NRL Report 7732

Effects of Finite Register Length in the Signal
Processing Arithmetic Unit of the AN/UYK-17

JupiTH N. FROSCHER

Information Processing Systems Branch
Communications Sciences Division

June 12, 1974

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.

ITITSSYIONN

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEF%%%DCIgﬁgEggggl?ORM
1. REPORT NUMBER 2. GOVT ACCESSION NO,| 3. RECIPIENT’S CATALOG NUMBER
NRL Report 7732
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
EFFECTS OF FINITE REGISTER LENGTH IN THE Interim report on a continuing
SIGNAL PROCESSING ARITHMETIC UNIT OF THE NRL problem.
AN/UYK-17 6. PERFORMING ORG. REFORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Judith N. Froscher

9. PERFORMING ORGANIZAT|ON NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
Naval Research Laboratory NRL Problem BO02-16
Washington, D.C. 20375 ZF11-121-003
1. CONTROLLING OFF|CE NAME AND ADDRESS 12. REPORT DATE
Department of the Navy June 12, 1974
Naval Undersea Center 13. NUMBER OF PAGES
San Diego, California 92132 40
14. MONITCORING AGENCY NAME & ADDRESS(if different from Controlling Oftice) 15. SECURITY CLASS. (of this report)
Unclassified
15a, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if necessary and identify by block number)

. Digital filtering Roundoff
Fast Fourier transform Truncation
Fixed-point arithmetic Two’s complement
Quantization

20. ABSTRACT (Continue on reverse side if necesaary and identity by block number)]

Because of finite register length, several kinds of error are introduced in NRL’s Signal Process-
ing Arithmetic Unit (SPAU). The SPAU has a 16-bit word length and uses two’s-complement,
fixed-point, truncated arithmetic. A statistical model for arithmetic roundoff is formulated and
used in discussing sources of error in multiplication and addition. ‘Simulation proves a useful
tool for studying quantization effects in the two fundamental digital signal processing algorithms,
the fast Fourier transform (FFT) and recursive filtering. Simulation results indicate that conditional
block scaling should be used, that scaling other than scaling the input should be used for the

DD ,"Si"%s 1473 EoiTion oF 1 Nov 65 1S OBSOLETE
$/N 0102-014- 6601 |

i SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

A3TITSSYTIINND

LELCYRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

4-pole filter to utilize more completely the SPAU’s 90-dB dynamic range (6 dB per bit), and that
rounding arithmetic should be used in the next version of the SPAU. The possibility of a floating-
point machine should be investigated.

ii SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

CONTENTS
INTRODUCTIONttt ittt ettt iee et e e e e 1
ERROR FUNDAMENTALS ittt ie i e e e 2
Two’s Complement Representation 2
Error Introduced by Roundoff 3
Statistics of Roundoff 6
Error Introduced by Multiplication and Addition 7
Error Accumulationc.iiiiiiiinnnnnnn. 8
ERROR ACCUMULATIONIN THE FFTc..... 9
Description of the FFT, 9
The SPAU Macro e e e e, 9
Overview of the Literature 10
Scaling for Fixed-Point Arithmetic 11
Simulation Scheme for Error Analysisc....... 12
QUANTIZATION ERROR IN DIGITAL FILTERS 15
Overview of the Literature 16
The SPAUMaACIOttt iiiiiiniinnnn.. 17
Error Analysiscviiiiiin it e 17
Scaling ... et 20
CONCLUSION ...ttt ittt ettt e it 20
ACKNOWLEDGMENTSttt i, 20
REFERENCESttt ittt ee e, 20
APPENDIX A—Bad-Bit Distributions for the FFT T.. 23

APPENDIX B—Bad-Bit Distributions for the Filtering Macro .. 34

iii

AITITSSYIONN

EFFECTS OF FINITE REGISTER LENGTH IN THE SIGNAL
PROCESSING ARITHMETIC UNIT OF THE AN/UYK-17

INTRODUCTION

In general, in the use of digital computers to perform arithmetic calculations, a finite
register length introduces errors. This accuracy problem has received a great deal of study
recently, especially for signal-processing applications, since special-purpose digital proces-
sors are now being built. NRL is developing a microprogrammed signal processor, the
Signal Processing Element (SPE), to be part of the Navy’s All Applications Digital Com-
puter (AADC) [1]. The SPE consists of four major subsystems: a Microprogrammed
Control Unit (MCU), a Buffer Store and Storage Control Unit (SCU), a Signal Processing
Arithmetic Unit (SPAU), and Input/Output (I/O) units [2]. This report is a study of the
quantization effects of the SPAU in its performance of the fast Fourier transform (FFT)
and digital recursive filtering with two test signals and two roundoff rules.

The SPAU has a 16-bit word and two’s complement, fixed-point, truncated arithme-
tic. It operates at 150 ns/cycle. Quantization error is introduced in the following ways:

1. 16-bit representation of input data

2. 16-bit representation of system coefficients

3. Truncation or rounding at multipliers

4. Scaling to prevent overflow in adders because of fixed-point arithmetic.

The first source of error can be disregarded, since the input data will be accurate to 10
bits at most.

First a statistical model of arithmetic roundoff (rounding or truncation) is developed
for the SPAU’s particular arithmetic. The errors due to roundoff and scaling are then
discussed for both addition and multiplication.

One of the fundamental algorithms of digital signal processing is the FFT, a timesav-
ing scheme for calculating the discrete Fourier transform of a sequence of numbers. The
FFT output from a simulation of the SPAU arithmetic is compared with a floating-point
FFT output, computed with 60-bit arithmetic and considered ideal relative to 16-bit
arithmetic. The process loss is displayed with noise-to-signal ratio curves in decibels
(NSR(dB)) and ‘“bad-bit” distributions. It is concluded that conditional block scaling
should be implemented for the FFT on the SPAU.

The other algorithm studied is recursive digital filtering. A 4-pole filter, realized as
two 2-pole filters in cascade, is analyzed using the same type of error study as for the
FFT. It is recommended that the scaling be changed to make more complete use of the
SPAU’s 90-dB dynamic range.

Note: Manuscript submitted February 5, 1974,

GATITSSYTIINN

JUDITH N. FROSCHER

ERROR FUNDAMENTALS
Two’s Complement Representation
Without loss of generality, it can be assumed that -1 < x < 1 in a fixed-point rep-

resentation. In a binary fixed-point machine, a number can be represented in two’s comple-
ment form as

N
xg = by * Z b;27%,
i=1

where each register contains N + 1 bits and b; is zero or one’ for 0 < i < N. For
the SPAU, N + 1 = 16, and 2715 is defined to be the level of quantization.

Now, represent |x | in binary form;

N
xl =) g2, -1<=x<L
i=1

It is necessary to determine the value of the sign weight by. In two’s complement nota-
tion,ifx = 0,by = 0,and if x <0, x5 = 2 - |x|;hence, the name “two’s com-
plement.” Therefore, if x = 0,

N
%y = by +) b2
i=1

where by = 0. If x <O,

N
%3 =2-) a2iorp, = 1.
i=1
For example, represent x = 3/4 in two’s-complement notation for N +1 = 16:
: 1 1 1 1
x9g =0+ 1 E+1 E§+0 §+...+0 '2—-15
For two’s complement, lety = -x = - 3/4, Then
‘ 3
ye=2-1lyl=2-7
B 1 1 1 . 1
=1+0 E“Fl 5-2'4"0 '2—3+ 0 2—15'

NRL REPORT 7732

The example above illustrates that the high-order bit acts as a sign bit. If x is positive,
by = 0, and if x is negative, by = 1.

Error Introduced by Roundoff

Rounding Error—When two N -bit numbers are multiplied digitally, the full product
contains 2N bits. Since the SPAU is a 16-bit machine, the full product must be rounded
or truncated to 16 bits. Several rounding methods exist. They result in different trade-
offs among timing, hardware, and accuracy in the digital multiplication. Although several
rounding rules are available, the SPAU architectural constraints limit the choices.

For simplicity, let each word contain b + 1 bits. Probably the most common
rounding rule is to add 1 in the highest order bit to be dropped and then to discard
those bits [3]. Hence, if the dropped bits are less than 2-2/2, the number is rounded
down; if they are greater than or equal to 2-%/2, the number is rounded up. Always
rounding up when the dropped bits equal 2-% /2 results in a very small mean error
(27(26+1) = 2-31 for the SPAU) and a maximum error of 2-%/2. Summing the 1 into
the (b+1)-bit position can be done automatically and continuously in the multiplier and
takes essentially no extra time, although it requires some additional logic.

Another rounding scheme, which requires less hardware, is to make the least signifi-
cant retained bit a 1, regardless of the other bits, and then to truncate. In other words, -
if the last retained bit is 1, add 0; if the last retained bit is 0, add 2-?, a 1 is thus added
randomly in the least significant retained bit with a probability of 1/2. This method,
however, produces a maximum error twice as large as that of the previous method and a
variance four times as great. For example, suppose a machine has 4-bit arithmetic and
the produce is 11000000. By this rule, the rounded result is 1101 and the error is 2
or 2(2-%/2), whereas 2-9/2 is the maximum error produced in the previous procedure.

A more accurate rounding rule is a variation of the first rule. When the dropped
portion of the number is exactly 2-2/2, a 1 or 0 is randomly placed in the least significant
retained bit. The main difficulty, besides the need for a random number generator, is
that results cannot be reproduced exactly at will. Another variation on the first rule in-
volves examination of the least significant retained bit; when the bits to be dropped equal
2-b/2 exactly, add 2-%/2 if the least significant retained bit is 1 and 0 if it is 0.

Both of these variations require an added delay, since the result must be tested and
combined with the correction bit in a carry-propagate adder. The additional add can
take up to 30 ns in the SPAU multiplier and impose a serious delay in the already time-
critical path of the SPAU.

Because of the difficulties of the last three methods, consideration of rounding will
be restricted to the first method.

AITITSSYIIND

JUDITH N. FROSCHER

Suppose a number x is represented in two’s-complement notation as

b2,

[

M=

X9 = bo +
i=1
For a particular machine, x must be represented in N, bits, Ny <N;; x5 must be rounded

or truncated to an Ny-bit number. The most common rounding rule is to add 1 in the
(Ng + 1)-bit position, then chop off N; - N, bits. Let

Nl
Xg = bo + Z bk2'k
k=1
and let
Ny
Xy = by +) b2*
k=1

be the rounded x5. The difference (x5 - x5) is defined as the error ep, so that

N,

Nl
by +) b2 - {bo) bk2“k}
k=1 k=1

€r

N, N,
= Z b2k - Z b, 27k
k=1 - k=1

N, Ny+1 N,
= |) b2t - | b2k - 220D+ 37 p otk
k=1 1

k= k=N,+2
Ny
= |1 - b'N2+1) 2-(Np+1) _ Z bk2'k .
k=N, +2
Therefore
leg |<2-(Na+1)
or

1 __ 1__n
- — 2 << <= 2
22 \eR\22 .

NRL REPORT 7732

Truncation Error—To determine the error for truncation, it is necessary to look at
the sign of the number. Let

Nl
xp = by *+) b2
i=1

and

N2
Ez = bo + Zbkz—k
k=1

where N, <N;. Define e; = X, - xy. For positive x, the effect of truncation is that
the N,-bit representatlon of x is less than the N; -bit representation; i.e., xyg <x5. Thus,
er<0,and 0=ep > - (272 - 27M). For x <0, expressed in two’s-complement
notation,

|x2| =2—x2

where
Ny
x2 = 1 + Z bk2'k,
k=1
_ 2
xg =1+ Z b, 2%k, N, <Ny,
and
|3?2| =2 - 3?2.
Hence,
lxg | = lag) = - 29 + %
N
k=N2+1
<2-N, .

The effect of truncation is to increase the magnitude, and thus decrease the value, of a

negative number. Thus, ey is again negative and 0=eqp > - (2°N2 - 2-N1). Therefore,

for both positive and negative numbers, the error due to truncation is negative; i.e., the
truncated value is always less than the “true” value.

Nf

ATITSSVTL

JUDITH N. FROSCHER

Statistics of Roundqff

When the quantization level is small compared to the number, the probability densi-
ties can be considered uniform [4]. The probability densities for randomized rounding
and for two’s-complement truncation are shown in Figs. 1a and 1b, respectively, where
2-b is the quantization level.

Pleg)

T,
22

Fig. 1a—Probability density for
fixed-point rounding

P(GT)

Fig. 1b—Probability density for
two’s-complement fixed-point truncation

For rounding, the mean is

2-b/2
and the variance is
2012 4 9-2b
o, = J s dx = —o
-2-b/2

NRL REPORT 7732

For truncation, the mean is

and the variance is

_2—b
2-2b
12 °’
or
2 _ .2
g =0
en eq

Because the mean of the truncated error distribution is not zero, the error due to trunca-
tion accumulates faster than that for rounding. For the rounding rule used in the SPAU,
there is a small mean error, and the variance is slightly smaller, as shown above.

Error Introduced by Multiplication and Addition

The basic operations in the SPAU are multiplication and addition; when these oper-

ations are performed, errors due to the limited dynamic range and roundoff are introduced.

If the numbers to be multiplied are less than 1 in magnitude, no scaling is necessary. If
lx|<land|y|<1l,x * y overflowsonlyifx = -landy = -1. Since the product
of two by -bit numbers is a (b; + b;)-bit number, the result must be truncated or
rounded to by bits. Consider two inputs x and y which have been rounded or truncated

to by bits and are represented as xXo and yo; %y = x5 + eandyy = y, + e'. ‘Before
p is rounded or truncated,

™
I

X2Y2

(kg +e) * (yg + &)
If we assume statistical independence,

E(p) = E(x) * E(yy).

A3TITSSYIOND

JUDITH N. FROSCHER

For rounding,

E[p] = {Elxy) + E[e]} - {Elyz] + E[¢']}
= E[xy] * Ely,]
since
E[e] = E[e'] = 0.
For truncation, since
92-b
Ele] = E['] = =
2-b 9-b
Eip] = {E[le-*?} . {E[yz]—'?}

-b 2-2b

2
Efxy] - E[)’z]-'?{E[xz] + E[ys]} + 4

If x and y have the same sign, the error builds in one direction and can change the value
of the least significant bits after truncation. This increased error is caused by the non-
zero mean of the truncated error distribution. For multiplication, as the numbers become
less random the error becomes more correlated. If two numbers x5 and y2 do not over-

flow when they are added, the process of fixed-point addition introduces no error. In
most cases, however, scaling must be performed to prevent overflow for all fixed-point
arithmetic. This scaling reduces the number of bits that can be used effectively for cal-
culations and accordingly decreases the accuracy of the computation.

Error Accumulation

In signal-processing algorithms, large blocks of data are analyzed; therefore, accumu-
lation of error is of interest. The error accumulation in a process requiring many opera-
tions is greater for two’s complement truncation than for rounding, since the error
distribution for truncation has a bias, although the truncation variance equals the
rounding variance. The fixed dynamic-range constraint limits the number of bits that
can be used for the calculations. Weinstein [5,6] and Knowles [7,8] among others, have
statistically modeled the quantization error for fixed-point rounding (FFT and recursive
filtering) and fixed-point truncation and rounding (recursive filtering), respectively.
However, Jackson [Ref 9, p. 163] warns, “as signals become less random, the uncorre-

lated error assumption tends to break down more readily for truncation than for
rounding.”

NRL REPORT 7732

ERROR ACCUMULATION IN THE FFT
Description of the FFT

One of the most powerful tools of signal processing is the Fourier transform; in
digital signal processing, since the data are discrete, this method of analysis is referred
to as the discrete Fourier transform (DFT). If one defines an operation to be a multi-
plication and an addition, n2 operations are required to perform a DFT on a sequence
of n data points. In 1965, Cooley and Tukey introduced the FFT, an algorithm to
calculate the DFT of n data points (where n = 2™) in nlogon operations [10-13].

Suppose that the sequence {f(nT)} f:’;% is obtained from a continuous function f(t)
by sampling every T seconds. For a discussion on the choice of a suitable T', see Glisson,
Black, and Sage [14]. Denote the Fourier transform of f(¢) by F(w). Then the DFT of
{fnT)}[G is {F(RQ)}YG , where

N-1
F(EQ) =) f(nT)e k2T
: n=0
with @ = 2m/NT. [Ref. 4, p. 143].

The SPAU Macro

The SPAU FFT macro is a decimation in time algorithm. The SPAU algorithm does
not require bit reversal, which would be required for an “in place” FFT. It uses instead
two storage locations per data point. After each stage of the FFT, the newly calculated
data points are shuffled between the two locations. Let T = 1, = 1, and W/
= exp(-2wi/N), Then

N-1
F(k) =) f(n) Wk,
n=0

A flow diagram for N = 8 is shown in Fig. 2. The arrows indicate multiplication by
WX, and the nodes indicate addition of the two quantities connected. The basic FFT
computation, called a butterfly, is shown in Fig. 3. To determine the exponent of W,

2 = [(kN/2)/2™] mod (N/2), where m is the stage number; this holds except for stage
0, as shown in Fig. 2. The butterfly computation is performed N/2 times for each stage.
A perfect card shuffle is performed on the data at the first stage; in the second stage, the
new data are shuffled as if two cards were pasted together; then as if 4 cards were pasted
together, and so on.

ITITSSYIINN

JUDITH N. FROSCHER

Ap By A B2 Az B2= Az

Fig. 2—Flow diagram for SPAU FFT macro, N = 8

4,(k) o " Bpgt (K)

) o >~ o Bpi1 (hg)

By (K) = Ay () + W‘A,,,(Mg)
m+1(/‘+—) = Am(k)-W Am(k+2)

Fig. 3—Butterfly for SPAU FFT

Overview of the Literature

Several studies of error from finite register length have been done for the FFT.
Welch [15] did an error analysis of a fixed-point FFT and derived approximate upper
and lower bounds on the root-mean-square error for rounding. He experimentally
obtained an upper bound estimate (three times that of rounding) for two’s-complement
truncation. SPAU simulation provided results which were within this bound. Kaneko and
Liu [16] statistically modeled the mean-square error for a floating-point rounded FFT
and derived an upper and lower bound on the mean-square error for floating-point trun-
cation. Experimental results verified their model. In his thesis, Kaneko [17] pursued
this problem further and undertook a study in which he analyzed the isolated effect of .
each of the three sources of quantization error for floating-point arithmetic. Glisson,
Black, and Sage [14] did a dynamic range study for the FFT and showed that experi-
mental results tend to support this model. They also examined the effects of automatic
block scaling versus conditional block scaling on computational accuracy as a function of
three variables: the input word length, the system coefficient word length, and the internal
arithmetic word length. They concluded that the number of bits used for internal arithme-
tic needed to be greater than the number used for input data or system coefficients and
that, in general, conditional block scaling is better than automatic block scaling. The use
of nonuniform word lengths could permit considerable savings in hardware, storage, and
speed. For a white-noise input, Weinstein and Oppenheim [6] statistically modeled the

10

NRL REPORT 7732

FFT quantization error for rounded fixed-point arithmetic as an additive noise source.
Simulation results verified their model. Weinstein [5] further explored quantization
effects for fixed-point, block floating-point, and floating-point FFTs. Although he did
no modeling for truncation, he experimentally obtained NSR curves for truncated arith-
metic. No statistical model for a truncated, fixed-point FFT has been derived, since the
chopping noise becomes correlated as more operations are performed.

Scaling for Fixed-Point Arithmetic

In a fixed-point implementation of the FFT, scaling is absolutely necessary. Input

data are bounded in magnitude by 1, |f(n) |<1. The DFT of {f(n)}flv__f% can be expressed
as

N-1

F(k) =) f(n) exp(-2mink/N)
k=0

Hence,

N-1
[F(k)| <) If(n) exp (-2mink/N),
h=0

by the triangle inequality

N-1
< [f(n) !,
0

i=
since [exp (-2wink/N)| = 1. Therefore,

| F (k)| <N.

To absolutely prevent overflow, the input data can be scaled by N before they are ever
processed. With this scaling, a great deal of accuracy is lost at the beginning and the
error is allowed to accumulate at each stage. For example, if a 4096-point FFT is to be
done and the data are good to only 10 bits, this scaling would require that the data be
right-shifted 12 bits. Since this scaling leads to a large error, another approach would
seem necessary.

Let W = exp (-2mi/N). From Fig. 3,
B, (k) = A, (k) + WRA, (R + NJ/2)

B, (k + N/2) = A, (k)-W2A,,_;(k + NJ/2).

11

AITITSSYIIND

JUDITH N. FROSCHER

Consider
|4,,:1(D1? + {Apq (i + N/2)I2
= 214, ()2 + 14,,G + N2)F).

Therefore, scaling by 1/2 at each stage would prevent overflow. This automatic block
scaling would shift out only one bit of significance at each stage and, in addition, would
shift out noise accumulated at earlier stages.

There is another type of scaling, called conditional block scaling. The conditional
block scaling implemented for the SPAU FFT macro tests each output data point during
each stage of computation to determine if it is greater than 1/2. If it is, the next stage
is executed with a scale factor of 1/2. However, whether scaling is required or not, there
is an overflow test after each addition or subtraction. Although the two data points that
enter the butterfly computation are bounded by 1/2, overflow is still possible. Consider

B, (k) = Apq(R) * WRA,, (k + NJ2).

Thus,
IB,, ()] < 0.7071 + 0.7071
= 1.4142>1,
since
[Ap1(R)12 < |Red,,_1(k)2 + |Im A,,_;(k)|2
1 1
= — 4 —
4 4
1
2
and

(A1 (R)] < 0.7071.
If overflow is detected, the data points are scaled and the complete stage is recalculated.
It is possible to retain more significance in the data with conditional block scaling than
with automatic block scaling by 1/2 at each stage. It also enables the SPAU to use more
effectively the full dynamic range of its 16-bit registers.

Simulation Scheme for Error Analysis

To study the error caused by a finite word length for the SPAU, the scheme shown
in Fig. 4 was used. Two input signals were used: a sum of decaying sinusoids and a

12

NRL REPORT 7732

sequence of random numbers {x,} 0 < x,, < 1. Results from the floating-point 60-
bit FFT were considered ideal as compared to results from the 16-bit SPAU-simulated
FFT. The difference was calculated and the process loss was exhibited in two ways:
noise-to-signal ratio (dB) and bad-bit distributions. If it is assumed that the signal has
already been sampled and time-truncated, the sources of error in the FFT can be enumer-
ated as follows:

Quantization of data to 16 bits

Quantization of sines and cosines to 16 bits
Truncation or rounding error after each multiplication
Scaling to prevent adder overflow.

L

These sources of error were not studied separately, since the purpose was to evaluate the
total process loss.

FFT
floating-point
60-bit on

CDC 6400-6600
Fi(n)

Process loss
Input —=] =F{(n)-Fx(n) o
NSR and bad bits

SPAU
simulated FFT
fixed- point
16-bit,
Truncated or rounded
block-floating
Fx(n)

Fig. 4—Scheme for SPAU FFT error analysis

Description of Test Signals — Dynamic range constraints were clearly exhibited by
the first test function, a sum of decaying sinusoids.

N
s(t) =) 10758 sin (2nf,,t)

k=0
where
fr = 10kHz
N = 12 for a 256-point FFT
N = 20 for 512-thfough-4096-point FFTs.

An FFT (as described in the first paragraph of this section) with automatic block scaling
of 1/2 at each stage was first implemented. The power spectrum was calculated by
squaring the real and imaginary parts and then summing. The squaring, however, doubled
the dynamic range needed to represent the new sequence. Since the numbers were scaled
at each stage, small numbers were squared, and some were too small to be represented in
16 bits. This phenomenon is called thresholding or underflow. As a consequence, the

13

@ITATSSVIIND

JUDITH N. FROSCHER

FFT was used with conditional block scaling. Fewer underflows were observed, but
thresholding was still a problem. It might be advisable to use an algorithm to approxi-
mate the square root of the power spectrum. These algorithms have gained considerable
interest recently. An even better approach would be to investigate the possibilities of
floating-point arithmetic.

The other test signal was a sequence of uniform random numbers such that

{x, 13, 0<x,<1.
Even with conditional block scaling, the FFT data points were scaled at each stage by
1/2, since the mean of the sequence, 1/2, appears at the 0-frequency point. For this
test function, conditional block scaling was equivalent to automatic block scaling. This
test signal was a worst-case test for the SPAU.

Noise-to-Signal Ratio Graphs— First the noise-to-signal ratios for rounding and trun-
cating were computed. Denote by F{(k) the ideal floating-point output and by Fx(k)
the fixed-point output, which was converted to floating-point representations. Then

N-1
> [F(k) - Fx(k)]?
NSR = noise?2 _ k=1
signal2 N-1
) [FUR)]2
k=0
and
NSR(dB) = 10log; o (NSR).

NSR(dB) was plotted against logyN for the FFT of both signals for rounding and trunca-
tion (Fig. 5). As noted earlier, the random-number input was scaled automatically; hence,
the NSR curves are relatively linear, with the rounded curve lower than the truncated one.
The NSR curves for the sinusoids have discontinuities caused by the discontinuous condi-
tional-block scaling, fixed-point arithmetic. As Weinstein notes [5], the curves for both
rounding and truncation have the same general shape, since the scaling is done in the
same way.

Bad-Bit Distribution —Of interest to the SPAU designers was the number of bits in
error (bad bits) due to processing. A bit-by-bit comparison of floating-point results and
SPAU simulated results was made. Appendix A contains the bad-bit distributions for both
test signals in both truncated and rounded arithmetic. From these graphs, the average
number of bad bits for truncation is about twice the average number for rounding. The
SPAU designers are contemplating a change to rounded arithmetic in the next version.

Simulation Results —To gain confidence in these results, the rms error was calculated
and compared with the results of Welch [15]. The results fell within his upper and lower
bounds. Since Weinstein’s block floating-point FFT algorithm is not exactly the same as
the SPAU’s conditional block-scaling FFT and his modeling was for white noise, an exact

14

NRL REPORT 7732

comparison could not be made [6]. For the sum of decaying sinusoids, however, the
NSR curves (from SPAU simulation) were 65 dB down on the average and agreed closely
with Weinstein’s results (within 3 dB). The random noise signal did not compare as well,
since scaling occurred at each stage with this signal, and Weinstein did not present NSR
curves for this case.

-40 T T T T T] T
_ ——a-=—==% Truncated
Pl
-50 - T
. Piad Rounded
o v
z
x-60- 3
z
70+ Random numbers
1 1 1 | 1 | |
_50 —
_ -~ Truncated
om ——~ -
& 6o — T
) ‘\/\/ roundes
-70 Sum of sinusoids
|] |) | § 1
7 8 9 10 1 12 LogpN

Fig. 5—Results of NSR simulation

With the SPAU’s 16-bit registers, a 90-dB dynamic range is possible. With truncation,
processing resulted in an average loss of 2 bits and a maximum loss of 6. In practical
applications, the input data will be accurate to at most 10 bits. Hence, the accuracy of
the output will be even better for these data. In actuality, the SPAU’s processing loss
for the FFT is tolerable if conditional block scaling is used. Also, if the power spectrum
is needed, algorithms other than squaring should be considered. Rounding is strongly
recommended. A study of the tradeoffs for floating-point arithmetic is advised.

QUANTIZATION ERROR IN DIGITAL FILTERING
The other fundamental algorithm of signal processing is linear filtering. Before the
advent of digital signal processing, filtering was done in the continuous domain. With the

increased speed and efficiency of digital computers, the conversion to digital signal proc-
essing began. The introduction of the FFT algorithm has certainly added impetus to the

15

G3TITSSYTONN

JUDITH N. FROSCHER

trend toward digital processing. Steiglitz [8] published a very interesting thesis on the
equivalence of the analog and digital domains by exhibiting a mapping from the analog
domain to the digital domain and rigorously proving that this mapping was an isomor-
phism. A digital filter can be defined as the computational process into which a sampled
signal or sequence of numbers is fed and out of which comes a numerical sequence, the
output signal. The digital filter can act as a band-pass filter, a differentiator, an integrator,
etc., as can an analog filter. The filtering algorithm is realized as a difference equation.

Overview of the Literature

The basic operations of digital filtering are multiplication by a constant, multiplica-
tion by a filter coefficient, and addition. For 16-bit, fixed-point, truncated arithmetic,
the sources of quantization error are:

1. Quantization of input data to 16 bits

2. Quantization of filter coefficients to 16 bits
3. Truncation or rounding after multiplication
4. Scaling to prevent overflow after addition.

Quantization effects have been enthusiastically researched for digital filters. Kaiser’s
study [19] is a brief overview of the field, including design techniques and computational
problems associated with the finite word length requirement. He also studies pole posi-
tions for different quantization levels and for different filter configurations.

Knowles and Olcayto [8] demonstrate a method for evaluating the rms value of
output noise from input quantization and roundoff error accumulation for any quantiza-
tion level and for different realizations. They also statistically predict the expected values
of the mean-square difference in the real frequency responses of the ideal and actual filter,
the actual filter having quantized coefficients. Experimental results verify this analysis.
They note that this method is suitable for direct and parallel realizations but is generally
unsuitable for the cascade realization. In another very useful work, Knowles and Edwards
[7] examine quantization effects for both rounded and truncated fixed-point arithmetic.
They consider roundoff error as an additive noise source and derive a statistical model for
the system rms error. They verify their model with experimental evidence. In fact, the
SPAU simulation yields comparable results.

Jackson [9] investigates the interaction between roundoff noise output from a digi-
tal filter and associated dynamic range limitations for the case of uncorrelated rounding
errors since the “uncorrelated error assumption breaks down more rapidly for truncation
as the signal becomes less random.” In another paper, [20] Jackson studies different
realizations of digital filters and indicates useful “rules of thumb’’ for a choice of con-
figuration. Computational results verify the analysis.

In his thesis, Kaneko [17] does a floating-point error analysis. He rigorously de-
rives the mean-square error due to roundoff accumulation and input quantization for
both rounding and truncation for floating-point digital filters. He supports his model
with experimental evidence. Oppenheim and Weinstein [6] statistically derive a noise-to-
signal ratio for rounded fixed-point arithmetic for a white-noise input. They also establish
bounds on the input magnitude to prevent overflow, but they point out that these bounds

16

NRL REPORT 7732

are sometimes very difficult to calculate. In his thesis, Weinstein studies the effect of co-
efficient quantization on pole positions. He compares fixed-point, block floating-point,
and floating-point realizations of a digital filter. Simulation results verify his analysis. In
the first five chapters of their book, Gold and Rader [4] deal extensively with all aspects
of digital filtering; however, they do not analyze truncated fixed-point arithmetic.

The SPAU Macro

The SPAU has fast multipliers. To use this hardware efficiently, the linear filtering
macro consists of a 4-pole filter realized as two 2-pole filters in cascade. The filter trans-
fer function is

1+ ajz71 + aza=2

H(z) = ,
() 1+ bla"l + b2a'2

where a1, ay, by, and by are real. The 2-pole configuration is shown in Fig. 6. The
circles represent adders, the boxes represent delays, and the coefficients at the arrows
indicate multiplication. The difference equations for this configuration are

W(n) = X(n) + byW(n - 1) + byW(n - 2)

and

y(n) = W(n) + a;W(n - 1) + agW(n - 2)

where, for simplicity, T = 1. To use the SPAU hardware more efficiently, the filter
was implemented as indicated by the dotted line. The difference equations for this
realization are

W(n) = X(n) + byW(n - 1) + byWn - 2)
and

y(n) = X(n) + (a1 + by))W(n - 1) + (ag + by)W(n - 2).

Since the adder does not have to wait for W(n) to be calculated, this configuration is
more regular (Fig. 7).

The 4-pole filter macro consists of two 2-pole filters in cascade, as shown in Fig. 6,
i.e., the output from the first filter is fed into the second and processed.
Error Analysis

In the same vein as the FFT error analysis, the scheme of Fig. 8 was used. The

same two test functions were used as for the FFT error analysis. Filter coefficients and
input data alike were bounded by 2 in magnitude. Scaling for the 4-pole macro was done

17

AITITSSYTIONN

JUDITH N. FROSCHER

fm—————
|
| ay
|
|
-
1
ol 4 () 21 2t 2
w(n) W(n) W(n-1) W(n-2)
by
ba

Fig. 6—The 2-pole filter implemented in the SPAU macro

Win-1) b,

W(n-2) bo

w'(n)

X{n}

Win-1)

(0|+b1) W(n-2)

(02+b2)

y(n)

X(n}

Fig. 7—SPAU hardware configuration for 2-pole filter

4-pole filter
floating-point

Input
—.--—*—
Signal

60-bit on CDC
6400-6600
Fi(n)

T 1

SPAU 4-pole filter
fixed point

16-bit
Truncated or rounded
Fx(n)

Process loss |
. LF#{n)-Fx(n)

Fig. 8—Scheme for SPAU 4-pole filter analysis

18

y(n)

NRL REPORT 7732

on the input data at the beginning; the worst case was thus taken, in that significance in
the input data was lost and the error was allowed to accumulate.

NSR Curves —The transfer functions for the two 2-pole filters in cascade are

1+ 1.4767z71 + 0.9999z2
1 + 0.1061z"1 - 0.8758z2

H,(2)

and

1 + 0.2253z-1 + 1.0000z~2
1 + 0.5048z-1 - 0.2912z-2°

Hy(z)

The transfer function for the 4-pole filter is the product of H;(2) and Hy(2). The poles
of Hi(z) are Z = 0.8843 and Z = 0.9904 and the poles of Hy(2) are Z = 0.3937 and
Z = 0.8985. The noise-to-signal ratios were calculated as before, as

" N-1 7]
Y IAk) - fx(k)]?
NSR(dB) = 10 log; o| — —
> [f(r)]?
R k=0 .

As opposed to the FFT, the data samples go through the filter algorithm only once. The
data pass through the algorithm, and the roundoff noise for the kth input point damps
out after several iterations; hence, the error is not averaged over many iterations. Another
source of error accumulation is the scaling. The error is usually in the low-order bits. In
the FFT algorithm, a bit of error is shifted out as scaling is required. With scaling of the
input data, the error tends to be greater. Thus, for different input sequence lengths, the
error is fairly constant. The NSR (dB) curves certainly exhibit this behavior. The graphs
are horizontal and the rounding curve is 10 dB down from that for truncation (Fig. 9).
The sum of sinusoids produced a slightly higher NSR curve (a larger error) since this

input was scaled by 8, or three bits, and the random input was scaled by 4, or two bits.

o — — — e ’
-60} =TT Truncated i e Y
—_ Truncated
[
=
@ M
177}
z Rounded
70} | o—t—o——o—o—*"
Rounded
L 1 1 1 1 1 1 L 1 Il 1 1 s 1
5 6 7 8 9 01 5 6 7 8 9 10 11 LogyN
Sinusoids Random

Fig. 9—NSR (dB) curves for random numbers and a sum of sinusoids

19

A3TITSSYTINN

JUDITH N. FROSCHER

Bad-Bit Distributions —Bad-bit distributions were plotted as for the FFT, and are
shown in Appendix B. Truncation produces about twice as much error in bits as does
rounding. The mean of the bad-bit distribution for random numbers is larger than that
for the sinusoids. The effect of the truncation bias is clearly exhibited, especially for the
uniform random input, which is a worst case. Knowles and Edwards [7] predicted the
rms error for fixed-point truncation; the rms error for the SPAU arithmetic is of the same
order of magnitude as that predicted.

Scaling

Scaling presents a problem in recursive digital filtering. It is recommended that
scaling be done in at least two stages. First scale the input to prevent overflow in the
first 2-pole filter, and then scale the output from the first filter to prevent overflow in
the second filter. An alternative is to consider the block-floating-point realization, as
suggested by Oppenheim [21]; this implementation however, would make the algorithm
use more machine cycles. Floating-point arithmetic would greatly facilitate implementa-
tion of the filtering algorithm.

CONCLUSION

For both the FFT and recursive filtering, dynamic-range limitations necessitate scal-
ing, which poses a problem as far as minimization of quantization error is concerned.
While fixed-point addition is more accurate than floating-point addition if the full register
length can be used, it is not possible to use the full register length since the 16-bit fixed-
point arithmetic imposes scaling because of the dynamic-range constraints. Based on sim-
ulation results, the decision was made to implement conditional block scaling for the FFT,
and results have been satisfactory. The scaling problem for recursive filtering is still under
study.

For the designers of the SPAU, a bad-bit distribution proved to be a more satisfac-
tory measure of system performance than NSR (dB) curves. Both representations,
however, showed the SPAU’s performance to be acceptable. Finally, simulation results
for both algorithms indicate that the implementation of rounding arithmetic would signif-
icantly decrease the quantization error. Also, floating-point arithmetic would greatly
alleviate the dynamic-range constraint, i.e., the scaling problem.

ACKNOWLEDGMENTS

The author thanks L. Russo, J. L. Schilling, B. Shay, H. Smith, W. Smith, J. Speiser,
and Y. S. Wu for helpful discussions on signal processing and error analysis. Also, the
author wishes to thank T. Rauscher and J. Roberts for programming assistance.

REFERENCES

1. W.R. Smith and J.P. Ihnat, “Signal Processing Element Users’ Reference Manual,”
NRL Report 7488, Sept. 5, 1972.

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

NRL REPORT 7732

W.R. Smith and H.H. Smith, “‘Signal Processing Element Functional Description Part
2 (Preliminary)—Signal Processing Arithmetic Unit,” NRL Memorandum Report
2522, Oct. 1972.

R.K. Richards, Arithmetic Operations in Digital Computers, D. Van Nostrand,
Princeton, N.J., 1955, pp. 174-176.

B. Gold and C.M. Rader, Digital Processing of Signals, McGraw-Hill, New York,
1969.

C.J. Weinstein, “Quantization Effects in Digital Filtefs,” M.I.T. Lincoln Lab. Tech.
Rep. 468, Nov. 21, 1969, AD 706862.

A.V. Oppenheim and C.J. Weinstein, “Effects of Finite‘I_{egister Length in Digital
Filtering and the Fast Fourier Transform,” Proc. IEEE 60, 957-976 (1972).

J.B. Knowles and R. Edwards, “Effect of a Finite-word-length Computer in a
Sampled-data Feedback System,” Proc. Inst. Elec. Eng. 112, 1197-1207 (1965).

J.B. Knowles and E.M. Olcayto, “Coefficient Accuracy and Digital Filter Response,”
IEEE Trans. Circuit Theory CT-15, 31-41 (March 1968).

L.B. Jackson, “On the Interaction of Roundoff Noise and Dynamic Range in Digital
Filters,” Bell Syst. Tech. J. 49, 159-184 (Feb. 1970).

J.W. Cooley and J.W. Tukey, “An Algorithm for the Machine Calculation of Complex
Fourier Series,” Math. Comput. 19, 297-301 (1965).

G-AE Subcommittee on Measurement Concepts, “What is the Fast Fourier Trans-
form?” IEEE Trans. Audio Electroacoust. AU-15, 45-55 (June 1967).

J.W. Cooley, P.A.W. Lewis, and P.D. Welch, ‘“‘Historical Notes on the Fast Fourier
Transform,” IEEE Trans. Audio Electroacoust. AU-15, 76-79 (June 1967).

W.M. Gentleman and G. Sande, ‘“Fast Fourier Transforms—For Fun and Profit,” in
Proc. Fall Joint Computer Conf., AFIPS Conf. Proc., pp 563-578, 1966.

T.H. Glisson, C.I. Black, and A.P. Sage, “The Digital Computation of Discrete
Spectra Using the Fast Fourier Transform,” IEEE Trans. Audio Electroacoust.
AU-18, 271-287 (Sept. 1970).

P.D. Welch, “A Fixed-point Fast Fourier Transform Error Analysis,”” IEEE Trans.
Audio Electroacoust. AU-17, 151-157 (June 1969).

T. Kaneko and B. Liu, “Accumulation of Roundoff Error in Fast Fourier Trans-
forms,” J. Assoc. Comput. Mach. 17, 637-654 (Oct. 1970).

T. Kaneko, “Accuracy Problems of Digital Signal Processing,” Ph.D. dissertation,
Princeton University, Dept. Elec. Eng., Princeton, N.J., Feb. 1970.

K. Steiglitz, “The Equivalence of Digital and Analog Signal Processing,” Inform.
Contr. 8, 455-467 (1965).

J.F. Kaiser, ‘“Digital Filters,” in System Analysis by Digital Computer, John Wiley &
Sons, New York, 1966, pp 218-285.

L.B. Jackson, “Roundoff-noise Analysis for Fixed-point Digital Filters Realized in
Cascade or Parallel Form,” IEEE Trans. Audio Electroacoust. AU-18, 107-122
(June 1970).

21

AITITSSVIOND

JUDITH N. FROSCHER

21. A.V. Oppenheim, “Realization of Digital Filters Using Block-floating-point
Arithmetic,” IEEE Trans. Audio Electroacoust. AU-18;130-136 (June 1970).

22

NRL REPORT 7732

Appendix A
BAD-BIT DISTRIBUTIONS FOR THE FFT

TRUNCATED ROUNDED
100~ Real 125— Real
Ave. = 1.4 Ave. = 0.8
p Max. = 4 1004 Max. = 3
5
75 H
50
50 H
25
25 1+
ollll'llllllllllll fo) 3 B NN I N o |
o} 2 4 6 8 10 12 14 16 Bad bits [0} 2 4 6 8 10 12 14 16 Bad bits
125 — 150 —
L
Imaginary Imaginary
100 Ave. = 08 Ave. = 07
Max. = 3 Max. = 3
100 H
75 H
S0 H
50 M
25 H l
olll'lllllllllllll Ollfl‘lllllllllllil
0 2 4 6 8 10 2 14 16 Bad bits 0] 2 4 6 8 10 12 14 {6 Bad bits
100 — 150
3
Power spectrum Power spectrum
80— Ave. = 11 Ave. = 03
Max. = 4 Max. = 3
100 H
60—
40 H
50 H
20 H
olllIlllllLJllIIll fo) 8 1 5 [N 1N U T |
0 2 4 6 8 10 12 14 16 Bad bits 0 2 4 6 8 10 12 14 16 Bad bits

Fig. A1—Bad-bit distribution for N = 256, sinusoidal input

23

A3TITSSYTIONN

JUDITH N. FROSCHER

TRUNCATED ROUNDED
200~ Real 200 T T Real
Ave. = 16 Ave. = 1.0
Mox. = § Max. = 4
150 |- r 150 3
100 H r 100 H
50 H 50 H
olLLLIIN lll'l | I O I I O T | ottt III I T S I O I I Y |
0 2 4 6 8 10 12 14 16 Bad bits o 2 4 6 8 10 12 14 16 Bad bits
250 ~ 250 ¢
Imaginary Imaginary
200 - Ave. = 1.0 200 Ave. = 08
Max. = 4 Max. = 4
)
150 H 150 H
100 H 100 H
50 H 50 H
0 | III LIt 1. 011 1141 oLl 1L 2 O O O I I O I Y |
0 2 4 6 8 10 12 14 16 Bad bits (o} 2 4 6 8 10 1 14 16 . Bad bits
100 — 100 —
Power spectrum Power spectrum
80 Ave. = 1.1 80 H Ave. = 07
Max. = § Max. = 4
60 - 60 H
40 40 H
20 H 20 H
ol Il lrl | N N) O N T O Y I | 1 l]l N N T T Y O T Y T T Y Y |
[0} 2 4 6 8 10 12 14 16 Badbits [0} 2 4 6 8 0. 12 14 16 Bod bits

Fig. A2—Bad-bit distribution for N = 512, sinusoidal input

NRL REPORT 7732

TRUNCATED ROUNDED
500 Real 500 Real
Ave. = 14 Ave. = 09
400 - Max. = 5 400 Max. = 4
300 W 300
200 H 200
100 H 100
ol b ity v v v o R
(o} 2 4 6 8 10 12 14 16 Bad bits i 8 10 12 14 16 Badbits
500 - 500
imaginary Imaginary
400 - Ave. = 08 400 Ave. = 08
Mox. = 3 Max. = 3
300 H 300
200 H 200
100 H 100
Fo N '8 IS N O O Y v A S | o I T T O I I |
0 2 6 8 10 12 14 16 Bad bits 8 10 12 14 16 Bad bits
125 — 250
Power spectrum Power spectrum
100 - Ave. = 11 200 Ave. = 03
Max. = 4 Max. = 3
75— 150
50 H 100
25 H 50
oLl 1': | I Y T T N W N O S I | o) | O OO T T I |
[0} 2 4 6 8 10 122 14 16 Badbits 8 10 12 14 16 Bad bits

Fig. A3—Bad-bit distribution for N = 1024, sinusoidal input

25

A3TITSSYTIIND

750

500

250

750

500

250

250
éOO
150
100

50

JUDITH N. FROSCHER

TRUNCATED ROUNDED
B Real 1000 ~ Real
Ave. = 1.8 Ave. = 1.0
Max. = 6 800 1 Max. = 4
—)
9 600 H
400 H
200 H
[IS NN IS 15O T Y T T T | 0 Jl]lllllllllllll
[o] 2 4 6 8 10 12 14 16 Bad bits [o] 2 4 6 8 1o 12 14 16 Bad bits
— 1000 —
[
]
> @ Imaginary Imaginary
Ave. = 10 800 Ave. = 0.8
Maox. = 4 Max. = 4
600 H
400 H
200 H
lllIIlIlIllllIIlI o IIIIIIIIIJJ]IJII
o] 2 4 6 8 10 12 14 16 Bad bits o 2 4 6 8 o 12 14 16 Bad bits
— 250 —
Power spectrum 9 Power spectrum
— Ave. = 14 200 [~ Ave. = 07
Max. = 5 Max. = 4
]
- 150 H
100 H
50 H
lIItllJlIllIlIlll o I]llllllllllllll
o 2 4 6 8 10 12 14 16 Bad bits o 2 4 6 8 10 12 14 16 Bad bits

Fig. A4—Bad-bit distribution for N = 2048, sinusoidal input

26

NRL REPORT 7732

TRUNCATED ROUNDED
2000 — Real 2000 — Real
Ave. = 14 1 Ave. = 09
Mox. = 5 Max. = 3
1500 |~ 1500 4
1000 H 1000 H
500 H 500 H
o lllrlllljlllllll 0 |0 15 1O Y T I I | | ||
0 2 4 8 10 12 14 16 Bad bits 2 4 6 8 10 12 14 16 Ba
2000 F 1500 ;—
.) @ ,
Imaginary Imaginary
Ave. = 09 Ave. = 09
1500 -~ Max. =3 Max. = 3
1000
1000 H
500 H
500 H
0 & N 11111 1911 0 {18 00 1 I T O O T T I I |
0 2 4 8 10 12 14 16 Bad bits 0 2 4 6 8 10 12 14 16 Bad
200 300(
Power spectrum Power spectrur
Ave. = 1.1 Ave. = 04
150 - Max. = § Max. = 4
200 H
100
100 H
50
0 11 T N T T O A o | WO O N T W T I I | L1
o} 2 4 8 10 12 14 16 Bad bits 0 2 4 6 8 10 12 14 16 Bad

Fig. A5—Bad-bit distribution for N = 4096, sinusoidal input

27

AITITSSVIOND

50

40

30

20

10

60

45

30

60

45

30

TRUNCATED

JUDITH N. FROSCHER

Real
Ave. = 1.3
Mox. = 4

Bad bits

1.1 1

14 16 Bad bits

Power spectrum

Ave. = 09
Max. = 4

1
8 10

12

14 16 Bad bits

ROUNDED
80[‘ Real
Ave. = 07
Max. = 2
60 H
40 H
20 H
fo) 8 N W I N N T N T O T I Y |
[¢] 4 6 8 10 12 14 16 Bad bits
80 —
Imaginary
Ave. = 06
€0 Max. = 3
40 H
20 H
Fo3 3 N A1 1N T Y O I N A v i |
o] 2 4 6 8 10 12 14 16 Bad bits
100
Power spectrum
Ave. = 0.2
75 Max. = 3
50 H
25 H
P 8 118 N 1 S N O N T Y Y '
[o] 2 4 6 8 10 12 14 16 Bad bits

Fig. A6—Bad-bit distribution for N = 128, random input

28

80

60

40

20

126

100

75

50

25

100

75

50

25

NRL REPORT 7732

TRUNCATED ROUNDED
[Real 125~ Real
Ave. = 1.3 1 Ave. = 0.8
. Max. =
Max. = 4 100 H ax. = 3
75 H
50 H
25 H
11101 lTl § ISR T N T T T A | fs3.0 N IS N NN T N N T Y Y o S
0 2 4 6 8 100 12 14 16 Badbits 0 2 4 6 8 10 12 14 16 Bad bit
r 150 —
{maginary Imaginary
] Ave. = O7 Ave. = 06
Max. = 3 Max. = 3
100 H
M y
50 H
IR0t | 1 I I T I O I O | foy 8 1 I N N N |
0 2 4 6 8 10 12 14 16 Badbits o] 2 4 6 8 10 12 14 16 Badbi
— 200 r
Power spectrum Power spectrum
Ave. = 1.1 Ave. = 0.3
B Max. = 4 150 Max. = 3
-4 100 H
4 50 H
[N NE N 1 | I T T I O | fo L I 1 N I N T Y S T
(o} 2 4 6 8 10 12 14 16 Bad bits 0 2 4 6 8 100 12 14 16 Badb

Fig. A7—Bad-bit distribution for N = 256, random input

29

A3TITSSYTIIND

JUDITH N. FROSCHER

TRUNCATED ROUNDED
250 Real 300~ Real
Ave. = 1.4 Ave. = 07
200 Max. = 4 Mox. = 3
200 H
150 |-
100 M
100 H
50 H
olllltllllllllllll o) N NS N [N N N T
(o] 2 4 6 8 10 12 14 16 Bad bits o] 2 4 6 8 10 12 14 16 Bad bits
250 r9 300 ~
Imaginary) Imaginary
200 H Ave. = 07 Ave. = 07
Max. = 3 Max. = 3
200 H
150 H
100 4
100 H
50 H
0 |18 1 N T T Y S Y OO S Y I O | o)L W6 NS N U I N T 1 T O T O I
o] 2 4 6 8 10 12 14 16 Bodbits [o] 2 4 6 8 10 12 14 16 Bad bits
250 300 —
Power spectrum A Power spectrum
200 - Ave. = 14 Ave. = 03
Max. = 4 Mox. = 3
200 H
150 |-
100 |-
100 H
50
0 | 18 18 TN T T N N O I I I I I | fox & NN N 1N TN T N T T T N T Y O W I |
[0} 2 4 6 8 10 12 14 16 Bad bits [} 2 4 6 8 10 © 14 16 Boad bits

Fig. A8—Bad-bit distribution for N = 512, random input

30

400

300

200

100

500

400

300

200

100

NRL REPORT 7732

TRUNCATED

N S TN U S O A |

| ltl
4

6

8 10 12 14 16 Bad bits

Imaginary

(o]

300

200

100

8 10 12 14 16 Bad bits

Power spectrum

1.2
5

g
s
[T

1t 1t 1 111111

8 10 12 14 16 Bad bits

500

400

300

200

100

600

500

400

300

200

100

400

300

200

100

0

ROUNDED

Real

Ave. = 07
Max. = 3

1 11 1 111111

|
2 4 6 8 10 12 14 16 Badbits
Imaginary

Ave. = O7
Max. = 3

111 1 1 1 111 111

o

11 11
2 4 6 8 10 12 14 46 Bad bits

Power spectrum

Ave. = 04
Max. = 3

NN (Y T N T N S O T N S T |

0

2 4 6 8 10 12 14 16 Bad bits

Fig. A9—Bad-bit distribution for N = 1024, random input

31

AATITSSYIIND

750

500

250

1000

800

600

400

200

300

200

100

JUDITH N. FROSCHER

TRUNCATED ROUNDED
B Real 1000 Real
- Ave. = 1.4 Ave. = 0.7
Max. = § 800 H Max. = 3
600 H
)
400 H
200 H
JllrllllllllllJI olll!llllJllllllll
(o] 2 4 6 8 10 12 14 16 Bad bits 0 2 4 6 8 10 1 14 16 Badbits
- 1250 —
Imaginary r Imaginary
i Ave. = 07 1000 1 Ave. = O7
Max. = 3 Max. = 3
= 750 H
1
H 500 H
" 250
18801 111t TN T I OO I O I | olll'llllllillllll
0o 2 4 6 8 10 12 14 16 Bad bits (o] 2 4 6 8 10 12 14 16 Bad bits
— 500 —
Power spectrum Power spectrum
Ave = 1.3 400 7 Ave.= 04
Max. = 5 Mox. = 3
300 H
200 H
100 H
P N I U T 1O T O T T N I A I | olllat 1+) 1 90 1 b] 911111
0 2 4 6 8 10 12 14 16 Bad bits 0 2 4 6 8 10 12 14 16 Bad bits

Fig. A10—Bad-bit distribution for N = 2048, random input

32

NRL REPORT 7732

TRUNCATED ROUNDED
1500~ Real 2500 — Real
y Ave. = 1.4 p Ave. = 07
.= Max. = 3
Max. = 5 2000 H ax
1000 H
1500 H
1
1000 H
500 H
500 H
0 lll?llllllllllll 0 § 18 1 1 T T T T T T T T I I
(0] 2 4 6 8 10 12 14 16 Bad bits 2 4 6 8 10 12 14 16 Bad bits
2000 = 2500 ¢~
Imaginary Imaginary
500 1 Ave.: O 2000 Ave. = 07
Max. = 3 Max. = 3
1500 H
1000 H
. 1000 H
500 H
500 H
0 |18 I T N 1 T T O Y I | ollltlllllllllllll
(o] 2 4 6 8 10 12 14 16 Bad bits 0] 2 4 5] 8 10 12 14 16 Bad bits
120 300(
Power spectrum Power spectrum
100 -
Ave. = 1.2 Ave. = 03
Max. = & Mox. = 3
80— 200 H
60— 1
a0} 100
20—
0 1 1 [S 1 I O S T T I | OIIIIIIJJIIIIIIII
0 2 4 6 8 10 12 14 16 Bad bits o] 2 4 6 8 10 12 14 16 Bad bits

Fig. A11—Bad-bit distribution for N = 4096, random input

33

AITITSSVIIND

50

40

30

20

80

60

40

20

JUDITH N. FROSCHER

Appendix B
-BAD-BIT DISTRIBUTIONS FOR THE FILTERING MACRO
TRUNCATED ROUNDED
i N= 32 15 r N =32
Ave. = 3.387 Ave. = 2.129
Max. = 5§ Max. = 4
- 5
Ij|||||||41|||||4 0 lllLlllllllIlll
0O 2 4 6 8 10 12 14 16 Badbits 0O 2 4 6 8 10 12 14 16 Bod bits
_ 25 —
N - 64 N = 64
~ Ave. = 3.492 20 [~ Ave. = 1.683
Max. = § Max. = 4
. 15 |4
- 0o H
- 5 |
TIIIIIIIIIIIIIIJIII OllllII]lllllIllll
0 2 4 6 8 10 12 14 16 Badbits 0 2 4 6 8 10 12 14 16 Badbits
— 50
N = 128 N = 128
= Ave. = 3.425 40 - Ave. = 1.898
Max. = 5) Max. = 4
L 20.—
| 10 H
LIlllllllllllll olllllllllllllllil
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 16 Badbits

16 Bad bits

Bla—Bad-bit distribution for a sinusoidal input

34

NRL REPORT 7732

TRUNCATED ROUNDED
150 ~ N := 256 100 N = 256
1 Ave. = 3.435 Ave. = 1769
Mox. = § Max. = 4
75
100 |-
50
50 |-
25
ol L1 |||L N I OO O O OO I Ry I T T T Y Y I A O
0 2 4 6 8 10 12 14 16 Bad bits 2 4 6 8 10 12 14 16 Bad bits
300 - 250
N = 512 N = 512
Ave. = 3.431 200 Ave. = 2072
Mox. = § Max. = 4
200 |-
150
100
100 -
50
ol alalidy v v vt vt oL |1|I||| Ll Ittt
0O 2 4 6 8 10 12 14 16 Badbits 0 2 4 6 8 10 12 14 16 Badbits
750 - 500 ~
N = 1024 N = 1024
r Ave. = 3.420 400 Ave. = 2.076
Max. = 6] Max. = 4
500 |-
300
200
250 |-
100
ol el v b 3 b1 p)t o LLI .111111 [B I
0O 2 4 & 8 10 12 14 16 Bod bits 0O 2 4 6 8 10 12 14 16 Badbits

Fig. Blb—Bad-bit distribution for a sinusoidal input (Continued)

35

3TITSSYTOND

JUDITH N. FROSCHER

Fig. B2a—Bad-bit distribution for random input

36

TRUNCATED ROUNDED
30 N:- 32 25— N =32
Ave. = 3,969 Ave. = 2.406
Max. = § 20 b= Max. = 4
20
15)
0
10F
5 j—
OIIIIIIJIIIIIIIIIJI oll II]lllllllllll
"0 2 4 6 8 10 12 14 16 Bad bits o 2 4 6 8 10 12 14 16 Badbits
60 ~ : 60 —
N = 64 N = 64
50 - 50
Ave. = 3.984 Ave. = 2.406
Max. = § Max. = 4
40 |- 40 |-
30 30 p-
20 - 20 -
(o o 10
ollJ_llIlLlllLlllll ollllllllllllllllll
[o] 4 6 8 10 {2 14 16 Bad bits o} 2 4 6 8 10 12 14 16 Boad bits
125 r 125 r
N = 4128 N = 128
100 - Ave. = 3992 100 |- Ave. = 2.359
Mox. = 5 Max. = 4
75 1~ 75
1
50 b~ 50 -
25 25
0 lLJ_T_II!lLllJ4IlLJI O'IIIIILJIIIIIIIIIJ;
0 2 4 .6 8 10 12 14 16 Bad bits 0 2 4 6 8 10 12 14 16 Bad bits

NRL REPORT 7732

TRUNCATED . ROUNDED
250 - N = 266 125 N = 256
Ave. = 4012 Ave. = 2.242
200 Max. = 5 100 b= Mox. = 4
150 |- : 751
100 | 50 |-
50 25 |-
ot 1 |||L L1ttt OIIII NI E NN
0 2 4 6 8 10 t2 14 16 Badbis 0 2 4 6 8 10 12 14 16 Badbis
500 250
N = 512 N = 512
400 - Ave. = 4018 200 - Ave. = 2.299
Max. = 5 Max. = 4
300 |- 150
200 - 100
100 | 50 |-
ol L 1 |||L [I S I OIIIIITIIII L1ttt
0 2 4 6 8 10 12 14 16 Bad bits 0 2 4 6 8 10 12 14 16 Bad bits
1000 - 500
N = 1024 N = 1024
800 —~ Ave. = 4019 400 - Ave. = 2.332
Max. = 5 Max. = 4
600 |- 300 |-
400 |- 200 |-
200 |- 100 |-
ot t 1ttt o]lll Jlll Lt 11t
0O 2 4 6 8 10 12 14 16 Bad bits O 2 4 6 8 10 12 14 16 Badbits

Fig. B2b—Bad-bit distribution for random input (Continued)

37

A3TITSSYIONN

