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architectures benefit from optimization. When programs with repeated operands are con-
sidered, stack machines execute the programs as efficiently ag the addressable-vegister
machine only when optimization techniques are applied. Comparison of the three stack
mechanisms demonstrates that stack machines should be designed with facilities that are able
to take advantage of optimizing software.

Stack optimization techniques are governed by the fact that operations can only be
performed on values residing on the top of the stack. Two methods which minimize the
number of memeory accesses by reusing common variables and subexpressions are discussed.
The first method involves expression reordering. The second method involves the use of
stack manipulation operations which position needed data elements fo the top of the
stack. A stack opiimization algorithm based on the second approach is presented.
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CODE OPTIMIZATION OF ARITHMETIC EXPRESSIONS
IN STACK ENVIRONMENTS

1. INTRODUCTION

“There are sceptical thoughts, which seem
for the moment to uproot the firmest faith;
there are blasphemous thoughts, which dart
unbidden into the most reverent souls; there
are unholy thoughts which torture, with their
hateful presence, the fancy that would fain
be pure. Against all these some mental work
is a most helpful ally.”

Lewis Carroll

Code optimization for addressable-register machines such as the Univac 1108 has
become a major part of compiler writing (12, p. 764-765). The existing compilers. for
the Burroughs B5700 and B6700 stack machines perform little optimization {Appendix

A). Perhaps stack optimization fechniqgues were not considered necessary because a hard-

ware stack implicitly performs some functions that must be explicitly performed by software
in addressable-register machines—for example, the storage of a temporary result. In order

to clarify some of the architectural tradeoffs relevant to the choice between stack and
addressable-register machines, stack optimization should be considered. This thesis examines
optimization of arithmetic expressions in several different stack environments and compares
optimized code generated for stack and general register machines. '

As a basis for comparison, one addressable register and three stack axchitectures are
defined. An effort was made to keep all features of the machine the same with the exception
of the arithmetic mechanisms being compared. Since a machine design is an integrated '
combination of its features, the alteration of one feature influences the design of other
machine components. The machine comparisen is not intended to determine which of
the four architectures is best. This is not possible because there are too many variables
which are not considered. The comparison is used to demonstrate the need for optimiza-
tion on stack machines,

Chapter II contains background material on stack architectures and discusses the in-
herent attributes of stack and addressable-register configurations. Chapter III defines the
four machine architectures. Chapter IV discusses the optimization techniques used in our
analysis. Objective comparison of the code generated for each architecture requires that
optimization be performed at the same level. Our analysis is restricted to techniques
which are locally performed on basic blocks* of code.

* A basic block is a segment of code which contains a singie entry and exit point,

Note: Manuscript submitted June 20, 1974.
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In Chapter V, instructions generated for each machine to evaluate representative
expressions are compared. The comparison is based on the following parameters which
measure the efficiency of representation and execution:

1.  number of bits comprised by the instructions.
2. number of explicit data memory aceesses.
3. number of stack or addressable registers utilized.

The machine comparisons are analyzed on two levels. The use of an addressable-
register set is compared with the use of a stack and the three stack mechanisms are com-
pared. Analysis of expressions containing repeated operands and common subexpressions
demonstrates that the addressable-register machine is more efficient than the stack archi-
tectures in executing unoptimized code. However, when optimized expressions are con-
sidered, stack machines are, in general, as efficient. In particular, one stack architecture
executes optimized code more efficiently than the addressable-register machine. This
implies that improved software for stack machines should be developed to compete with
the present register optimization techniques. The comparison among the stack mechanisms
demonstrates that the application of optimization increases the efficiency on two of the
three stack machines. The other stack architecture permits liffle compile-time optimiza-
tion. *

To substantiate the conclusion that stack machines can be optimized, Chapter VI
defines a stack optimization algorithm for one of the stack architectures, The design of
the algorithm is based on the circular rotation of the contents of the stack registers.

The algorithm generates code for sample programs that executes as efficiently as hand-
optimized code for conventional register machines. Different ways to implement the stack
architecture for which the algorithm is defined are also discussed in this chapter.

II. BACKGROUND

“Contrariwise,”’ continued Tweedledee,
““if it was so, it might be; and if it were so,
it would be; but as it isn’t, it ain't.
That'’s logic.”

Lewis Carroll
Through the Looking Glass

An grithmetie stack ig a firgt-in, lagt-out memory which functions as a temporary
store for data values. Typically, a stack consists of a limited number of high-speed registers
on its top with the rest of the stack extending into main memory. Restricting the maxi-
mum stack depth to the available number of registers prevents implicit memory accesses
caused by the overflow into memory of the hardware portion of the stack. A stack with
a limited number of hardware registers on its top may be compared to a general register
set with a similar number of directly addressable registers. In stack machines when a
register is needed, the contents of the hottom register of the stack are implicitly pushed
into main memory; in general register machines, the contents of a selected register is ex-
plicitly stored into main memory.
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While designing a stack architecture, one must consider the tradeoffs between the
instruction stream* length and the number of memory accesses required to represent and
execute a program. The implicit storage of values into stack memory tends to reduce the
length of the instruction stream hecause explicit register address fields are not needed in
the instructions. However, in a typical stack machine only the top one or two registers
may be accessed. Values within the stack may be retrieved by performing operations
that position the values at the stack’s top. Specification of the stack-manipulation opera-
tions tends to increase the length of the instruction stream.

Stack-manipulation operations may be specified by separate instructions or by special
codes in existing instructions. The first method requires the definition of new operation
codes; the second method requires extending the length of the instruction word. When
two operations are specified in a single instruction, one operation (e.g., load, add) is in-
dicated by the operation code and the secondary operation (e.g., duplicate value on
stack, store result in location specified by the address field), by the special code.
Representation of a single stack-manipulation operation in a separate instruction requires
more storage than its representation in an existing instruction. However, the reservation
of a fixed number of bits in each instruction word for a frequently unused code may
result in a total net increase of the instruction stream length.

The decision to use stack-manipulation operators at all is dependent upon the hard-
ware stack depth. If there are enough registers in which values can be duplicated and
saved, stack operations which position the values in the top-of-stack registers eliminate
otherwise needed memory accesses.

The instruction stream of the Burroughs B6700 corresponds to the postfix notation
of expressions (8, Section 3). The operand symbol corresponds to a load instruction
which pushes the operand value or address specified in the instruction onto the stack.
The operator symbol corresponds to an instruction consisting only of an operation code.
The operation is performed on the top one or two elements of the stack. This type of
computer is called a zero-address machine because the only instructions with address
fields are those that load values onto the stack.

] Zero-address stack machines are not the only existing stack computers¥* and are not
necessarily the most efficient. Replacing several zero-address instructions of the 36700

hv ﬁ1nﬂ]n-nﬂdmee instructions annears to increase the machine’s afficioney. For gxamn
AL MERSLAW KB LS RS O ALAWAL G CUOS LRI lllﬂbllul‘: =] C.I.I.J.\.,J.GI.I\.'J a U‘ A ml‘lc,

storage of data values into main memory requires two B6700 instructions. A single-
address load instruction places the memory address onto the stack; then, a zero-address
store instruction stores the contents of the second-to-top-of-stack cell into the memory
location specified by the top-of-stack cell. Inclusion of the store operation code and the
memory address in the same instruction eliminates the need to temporarily save the
address on the stack. Additional load instructions can be avoided if instructions perform.-
ing arithmetic and logical operations contain address fields for their corresponding

operands. These ideas are explored in Chapter III, where two of the three stack archltectlues
defined have no zero-address instructions,

*Instruction stream is the collection of machine instructions used to perform some task within a program.
*The HP 3000 is a single-address stack machine (3).
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IIl. DESCRIPTION OF FOUR ARCHITECTURES

“The thing can be done,” said the Buicher,
“1 think.
The thing must be done, I am sure.
The thing shall be done! Bring me paper
and ink,

myi_ - L. . L J.
1ne pes ere lb mme EO pIOCU.l'E
Lewis Carroll
The Hunting of the Snark

The four machine architectures described in this chapier are called the Addressable-
Register Machine, the Parenthetical Control Machine, the Manipulative Stack Mackine,
and the Pure Stack Machine. A general overview of the machine designs is first presented.
This is followed by a more detailed deseription of each machine.

Each machine has eight genersl-purpose registers. In the Addressable-Register Machine,
the registers are directly addressable and in the other three machines, the regisiers are
the top of a stack whose bottom portion extends into main memory. Indexing in all
machines is performed by the use of seven addressasble index registers. The first three
machines have fizved-length instruciions of 32 bits each, The Pure Stack Machine has
single-address 32-bit instructions and zero-address 8-bit instructions. The single-address
instruction words of all machines contain a 16-bit memory address and an indirect bit.

Effactive address ealculation is the same for all four machin When the index

field is nonzero, the contents of the mdex register is added to the memory address to pro-
duce a modified address. If the indivect bit is zem, addressing is direct and the meodified
address is the effective address used in the execution of the instruction. If the indirect bit
is one, addressing is indirect and another address word is retrieved from the location
specified by the modified address already determined. Indexing and indirect addressing
are performed on the new word in exactly the same manner. This process continues

until some referenced loecation is found whose indirect bit is zero.

o bine gt e Airidad inta twrn olagaoss tha ploss A featwiatiama wkink
HUCLWON el sy o QiviGeq nmu tWO Ciasses: € {ass O iSwUluiGiis wildh

alters the addressable or stack registers and the class which alters the index registers. In
the first three machines, 9-bit operation codes represent the typical load, store, transfer,
algebraic, logical and index register manipulation operations. In the Pure Stack Machine,
12-hit operation codes of the single-address instructions are used for loading and storing
operands and manipulating index registers. The 8-bit zerc-address instructions perform
algebraic, logical, and stack manipulation operations.

The funciions performed by one 3-bit field of the instruction demonstrate the
particular characteristic in each of the machines thatl is being compated. The 3-bit field
in the Addressable Register Machine addresses one of the eight general-purpose registers.
On the Parenthetical Control Machine, the three bits control the order in which instruc-
tions are executed. An operand and operator are pushed onto the stack when the execu-
tion of that particular operation is to be deferred. The instruction stream corresponds to
infix notation and the contents of the 3-bit field serves the same function as parentheses.
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On the Manipulative Stack Machine, the 3-bit field specifies where operands are located
and where the results of operations should be placed. An operand may be on the stack or
may be referenced by the address field of the instruction. The result of an operation may
be placed in one or both of the two top-of-stack registers or in the memory location
specified in the address field. On the Pure Stack Machine an operation may only be
performed on operands residing on the stack. The three bits are used to extend the cpera-
tion code length so that the instruction set includes manipulative stack operators which
perform such functions as deletion, exchange, duplication, and rotation of elements on the
stack. In the Manipulative Stack Machine, stack manipulation is performed as part of the
other instructions. In the Pure Stack Machine, stack-manipulation operators are separate
instructions. ’

A. Addressable-Register Machine

The 32-bit instruction word of the Addressable-Register Machine contains the
following fields:

9-bit operation code (GOP for general register opcode, XOP for index register opcode)

1 indirect bit ' |

3-bit index register address (I1-I7 for seven index registers)

3-bit general register address (RO-R7 for eight general registers)

16-bit memory address (A)

The eight general registers are referenced as the first eight locations of memdry.

When the memory address field contains the values 0 through 7, in a non-immediate in-
struction, the value refers to a general register*.

The symbol @ preceding a memory address indicates that the indirect bit is set.
Placing one of the index register mnemoniecs (I1-17) in parentheses following the memory
address indicates that the address is to be modified by the contents of the specified
register. The two classes of instructions are represented by:

GOP  @A(Ii),Rn
XOP  @AL

wherei=1,..., Tandn=20,.... 7. Immediate instructions are defined by ape

codes with an “I” appended (e.g., GOPI).

*The use of the address field to reference a register wastes 13 bits of the instruction word. Many machines
(e.g., IBM 360) have shorter length instructions for register-to-register operations. The use of variable-
length instructions on the Addressable-Register Machine does not fit in with the general design of the four
architectures. The unused 13 bits in register-to-register instructions will be considered in our final anslysis.
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B. Parenthetical Control Machine®*

Instructions of the Parenthetical Control Machine are sequentially executed until
a parenthesized term is encountered, The current operation is automatically deferred
until the term is computed. The 3-bit field of each instruciion controls sequencing of
operations as follows:

Code Mnemonic Action Taken
0 None Normal execution of instruction,
T { Deferral of instruction. The operation

code is first stored into the current top-
of-stack register containing already
computed arithmetic results. The operand
is then stored into a hew register which
becomes the top of the stack. Processing
on the next instruction begins.

1-8 | I § 1131 The operation specified by the current
instruction is first performed and the
result is treated as an operand for the
most recently deferred operation. For
each close parenthesis, the deferred opera-
tion specified in the second-to-top-of stack
register is performed on the operands in
the two top-of-stack registers.

Source programs written for the Parenthetical Control Machine are translated into
object programs corresponding to infix notation. Translation involves removing the un-
necessary explicit paventheses and inserting the needed implicit parentheses. A transia
tion algorithm (14, p. 22-23}) demonstrates that it is never neecessary to associate more
than one begin parenthesis with the operand specified in a single instruction.

To demonstrate the deferral mechanism, consider the expression A+B¥* (CHD*E*F)
which is translated to A+{B*{C+{D*E*F})). The following table contains the instructions
which are generated for the expression. The second column displays the stack contents
after execution of each instruction. The symbol ', separates the cells of the stack and
the rightmost data item represents the contents of the top stack celi.

**This machine has been modeled after the Data Processing Element of the All Applieations Digital
Computer (AADC) which is currenily being designed as the Navy's standard computer for the next
generation {13). The stack mechanism of the Parenthetical Control Machine is very similar to ihe
deferral mechanism (i4) of the AADC,
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Instructions Stack Contents Sequence of Operations

LOAD A A

ADD (B A+; B '+ is deferred

MULT (C A+; B%; C *#7 is deferred

ADD (D A+;B¥;C+; D '+ is deferred

MULT E A+; B¥; C+; D*E * js performed

MULT F})) A+; B¥; C+; D*E*F ' is performed
A+; B¥*; C+{D*E*F) deferred '+ is performed
A+; B*(C+(D*E*F)) deferred '** is performed
A+(B*(C+(D*E*F))) deferred '+ is performed

The 32-bit instruction word of the Parenthetical Control Machine contains the same
fields as the Addressable-Register Machine with the exception that the 3-bit general
register field is replaced by the 3-bit parenthetical control field. Stack opcodes (SOP)
take the place of the general register opcodes. An instruction is represented by one of
the following forms:

SOP @A(Ti)
XOP @Al
wherei =1, ..., 7. A single left parenthesis or up to six right parentheses may be in-

cluded with the operand name.

C. Manipuiative Stack Machine

The instruction word format and mnemonic representation of the Manipulative Stack
Machine* are the same as those of the Parenthetical Control Machine with the exception
of the interpretation and representation of the 3-bit field. The use of the bits is shown
in the following table. The normal mode of operation which uses the memory address

as the source of one of the operands occurs when all bits are zero. When a bit i is set,
the corresponding mnemonic is appended to the operation name.

Bit Mnemonic Action Taken When Bit Is Set
1 S Operation is performed on the top two stack
elements.
2 M Memory address is used as the destination of the
operation. '
3 D . Result of operation is duplicated on top of the
stack.

The use of the bits is demonstrated by considering the addition operation. In the |

following tabie, assume E is the effective operand, T1 is the contents of the top-of- staclt
register, and T2 is the contents of the second-to-top-of-stack register.

*The design of this machine was motivated by Parnas (26).
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Opcade Function
ADD E+T1-+T1
ADDS TI+T2-T1
ADDM E+T1-~E

s
ADDSM T1+T2~>E
ADDD E+T1-T1
-T2
ADDSD T1+T2-T1
-T2
ADDMD E+T1—>E
-T1
ADDSMD T1+T2—~E
-T1

Deseription

Addition is performed on the effective
operand and the top stack element.
The result is stored on the top of the
stack.

Addition is performed on the top two
stack elements. The yesult is stored

- on the top of the stack.

Addition is performed on the effec-
tive operand and the top stack ele-
ment. The result is stored in the
memory location of the effeciive
operand,

Addition is performed on the top
two stack elements, The result is
stored in the memory location of the
effective operand.

Addition is performed on the effective
operand and the top stack element.
The result is stored in the top two
stack registers.

Addition is performed on the top
two stack elements. The result is
stored in the top two stack registers.

Addition is performed on the effective
operand and the top stack element.
The result is stored in the memory
loeation of the effective operand and
on the top of the stack.

Addition is performed on the top
two stack elements. The resultis
stored in the memory location of the
effective operand and on the top of
the stack.

D. Pure Stack Machine

The Pure Stack Machine has two instruction formats. The 8-bit zero-address instruc-
tions are operations which are performed on elements of the stack. The 32-bit instructions
load data onto the stack, store data from the stack into main memory, and aiter_the con-

tents of the index registers.

The 32-bit instruction word has the following fields:

12-bit operation code (SOP for stack opeodes, XOP for index register opcodes)

1 indirect bit
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3-bit index register address (I1-I7 for seven index registers)
16-bit memory address (A)

There are two store operation codes in the class of stack instructions. The STND (store
nondestructive) instruction stores the value on top of the stack into the. specified memory
location without destroying the value on the stack. The STD (store destructive) instruc-
tion deletes the top stack element after storage is performed.

The 8-bit stack instructions include:

1. Logical and algebraic operations which are performed on the top one or two
stack elements

The DUP instruction which duplicates the top element of the stack
3. The XCII instruction which exchanges the top two stack elements

4. The ROTD (rotate down) instruction which permutes the top eight operands
of the stack hv rnfahno‘ the value on top of the stack to the bottom of the

stack’s reglster set

5. The ROTU (rotate up) instruction which permutes the top eight operands of
the stack by rotating the value at the bottom of the stack’s register set to the
top of the stack

On a functional level, the rotate instructions perform multiregister circular shifts.

The mnemeonic representation of the 32-bit instruction is the same as for the previously

described stack machines. The 8-bit instructions are simply represented by their opera-

tion code mnemonics.

IV. OPTIMIZATION TECHNIQUES

“Can you do Addition?”’ the White Queen
asked.
“What’s one and one and one and one and
one and one dnd one and one and one and cne?”

Lewis Carroll
Through the Looking Glass

This chapter discusses the optimization techniques used to generate code for the
machines considered in our analysis. A good background on compiler optimization
appears in Cocke and Schwartz (12). It should be emphasized that most optimization
techniques have been developed for single-accumulator or multiregister machines.

Optimization procedures may be classified into two distinet categoreis: machine-

independent techniques performed on the source program and machzne-dependent techniques
performed on the object language.
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Machine-independent optimizations make use of a general set of transformations for
a large class of machines. Common subexpression elimination prevents redundant cal-
culations and memory fetches, Dead variable elimination removes statements that assign
values to variables which are not used again in the program. Constant propagation per-
forms calculations on operand values known at compile-time.

Machine-dependent optimizations are governed by the structure of the target machine.
The effectiveness of these technigues in minimizing the time-storage cost function depends

upon the register configuration and the operations permitted by the instruction set.

The sample expressions considered in our analysis are translated from the original
source language into either an intermediate posifix or parenthesized infix form. In
Chapter V instructions are generated from two translations: pure translgtion in which
the operands appear in the same order in the original and translated expressions and
reordered translation® which involves reordering within and between expréssions. We
will assume that code generated from a pure translation is unoptimized and code generated
from a reordered {ranslation is optimized.

On the machine-independent level, reordering helps to identify common subex-
pressions. On the machine-dependent level, reordering has a differenti effect on each
machine. The order that the operands appear in the {ranslated program is the order
that they are assigned to registers or are placed on the stack. On the Addressable-
Register Machine, the order that values are assigned to regisiers is not eritical because the
contents of any register can be accessed at any time during execution. In fact, ansalysis
of sample expressions shows that reordering does not increase the efficiency of the
Addressable-Register Machine, |

On the Manipulative Stack and Pure Stack Machines, the order that operands ave
placed on the stack is important beeause values may only be reused when they appear on
top of the stack. As a result, the order of repeated operands in the translated program
is critical to efficient execution on these machines.*

Optimal reordering of expressions is not as important in the Parentheticat Controt
Machine as in the other stack machines because the hardware of the Parenthetical
Control Machine does not permit the application of optimization techniques which
eliminate common subexpressions.** There is no facility to retain a value on the top of
the stack after the value is used in a calculation. A value in one stack register cannot
be duplicated into another stack register.

*(Operands within an expression are reordered according to the mathematical rules of commutativity, We
will ignore the noncommutativity of certain multiplication and addition operations caused by machine
idiosyncrasies,

*On the Pure Stack Machine, use of the ROTU and ROTD operators which shift needed data values from
within the stack {o the top of the stack is an alternative to expression reovdering. The stack optimiza-
tion algorithm described in Chapter VI demonstrates how rotation of the stack registers increases program
efficiency.

**The motivating factor behind the design of the deferral mechanism for the AADC was, in fact, to relieve
the software burden {14}.

i0
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Software on the Manipulative Stack and Pure Stack Machines decides if the storage
of an element into memory destroys its value on the top of the stack. The Parenthetical
Control Machine does not have the facility to make the decision. The value stored into
memory always remains on the top of the stack.

V. COMPARISON OF CODE GENER:ATED FOR EACH MACHINE

“Explain all that,” said the Mock Turtle.
‘“No, No! The adventures first,”” said the
Gryphon in an impatient tone: “Explanations
take such a dreadful time.”

Lewis Carroll
Alice’s Adventures in Wonderland

Three basic blocks are considered in the machine comparison. The first example
consists of one expression. Code for the expression is generated from the pure transla-
tion only, because there are no common subexpressions or repeated variables. The
second example is a single expression containing a common subexpression. The third
example is a set of expressions that contain several repeated variables. In the latter two
examples, code generated from both the pure and reordered translations is examined.

Example 1: Z: = (A(J)+B)*(C+D)

This example demonstrates the use of index registers. The code generated for each
of the machines is displayed in Figure 1. Since there are no repeated operands, optimiza-
tion techniques to eliminate common subexpressions are not applicable. The machines
execute the expression at approximately the same cost. The Parenthetical Control and
Manipulative Stack Machines both require one less instruction than the Addressable-
Register Machine, The deferral mechanism of the Parenthetical Control Machine tends
to reduce the number of loads since operands associated with deferred operators are auto-
matically loaded onto the stack. In the Manipulative Stack Machine, a store is avoided
because the address field of the instruction performing the final operation contains the
destination of the expression. The Pure Stack Machine requires more program storage
because all loads onto the stack are explicit.

Example 2: A: = B*C+D*5+B*C*E

Code generated from the following pure translated forms appears in Figure 2:
postfix BC*D5#+BC*E+A: =
infix A: = B*C+(D*5) + (B*C*E)

The Addressable-Register Machine executes the expression most efficiently because the

subexpression B*C is in a register when it is needed the second time. In the stack machines,
B*C has already been used in calculation. As a result, the values of B and C are re-
dundantly fetched from memory and multiplied.
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XLOAD
LOAD
ADD
LOAD
ADD
MULT
STOR

XLOAD
LOAD
ADD
MULT
ABPD
STOR

XLOAD
LOAD
ADD
LOAD
ADD
MULTM

XLOAD
LOAD
LOAD
ADD
LOAD
LOAD
ADD
MULT
§TD

HELEN B. CARTER

MEMORY
BITS ACCESSES

411 224 6
AlTLRO

B.RO

C.R?

D,R1

RO.R1

ZR1

(A) ADDRESSABLE-REGISTER MACHINE

4,11 192 6
All1)

B

{C

D}

F 4

(B} PARENTHETICAL CONTROL MACHINE

L1t 182 ]
A1)

NOOE

{C) MANIPULATIVE STACK MACHINE

J i1 216 8
Al

(D} PURE STACK MACHINE

Figure 1. Pure translaticn of Exampie 1.
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MEMORY
BITS ACCESSES REGISTERS
LOAD B,RO B IN RO 256 5 2
MULT C,R0O B*C IN RO
LOAD D,R1 D IN R1
MULTI 5,R1 D*5 IN R1
ADD RO,R1 B*C+D*5 IN R1
MULT E,RO B*C*E IN RO
ADD R1,RO B*C+D*5+B*C*E IN RO
STOR A,RO | ‘
(A) ADDRESSABLE-REGISTER MACHINE
LOAD B B 256 7 2
MULT C B*C
ADD (D B*C+; D
MULTI 5) B*C+: D*5
B*C+D*5
ADD (B B*C+D*5+; B
MULT C B*C+D*5+; B*C
MULT E) B*C+D*5+; B*C*E
B*C+D*5+B*C*E
*STOR A A

*ALL STORES ON THIS MACHINE ARE NONDESTRUCTIVE.
(B) PARENTHETICAL CONTROL MACHINE

MEMORY
BITS ACCESSES REGISTERS

LOAD B B 288 7 2
MULTC B*C X
LOAD D B*C:D
MULTI 5 B*C; D*5
ADDS B*C+D*5
LOADB B*C+D*5; B
MULT C B*C+D*5; 8*C
MULTE B*C+D*5; B*C*E
ADDM A B*C+D*5+B*C*E

EMPTY

{C) MANIPULATIVE STACK MACHINE

LOAD B B 304 7 3
LOADC B;C
MULT B*C
LOADD B*C:D
LOADIS B*C:D:5
MULT B*C; D*5
ADD B*C+D*5
LOADRB B*C+D*5; B
LOADC B*C+D*5;C
MULT B*C+D*5; B*C
LOAD E B*C+D*5; B*C; E
MULT B*C+D*5; B*C*E
ADD B*C+D*5+B*C*E
STD A EMPTY

iIml n [ d -]
W rvne o
Figure 2. Pure translation of Example 2.
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One possible reordering reverses the terms B*C*E and D*5. Figure 3 displays code
generated for each of the machines from the following reordered translations:

postfix =~ BC*BC*E#+D5*+A =
infix A: = BXC+(B*C*E) + (D*5)

The code generated for the Addressable-Register Machine resulting from the reordered
translation involves one more instruction and one more register than the code generated
from the pure translation. The result of the first addition operation in Figure 2(a) is
placed into R1, and, as a result, the value B*C is preserved in RO. In Figure 3{(a) reuse

of B*C requires loading its value into a second register.

The code generated from the reordered translation for the Parenthetical Control
Machine has the same efficiency as code generated from the pure translation. Since the
contents of the stack is heavily controlled by hardware, software is not permitted to
duplicate repeated variables or common subexpressions within an expression,

On the remaining two stack machines, the code resuiting from the reordered fransla-
tion is more efficient than the code resulting from the pure translation. On the Manipula-
deoo. L.~ 1. WA L. . IS PRSI h MUY » T TRLY R i T DN R, N P U, » T 1Y o RENSE | TRpNEy gy iy | SO SR
LveE Otack FIGQUILHIC, bIEe UsSEe Ul LIE O-DIUV 1IeiU Lo uupliCale DTuw OI1 U Stdli SLUIINaves
two instructions and two memory accesses. On the Pure Stack Machine, an 8-bit duplica-
tion instruction similarly eliminates the redundant caleulation of B*C,

In a recent study of Fortran programs (21), the number of occurrences of easily
recognizable syntactic constructions was counted. It was determined from the data that
most Fortran statements used in practice are guite simple in form. A static analysis of
the programs showed that 68% of 250,000 statements were trivial replacements of the
form A = B where no arithmetic operations were present and 2Z4% were of the form
A = BopC where a single operation was present. In many cases, the first variable on the
right was the same as the variable on the left (A = AopB).

The following basic block is representative of existing Fortran programs:

Example:3: A: = A+1
B:=A
C:=B*2
D: =D+A
E:=D

Code generated for the pure translations appears in Figure 4. The Addressable-
Register Machine requires one less memory fetch than the other machines since the value

of A is retained in a register,

Reordering does not alter the efficiency in the first two machines. However, changing
the order of the operands in expressions A: = A+1 and D: = D+A reduces the number of
instructions and memory accesses required by the Manipulative Stack and Pure Stack
Machines to execute the statements. Code resulting from the reordered translated pro-
gram 1A+A: = AB: = B2*C: =AD+D: =DE: = for the Manipulative Stack and Pure Stack
Machines is displayed in Figure 5.
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LOAD B,R0O
MULT C,RO
LOAD RO,R1
MULT E,R1
ADD RGO,R1
LOAD D,R2
MULTI 5,R2
ADD R1,R2
STOR A,R2

LOAD B
MULTC
ADD (B

MULTC
MULT E}

ADD (D
MULTI 5)

STOR A

LOADB
MULTD C
MULTE
ADDS
LOAD D
MULTIS
ADDSM A

LOAD B
LOADC
MULT
pup
LOAD E
MULT
ADD
LOAD D
LOADS
MULT
ADD
STDA

NRL REPORT 7787

MEMORY

BITS ACCESSES REGISTERS
B IN RO 288 b 3
B*C IN RO
B*C IN R?
B*C*E IN R1
B*C+B*C*E IN R1
DINR2
D*5IN R2
B*C+B*C*E+D*5 IN R2

{A) ADDRESSABLE-REGISTER MACHINE

MEMORY

Femmiven

BITS ACCESSES REGISTERS

B 256 7 2
B*C

B*C+; B

B*C+; B*C

B*C+; B*C*E
B*C+B*C*E
B*C+B*C*E+; D
B*C+B*C*E+; D*5
8*C+B*C*E+D*5

A

A

(B) PARENTHETICAL CONTROL MACHINE

B _ 224 b 2
B*C;B*C :

B*C; B¥C*E

B*C+B*C*E

B*C+B*C"E; D

B*C+B*C*E; D*5

EMPTY

{C) MANIPULATIVE STACK MACHINE

B 240 5 3
B;C

B*C

B*C; B*C

B*C; 8*C; E
B*C; B*C*E
B*C+B*C*E
B*C+B*C*E; D
B*C+B*C*E.;D; 5
B*C+B*C*E; D*5
B*C+B*C*E+D*5
EMPTY

(D) PURE STACK MACHINE

Figure 3. Reordered translation of Example 2,
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LOAD A,Ro
ADD 1RO
STOR ARG
STOR B,RO
LOADI 2R
MULT RO,R1
STORCR1
ADD D RO
STOR B.RO
STORE.RO

LOAD A
ADDI 1

STOR A
STORB

it T 2
T W 3

STORC
LOADD
ADD A

STOR D
STORE

LOAD A
ADDt 1
STORD A
STORDB
MULTI Z
STORC
LOAD D
ADD A
STORDD
STORE

LOAD A
LOADi 1
ADD
STND A
STND B
LOADI 2
MULT
STDC
LOAD D
LOAD A
ADD
STND D
STDE

HELEN B. CARTER

MEMORY
BiTS ACCESSES
A IN RO 320 7
A+1IN RO
2N R1
2*B IN R1
D+A IN RO

{A} ADDRESSABLE-REGISTER MACHINE
320 8

+
=3

€
N

mUEUnmw)hb
»

{B} PARENTHETICAL CONTROL MACHINE

MEMORY
BITS ACCESSES

A 320 8

EMPTY
DA
D+A
EMPTY
{D} PURE STACK MACHINE

Figure 4. Pure translation of Example 3.
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MEMORY
BITS ACCESSES REG!STERS
LOAD 1 1 256 6 : 1 '
ADDMD A 1+A '
STORD B B
MULTI 2 B*2
STORC EMPTY
LOAD A A
ADDMD D A+D
STORE EMPTY
{A) MANIPULATIVE STACK MACHINE
LOAD 1 1 320 7 2
1LOAD A 1A
ADD A
STND A A
Dup A A
STND B A:B
LOAD! 2 AxB; 2
MULT A;B*2
STDC A
LOAD D A;D
ADD A+D
STNDD D
STDE EMPTY

(B} PURE STACK MACHINE

Figure 5. Reordered translation of Example 3.

The most efficient code for the Addressable-Register Machine appears in Figure 4(a)
and most efficient code for the Mampulanve Stack Machine appears in Figure 5(a). The
Manipulative Stack Machine requires one less memory fetch and 20% fewer bits to execute
the expressions.

Our conclusions are based on the analysis of the instruction stream length and the
number of memory accesses. Little emphasis has been placed on the number of registers
because the code generated from our sample expressions does not use the maximum
number of addressable or stack registers. We are primarily concerned with the execution
of basic blocks containing subexpressions and repeated variables because execution of
expressions with no repeated operands has approximately the same time and storage cost

on each machine.
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The results are summarized in Table 1.

Pure Translation Reordered Translation
Example c{ﬁi* Memory Memory
Bits Accesses {Registers Bits Accesses [ Registers
1 1 224(208+%) 6 2
2 192 8 2
3 192 6 2
4 216 8 3
2 1 256(2247) 5 2 288(2407} & 3
2 256 7 2 256 7 2
3 288 7 2 224 & 2
4 304 7 3 240 5 3
3 1 320(304%) 7 2 320(3047) 7 2
2 320 8 i 320 8 1
3 320 8 1 | 256 6 1
4 354 8 2 320 T 2

*Machine code:

1., Addressable-Register Machine
2. Parenthetical Control Machine
3. Manipulative Stack Machine

4, Pure Stack Machine

$These values for the Addressable-Register Machine Assume that the register-to-register operations are
performed in 16-bit instructions, similar to the IBM 380,
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We will first compare the Addressable-Register Machine with the stack machines.
When code is generated from a pure translation, the Addressable-Register Machine executes -
the code most efficiently, When code is generated from a reordered translation, the - :
Manipulative Stack Machine executes the code most efficiently. The parameter that dis- -
tinguishes the Manipulative Stack Machine from the Addressable-Register Machine is the
instruction stream length. The Manipulative Stack Machine requires the fewest number
of bits to represent its object code because of the compact representation of its register-
to-register transfer (duplicate) and register-to-memory transfer operations.

The Addressable-Register and Parenthetical Control Machines are similar in the sense
that expression reordering does not increase the efficiency of either machine. However,
the unoptimized code for the Addressable Register Machine is more efficient than the
unoptimized code for the Parenthetical Control Machine because the latter does not
have the facility to eliminate redundani memory accesses. Expression reordering on
the Pure Stack Machine results in code that executes as efficiently as the Addressable-
Register Machine.

‘ Comparison of unoptimized code for the three stack machines shows the Pure Stack
Machine to perform least efficiently because its explicit load instructions increase the
length of the instruction stream. Comparison of optimized code shows the Parenthetical
Control Machine to perform least efficiently because its hardware does not permit the-
application of optimization. Optimization techniques on the Manipulative and Pure Stack
Machines utilize the specific capabilities of each machine to increase efficiency. To sub-
stantiate the conclusion that different stack architectures can take advantage of optimiza-
tion techniques, an optimization algorithm for the Pure Stack Machine is defined in the
next chapter.

VI. OPTIMIZATION ON THE PURE STACK MACHINE

““Would you tell me please, which way I
ought to go from here?”
“That depends a good deal on where you
want to get to,” said the Cat.

“I don’t much care where-" said Alice.
“Then it doesn’t matter which way you go,”
said the Cat.

“so long as I get somewhere,” Alice
added as an explanation,

“Oh, you’re sure to do that,” said the Cat,

“if you only walk long enough.”

Lewis Carroll
Alice’s Adventures in Wonderland

Additional optimization techniques that may be applied to the Pure Stack Machine
are defined in this chapter. Analysis of representative programs in the preceding chapier
shows that the maximum stack depth never exceeds three. As a result, we assume that
the Pure Stack Machine has a fixed-length eight-register stack. The cost of overflow of "
the hardware portion of the stack into main memory is not considered. In addition to
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defining an optimization algorithm, this chapter discusses different ways that the registers
might be used to configure the stack.

An alternative to expression reordeting is rotating data values from within the stack
to the top of the stack when they are needed. The stack optimization algorithm® {Appendix
B) eliminates all unnecessary memory fetches by taking advantage of the stack operations
which exchange and rotate data elements on the stack. The XCH, ROTD and ROTU
instructions are defined in Chapter III, The algorithm is divided into two functional

sections. The first section which identifies common subexpressions and repeated variables
performs the following sequence of operations:

1. Read source program in postfix form,

Reorder terms of commutative operationt so that common subexpressions can
be identified.

3. Identify the largest common subexpressions.

b o PO SRR T, IRy 3 . NIRRT SR JURTY, [ L . S
DELOTIdL LWIE RUSLLA PDIVUEIdil VO SPECLlY e UCCULIICIHIUE UL LIIC CUNMIEnUI du-
expressions. The first occurrence of a subexpression is followed by an identify-
ing symbol. Subsequent occurrences of the subexpression are replaced by the

symbol,

19

5. Obtain a count of the number of times each unique variable or subexpression
appears in the program. (The variables which comprise the subexpressions are
not counted.)

The second section is the code generation phase which reads one symbol of the
modified postfix program at a time:

1. If the symbol is a variable which is encountered the first time in the program, its
value is loaded from memory onto the stack. If the variable is repeated later
in the program, its value is duplicated on top of the stack.

2.  If the symbol identifies the first occurrence of a common subexpression, the
value of the subexpression is duplicated on top of the stack.

3. If the symbol is a constant, the value is loaded onto the stack.

4. If the symbol is a variable or subexpression whose value is located in some stack
register, one of two actions is taken, If the operand is repeated later in the pro-
gram {it has already been repeated two or more fimes}, il is shifted to the top
of the stack by the minimal number of ROTU or ROTD instructions and is then
duplicated. If the operand is not repeated, it remaing where it iz and will he
shifted to the stack’s top when the operator symbol is encountered.

5, If the symbol is an assignment operator, a store nondestructive instruction is
generated if the variable whose vaiue is being altered is repeated later in the
program; otherwise, a store destructive instruction is generated.

6. If the symbol is 4 dyadic operator, both operands are already on the stack.
The fewest possible XCH, ROTD and ROTU instructions are generated to
position the operands at the top of the stack.

*The algorithm is written in the language SIMPL-T (B).
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7. If the symbol is a monadic operator and if the operand is not on the top of the
stack, the fewest necessary ROTU or ROTD instructions are generated to bring
it there.

To demonstrate how the algorithm works, the code generated for the expressions
B: = B¥*C+D
E: = D¥B+C

appears in Figure 6(a). Additional examples of code generated by the algorithm appear
in Appendix C.,

The code resulting from the expression reordering technique used in the machine
comparisons is not as efficient as the code generated by the stack optimization algorithm.
The best reordered translation of the previous example is BC*D+B: = BD*C+E: =. Figure
6(b) displays code generated for the Pure Stack Machine from the reordered translation.
No matier what reordering of the expression is used, af ieast two of the three repeated
variables must be fetched twice from memory.

The code in Figure 6(a) compares favorably with hand-optimized code for the
Addressable-Register Machine which appears in Figure 6{(c). In both the Pure Stack and
Addressable Register Machines, the storage and time cost functions are approximately
the same,

Each of the eight stack registers of the Pure Stack Machine has a bit indicating

- whether the register is full or empty. The number of data items that are actually moved
during execution of the duplicate, exchange, and rotate instructions depends upon the
quantity and locations of the registers that are marked full. Figure 7 demonstrates the
necessary data movements caused by execution of a ROTD instruction. The stack
registers are designated by SRn where n = 0, ..., 7. SRO is the top stack register.

In Example 1, data item A is moved, SRQ is marked empty, and SR6 is marked full,

In Example, 2 data items A, D, and E are moved; SRO is marked empty; and SR is
marked full.

The relative times required to execute the duplicate, exchange, and rotate instructions
depend on how the registers are used to configure the stack. The smallest numbered
register that is marked full is the top element of the stack. Rotate operations minimally
require the movement of one data item and the resetting of two “full-empty” bits. A
duplication operation requires the shortest amount of time when there is an empty register
that is numbered smaller than the current top-of-stack register. The number of data
movements required to duplicate the top stack element is minimized if data elements are
loaded into the largest numbered register such that the registers above it are marked
empty. For example, assume registers SRO through SR3 are empty and SR4 through

SR7 are full. A LOAD is followed by a DUP. If the value to be loaded is placed in SRO,
then the DUP causes the data item to be shifted from SRO to SR1 and then duplicated.

If the value is placed in SR3, no data movements are necessary prior to duplicating the
item in SR2.
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LOAD B
LOAD C
pUP
ROTD
MULT
LOAD D
pupP
ROTD
ADD
STND B
ROTU
MULT
ADD
STDE

LOADB
LOADC
MULT
LOADD
ADD
STND B
LOAD D
MULT
LOADC
ADD
STDE

LOAD C.RO
LGAD RO,R1
MULT B,R1
LCADDR2
ADD RZ,R1
MULT R1,R2
ADD RO,R2
STOR B, R1

STOR E,R2

HELEN B. CARTER

MEMORY
BITS ACCESSES

232 5 4

ofomEw
00ORWBVB OO

¥*

COODW®O

PQQRRoOpaeoow
Uﬁll:g_ug

m
=
o]
]
-~

(A} STACK OPTIMIZATION ALGORITHM

B 258 7 2
8;:C
B*C
B*C;D
B*C+D
B

B: D
B8*D
B*D: C
B*D+C
EMPTY

{B) REORDERED TRANSLATION FOR THE PURE STACK MACHINE

CINRO 288(224*} 5 3
CiNR1

B*C IN R1

DiINR2

B*C+DINR1,BINR1

B*DINRZ

B*D+C IN B2, E IN R2

*WHEN REGISTER-TO-REGISTER INSTRUCTIONS ARE 16 BITS LONG,
{C} HAND-OPTIMIZED CODE FOR THE ADDRESSABLE-REGISTER MACHINE

Figure 8. Code gengrated for sample expressions,

[
3]




NRL REPORT 7787

EXAMPLE 1 EXAMPLE 2

BEFORE AFTER BEFORE AFTER
SRO A SRO A
SR1 B B SR1 B B
SR2 c c SR2 c c
SR3 SR3
SR4 D D SR4
SR5 E E SR5 D P
SR6 A SR6 D E
SR7 SR7 E A

Figure 7. Data movements caused by execution of a ROTD instruction.

The above discussion about where in the set of empty registers values should be
loaded is rhetorical since the hardware usually determines the register configuration and
the implicit data moves between registers. It would be nice if the software could specify
loading the value in SR3, knowing that the next instruction was a DUP. In Example 2
of Figure 7, the data items D, E, and A could have been moved into registers SR3, SR4,
and SR as easily as they were moved into SR5, SK6, and SR7. If ihe software were
able to control the movement, the number of implicit data moves between registers
could be minimized by anticipating what would occur during execution of the instructions
which follow ROTD. For example, if several LOAD instructions followed, it would be
best to move D, E, and A to the bottom of the register set initially to avoid moving
them later on. If another ROTD instruction followed, the initial positioning of the items
SR3 through SR5 would eliminate the need to move the items a second time. It should
again be noted that these options are not available in any existing stack machine. Adding
these capabilities to the existing stack functions combines the advantages of stack and

adAwasoniala wasmatba nhiw Tt immmnnnan dha mamisissamasamdt $lnd dtha safbeen Tranwe dwanls
a.u\.u.cannu:.c'l.cs.law.t INACNnines ouv u.u.y OTa LT Lc\!uuc;ucuu uua.b Wit SCLvwaic KEEPp Waca

of which registers are empty and which are full.

Another method of implementing the stack is to have an additional register, Rp,
pointing to the stack register which is effectively the top of the stack. For example, if
Rp contains the value 6, SR6 contains the top element of the stack, SR7 contains the
second-to-top element, SRO contains the third, and so on. Execution of the rotation
operation only involves altering the value of Rp. This requires less time than rotating
the contents of the registers. Duplication of a value in the top stack register can only be
performed if the register above it is empty. In certain cases, the use of Rp minimizes
the execution time. For example, assume SRO is marked full and SR7 is marked empty.
If Rp points to SRO, the contents of SRO is copied into SR7 and Rp is altered to point
to SR7. In the previously described stack configuration when Rp is not used, it is necessary
to move data items before the contents of SR1 is duplicated in SR0. The number of
data elements moved depends on which registers are full and empty. If SR3 is the first
empty register closest to the top of the stack, then three data shifts are necessary before
duplication can occur. We can conclude that the use of a top-of-stack pointer would
often improve the execution speed in stack machines.
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VII. CONCLUSION

“A slow sort of country!” said the Queen.
“Now, here, vou see, it takes all the
running you can do, to keep in the same place.
If you want to get somewhere else, you must run
at least twice as fast as that.”

Lewis Carroll
. Through the Loaking Glass

It has been demonstrated that optimization techniques on various stack architectures
are as important as optimization on general register machines. On two of the three machines
defined, optimization hag a critical effect on the efficiency of execution of sample programs.

Stack machines have the advantage of implicitly storing temporary resulis. Since
addressing is implicit, desired values within the stack are not immediafely accessible. To
compensate for this disadvantage, stack architectures should be designed with facilities to
permit opiimizing software. .

Two methods of making elements on the gtack easier to access have been discussed.
The first approach is compile-time reordering of expressions. Values are placed on the
stack in such an order that the maximum number of desired data elements are on the top
of the stack when they are needed. The second approach involves storing values on the
stack in any order. When elements within the stack are needed, they are positioned at
the stack’s top by the minimal number of operations.

In addition to software optimization, efficient execution of programs on stack
machines is dependent upon how the registers are used to configure the top portion of
the stack. Thus, both hardware and software designs for stack architectures should be
improved to compete with the latest designs for conventional register machines.
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APPENDIX A

SAMPLE CODE GENERATED BY THE ALGOL AND FORTRAN

COMPILERS OF THE BURROUGHS B6700

BURROUGHS B6700 ALGOL COMPILER, VERSION 2,5.0

H

(Fl
ey
o
Hpt
I~
[Te]
o
o
=y

BEGIN
B.0000
SEGMENT DESCRIPTOR

ARRAY H[1:20];

e+

"

"N A N M T .
EULn AgbDaLgl, L

HOOw>

A:=BHA;
003:0000:0

003:0000:2
003:0000:4

WA e e T

003:0000:5
003:0001:0
003:0001:2
Ci=C+1;
003:0001:3
003:0001:5
003:0002:0
003:0002:1
003:0002:2
003:0002:4
C:=C+B;
003:0002:4
003:0002:5
003:0003:1
003:0003:2
003:0003:3
003:0003:5

27

00,

TUESDAY, 12/11/73 .

(02,00004)
(02,00003)

(02,00003)

(02,00005)

WYL WASNID

(02,00004)

-(02,00005)

1004

1003
an

[+ 1V

87
5003
B8

1005
B1
80

- 87

5005
B8

B9
1004
80
87
5005
B8



D= (DF1)%{(C+B)* (C+B+D);

E:=Dy

H[D] :=H[D]+13;

B6700 /57700
SET 0PT = =1

DIMENSION H{20)
A=BHA

HELEN B. CARTER

003:0004:0
003:0004:2
003:0004:3
003:0004:4
003:0005:0
003:0005:2
203:0005:3
003:0005:4
003:0006:0
003:0006:0
003:0006:3
0G3:0006:5
003:0007:0
003:0007:1
003:0007:2
003:0007:4

003:0007 14
803:0007:5
003:0008:0
003:0008:2

003:0008:2
003:0008:3
003:06008:4
003:0009:0

003:0009:1
003:0009:3
003:0009:5

003:000A:0
003:0004:2
003:00041:4

003:0004A:4
003:0004:5
0603 :0008:0

0000:0
0000312
0000:4
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VALC
ONE
ADD
VALC
VALE
ADD
MULT
VALC
VALC
ADD
VALC
ADD
MULT
NTGR
NAMC
STOD

STON
NIGR
NAMC
STOD

STON
NTGR
NAMC
3TOD

LT8
NAMC
STOD

LT8
NAMC
STOL

STON
ONE
SUBT

VALC
VALC
ADD

(02,00006)

(02,00005)
(02,00004)

(02, 00005)
(02,00004)

(02,00006)

(02,00006)

(02,00007)

(02,00003)

(02,00006)

(02,00006)

FORTRAN COMPILATION MARK

{3,003) = B
(3,002) = A

1006
B1
84
1005
1064
80
82
1065
1004
BO
1006
60
82
87
5006
Ba

B9
87
5007
B8

59
87
5003
B8

B204
5606
B8

B20OF
5006
B8

B9
Bt
81

2.5.000

3003
3002
80
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0000:5 NAMC  (3,002) = A 7002
0001:1 STOD  (3,002) = A B8
C=C+1
C=C+1 0001:2 VALC  (3,004) = C 3004
0001:4 ONE B1
0001:5 ADD 80
0002:0 NAMC  (3,004) = C 7004
0002:2 STOD BB
C=C+B
* 0002:2 STON B9
0002:3 VALC  (3,003) = B 3003
0002:5 ADD 80
0003:0 NAMC  (3,004) = C 7004
0003:2 STOD B8
D= (D+1)* (C+B) * (C+B+D)
0003:3 VALC  (3,005) = D 3005
000315 ONE B1
0Q04:0 ADD 80
0004:1 VALC (3,004) = C 3004
0004:3 VALC (3,003) =B 3003
0004:5 ADD 80
0005:0 MULT 82
0005:1 VALC (3,004) = C 3004
0005:3 VALC (3,003) = B 3003
0005:5 ADD 80
0006 :0 VALC  (3,005) = D 3005
0006:2 ADD 80
0006 :3 MULT 82
0006 :4 MAMC (3,005} =D 7005
0007:0 STOD B8
E=D
* 000710 STON BY
0007:1 NAMC  (3,006) = E 7006
0007:3 STOD B8
=E
* 0007:3 STON B9
0007:4 NAMC  (3,002) = A 7002
0008:0 STOD B8
D=242
0008:1 LT8 2 B202
0008:3 LT8 2 B202
0008:5 ADD 80
0009 :0 NAMC  (3,005) = D 7005
0009 :2 STOD B8 -
D=5%3
0009 :3 LT8 5 B205
0009 :5 LTS8 3 B203
000A:1 MULT 82
000A:2 NAMC  (3,005) = D 7005
000A:4 STCD ‘B8
29




H(D)=H{D)+1

H{)=H{1)+1

HELEN B. CARTER

000Az4
GO0A:S
Q00B:0
QO0B:1
000B:3
OG0Bz 4
000Cc:0
0goc:1
0QGC:2
0e0C 4
gooc:s
GO0 :Q
000D 21

000D:2
aoGD:3
000D 4
000D:5
OO0E:1
000E:2
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STON
ONE
SUBT
NAMC
INBX
VALC
ONE
SUBT
NAMC
NELV
ONE
ADD
STOD

‘OHE

ONE
SUBT
NAMC
INDX
ONE

(3,007}

{3,005}

(3,007)

(3,007)

§

B9
B1
81
7007
Ab
3005
Bl
81
7007

Bl
80
B8

B1
B1
a1
7007

B1



APPENDIX B
STACK OPTIMIZATION ALGORITHM

[ KKk AR ERXXXXSTACK OPTIMIZATION ALGORTTHMAR*ikskiiskics /
/% */
/*GENERATES OPTIMAL CODE TO EVALUATE ALGEBRAIC EXPRES-

SIONS ON A STACK COMPRISED OF EIGHT HARDWARE REGIS-
TERC TUE NIIMRER OF MEMORY ACCEGSFS ARE MINIMIZED

=T I ALELY AV UL LEN UL DAL INFIN L LR Ll b R . PakeN adandils

BY DUPLICATING, EXCHANGING AND ROTATING ELEMENTS ON
THE STACK. */
J* */
/******************************** RkkdhkkAkARhkhkRhkkihhkk /
CHAR ARRAY POSTFIX(100)
/¥USER INPUT POSTFIX NOTATION OF ALGEBRAIC EXPRESSIONS CONSIST-
ING OF VARIABLES, CONSTANTS AND OPERATORS. FOR SIMPLICITY,
ALL VARIABLE NAMES ARE SINGLE LETTERS AND ALL CONSTANTS ARE
DIGITS 0-9. */
STRING PTFX[100]
STRING A[50)

ARRAY NUMPQST(100)
/*POSTFIX NOTATION OF ALGEBRAIC EXPRESSIONS CONSISTING OF NU-

MERICAL VALUES WHICH CORRESPOND TO VARIABLES, CONSTANTS,
OPERATORS AND SUBEXPRESSIONS. COMMON VARIABLES WHOSE VALUES
ARE NOT ALTERED HAVE THE SAME NUMERICAL VALUE. NUMERICAL
VALUES 1-6 DENOTE OPERATORS(# IS NEGATION,= IS REPLACEMENT),
7-39 DENOTE VARIABLES, CONSTANTS AND INTERMEDIATE CALCULA-
TIONS, AND 40-50 DENOTE SUBEXPRESSIONS OCCURRING MORE THAN
QNCE. THE FIRST OCCURRENCE OF A COMMON SUBEXPRESSION IN ‘
NUMPOST IS FOLLOWED BY THE NEGATION OF THE CORRESPONDING NU-~
MERICAL VALUE. ALL SUBSEQUENT OCCURRENCES OF THAT SUBEXPRES-
SION ARE REPLACED BY THE VALUE. */
CHAR ARRAY ALPH(50)=(|‘ I,I*l’l/1’1+l,I-t,l#l,l=l,l 1(33)’l$!(10))
/*ALPH(I) CONTAINS THE OPERATOR OR OPERAND CORRESPONDING TO
THE I-TH NUMERICAL VALUE. FOR SUBEXPRESSIONS, ALPH(I) CON-
TAINS '§'., */
ARRAY COUNT (50)=(0(50))
/*COUNT(I) CONTAINS THE NUMBER OF TIMES THE OPERAND CORRESPOND-
ING TO THE I-TH NUMERICAL VALUE OCCURS IN THE SET OF ALGE- "
BRAIC EXPRESSIONS. */
ARRAY ONSTK(50)=(0(50))
/*ONSTK(I) HAS THE VALUE 1 IF THE OPERAND IS ON THE STACK. */
ARRAY STACK(8)=(0(8)) ‘
/*STACK STRUCTURE CONTAINING THE CONTENTS OF THE 8 STACK REG-
ISTERS. IS POINTS TO THE TOP OF THE STACK. IF IS=2,
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STACK(2) CONTAINS THE TOP STACK ELEMENT AND STACK(1), THE
BOTTOM STACK ELEMENT. #/
ARRAY SAVE(8)=(0(8))
/#STACK STRUCTURE CONTAINING NUMERICAL VALUES OF OPERANDS TO
BE USED IN SUBSEQUENT CALCULATIONS */
ARRAY KEEP(8)=(0(8))
/*STACK STRUCTURE CONTAINING STARTING POSITIONS IN ARRAY NuM-
POST OF OPERANDS WHOSE OPERATOR HAS NOT AS YET BEEN
ENCOUNTERED *f
ARRAY FST(50)=(0{(50))
J*FST(I) CONTAINS THE POSITION IN ARRAY NUMPOST OF THE FIRST
SYMBOL OF THE I-TH SUBEXPRESSION. */
ARRAY LEN(50)=(0(50))
/*LEN(I) CONTAINS THE LENGTH OF THE I-TH SUBFXPRESSION. */
ARRAY REP(50)= (0(50})
/*REP{1} GETS THE NUMERICAL VALUE ASSOCCIATED WITH THE I-TH
SUBEXPRESSION IF IT OCCURS MORE THAN ONCE IN THE SET OF
ALGEBRAIC EXPRESSIONS; OTHERWISE, IT GETS THE VALUE of =1, #*/
ARRAY COM(10)=(0(10))
/*CONTAINS POSITIONS IN ARRAYS FST, LEN AND REP OF SUBEXPRES-
SIONS OF THE SAME LENGTH */
INT IMAX=6,
/*CONTAINS THE LAST NUMERICAL VALUE ASSIGNED TO VARIABLES,
CONSTANTS AND INTERMEDIATE RESULTS */
SEMAX=39,
/*CONTAINS THE LAST NUMERICAL VALUE ASSIGNED TO COMMON
SUBEXPRESSION */
IP=0, /*POINTER INTO ARRAYS POSTFIX AND NUMPOST; LENGTH OF POSTFIX
INSTRUCTION STREAM */
FLG=0, /*SET TO 1 WHEN ALL OF ARRAY NUMPOST HAS BEEN SCANNED %/
ISCAN=0, /*POINTER INTO ARRAY NUMPQST */
IS=0, /%XSTACK POINTER INTO ARRAY STACK */
IK=0, /*STACK POINTER INTO ARRAY KEEP */
IV=0, /*STACK POINTER INTO ARRAY SAVE */
X=Q, /*POINTER INTO ARRAYS FST, LEN AND REP; NUMBER OF SUBEXPRES-
SIONS */
CURR, /*CURRENT SYMBOL OF ARRAY NUMPOST */
NXT1, /*NEXT SYMROL OF ARRAY NUMPOQST */
TEMP,
PT,  /*OPERATOR I.D, */
FND,
M, /*NUMBER OF SUBEXPRESSIONS OF THE SAME LENGTH BEING COMPARED *}
LONG, /*LENGTH OF CURRENT SET OF SUBEXPRESSIONS BEING COMPARED */
ISE, /*POINTER INTO ARRAYS FST, LEN AND REP OF FIRST SUBEXPRESSION
BEING COMPARED %/
JSE, /*POINTER INTO ARRAYS FST, LEN AND REP OF SECOND SUBEXPRESSION
BEING COMPARED */
Y, /*POSITION OF FIRST SUBEXPRESSION BEING COMPARED IN ARRAY
NUMPOST */
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z, /*POSITION OF SECOND SUBEXPRESSION BEING COMPARED IN ARRAY
NUMPOST */
ORD, /*0 IF OPERATOR IS COMMUTATIVE; OTHERWISE,1 */

POS1,P0SZ /#POSITIONS IN STACK (F OPERANDS TO BE SHIFTED TO THE TOP
OF THE STACK */
/% */
PROC MAIN
CALL ASSIGNVAL /*ASSIGNS NUMERICAL VALUES TO OPERATORS AND
OPERANDS* /
CALL SUBEXP /*IDENTIFIES COMMON SUBEXPRESSIONS*/
CALL CODEGEN /*DRIVER PROCEDURE FOR CODE GENERATION#*/
RETURN
f' */
PROC ASSIGNVAL
/*SCANS INPUT POSTFIX INSTRUCTION STEAM: ASSIGNS NUMERICAL
VALUES TO OPERATORS AND OPERANDS* /
READC {POSTFIX)
CALL PACK(POSTFIX,PTFX)
WHILE 1 DO
IF POSTFIX(IP)=r = THEN /*DONE READING INPUT*/
IP:=IP~-1
EXIT
.END
:=MATCH(' */+-#=" ,PTFX[IP+1,1])
/*IF SYMBOL IS AN OPERATOR, PT GETS CORRESPONDING NUMERICAL
VALUE; OTHERWISE, PT GETS 0 */
IF PT THEN
CALL GETOPTR
ELSE
CALL GETOPRND
END
IP:=1P+1
END
RETURN
/* */
PROC SUBEXP
/*SEARCHES LIST OF SUBEXPRESSIONS FOR COMMON TERMS, ASSIGNS
NUMERICAL VALUES TO COMMON SUBEXPRESSIONS AND ADJUSTS ARRAY
NUMPOST* /
WHILE 1 DO
CALL COMLEN ‘
IF LONG=0 THEN EXIT END /*ALL SUBEXP. HAVE BEEN EXAMINED*/
IF M=1 THEN /*ONLY ONE SUBEXP. HAS LENGTH LONG*/
REP(COM(1) ):==1
ELSE
CALL COMPARE
END
END
RETURN
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/% %/
PROC CODEGEN
/*SCANS ADJUSTED POSTFIX NOTATION OF NUMERICAL VALUES AND
GENERATES OPTIMIZING CODE*/
INT SCURR
CALL PACK{ALPH, A}
WHILE 1 DO
CALL SCAN
IF FLG THEN EXIT END
SCURR :=CURR
IF SCURR>0.AND,SCURR<7 THEN CALL OPTR END
IF SCURR>6 THEN CALL OPRAND END
END
RETURN
/% %
PROC GETOPTR
/*BUTILDS LIST OF SUBEXPRESSIONS, AND REORDERS OPERANDS OF
COMMUTATIVE OPERATIONS INTO LEXICAL ORDER%*/
NUMPOST(IP):=PT
CASE PT OF
AR AN AT S A B VAL /*BINARY OP
Xe=X+1
FST(X) :=KEEP{IK-1)
LEN (X} ;=IP-KEEP (IK-1)+1
IF {PT=1.0R,PT=3).AND. J*COMMUTATIVE OPERATOR*/
{(NUMPOST {(KEEP(IK})<NUMPOST(KEEP(IK~1)) THEN CALL REORDER
END
IK:=IK-1
L 5% f#UNARY OPERATOR*/
Xi=X+1
FST(X}:=KEEP(IK)
LEN(X) :=IP-KEEP{IK)+1
END
RETURN
[* %/
PROC REORDER
/*REORDERS TERMS OF COMMUTATIVE OPERATIONS SUCH THAT THE Nu-
MERICAL VALUES CORRESPONDING TO THE VARIABLES AND CONSTANTS
ARE IN ASCENDING ORDER*/
INK K,L
L:=KEEP({IK)-KEEP{IK-1)
WHILE 1>0 DO
TEMP s=NUMPOST (KEEP{ 1K~ 1))
K:=KEEP(IK~1)
WHILE K<IP-1 DO
Ki=K+1
NUMPOST(K=1) :=NUMPOST (K}
END
NUMPOST (IP=1) :=TEMP
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END
RETURN
/% */
PROC GETOPRND
/*ASSIGNS OR DETERMINES PREVIOUSLY ASSIGNED NUMERICAL VALUES

FOR VARIABLES AND CONSTANTS#*/

IF POSTFIX(IP+1)=r=H Then /*ALTERED VARIABLE GETS NEWLY ASSIGNEE
NUMERICAL VALUE*/ '
IK:=IK-1 /*DELETE LAST TERM OF ARRAY SAVE#/
CALL NEWOPRND
FELSE
IK :=TK+1 /*SAVE POSITION OF OPFRAND*/
KEEP(IK):=IP
CALL SEARCH

IF .NOT.FND THEN
CALL NEWOPRND
END
END
RETURN
/% */
PROC NEWOPRND
/*ASSIGNS NEW NUMERICAL VALUE TO OPERAND*/
IMAX s =TMAX+1
ALPH (TMAX) :=POSTFIX(IP)
COUNT (IMAX) : =1
NUMPOST (IP) : -IMAX
RETURN
/* %/
PROC SEARCH
/*DETERMINES IF CURRENT OPERAND HAS PREVIOUSLY BEEN ENCOUNTERED
I POSTFIX STREAM*/
INT K
FND:=0
K:=IMAX+1
WHILE K>7 DO
K:=K-1
IF POSTFIX(IP)=ALPH(K) THEN /*MATCH IS FOUND#*/
NUMPOST{IP):=K
COUNT (K) :=COUNT (K)+1

FND e=1

L Avir @

EXIT
END
END
RETURN
[* %/
PROC COMLEN
/*BUTLDS LIST OF SUBEXPRESSIONS OF THE SAME LENGTH*/
NT K

-

0
0
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LONG ;=0
WHILE K<X DO
K=X+1
IF REP(K)=0 THEN
IF LEN(K)=LONG THEN /*ADD ANOTHER SUBEXP. OF SAME LENGTH
TO ARRAY COM*/
M =M+t
COM (M) =K
END
IF LEN(K)>LONG THEN /*FIND SUBEXP, OF A LONGER LENGTH
AND REINITIALIZE ARRAY COMR/
LONG :=LEN({(K)
M=t
COM{1):=
END
END
END
RETURN
[* */

PROC COMPARE

/*STEP THROUGH LIST OF SUBEXPRESSIONS OF THE SAME LENGTH FOR
COMPARISON%/
INT 1,7
L:=0
WHILE I<M-1 DO
I:=I+1

ISE:=COM (1)
IF REP{ISE)=0 THEN
J:=1
WHILE J<M DO
Ji=J+1
JSE:=COoM (J)
IF REP({JSE)=0 THEN

Z:=FST{ISE}
EES ),

Lya Jo

+=FST{ISE)

CALL MATCHUP
END
END

END

IF REP(ISE)=0 THEN REP(ISE):=-1 END
END
IF REP(COM(M))=0 THEN REP(COM(M)):=-1 END
RETURN

f* */

PROC MATCHUP
/*DETERMINES IF TWO SUBEXP. OF THE SAME LENGTH ARE IDENTICAL®/
INT ICNT,ROMATCH
ICNT:=0
RMATCH:=0
WHILE ICHT<LONG DO /*COMPARE SUBEXP, SYMBOL-BY-~SYMBOLX/
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ICNT :=ICNT+1
IF NUMPOST(Y)<>NUMPOST(Z) THEN /*NOT IDENTICAL*/
NOMATCH:=1
EXIT
END
Y:=Y+1
Z:=2+1

IF .NOT.NOMATCH THEN /*COMMON SUBEXP, HAVE BEEN IDENTIFIED*/
IF REP(ISE)=0 THEN ‘
CALL COMMON1
END
CALL COMMON2
END
RETURN

/* */
PROC COMMONT

/*PERFORMS NECESSARY PROCESSING FOR FIRST OCCURRENCE OF COM-
MON SUBEXPRESSION%/ .

INT K,L

SEMAX :=SEMAX+1 /*ASSIGN NEW NUMERICAL VALUE#*/

REP(ISE) :=SEMAX

CALL ELIM(ISE)

IP:=1P+1
K:=IP
L:=FST(ISE)+LEN(ISE)
WHILE K>L DO /*INSERT NEGATION OF NUMERICAL VALUE INTO POSTFIX
STREAM AFTER THE FIRST OCCURRENCE OF THE COMMON
SUBEXPRESSION* /
NUMPOST (K) :=NUMPOST (K= 1)
K:=K~-1
END
NUMPOST(L) :=-SEMAX
K:=0
WHILE K<X DO /*ADJUST VALUES IN ARRAY FST OF SUBEXP. WHOSE
STARTING POSITIONS WERE ALTERED*/ '
Ks=K+1

IF FST(K)>=L THEN
FST(K) :=FST(K)+1
END
END
RETURN

/% %/
PROC COMMON2

/*PERFORMS NECESSARY PROCESSING FOR SUBSEQUENT OCCURRENCES OF
THE COMMON SUBEXPRESSION*/
INT K,L
K:=0
WHILE K<LEN(JSE)-1 DO /*REPLACE SUBEXP. BY NUMERICAL VALUE IN
ARRAY NUMPOST*/
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Ki=K+1
L:=NUMPOST (FST{JSE)}+K~1)
IF L>6 THEN
COUNT (L) : =COUNT(L)~-1 [AREDUCE COUNT ENTRY OF (OPERANDS
COMPRISING SUBEXPRESSION*®/
END :

END
REP {JSE) :=SEMAX
CALL ELIM{JSE)
NUMPOST(FST(JSE}) : =SEMAX
COUNT (S BMAX) :=COUNT (SEMAX )+1
K:=FST(ISE)+1
:=K+LEN(JSE}-1
WHILE I<=IP DO
NUMPOST (K) : =NUMPOST (L)
Ki=FK+1
Li=i+1
END
IP:=IP=-LEN(JSE)+1
Ki=0
WHILE K<X DO [*ADJUST STARTING POSITIONS OF SUBEXP. IN ARRAY FST*/
K=K+t
IF FST(K)>FST(JSE) THEN
FST{K) :=FST(K)-LEN(JSE)+1
END
END
RETURN
1% */
PROC ELIM{INT K)
/*ELIMINATES THOSE SUBEXPRESSIONS CONTAINED WITHIN THE K~-TH
SUBEXPRESSION FROM THE LIST OF THE SUBEXP. BEING COMPARED*/

INT 1.
L:=0
WHILE I<K-1 DO
Li=L+1
IF REP{L)=0 THEN
IF PST(L)>=FST{K).AND ,FST{LY<FST{K)+LEN{K) THEN
REP{L):="1
END
END
END
RETURN
[* %/
PROC SCAN
J*POSITIONS POINTER ISCAN TO NEXT SYMBOL OF ARRAT NUMPOST®/}
IF ISCAN>IP THEN :
F1G:=1
RETURN
END
CURR :=NUMPOST { ISCAN)
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NXT1:=NUMPOST (ISCAN+1)
ISCAN :=ISCAN+1
RETURN
/% */
PROC OPTR
/*PROCESSES ALL OPERATORS EXCEPT THE REPLACEMENT OPERATORS*/
IF CURR=5 THEN /*UNARY OPERATOR*/
CALL GET1(SAVE(IV))
ELSE
IF CURR=1.0R.CURR=3 THEN ORD:=0 ELSE ORD:=1 END
/*DETERMINES IF OPERATOR IS COMMUTATIVE*/
CALL GET2(SAVE(IV),SAVE(IV-1))
IV:=IV-1 /*COMBINE 2 OPERANDS INTO A SINGLE INTERMEDIATE RESULT*/
I1S:=IS~-1
END
CASE CURR OF /*GENERATE CODE TO PERFORM OPERATIONS*/
\ 1\ WRITEL ("MULT')
\2\ WRITEL ('DIV')
V3\ WRITEL ('ADD')
\ 4\ WRITEL ('SUB')
\S\ WRITEL ('NEG")
END
IF NXT1<0 THEN /*FIRST OCCURRENCE OF COMMON SUBEXP.*/
SAVE (IV) :=NXT1
STACK(IS) :==NXT1
ONSTK(=NXT1):=
CALL SCAN
CALL DUP
ELSE /*ASSIGN NEW NUMERICAL VALUE TO INTERMEDIATE RESULT*/
IMAX s =IMAX+1
SAVE (1IV) :=TMAX
STACK(IS) :=IMAX
END
RETURN
/* */
PROC OPRAND
/*PROCESS VARTIABLES, CONSTANTS AND COMMON SUBEXPRESSIONS*/
IF NXT1=6 THEN /*VARIABLE CURR IS TO BE ALTERED%*/
CALL STOREVAL
ELSE
IF .NOT.ONSTK(CURR) THEN /*OPERAND NOT ON STACK*/
CALL LOADVAL -
ELSE /*ON STACK*/
CALL SHIFTVAL
END
IV e=IV+1
SAVE (IV) :=CURR
END
RETURN
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I* */
PROC STOREVAL
/*DETERMINES IF STORED VALUE SHOULD REMAIN ON STACK, AND GEN-
ERATES APPROPRIATE STORE INSTRUCTION*/
COUNT {CURR ) :=COUNT (CURR )~ 1
CALL GET1(SAVE{IV}))
IF COUNT{CURR)>0 THEN /*STORE NON-DESTRUCTIVE*/
WRITEL('STND '.CON,A[CURR+1,1})
IV:=Tv-1 /*DELETE STORED VALUE FROM ARRAY SAVEX/
STACK{IS) :=CURR
ONSTK (CURR) 1=
COUNT {CURR) : =COUNT (CURR)~1
ELSE /*STORE DESTRUCTIVE#*/
WRITEL{'STD YL CON,A[CURR+1,11)
IV:i=IV-1 /*DELETE STORED VALUES FROM ARRAYS STACK AND SAVE%/
IS:=IS-1
END ,
CALL SCAN F*BYPASS REPLACEMENT OPERATORX/
RETURN
[* %F
PROC LOADVAL
/*%1,0aD VALUE ONTO STACK AND DUPLICATE IF VALUE IS TO BE REUSED*/
WRITEL('LOAN  '.CON.A[CURR+1,1})
I5:=I5+1
STACK(IS):=CURR
COUNT {CURR) : =COUNT {CURR) =1
IF .NOT.DIGIT(ALPH(CURR)) THEN /#NOT A CONSTANT*/
ONSTK (CURR) 3 =1
IF COUNT{CURR)>( THEN
CALL DUP
END
END
RETURN
[* %/
PROC SHIFTVAL
/*SHIFTS 1 OR 2 OPERANDS TO TOP OF STACK IF CURRENT VALUE IS TO
BE DUPLICATED*/
IF .NOT.DIGIT(ALPH{(CURR)) THEN /#*80T A CONSTANT*/
IF COUNT (CURR)>0 THEN
IF NXT1>0.AND.NXT1<5 THEN /J*BINARY OPERATION®/
ORD:=1
CALL GET2(CURR,SAVE{IV))
ELSE /¥UNARY OPERATION®/
CALL GET1(CURR)
END
CALL DUP
END
END
RETURN
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/% */
PROC DUP
/*GENERATES CODE TQ DUPLICATE VALUE ON TOP OF STACK*/
INT PTR
IS:=1I5+1
IF CURR<0 THEN /*FIRST OCCURRENCE OF SUBEXPRESSION*/
PTR:;=-CURR
ELSE /*SUBSEQUENT OCCURRENCE OF SUBEXP. OR OTHER OPERAND*/
PTR:=CURR
END

STACK(IS) :=PTR
COUNT (PTR) :=COUNT (PTR) - 1
WRITEL({'DUP')
RETURN
1% */
PROC ROTU

/*GENERATES CODE TO PERFORM ROTATE UP, AND ADJUSTS CONTENTS OF

STACK*/
INT J
TEMP :=STACK (1)
Ji=1
WHILE J<IS DO
STACK (J) : =STACK (J+1)
Ji:=J+1
END
STACK(IS) :=TEMP
WRITEL('ROTU')
RETURN
/* */
PROC ROTD

I*nunvnnrr-we CONE TO PERFORM ROTATE DOWN - AMTY ADTH
ILF VIRV, RN ) At Jd £ L L Aa LAWY

OF STACK*/
INT J
TEMP ¢ =STACK (IS)
J:=1I5
WHILE J>1 DO
STACK(J) :=STACK(J-1)
J=J-1
END
QTA(‘K(1 \ +=TEMP

WRITEL( ROTD')
RETURN

/* */

PROC XCH

/*GENERATES CODE TO EXCHANGE 2 TOP STACK BLEMENTS AND - ADJUSTS

CONTENTS OF STACK*/
IF STACK(IS)<>STACK(IS-1) THEN
TEMP :=STACK(IS)
STACK (IS) :=STACK(IS-1)
STACK(IS-1) : =TEMP
WRITEL('XCH')
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END
RETURN
i* ®/
PROC GET2(INT TP,INT STP)
/*TP AND STP ARE THE NUMERICAL VALUES OF THE 2 TOP STACK
ELEMENTS WHICH ARE TO BE POSITIONED INTO THE TOP 2 REGISTERS
OF THE 8 REGISTER SET*/
CALL LOCATE(TP,STP)
WHILE 1 DO
IF POS2-POSt=1 THEN /*THE DESIRED DATA ITEMS ARE CONTIGUOUS
ON THE STACK*/
CALL ROTATE
EXIT
END
IF POSt=1 THEN
IF POS2=IS THEN
CALL ADJUST{(1,'3")
EXIT
END
IF POS2=IS-1 THEN
IF IS=3 THEN
CALL ADJUST{t,'2")
ELSE
CALL ADJUST(2,'13")
END
EXIT
END
IF POS2=3 THEN
CALL ADJUST{(4,'3313')
EXIT
END
IF P0S2=15-2 THEN
CALL ADJUST(5,'31212')
EXIT
END
IF POS2=4 THEN
CALL ADJUST(6,'331213")
EXIT
END
IF POS2=5 THEN
CALL ADJUST(7,'3131313")
EXIT
END
END
IF POSi=IS-2 THEN
IF POS2=IS~1 THEN
CALL ADJUST(1,'2%)
END
IF POS2=1S THEN
CALL ADJUST(2,'12")
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END
EXIT

END

IF P0S1=IS-3.AND.P0S2=IS-1 THEN
CALL ADJUST(3,'212')-
EXIT

END

IF POS1=2 THEN
IF P0OS2=IS THEN

CALL ADJUST(3,'313')
END
IF P0S2=IS-1 THEN
CALL ADJUST(4,'1313")

END
EXIT

END

IF POS1=IS-4.AND.P0S2=IS-2 THEN
CALL ADJUST(4,'2212')
EXIT

END

IF P0OS1=I8-3,AND.P0S2=IS THEN
CALL ADJUST (4,7 12127)
EXIT

END

IF POS1=18-4,AND,P0OS2=IS THEN
CALL ADJUST(5,'31313')
EXIT

END

IF P0OS1=2.AND.P0S2=5 THEN
CALL ADJUST(7,'3331313")
EXIT

END

IF P0OS1=IS-5,AND.P0S2=15~3 THEN
CALL ADJUST(S,'22212")
EXIT

END

IF P0OS1=IS-4,AND.POS2=IS~1 THEN
CALL ADJUST(5,'21212")
EXIT

END

IF P0OS1=3,AND.POS2=7 THEN
CALL ADJUST(6,'131313")
EXIT

END

IF POS1=3.AND.P0S2=6 THEN
CALL ADJUST(6,'221212")

-
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EXIT

END

IF POS1=2,AND.POS2=6 THEN
CALL ADJUST(8,'33121212")
EXIT

END _

IF POS1=2,.AND.POS2=4 THEN
CALL ADJUST(S5,'33313")
EXIT

END -

END
IF ORD THEN /*OPERATION IS NOT COMMUTATIVEX/
IF STACK(IS)=STP THEN
CALL XCH
END
END

RETURN

1= */

PROC LOCATE (INT TP,INT STP)

/*LOCATES DATA ITEMS TP AND STP ON THE STACK*/

INT J,K
FND =0
K:=0
WHILE 1 DO

Ki=K+1

J:=IS

WHILE J>K DO

IF (STACK(J)=TP.AND.STACK(J-K)=STP}.OR.
{STACK(J)=5TP. AND,STACK{J~K)=TP) THEN

POS2Z:=J
POB1:=J-K
FND:=1
EXIT
END
Ji=J-1
END
IF FND THEN EXIT END
END
RETURN
> *f
PROC ROTATE

J*DETERMINES THE MINIMAL NUMBER OF ROTATE INSTRUCTIONS NEEDED

TO POSITION THE 2 CONTIGUOUS DATA OPERANDS TO THE TOP OF
THE STACK*/

INT DWNDIF,UPDIF

DWNDIF :=18-POS2

UPDIF:-POS2

IF DWNDIF<=UPDIF THEN

WHILE DWNDIF DO

CALL ROTD
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DWND IF :=DWNDIF-1
END
ELSE
WHILE UPDIF DO
CALL ROTU
UPDIF :=UPDIF-1
END :
END
RETURN
/* */
PROC ADJUST(INT NO,STRING OP)
/*GENERATES NO INSTRUCTIONS SPECIFIED BY THE CONTENTS OF THE
STRING OP*/

INT J
Ji=1
WHILE J<=NO DO
PT :=INTF(OP{J,1]) J#CONVERT CHAR TO INTEGER*/
CASE PT OF
V1V CALL XCH
\2\ CALL ROTD
v 3\ CALL ROTU
END
Ji=J+1
END
RETURN
/* */

PROC GET1(INT TP)
/*TP IS THE NUMERICAL VALUE OF THE STACK ELEMENT WHICH IS TO
BE POSITIONED TGO THE TOP OF THE STACK*/

F STACK(J)=TP THEN
P0OS2:=J
EXIT
END

END

CALL ROTATE
RETUURN

START MAIN
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APPENDIX C
EXAMPLES OF CODE GENERATED BY THE ALGORITHM

Ar=5+B
B:=A+5

postfix  S5B+HA=AS+B:=

LOADI 5
LoAD B
ADD

SIND A
LOADI 5
ADD

ST B

Cei= (AFBY* (CHRY®(CHA)
D=0
Bi=4+FD

postfix  AB+CB+*CA+*C:=CD:=AB+E:=

LoAD A
bue
10AD B
313372
ROTD
ADD
byp
LOAD C
DuP
ROTU
ADD
XcH
ROTD
MULT
ROTD
ROTD
ADD
MULT
5THD C
ST D
ST E
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C:=A*B+A*B
AB*AB*+C 1=

LOAD A
LOAD B
MULT
DUP
ADD
STD c

=B*C-D
E*F+B*(C
=E*F*G

Az
M:
C:

BC#*D=A :=EF*BC*+M :=EF*G*( :=

LOAD B
LOAD C
MULT
DUP
LOAD D
SUB

STD A
LOAD E
LoAD F
MULT
DUP
ROTD
ADD

STD M
LOAD G
MULT
STD c

47




