in atmospheric propagation studies. Here

- A ~~~k292
A Aok4IV 3/2 (cos A
ISA (x)} = ar3I Q3 exp (1- cos 0) (A18)I I (47r)2R2 2

whereIs A(x)} is {Is(x)) for this case. Thus,{IsA(x)}is appreciable only if (1- cos 0) < 1.
Therefore

02
1- cos 0 2

2
and (A19)

O = O (_ 
\ k($/

for scattering intensities of significant strength.

(ii) Qx = Qy = kz = Q where kQ 1.

In this case all correlation lengths are small compared to the radiation wavelength. Here,

IS(x) } aok 3/2 R3, (A20)
(47r ) 2 R 2

and the scattering is isotropic.

(iii) kx = Qz; hkQx > 1; k Qy < I
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This is the case of interest in this paper. The vertical direction is the y direction. Here,

hIf (X) ) = ° I3/2 x T y exp1--4 Qx cos ,p sin2 0 + (1- cos 0)21 (A21)

C
where IS(x) is the scattering intensity in this case. Scattering in the vertical direction is
investigated by choosing a position where cos ep = 0. We find that

4 -

A C (Y) __= 7_/2 R2 _y exp (1-cos 0)2]is () )(4iT)2R24
For the exponential term to be appreciable we must have

(1-cos 0)2 < 1.

Therefore we obtain for the vertical scattering angle 0 = 0 V,

- 2 04

k2 x V = 0(1)
4 4

and (A23)

a v = Or- 
(~kQx)112/

Scattering in the transverse horizontal direction is investigated by choosing a position
y = R sin sp = 0 or cos p = 1. Equation (A21) is then

A C uok4IV 2 F-k29 2
( ( Q y exp L x (1-cos 0 (A24)

This is similar to the first case and yields, for the horizontal scattering angle 0 = OH,

OH ( ) ' (A25)

for the scattering to be appreciable.

Examination of the results of the third case shows that for single scattering we may
expect that the horizontal angular spread will be of the order of (1/kQx) while the vertical
spread will be of the order of (1/kQx)1/2. The same type of analysis holds in general for
an arbitrary function a(u) . We only require that kQyM < 1 and kkkm > 1. The state-
ment that 0 = 0 (l/kQxm ) means that scattering from the smallest scale fluctuations gives
00 (1/kQxm). The largest scales give 0 = 0 (1kQxM). Since, however, kQxM> kQxmx
we usually use only the order of magnitude associated with kQxm.
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For the case kQyM = 0 (1), including the case where k2yM < 1. similar analysis shows
°V = 0 (OM), for the scattering to be appreciable where

1 < /2

k <xm O<kxm
The important fact is that when kkxm > 1, we find 0 is no greater than 0 [1/(kQxm)l/ 2]

for all values of kQyM.

The results given in Eqs. (A23) and (A25) are valid only for single scattering but we
shall see in Appendix B how these results motivate approximations that allow us to solve
the multiple scattering problem.
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MULTIPLE SCATTER SOLUTION

In this appendix we study the mutual coherence function { ) } given by Eq. (1), which
we repeat here:

{((x1, X2 , V))= p (X1,iV).p (X2,iV)) (1)

Again, x1 and x2 are the two positions of interest and v is the central frequency of the
narrowband signal. The quantity A(x) is the complex acoustic pressure at point x. The
random medium is confined to the half-space, z > 0. Homogeneous statistics are assumed.
The problem of a plane-wave radiation field incident from z - - is considered. Using the
results of the last section we neglect any backscattered radiation, which enables our writing
the following expression for { r } for two points in the half space z < 0.

(r (xi, X2 , 1)= exp ik (z 1-Z2 ) Z1 , Z2 < 0- (Bi)

By virtue of the restriction to homogeneous statistics, the general sdlution in the half space
z > 0 is of the form

A 

IT (x12, Y12, Z12, Z. )

where X1 2=X2-X 1, Y12=Y2-Y1, Z1 2 =z 2 -zl, Z=z1 . We are not interested in the general
solution, however, and shall only determine the mutual coherence function measured at
two points in the same plane normal to the original plane wave direction; i.e., for two
points where Z12 =0. It is this quantity that gives a measure of the resolution limitation
resulting from the presence of the random medium.

A single scatter solution of the posed problem is immediately afforded by Eq. (A10).
It is well appreciated, however, that the validity of the solution so obtained has a range
dependence and that a procedure for incorporating multiple scattering effects is necessary
for longer propagation distances. In this section we use the procedure of M. J. Beran [B1].

In carrying out the solution, the region between 0 and z is divided by a series of M-1
infinite planes located at the coordinates Az, 2 Az, ..., (M-1) Az, where Az=Az/M. The
number M is chosen large enough so that in the interval jAz and (i+1)Az,{ F(x 1, x2 )}
can be obtained from its value measured on zl=z 2=jAz using a single scatter approximation.
The v argument in { F } is suppressed. Thus, one can show that in this interval

A j k4 exp (ik[r(xl, x') - r(X2, x")]
{S (xi, X 2 ) = 1f X a(X, "X

(4ir)2 r(xl, x') r(x2, x")
A (B2)
rJAZ (X" X")Idx' dx"
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In this equation F (x1 , x2 )} is the scattered portion of{F(xi, x 2 )}, and{FVAZ(x, x")}
is the mutual coherence function that exists in the interval jAz<z< (j+l) Az when there
is no scattering in this interval. The integrations are over the region between the planes
located at z = jAz and z = (j+1) Az. Eq. (B2) is equivalent to Eq. (7) in the work of
Beran [B1].

In writing Eq. (B2) we have assumed that pu (x') bz(x") and{ FjAZ(x', x") } are uncor-
related in the interval jAz < z < (i+l)Az. This assumption is valid if we require that
Az>QzM. If Az>VzM, then p(x') and bz(x") for z', z" > jAz are uncorrelated to ji(x) for
z < jAz over most of the interval. On the other hand,{ FjAz(x', x")} is only dependent
on p(x) for z <jAz since the scattering is in the forward direction. Therefore, to a good
approximation, ,u(x'),u(x") and{ FJZ(x', x")} may be assumed to be uncorrelated in the
interval jAz<z< (j+l)Az.

It is desired to simplify the r.h.s. of Eq. (B2) based on the knowledge that the
scattering is restricted to small angles. The procedure is the same as for the isotropic case,
except that here, because Oy = 0 [1/(klzm)1/ 2 ] rather than O(llklzm), the small angle
approximation is weaker and we must impose more stringent conditions than those given
in the latter case.

An expansion and truncation of the expressions for r(x1 ,x') and r(x2 , x") yield
simplified expressions that can be validly used provided we can show that the neglected
terms are small. Thus, we approximate r(x1 , x') in the exponent by

r~xx) ,1 ' + 1 [(x1-x')2 + (yl-y')2 ]
r(x I x ) :w z-z' + 2 1- (B3)

2 z 1 -z'

and in the denominator by the single term z 1-z'. This approximation is valid provided

(x,-x )2 + (yl-y')2
+(y-y')2 - < 1 (B4)

and
k[(xl-x )4 + (Yl-Y') 4] < 1 (B5)

(Z1 -Z )3

The condition required by Eq. (B4) is satisfied if

2 2

where Ox and Oy are the angular spreads measured at a generic point in the interval in the
x and y directions, respectively. The results of Appendix A justify the assumption of small
angle scattering incorporated in this condition. The condition required by Eq. (B5) is
satisfied for all points in the interval j Az < z < (j+l) Az

if k(Az) 04 < 1. and k (Az)04 < 1
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This condition can be interpreted as an upper bound limitation on the interval size (Az).
The results of the last section demonstrate that the second of the two conditions given
will be the most difficult to satisfy. Based on the result that

1 (B8)

(kQzm)l/ 2

Eq. (B7) requires that

-z< (B9)
kQz m

This condition, together with the condition that Az > QzM, requires that

~Zm
_ < 1. (B10)

2km
We shall accept Eq. (BlO) as a restriction on the theory being developed.

Substituting the simplified expressions for r(x1 ,x') and r(x2,x") into Eq. (B2)
and introducing the transformed coordinates

s = x -x
(B11)

p = xi

yield the following expression for {Is(x1, x2 )}

A k4 _xp i1 exp (ksz
FS(X1,X2) -4ie) p [ik(zl-z 2 )]// ep ZX expI (4T) (x 2 = e p[k flz)J (zl-Pz) (z2-sz-Pz)

ik [(X-px)2 + (yl-py)2 (X2-Sx-px)2 + (Y2-SyPy) 2 1
{i2 z1-PZ Z2-Sz-Pz ]JX (s) (B12)

{ FrjAz (s Pz)} ds dp.

Next we wish to introduce the following simplified expressions into the exponent appearing
in Eq. (B12):

(x2-sx-px) 2 (X2-Sx-px) 2;ZI_ ~~~~~~~~~ (B1 3)
Z2-Sz-Pz Z2-Pz

and

(Y2-SY-Py) 2 (Y2-Sy-Py) 2 Sz(Y2_SYPY) 2

Z2-sz-Pz Z2-PZ (Z2-Pz) 2 (B14)
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Again, reference to the first term neglected, reveals that the condition given by Eq. (B13)
requires, in addition to Az > QzM,

k SZ (X2-Sx-PX) 2

< 1
(Z2-Pz)2

which is satisfied if
kQzMOx2 < 1. (B15)

Using the result of Appendix A that

0x = 0 (llkQzm),

Eq. (B15) leads to the condition already accepted; i.e. Eq. (B10).

To justify Eq. (B14), we must show that

k SZ2(Y2-Sy-Py) 2 < 1.

(Z2 -Py)3

This condition, in turn, requires that

-Q2 2
kQzMOy 1

Az

which is a more severe restriction on the formalism than Az > kZM. Using the order of
magnitude estimate of Oy, we write

2
RzM

< 1. (B16)
(AZ)RZm

This condition, together with Eq. (B9), leads to a more severe restriction than Eq. (B10);
namely,

2
zM< 1. (B17)

kQzmI

We shall accept Eqs. (B16) and (B17) as restrictions on the theory.

Equations (B13) and (B14) are now introduced into Eq. (B12). In addition, we re-
place Z2_SZPZ in the denominator by z2 -sZ, which is consistent with all of the approxima-
tions already introduced. The result is written
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j-4
= exp

(47r)2

X exp({

krfr exp ik s,
lik(zi-Z2 ) 

(Z1-PZ) (Z2-PZ)

[(xl-Px)2

Z1 -Pz

(X2Px- Sz )21F (y-Py) 2

Z2-Pz I Z17PZ

(Y 2-PySy )2

Z2-PZ

-Sz(Y2-PYy)2- o(-s)F7jAz (s, p) 4 ds dp
(Z2 -pz )2 jja/ 

2 We next set z 1 = Z2 = Z. The integral over Px can then be readily performed since the
Px terms cancel. We find the factor (2ii/k) (z-pz) 6 (sx-x1 2 ) where 6 is the Dirac delta
function. The integral over py is more complex but after some manipulation we find the
factor

f)12 )(ZPz)
(h Is, 1)1/2

exp (ik
(Yl2-Sy) 2

Z2-PZ

+[(Y12y) _Yr2 7r
21sz I 4k iI

(Here the upper sign corresponds to sz > 0 and the lower sign to sz < 0).

Using the results of the integrations, one obtains

(2 )1/2{[S (X12, Y12, Z)
h3

8 f f P

1
+21s I

(B19)
19(x12, Y 12, SZ) /s I -z )

(h lsz 1)12 exp i tks +Z: 4)1rjA Z (X12, SY , sz, pz ) dsy dsz dpz,

which replaces Beran's Eq. (13) [B1].

It is possible to introduce a further simplification and carry out the integration over
the sy coordinate by making use of the smallness of the maximum eddy size measured in
tlhe y (the depth) direction. First, we notice that the minimum characteristic spread of
FKjAzI in the sy direction is of order (Qzmlk)1/2 (or 1/khy). Thus, if we require that this

distance be much greater than Qymn the integration over sy may be performed upon re-
placing the sy argument in jFjAz by zero. In addition, sy may be set equal to zero in
the exponential terms if we have the somewhat stronger condition

k~yM < (kQzm)1/2
\QZM/

1/2
(B20)
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We note that we have already required that (kQzn)/(VzM) > 1; see Eq. (B10). This same
restriction also enables us to approximate

-2

Carrying out the integration over sy as a result of these three approximations leads to

A ~~2 1/2 k3 fflk1
F US(Xe2 x Y12, Z) - s d

(B21)
o 2 (X 1 2 , sz) A A
(h Jsz 1)1/2 exp (iksz){ ~jA z (X12, 0. Sz, Pz) dsz dpz.

where

02(X12,sz) = a(x 12 , sy, sz) dsy.

In this appendix we accept the restriction given by Eq. (B20). We note, however, that a
theory could be develope~d that would be valid for arbitrary kRyM by retaining Eq. (B19).
We would then find that .F ) is governed by an integral equation, the integration being
over the variable sy .

As a final observation we note that for narrow angle propagation we can write

( Fjtz(Xi2, 0, Sz, Pz) } exp (-iksz) ( [Az(x12, 0, 0, 0)}

for lszl<Qm and pz < Az. This approximation allows us to carry out the integration over
s, and pz, leading to

where (rFS(X1 2 , Y12, Z) = a2 (X1 2 , Y12, Z' ) ( FAZ(X12 0, jAz) ) (B22)

00 fta 2
(- k 2 )rCos I -- I

(212k3 2Is I 4

U&X12, Y12 ) _7r ) 4(klszj)/2 o2(X12 , sz) dsz (B23)
0

and z' =z- jAz.

The condition for the validity -of the single scattering approximation (which is a
perturbation approximation) is readily seen to be

1G2 (X1 2 , Y12)1 Az < 1. (B24)
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The intensity of the scattered radiation is

{IS(Z))I d{FS(0, °,Z)} =2 (0,0)IZ' (B25)

where I is the intensity of the initial radiation. For small angle scattering the intensity
remains a constant independent of z. Thus, the intensity of the unscattered radiation must
be

(IU(Z)/ = (1-A2(0, L (B26)

where {Iu(z)} is the intensity of the unscattered radiation.

In this statistically homogeneous problem (7AZ (x 1 2 , Y12IjAZ)} may be derived by
considering the superposition of an angular spectrum of plane waves. For small angle
scattering the power in each plane wave is reduced by the same amount and thus

(FU(X12,Y12,Z)} =(FjAX (X12 ,Y12,jAz)) [1-a 2(0, O)Z], (B27)

where 1fu(X12, Y12, Z)}is the coherence function for the unscattered radiation.

The mutual coherence function is now given as the sum of the scattered and unscat-
tered parts because these parts are uncorrelated. (The lack of correlation may be proven
by a direct calculation.) Therefore, we write

{(X12, Y12, Z)} drj z (X12, Y12, jAZ) [1- 2 (°, °) z]

{(A (1328)
[7rjAz(X12, 0, jAZ) a 2 (X 1 2 , Y12) Z'

which leads to

(E(j+1)AZ (X12 ,Y1 2 , (i+1)Az)} = (Az (X1 2,Y1 2 ,jAz)} (1-&2 (0, 0)Az)

+{jAz (X12, 0,jAz)) 2 (X1 2 , Y 12)AZ-

The difference equation can be approximated by the following differential equation:

aF (X12, Y12, Z)) Aa Z -i~(x12, =12, z) --V(X 12,Y12 ,Z)} 02(0,0)

z)}i (B30)
+( A(X12, 0, Z) 2 (X1 2 , Y12).

We note that Eq. (B30) follows exactly from Eq. (B29) in the limit of Az-0. In our
treatment, however, this step must be taken as an approximation because in deriving Eq.
(B29) we introduced the restriction that Az> QzM. The nature of the approximation is
similar to that used in continuum fluid mechanics where we allow the elemental volume
size AV to approach zero even though it must satisfy the restriction (AV)1/3 >Vp,where Qp
is the molecular mean free path.
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The solution of Eq. (B27) for an initial plane wave is

FI (X12, Y12, Z)) I (= 2 (IY) exp ([62(0, 0)-j2(X12, 0)]z}

(B31)

+ 1- (72 (X1 2 , Y12)] a
+ 2 (X1 2 , 0) I /

To study the coherence function F(x1 2 , Y12, z)} we thus only require a knowledge
of the function aJ2 (x1 2, Y12).

Two special cases of Eq. (B31) are of interest. They are

F(XI2', 0, Z) I exp 16[2(0, °) (72(X12, O)]Z },(2)

and

{F(0, Y12, Z)} = I (~ _( +[- _ 00 exp [-U2(0, ONz (3.

The function I F(x 1 2, 0, z) }, for example, allows us to determine the horizontal
resolution of an aperture system, whereas( { (0, Y12, z)} allows us to determine the vertical
resolution. As z - , Eq. (3) approaches the simple limit

(F-(0, Y12, Z 00) = I 2 (° Y12) (B33)
2 (0, 0)

We synopsize here the conditions to be satisfied for the validity of Eq. (B30):

(i) kQyM<< (kQzm)1/2 (z)1
(B34)

(ii) 62(0, 0) Az < 1

where Az is a distance that satisfies the inequalities

2
QZM 1
~Zm < Az < (B35)
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Appendix C

A NUMERICAL STUDY

We present here the results of a numerical study of Eq. (12) in which we introduce
the most refined estimate of '1 1(p) that can be supported by reported data and the more
generally accepted theoretical arguments. These results are then compared with those
obtained by making use of Eqs. (15) and (16), which are based on a - 2 power law for
1G).

It is generally accepted that the larger scale temperature fluctuations arise because
of the presence of randomly phased internal waves and the smaller scale fluctuations be-
cause of ocean turbulence. The fact that two distinctly different mechanisms may be
acting suggests that the temperature fluctuation spectrum may have a different functional
form for large values of 1/p corresponding to large size-scale fluctuations than it does for
small values of lp corresponding to small size-scale fluctuations. There appears to be less
agreement on the hypothesis that associated with randomly phased internal wave fields is
a uniquely defined functional form for 4 1(p) to which can be assigned some degree of
universality. A definitive answer to this question must await the development of a com-
prehensive and experimentally verified theory of internal waves. At present the strongest
evidence would suggest that internal waves will give rise to a spectrum that behaves as p- 2
over at least a range of wave numbers. Phillips [C1] presents an argument supporting a low
wave number p- 2 behavior and a higher wave number p- 3 behavior. Also, the sheet and
layer model of Phillips [C1] results in a - 2 law. Similarly, experimental data support a - 2
law for size scales of the order of a few thousands of meters. See, for example, Charnock
[C2] and McKean and Ewart [C3]. We might note that the data of Charnock also appear
to support the presence of a - 1 region at the largest size scale observations. These data
are extremely sketchy, however, and are not included in our estimate of b 1(P). We note
that the description of the scattering phenomenon constructed in the section on the
dependence of F on the temperature microstructure suggests that any very large scale - 1
behavior would be significant only for very large separation distances; i.e., of the order of
several tens of thousands of meters. For small size scale ocean turbulence, the familiar
Kolmogorov spectrum (i.e., p- 5/3 law) might be expected. A - 5/3 region has been
observed. See, for example, Grant, Stewart and Moilliet [C4] and Moseley and Del Balzo
[C5]. The relatively larger size scale ocean turbulence can be expected to vary as p- 3
because of the influence of buoyancy forces. The data of Moseley and Del Balzo [C5] in-
dicate the presence of a - 3 transition region. Introducing each of these factors into our
estimate of 1 (p), we achieve the composite spectrum sketched in Fig. C1.

The composite spectrum contains six environmental parameters; i.e., the low and
2high wave number cutoffs, the transition wave number, and the coefficients A 2 , B2, and

C2. In our numerical study we made estimates of these parameters and, using these,
evaluated the integral in Eq. (10).
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Fig. C1 - Functional form of fluctuation power
spectrum used in numerical studies

kyx1/2 °°kRyMX12
A(0, 0) - a2 (X1 2 , 0) 2 F(pxl 2)F 1(P)dP (10)

where

1

1 F 4
F (PX12 ) = _ (pX12 )l/4 J- 3 /4 (PX12)-

(PX1 2 )1/2 23/2

The values of A2 and PM were then used in

&2(0, 0) - &2 (X1 2 , 0) = 0.641 A2 k5/2 QyM
(15)Lr1.216 /X 12 \3/4]

PM1 1 .19 -XM) K 3 /4 (PM X12)j
L PM3/2 \PM/ 

A 2 was used in

&2(0, 0) - 92 (x 12 , 0) = 1.1 A2 2 yM k5/2 X1 2
3 /2 (16)

and the desired comparisons were made.

We now consider the reasoning that led to the choice of values for the six environ-
mental parameters. Summers and Emery [C6] have reported data of internal waves with
approximately semidiurnal periods propagating in deep water with a speed of approximately
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7 knots. This corresponds to a wavelength of the order of 100 km. Based on this obser-
vation we shall take PM 1 = 105 /2iT m in our numerical studies and later will discuss the
relative insensitivity of this choice for cases of interest. The transition wave number P,
is not expected to have a uniquely prescribed value. Rather, it represents a transition
region, presumably small, between the A2 p- 2 region and the B2p- 3 + C 2 p- 5/3 region.
A sharply defined transition wave number may be imagined by extending the A2p- 2and
the B2p- 3 + C 2 p 5/3 regions until they intercept. Thus, P1 is, in fact, defined by the
measured values of A2, B2, and C2 and is not, itself, a directly measurable quantity. Of
course, for spectra in which a sharply defined transition region between the A2p- 2 and
the B2p- 3 + C 2p 5/3 regions is clearly visible one does have a direct way to estimate P1.22Unfortunately, there are no published data in which estimates of A2 ,B2, and C2 have all
been obtained. Usually, sea data of the temperature spectrum concentrate on either the
larger scale structure or the smaller scale structure. Thus, we are required to rely on either
large scale data, which give us estimates of A 2 , and extrapolate these to the smaller scale
region, or vice versa. In our program we relied on the data of Moseley and Del Balzo [C5],
which provide estimates of B2 and C2. This leaves us with the task of extrapolating these
data to the larger size scale portion of the spectrum. The extrapolation is accomplished by
making estimates of the location of the transition region, i.e., of P1. The smallest estimate
chosen for P1 was 27r/1,500 m- 1. This wave number corresponds to a size scale of 1,500
m. It would appear to be generally accepted that a size scale of this magnitude will cer-
tainly be larger than that at which the transition will occur. Additional estimates chosen
for P1 correspond to size scales of the order of 1,000 and 500 m. Estimates of P1 corre-
sponding to smaller size scales were not chosen for two reasons: (a) the data of Moseley
and Del Balzo, which included size scales of the order of several hundred meters, did not
show the transition region, and (b) the sensitivity of the results of interest to the actual
value of P1 was seen to be not very great if P1 is of the order of 27r/500 m- 1, or larger.
The data of Moseley and Del Balzo extend to very large values of p and indicate the
presence of turbulent eddies containing measurable amounts of energy, which are of the
order of meters or less in spatial extent. However, we have argued in the section on the
dependence of r } on the temperature microstructure, the acoustic signal coherence will
depend on these small eddies only for separation distances of the same order of size. Be-
cause the present work is devoted to long ranges and low frequencies, we will allow Pm
to be infinitely large in our numerical studies.

As previously stated, we relied on the data of Mosely and Del Balzo to make esti-
mates of B2 and C2. Three sets of values were selected that encompass the range of
values observed in their data. The specific values chosen are given in Table C1. (We have

Table C1
Parameters Chosen for Numerical Study*

Conditions B 2 (m- 2 )C2 (m- 2/3)

Weak fluctuations 4 X 10-14 5 X 10-12

Moderate fluctuations 3 X 10- 13 2 X 10- 11
Strong fluctuations 3.3 X 10- 12 2 X 10- 10

*After Ref. C5.
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introduced the scale factors required to change the Moseley and Del Balzo temperature
data into refractive index data and to compensate for differences in the definitions of the
spectrum.) The terminology of "strong", "moderate", and "weak" is to be interpreted
in a relative sense in that they only denote the largest, a middle, and the smallest of the
values encountered during the same experiment performed over a relatively short time
interval at essentially the same location. (The differing fluctuation spectra observed were
obtained from tow runs at different depths.)

In Fig. C2 we present the dependence of the calculated A2 values as functions of P1
for the three fluctuation conditions denoted as strong, moderate, and weak. These values
can be compared with those reported by Mc Kean and Ewart [C3], which range between
10- 11 and 5 X 10- 9 . (Again, we have introduced the requisite scale factor.) Although
the McKean and Ewart data analysis is based on a - 2 power law curve fit for much higher
wave numbers than envisioned by our extrapolation, the agreement between the values is
striking.
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Fig. C2 - Dependence of extrapolated A2 values on pl.
(Strong: B = 3.3 X 10-12, C = 2 x 10-10; moderate:
B = 3 x 10-1 3 , C = 2 x 10-1 1 ; weak: B = 4 X 10-14,
C = 5 x 10-12)

Figures C3 through C5 illustrate the dependence of L(xl 2 )xl21/2 where L(x1 2 ) is
the integral in Eq. (10), for the nine spectra/ described in this appendix. Also drawn are
line graphs of the values given for L(xl 2 )xl 2 by Eqs. (15) and (16). We note that the
dependence of the latter expressions on P1 is via the coefficient A 2. This dependence is,

2therefore, an apparent dependence arising from thd manner in which A 2 was obtained.
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Fig. C3 - Dependence of exponent function on separation distance
for weak fluctuations. PM = 27,/105 m-1 ; R1 = 27r/p1 .
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Fig. C4 - Dependence of exponent function on separation dis-
tance for moderate fluctuations. PM = 24r/105 m- 1 ; 21 = 27r/pl.
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NUMERICAL SOLUTION

- - - EQ. (2-15)
- __ EQ. (2-16)

wo~~~~~~~/ 7'/

'C 1.2/ /0.8/ / 
0.4 .,

400 800 1200 1600 2000 1

Fig. C5 - Dependence of exponent function on separation
distance for strong fluctuations. PM = 27r4105 m- 1 ; Q =

27r/pi .

The most important conclusion to be drawn from these curves is the excellent agreement
that can be obtained if we replace the composite spectrum with a more easily handled
- 2 power-law spectrum. A more significant error results from expanding and truncating
the Bessel function, which is required to obtain Eq. (16) from Eq. (15), even though
this error is still not very significant. For shorter separation distances the percentage
difference in the values given by the numerical solution from those given by Eqs. (15)
and (16) increases. This increase cannot be discerned from the line graphs, however, be-
cause the actual values are small for the scale of the line graphs.

In Fig. C6 we show the results of an investigation of the sensitivity of the results to
the value chosen for PM. The conclusion to be drawn from this figure is that the results
are insensitive to the actual value of PM as long as the largest size scale is of the order of
100 km. The sensitivity is greatly increased, however, if the largest size scale is of the
order of 10 km.
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Fig. C6 - Dependence of exponent function on separation distance
for moderate fluctuations. P1 = 274/1,500 m41;QM = 2 7r/pM.
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Appendix D

EFFECTS OF NONHOMOGENEITY, REFLECTION, AND SOURCE SIZE

In our analysis of the temperature microstructure effects on array size we have assumed
that we could arrive at the correct order of magnitude by considering the propagation of a
plane wave through a statistically homogeneous medium. In the ocean the acoustic radiation
will pass through regions with mean temperature gradients and variable statistical properties,
and be reflected at both the ocean surface and bottom. In addition, we shall be dealing with
a finite source size. The purpose of this section is to show that the additional effects of mean
temperature gradient, statistical inhomogeneities, and finite source size do not change the
order of magnitude of our results. The question of surface reflection may require special
attention.

As in the main body of the report, we restrict attention to the coherence function for
separation distances taken along the x axis. It is this function that determines azimuthal
angular spread. The complexity of the problem necessitates our approaching it in a two-
step procedure. Thus, we first consider only an average of the coherence function taken
over the vertical direction and discuss, in turn, the effects of a mean sound-speed profile,
of superimposed inhomogeneities in the statistics of the fluctuating refractive index field,
and of a finite source. Next we discuss, in the light of the previous discussion, the effects
of these same inhomogeneities on the angular spread that would be measured by a hori-
zontal line array positioned at a fixed depth. Finally, we consider the effects of surface
reflections.

To consider this problem, it is first necessary to develop the differential equation that
governs the mutual coherence when diffraction, refraction, and scattering are all important.
This formulation is quite easily accomplished by considering the incremental derivation
procedure of Appendix B. The fundamental assumption to be made in deriving the differ-
ential equation is that for propagation distances of the order of Az, the effects of diffraction,
refraction, and scattering are all uncoupled. Thus, we only need add a diffraction term and
a refraction term to Eq. (B30). Recalling that a condition for the validity of the theory is
that the angular spectral representation of the beam be narrow, one can show* that the
appropriate diffraction term is

2(k) (VXT1 - VXT2)( F(XT1, XT2, Z))

where (k) is an average of k(y) taken over the width of the beam and xT1 and XT2 are
the transverse parts of position vectors xl and x2 , respectively.

The appropriate refraction term is

i[k(yl) - k(Y2)] ( K(XTl, XT2, Z)) -

*M. J. Beran, J. Opt. Soc. Amer. 60, 518 (1970).
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Thus the equation governing the mutual coherence function is written

(XT1, XT2, z) ) = - (k2) 52 (0)F(XT1, XT2, Z))

+ k2) 2(X12, Y12) (r(xli X 2 i 2 YY Z)
(Dl)

2 ~ 2 J r XliXT~ + 2-h) (VXT1 - VXT2) ( T1, T2, )
2(k)~~(

+ O~(Yl) - k(y2fl {r(x~ XT2, Z))-Ty

The operators VXT1 and VT?2 depend on the transverse coordinates xY and y. The
coherence function depends on the variables z, X1, X2, y1, and Y2. The equation
simplifies if we transform to the coordinates

1 1
Px =2-(xl+x 2 ), Py =2(Y1+Y2 ),

2 2 ~~~~~~~~~~(D2)
SX = X1 - X2 , Sy = Y1-Y2-

In terms of these coordinates, Eq. (Dl) becomes

a (5)=- (k2) 62 (0)(5)+ (k2) 52 (S)(F(Sxpx, 0,ppy z))

i a a a a A

+ -_ __ + _ ) r (D3)
(k) aX asx apy asy J

+ i[k(PY+sY2) - k(py-SY 2)] (F)

Equation (D3) governs the plane wave solutions we have previously considered and
also propagation from a finite source. In treating the effect of k(y) we shall consider the
radiation to be confined to 0 < py < H (where z = 0 is the mean ocean bottom and z = H
the mean ocean surface) rather than assume an initial plane wave.

We shall first focus our attention on the average quantity

r(sx, SY, Px, Z))H i 7(s"Sy, ~Px, PY Z))dpy (D4)
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for Sy = 0. By integrating over py and dividing by H we have the average coherence of
radiation in the y direction. If we then set sy we find the average intensity in the y direction
Therefore ({ r(s., 0, PX, Z)) ) represents the effects of only horizontal scattering.

Integrating Eq. (D3) from py equal 0 to H and dividing by H yields

(( F))=-(k2)a2 (0)((r})+(k2)a2 (s) -j_( (SXPx0HPy A))dy

i a a ^A a 1I(A1 ^A \() F--(jr) + I F?)Py=H { PO (D5)
(la 3Sx aPx asy H \' JY

+i fH[j (py+Sy)_ k(py Sy) A)dpy

Setting Sy = 0 then gives

_ ((F) = (k2) [a2(sx) - a2 (0) ] ((F)

(D6)
ia a A ) a I (A A \p~o

+ asX apx (( +asy H r p - r py=o)

where sy = 0 in all terms is to be understood.

The last term in the right hand side of Eq. (D6) may be set equal to zero since H is
large compared to any characteristic coherence length. That this is valid can be seen by
integrating thehequation from O-e to H+e and taking the limit e-0. Outside the interval
0 < py 6 H, {r } = 0. The equation governing ({ }) is then

a A {A} i a a f

-(r)) = (k2)[o2(sx) - a2 (0)]()) + as_ _ ) (D7)

From Eq. (D7) we see that the variation in mean index of refraction (as given by k (y))
has no effect on the average scattering in the horizontal direction.

We next turn to the question of statistical inhomogeneities in the fluctuation field.
The inhomogeneity is exhibited by making a2 an explicit function of py. Examination
of the assumptions made in the derivation of Eq. (D1) shows that, in the statistically
inhomogeneous case, Eqs. (D1) and (D3) are still valid if a2 (0) and a2 (s) are replaced
by a2 (0, py) and a2 (s, py), respectively. Manipulations similar to those that led to Eq.
(D7) now yield
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H

_p [a2(sxPy)- a2(0,Py)](F(sxPX, Opy,Z) dpy
0

(D8)
ia a Ao,

Mk apx asx ir

Eq. (D8) is not a determinate equation governing ({ F }). When 02 is a function of py, the
amount of horizontal scattering depends upon the height at which the scattering occurs,
and it is not possible to remove the a2(sx, Py) - a2 (0, Py) term from under the integral.

We note that formally we can express the integral in Eq. (D8) in the form

H

[a2(sx, Py) - a2(0, Py)] { F(sx, Px, 0, Py, Z) dPy
0

= (s2(5x) - G2(0)) W(z) (F (sx, Px, 0, z)} (D9)

where (a2 (sx) - a2(0))W(Z) is interpreted as a weighted average of the a2 terms. The
weighted average is shown to depend on range z because the weighting function depends
on range. This formal expression, as such, does not gain anything because it only represents
a prescription for evaluating the required average of the Zi2 terms after one has solved the
problem for { F(sx, Px, 0, py, z)} . It could be useful, on the other hand, for particular
situations in which it is possible to estimate the averaged a2 terms, a priori.

A
To motivate this type of reasoning, we might note that the dependence of { F(sx, Px,

0, py, z) } on Py is a measure of the radiation intensity at the height determined by py.
(That is,

(2y (py,Z) F f(r(O px 0, py IZ)dpx
-00

is equal to the total radiation intensity at py.) Thus, to first order, we might attempt to
replace (z(sx, Px, 0, Py, Z) } as a weighting function by { ly (py, z) }. This leads to

(a2(sx) - a2(0))W(z) - {IY(PY Z)) [ 2 (Sx, Py) - a2(0, Py)]dpy (D10)
fH (Iy(Ayz)dpy

as an approximation for the averaged &2 terms. We could note that the approximation
expressed by Eq. (D10) does not of itself lead to a determinate problem because {y (Py, z)}
is, of course, unknown until the whole problem is solved. Now, however, we are in a
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position to make an intelligent guess by solving for { Iy} in the absence of scattering (i.e.,
considering only refraction and diffraction effects) or 'by first solving the whole problem,
assuming that

1 H
(j2(Sx) - 52(0))W(Z) 2 J [f(Sx, y) -7 a2(0, PY A dpy (D11)H 

Equation (D10) and the intelligent guess for Iy } do'make the problem on ({F(sx, PX, Z)}
determinate.

The weakness in this procedure is Eq. (D10). In general,

{OX P( X , 0. py, Z)) + IY(Y ) (A{(x x ) (D12)
f~ Iy(py, Z)) dpy

as is required for Eq. (D10) to be exact. That is, the amount of scattering that occurs at the
position located by Px, Py depends on the specific intensity and angular distribution at
this point and not just on the average intensity at the height py. If the radiation followed
a single path, then Eq. (D10) would be an excellent approximation. If, however, the
radiation followed two or more paths, and the fluctuations encountered over the differing
multipaths were statistically different, Eq. (D12) would be expected to be in serious error.
For the long ranges of interest to us, it is felt that the latter situation is unlikely and that
the many multipaths present will all traverse the same range of depths.

Equation (Dli) would be expected to be reasonable only in the absence of any sound
trapping. For propagation in the sound channel, it would be more reasonable to replace Eq.
(Dli) with an average taken over the depth of the sound channel.

We will assume that the appropriate equation for ({ F is

a (A ' = a2 aaz{F) =(k2 5(a2(sx) - a2 (0))W(z)( F) +-ka-- { ) (D13)

where (a2 (s,) - a2(0))W(z) is given by Eq. (D10). For long paths we expect this term to
be almost independent of z, and in any case it may be considered to vary slowly with z.

This effect of finite source size is given by the derivative term on the right hand side
of Eq. (D13). Equation (D13), except for a change in the definition of (&2), is identical
to the equation one obtains when X < 1Vm in addition to the condition X << 'Hm. In this
case many solutions are available for finite sources, and it is known that, to within a con-
stant of order unity (say 1 to 3), the characteristic scattering angle is the same as the plane
wave case. Thus to arrive at the order of magnitude, we may use the plane wave results
to estimate resolution from finite sources. Similarly we may assume that, also in the case
when X > 1VM, the plane wave solution is adequate, for obtaining the order of magnitude,
to estimate the resolution when the source is finite.
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A final question of the effects of nonhomogeneity and of finite source size concerns
the relation between {( [' (s., Px, z) }) and the coherence function that is measured if the
detector is a linear array at fixed height py = h; i.e.', if {>(sX, PX, 0, h, z)) is measured.
In general, ({ (SX , PX, z) }) and{ f(F(sx, Px, 0, h, z)} may be quite differen~t, but, if we
consider long path lengths and if py = h is a height such that { Iy (h, z) ) is large, then we
may expect the two functions to be very similar in order of magnitude. If, for example,
a sound channel is present, we would place the detector at a height within the channel.
We shall assume that the detector height is not chosen at random but at a height such
that (Iy (h, z) ) is close to the average intensity:

{I) i ((0, PX Z) ))dpx.

In summary, we have shown that to obtain results that are correct in order of
magnitude when (a) there is a mean index-of-refraction gradient, (b) the statistics of the
index-of-refraction field are inhomogeneous in the vertical direction, and (c) the source
is finite, it is sufficient to use the equation

m_____ = (k2) (a2(sx) - 62(0))W(z)(( F) + F a ((F)

where (a2(sx) - 2(Of))W(z) is given by Eq. (D10) and may be taken to be independent
of z when z is large.

The effect that may be more critical is that of scattering from the ocean surface and
bottom. To the extent that the ocean surface or bottom may be considered to be a plane
horizontal surface, these surfaces do not affect the results obtained. In this case the
radiation simply reflects, with the magnitude of the angular spectrum unchanged. When
the surfaces are not planes, the scattering over the rough surface must be calculated based
on knowledge of the surface characteristics. There is a large amount of literature devoted
to this subject, but it is beyond the scope of the present work. The results we have
obtained do put a lower bound on the scattering, however, because the effects of internal
and surface scattering should be additive.
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BACKGROUND DISCUSSION OF APERTURE PROBLEM

The study of the statistical properties of pressure fields and electromagnetic fields
propagating in random media has been an active research area since the 1940's. Principal
contributions have appeared in both the Western and Soviet literature. In this section we
shall briefly survey the developments in the past 25 years that are most closely related to
the study presented in this report.

The Soviet literature is most easily surveyed because there are three books that bring
us abreast of developments through about 1970 [El-E5]. Chernov [El] and Tatarski [E2]
are widely quoted in the Western literature and give fairly complete references to works
in both Soviet and Western literature before about 1960. In these books the statistical
problem is clearly formulated in terms of phase and amplitude fluctuations. Calculations
are made for the phase and amplitude two-point correlation functions in terms of the
statistical properties of the index-of-refraction field. In Chernov's book [El] the index-
of-refraction field is represented by two-point correlation functions with a single length
parameter, but in Tatarski's book [E2] the Kolmogorov spectrum is used. The principal
limitation of these two books is that the solutions are essentially single scatter solutions
despite the claims made for the validity of the Rytov approximation in the multiple
scatter region.

In Tatarski's 1970 book [E3], which is a revised edition of his 1961 book [E2]. he uses
an alternative approach, which allows him to consider fluctuations in the multiple-scatter
region when )/Qm' . (Here 'X is the mean radiation wavelength and km is the minimum
correlation length associated with the index-of-refraction field.) He also now formulates
the statistical problem in terms of the coherence function used in this report, instead of
using phase and amplitude correlation functions. He presents a number of solutions for
the coherence function in terms of the statistical properties of the index-of-refraction
field. All his work is for isotropic fields, but when i/lm l, it is not difficult to extend
his work to include anisotropic fields. Both plane wave and finite-source solutions are
given.

To the knowledge of the authors, the anisotropic medium problem has not yet been
treated in the Soviet literature for the case when X/QVM = 0(1). Soviet authors are, how-
ever, continuing to study the propagation problem from both an acoustic and an electro-
magnetic point of view.

In the Western literature there were a number of basic papers written for the single
scatter region in the 1940's and early 1950's. Some of the contributors were Bergmann
[E4], Pekeris [E5], and Mintzer [E6-E8]. G. Keller [E9] treated the mutual coherence
function and obtained a correct expression for the multiple scatter region. Hufnagel and
Stanley [E10] obtained a similar expression. Both these solutions contained unnecessary
assumptions, but later work by Beran [Ell] and Brown [E12] showed the conditions
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under which the solutions were correct. Beran [E13] subsequently derived the basic
governing equation that allowed the determination of the mutual coherence function for
radiation propagating from a finite source when X/Qm < 1. This is the same result obtained
by Tatarski [E3] using an alternative method. Also, as in the Soviet literature, solutions
of this basic equation were obtained by a number of investigators. In all cases the solutions
were for isotropic random media, but it is simple to extend the analyses to the nonisotropic
case when X/Im < 1. We found no solutions for anisotropic media in the multiple scatter
region.

The literature of wave propagation in random media is vast and spread throughout
a multiude of journals. In this very brief survey we were able to pass over this extensive
literature by considering only those papers that are most germane to the objectives of the
present study; i.e., obtaining multiple scatter solutions for the second-order coherence
function in a problem in which the scattering is principally a forward scattering. We also
note the neglect of papers concerned mainly with the mathematical aspects of obtaining
formulisms on the moments of the inverse of a linear stochastic operator even though such
formalisms are applicable to the scattering problem. The Bethe-Salpeter formulism, which
can serve as a starting point for a derivation of Eq. (R3l), is one result of this literature.
Frisch [E14] presents a survey of the mathematical aspects of propagation in random media.
This survey concentrates on the first two statistical moments of the radiation field.
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