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OBSERVATIONS ON USE OF THE J INTEGRAL TO DETERMINE
PLANE-STRAIN FRACTURE TOUGHNESS FROM SUBSIZED

SPECIMENS OF A TITANIUM 6AI-4V ALLOY

INTRODUCTION

A growing body of experimental evidence [1 - 5] supports the critical value of Rice's
J integral [6, 7] JIC as a criterion for the initiation of crack extension in elastic-plastic
fracture. Recent J-integral studies demonstrate success with an unload/heat-tint, resistance-
curve technique to determine JIc in steel [3], titanium [4], and aluminum [5] alloys. The
purpose of this report is to provide a comprehensive summary of results to date from a
study of Jic determination with a titanium 6AI-4V alloy.

In this work eight different types of fatigue-precracked, three-point-bend specimens have
been tested. For several of these, resistance curves of J vs crack extension (Aa) have been
obtained by heat tinting multiple specimens of a given type which have been unloaded from
different points on the respective diagram of load (P) vs load point displacement (6). For
purposes of comparison, evaluation of the J integral has been made by two methods: (a)
the Begley and Landes compliance calibration technique [1, 2], using the plane-stress plastic-
zone-size corrected solutions of Bucci et al. [8] which simulate well the experimental P-vs-5
traces obtained from the precracked specimens; and (b) the approximation equation proposed
independently by Rice et al. [9] and Srawley [10]:

2A
Bb ' ~~~~~~~~~~(1)Bb

where A is the area under the P-vs-6 curve at the point of interest, B is specimen thickness,
and b is the uncracked ligament. To define the point of initiation of crack extension Aac
and hence JIc, it is necessary to select a criterion, perhaps somewhat arbitrarily at this point.
The one used in this work was proposed recently by Paris [11], namely that Aac be defined
by the largest amount of actual crack extension (1%) permitted in the smallest allowable
KIc specimen:

EJIc
Aac 0.025as 2) (2)

where E is Young's modulus, ay, is the uniaxial yield strength, and v is Poisson's ratio. Values
of JI, obtained in this study are compared to a valid KIc value for this alloy via

2 2
J = G = KIC (1 V) (3)

E

Note: Manuscript submitted June 28, 1974.
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YODER AND GRIFFIS

where material constants GIc and KIc are critical values of the crack extension force and
stress-intensity factor respectively.

The specimen type of least thickness is used to examine for possible variation in JIC
as a function of position through the plate thickness. In another series of tests, the range
of ratios of crack length to specimen width (a/W) is explored over which Eq. (1) holds.

EXPERIMENTAL PROCEDURE

Material and Specimens

All specimens were cut from a 1-in.-thick plate of mill-annealed Ti-6AI-4V alloy with
the chemical composition and mechanical properties given in Table 1. Light photomicro-
graphs in Fig. la reveal a microstructure consisting of elongated primary ar grains dispersed
in an oa-g Widmanstatten (basketweave) matrix. Extensive crossrolling is evident from these
micrographs and seems to be reflected in the tensile properties, determined with standard
0.505-in.-diameter specimens. The yield strength in both the longitudinal (L) and trans-
verse (T) directions is 124 ksi; Young's modulus is 18.55 X 103 ksi in the T direction. The
mode of crack extension in this alloy is microvoid coalescence, as illustrated by the replica
electron micrograph of Fig. lb.

Cross-sectional geometries of the eight types of three-point-bend specimens used, A
through H, are presented in Fig. 2 with a list of dimensions. Thicknesses (B) range from
0.250 to 1.000 in., widths from 0.658 to 1.500 in., ao/W ratios from 0.313 to 0.745, and
B/b ratios from 0.61 to 2.99. All specimen types, with one exception, were machined
from the plate midthickness, that is, with equal amounts of metal removed from the plate
surfaces relative to the B dimension. In the case of type E, subscripts are used to desig-
nate position of the specimen relative to plate thickness, that is, type Ec from the center
or plate midthickness vs type Es cut from as near the plate surface as possible. All speci-
mens were fatigue precracked at levels of stress-intensity factor permitted by ASTM E399-
72 [12], with crack orientations all in the TL direction. These specimen types exhibited,
to varying degrees, loading behavior characteristic of the lower end of the elastic-plastic
regime. That is, all exhibited limit loads which were substantially less than those expected
for the fully plastic state, which may be approximated for pure bending by [8, 13]

PL =1.456 at' (W - a)2 , (4)S

where As is the uniaxial tensile strength and S is the span length. Moreover, behavior of
the specimen type with the most highly constrained crack (type A) appeared to be only
marginally "invalid" with respect to ASTM E399-72, as only one specimen of three of this
type examined for KQ provided a valid KIc value of 59.7 ksiV/iR, as noted in the stress-
intensity-factor data of Table 1.
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Table 1
Alloy Composition and Mechanical Properties

CHEMICAL COMPOSITION
(WEIGHT PERCENT)

C I N | H | 01 Ti|

0.008 0.005 0.06 |

TENSILE PROPERTIES

0.2% Offset Tensile % Young's Modulus
Yield Strength Strength Reduction %

I Area Elongation X 10 GPa
ksi MPa ksi I MPa ksi

Transverse direction (T)
124.4 | 868.3 133.8 | 933.9 39.5 13.5 (in 2 in.) 18.55 129.5

Longitudinal direction (L)
124.1 | 866.2 1 130.5 | 910.9 39.5 16.5 (in 1.4 in.) 18.56 129.5

STRESS INTENSITY FACTOR DATA

K 2.5

Specimen Type Pma ksi- (K )2 KQ =

PQ N/;- <B, a, W-a Ic

A (a) 1.12 No
(b) 1.09 59.7 Yes Yes

(c) 1.11 No

C (a) 1.23 No

3
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(a) Light optical photomicrograph of microstructure; (b) Replica electron fractographetched with Kroll's reagent of dimpled rupture

Fig. 1 - Definition of alloy microstructure and mode of crack extension
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A

1 IK
/

D

F G H 

-1000 in. I

j W, a,, b

PECIMEN DIMENSIONS

SPEC._I [ _ W I LO/W
TYPE in. c Cm |in. |cm |

A 1000 2.540 1,500 3.810 0.457
B 1.000 2 540 1.500 3.810 0.573
C 0.500 1.270 1.500 3.810 0457
D 0.50 1.270 1.500 3.810 0.590
E 0.250 0.635 1.500 3.810 0.457
F 0.500 1.270 0.658 1.671 0.313
G 0.50C 1.270 0.658 1.671 0.598
H 0.5001270 0.658 1.671 0.745

8

Fig. 2 - Cross-sectional views of specimen types and list of the dimensions.
Shaded portion of the cross section indicates ligament b x B.

Test Procedure

All specimen types were tested in the fixture shown in Fig. 3a. A clip gage was used
to measure 6 as illustrated; a supplementary gage can be seen to span the crack mouth
opening in accord with ASTM E399-72. The span between rollers was S = 5.975 in. All
tests were conducted in room-temperature air.

To determine the point on a P-vs-8 diagram at which crack extension initiated, multiple
specimens of a given type were loaded to various points on the respective P-vs-6 diagram
(anywhere from the incidence of nonlinearity to maximum load), followed by complete
unloading, as illustrated in Fig. 3b, for specimens of type C. Specimens were then heat tinted
in a circulating-air furnace at 6000F (589 K) for 2 hrs and broken open for examination.
Crack extensions corresponding to the points of unloading in Fig. 3b are shown in the photo-
graph of Fig. 3c. Initial fatigue-precrack length was measured according to ASTM E399-72,
as was the crack extension delineated by heat tinting; that is, the amount of crack extension
was taken as an average of that measured at the quarterpoints of specimen thickness. Inas-
much as the initiation of crack extension is a heterogeneous nucleation process, this is ad-
mittedly an arbitrary measure of crack extension and therefore should be kept in mind as a
potential source of scatter in results. Uncertainty in individual measurements is T+±0.001 in.
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APPLIED LOADP P
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-t L 9 -,,., w 6 0.127 0.254 0381 0.508 0.635 0.762 0889 1.0162667

Ti- 6A1-4 V
NRL ALLOY R14A

21
SF-t.eMFN-r 1 8 x ,: 22 23
1.~~ 25.~~~A..-

4 - ~~~~~2 ,-17.78I .~~~~~~\ * % >0 ~~~~~~~~~22/< ' J /'
' ;| 3 _ /,,,/ 13.34 Z.
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,Gt ; S ;\ >3; 2 _ / HEAT TINT 8.89

I t 1 * / SPECIMEN TYPE C

0& 5 10 15 20 25 30 35 40O

LOAD POINT DISPLACEMENT (8), lO3 in.

(a) (b)

C .t V : t 

22 23 187 24
I INCH

2.54 CM.
(c)

Fig. 3 -Test procedure: multiple specimens of each type were loaded in the three-point-bend test fixture
shown in (a) to various points on the respective P-vs-8 diagram as shown in (b); then they were unloaded
and heat tinted to reveal crack extensions as shown in (c). The case illustrated is for specimen type C,
with individual specimen numbers identified in (b) and (c).
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In one of the ways used to evaluate the J integral, the Begley and Landes technique
was used to obtain a compliance calibration from P-vs-6 diagrams generated for several a/W
ratios from plane-stress plastic-zone-size corrected solutions of Bucci et al. These P-vs-8
traces were integrated graphically using the trapezoidal rule, with increments of 0.005-in.
displacement. These solutions simulate well the experimental P-vs-5 traces obtained from
the precracked specimens, as illustrated in Fig. 4 for specimen types A through D; notable
deviations at some of the greatest displacements are attributable to crack extension in the
precracked specimens. In using Eq. (1) to evaluate the J integral, it is appropriate to note
that A has been taken to be area under the actual experimental P-vs-8 trace, minus the
component owing to the test fixture, in accord with the Srawley formulation.

RESULTS AND DISCUSSION

Comparison of Resistance-Curve Data

Resistance-curve data of J vs Aa for specimen types A through D are presented in Figs.
5a and 5b, for which J was evaluated from the compliance calibration technique and Eq. (1)
respectively. Curves sketched for each specimen type in Fig. 5a are shown as solid lines in
Fig. 5c for comparison with the respective dashed curves from Fig. 5b. At lower values of
Aa, the scatter in data defined by the solid lines overlaps quite well that from the dashed
lines, although near Aa = 0 there is a tendency toward slightly lower J values as calculated
from Eq. (1). On the other hand, at the higher values of Aa, the dashed curves indicate
notably greater J values, as maximum load (Pmax) is approached, than do the respective
solid lines, particularly for specimen types C and D. This may be a reflection of Landes and
Begley's prediction that J values computed by Eq. (1) would be overestimated, particularly
at greater Aa, owing to the influence of crack growth effects on A [3]. By comparison, the
compliance technique would not be expected to so overestimate J.

To infer levels of JIc from Figs. 5a and 5b, Aac can be estimated from Eq. (2) to be
approximately 6 X 10-3 in., by using the mean extrapolated value of J for Aa = 0 in Fig. 5,
or from the value of KIc noted earlier. From Fig. 5a, it follows that J,, = 188 - 235 im
lb/in.2 or 211 ± 24 in. lb/in.2; this compares with Jc = 158 - 209 in. lb/in.2 or 184 ± 26
in. lb/in.2 inferred from Fig. 5b. This amounts to a variation in J,, of <±12% from Fig. 5a
and <±15% from Fig. 5b. These correspond to variations in KIC of <±6% and <±7% respec-
tively. This is substantially less variation than might well be found in K1C testing of mill-
annealed titanium alloy plates [14]. The question as to which of the two mean values,
JIc = 184 or 211 in. lb/in.2 , is the more accurate is a moot point. The value of KIc cited
in Table 1 translates to JIc = 170 or 192 in. lb/in.2 , depending on whether the factor (1 - v 2 )
should be included or not in Eq. (3) [15, 16]. Moreover, it can be argued that the quoted
KI, value in fact may be lower than the average value for the plate material, inasmuch as two
out of three KQ tests failed to provide a valid KIc determination.

Specimen-Size Analysis

It has been estimated that "legal" JIc determinations can be obtained with specimens
of limiting dimensions [3, 17]

7
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JICa,B,b>>a , (5)
aflow

with a = 50 and aflow taken as the mean of ays and ats. For a level of JIc = 195 in. lb/in. 2 ,
this means for the present alloy that a, B, and b must exceed about 0.08 in. This value is
exceeded by the respective dimensions of all specimen types A through H.
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Fig. 4 - Compsrison of P-vs-5 diagrams obtained from precracked specimens to those generated from
the plane-stress plastic-zone-size corrected solutions of Bucci et al. [8]
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1.524 2.032
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CRACK EXTENSION (Aa), 10-3 in.

2.540 3.048 3.556 4.C

120 140

(a)

Fig. 5 - Resistance curves of J vs Aa for specimen types A through D, from which JI,
is defined at Aa,; (a) Data for J evaluated by the compliance calibration technique,
(b) Data for J evaluated from J = 2A/Bb, (c) Comparison of the resistance curves from
data in Figs. 5a and 5b.
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(b)

Fig. 5 (Continued) - Resistance curves of J vs Aa for specimen types A through D, from
which JIC is defined at Aac; (a) Data for J evaluated by the compliance calibration tech-
nique, (b) Data for J evaluated from J = 2A/Bb, (c) Comparison of the resistance curves
from data in Figs. 5a and 5b.
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mm
0 0 508 1016 1.524 2 032 2.540 3.048 3 556 4064

I

60 80 10
CRACK EXTENSION (lA), 10-3 in

(C)

Fig. 5 (Continued) - Resistance curves of J vs Aa for specimen types A through D, from
which JIC is defined at Aac; (a) Data for J evaluated by the compliance calibration tech-
nique, (b) Data for J evaluated from J = 2A/Bb, (c) Comparison of the resistance curves
from data in Figs. 5a and 5b.

Variation of JIc With Position Through the
Plate Thickness

Specimens Ec and Es were unloaded at displacements near the initiation point and
heat tinted. Results are plotted in Fig. 6a relative to the data scatter band obtained near
initiation in Fig. 5a, for specimen types A through D with J evaluated by the compliance
method. A substantial difference in J values is evident between the two specimens: for
Aa = 12 and 13 mils respectively, specimen Ec exhibits a level of J = 256 in. lb/in.2 ,
whereas J = 159 in. lb/in.2 for specimen Es.
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As might be expected, replica electron fractographs of actual heat-tinted crack exten-
sion reveal significantly larger dimples in the region of greater toughness, namely the plate
midthickness (Fig. 6b), than appear in the region near the plate surface (Fig. 6c). (Note
that heat tinting has done little to obscure fractographic features in this alloy.) Though
the microstructure of this alloy is relatively uniform for a mill-annealed plate of Ti-6AI-4V,
the primary a phase was somewhat greater in percentage and more elongated in shape at
the plate midthickness; the grain size of the a-P Widmanstatten matrix was also somewhat
finer there than near the surface. On the other hand, Rockwell C hardness measurements
(HRC) made through the plate thickness showed little variation. On the face normal to
the L direction, HRC varied from -31 at the center to -32 at the surface; however, on
the face normal to the T direction, HRC was higher in the center (-33.5) than near the
surface (-32.0).

Effect of a/W and B/b Ratios on JIe Determination

Specimen types F, G, and H were tested to explore the range of a/W ratios for which
J may be calculated via Eq. (1); Srawley [10] has suggested that the range should extend
from 0.2 to 0.95. Specimens of these three types were unloaded near the initiation point
and heat tinted. Results are plotted in Fig. 7 relative to the data scatter band obtained
near initiation in Fig. 5b for specimen types A through D. For specimen type F (a/W =
0.313), the J value calculated from Eq. (1) is obviously too high, namely 306 in. lb/in.2
at ha = 3 mils. Though for specimen type G (a/W = 0.598) the J value appears reasonable,
that for specimen H is obviously too low with J = 148 in. lb/in.2 at ha = 13 mils.

In view of Rice's derivation of Eq. (1), the result for specimen type F might not be
unexpected; however, for a deeply cracked specimen such as type H, it is. From Table 2,
which summarizes JIc data obtained via Eq. (1) for the different specimen types, it is
evident that specimen type H has the smallest dimension b (0.167 in.). Though this dimen-
sion is about twice the limiting value of 0.08 in. suggested by a = 50,in Eq. (5), perhaps
this limiting value is too low for the present case; that is, maybe alu 100 or greater. It
is pertinent to note that for the case of bend bars of a rotor steel, Landes and Begley [2]
noted a decrease in apparent JIc for a specimen with b < 50 JIc,/flow. Similarly for the
case of specimen type F, it is possible that specimen size limitation could be a factor in
the result, since type F has the smallest dimension a of all types examined, namely 0.206 in.

In the interest of developing a single specimen test for JIc, as opposed to the multiple
specimens required by the unload/heat-tint, resistance-curve technique, Corten has proposed
[18] that JIc can be obtained from a single specimen if B/b > 2 and if Pmax/PL > 0.85;
that is, under these conditions, it is proposed that Aapmax e Aac. For each specimen type
listed in Table 2, the B/b ratio is given as well as the experimentally observed Pmax, the
ratio Pmax/PL, and the value of J corresponding to Pmax, namely Jpmax. Also included are values
of crack extension found at Pmax, Aapmax, for comparison with ha near the initiation
point, Aac. None of the specimen types exhibit Pmax/PL > 0.85, as they range from a low
of 0.40 for type A to a high of 0.56 for type H. However, it is apparent that Aapmax is
an inverse function of B/b, with Aapmax ranging from a high of 0.149 in. at the lowest B/b
= 0.61 to a low of Aa = 0.013 in. at the highest B/b = 2.99; this is readily seen from the

12
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(b) Replica electron fractograph of crack extension
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Fig. 6 - Differential in toughness between the plate midthickness region and region near the plate surface,
as revealed from specimen types E, and E. respectively. Dimple size is notably larger in the region corre-
sponding to the position of type E, than that of E,; shown in (b) and (c) respectively.

13

400

300

-; 200

(9

I-z

100

I'

-- Y; 
i, Nf 

A- Ir

I f,�� 1� * 

-4 " , I
\ _' __11 -' I



YODER AND GRIFFIS

mm

70.9

53.2

I N
E

]35.5 -

,Fig. 7 - Data of J vs Aa for specimen types
F through H, with J computed from J = 2A/Bb
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Table 2
Summary of J-Integral Data for the Various Specimen

Types, with J Evaluated from J = 2A/Bb

Specimen ao/W in. ) ac AaPm PJp P PM
Type (nom.) (approx.) (approx.) max mx max b B/b mx

(in. lb/in. 2 ) (10-:3 in.) (10-3 in.) (lb) PL (in.) (in. lb/in. 2 )

A 0.457 186 6 85 8600 0.40 0.815 1.23 341

B 0.573 158 6 84 5585 0.44 0.640 1.56 351

C 0.457 190 6 149 4975 0.46 0.815 0.61 711

D 0.590 206 6 125 2790 0.45 0.615 0.81 542

F 0.313 306 3 81 1548 0.47 0.452 1.11 472

G 0.598 192 9 <45 623 0.55 0.265 1.89 <274

H 0.745 148 13 13 257 0.56 0.167 2.99 148
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150 - Ti-6AI-4V (ALLOY R14A) 3.810

zf . \ 0.31 < -< 0.75
z w

-' 125 - 0.17 in. < b < 0.82 in. 3.175
to

Wj ^x100 2.540
I- E

0

C 75 1.905

F-- I
X I_

Wz 50 1.270

" 25 - 0.635

0( ) 1.0 2.0 3.0
THICKNESS/LIGAMENT, B/b

Fig. 8 - Decrease in crack extension at the experi-
mental limit load (Aapmax) with increase in ratio
of specimen thickness to uncracked ligament (B/b)

graphical presentation of Fig. 8. Values of Jpmax vary similarly with B/b. Though these
trends support Corten's basic idea, unfortunately it may be difficult to design "legal" JIc

specimens of this alloy to attain Pmax/PL > 0.85. Comparison of types D and G, specimens
of equal B and a/W t 0.6, shows that reduction of W from 1.5 to 0.66 in. led to an increase
of Pmax/PL from 0.45 to only 0.55; however, W could not be so reduced much further if
the size limitation on a and b is indeed t 0.2 in. for this alloy (if a = 100 in Eq. (5)).

SUMMARY

Tests were conducted to determine JIc from resistance curves of J vs crack extension
obtained from fatigue-precracked specimens of a titanium 6AI-4V alloy. Three-point-bend
specimens of eight geometries were employed, with crack extensions delineated by heat
tinting. Findings from this work include:

* Over the range a/W = 0.45 to 0.60, the determination of JIc obtained with J com-
puted from the equation J = 2A/Bb agrees quite well with that obtained by
evaluating J via the compliance calibration technique; moreover, these determina-
tions of JIc are in good agreement with a valid KIc value for this alloy.

* At the greater crack extensions, as experimental limit load is approached, resistance
curves obtained with J computed as J = 2A/Bb are notably higher than those ob-
tained with J evaluated by the compliance method.
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* In exploring the range of a/W over which J = 2A/Bb is applicable, erratic results
were obtained at ratios of 0.31 and 0.75. Though the former might be interpreted
to be outside the range of applicability, the latter may imply that the specimen-size
limitation defined by a, B, b > a JIc/aflow was violated at a surprisingly high level of
a - 100. Further work is suggested to determine whether a might indeed be this
high for titanium alloys in general.

* Significant variation in JIc was found from specimens machined from different
positions through the plate thickness. This finding has serious implications regard-
ing any future standard method of JIc testing: If JIc results obtained from relatively
small, thin specimens are to be used to estimate toughness of a thick plate from
which they are cut, such specimens should be made at multiple positions through
the plate thickness. If the variance of JIC with position exceeds some specified
percentage, the estimate for the thick plate should not be "legal," at least until
some rational averaging procedure is adopted.

* Crack extension at maximum load was found to vary inversely with B/b. For B/b
ratios ranging from 0.61 to 2.99, Aapmax decreased from 0.149 to 0.013 in. Values
of JPmax similarly decreased with increasing B/b ratio.
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