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A TWO-POLE FILTER FOR USE WITH A SCANNING RADAR

INTRODUCTION

The data processor for a scanning radar usually performs two functions. The first
is target detection and the second is estimation of angular position. The detection prob-
lem has been studied by Marcum and Swerling [1], Blake [2-4], Hall [5], Cooper and
Griffiths [6], Palmer and Cooper [7], Hansen [8], and Trunk [9]. The detection results
are summarized as follows:

1. The optimum weighting* is directly proportional to the 4th power of the
antenna beam pattern.

2. Uniform weighting with the optimal number of pulses is 0.5 dB less efficient
than the optimum weighting.

3. The feedback integrator (a single delay-loop integrator) is about 1.0 dB less
efficient than optimum weighting.

4. The double delay-loop integrator (a two-pole filter, which has a multiple pole)
is about 0.3 dB less efficient than optimum weighting.

Since the double delay-loop integrator is nearly optimum and requires little storage, further
detection studies are not required, either to improve the signal-to-noise (S/N) performance
or to simplify the system.

The problem of estimating angular position has not been studied as thoroughly as
the detection problem. Swerling [10] has calculated the maximum angular accuracy (using
the Cramer-Rao lower bound), Hansen [8] calculated the performance of the moving
window (uniform weighting of the pulses), and Trunk [11] calculated the performance of
the feedback integrator. Using either the moving window or the feedback integrator, one
can obtain angular estimates whose standard deviations (SD) are 15% greater than the
optimum calculated by Swerling. The difficulty with estimating angular position using
the moving window is that all the pulses must be saved. The difficulty with the feedback
integrator, using a threshold-crossing estimation technique, is that the expected value of
the angular position is a function of the S/N which must be estimated. If the maximum
of the feedback integrator is used as an estimator, there is no changing bias. However,
the SD of the estimates are 100% greater than the lower bound.

Note: Manuscript submitted January 14, 1974.

*The optimum weighting is one which maximizes the output signal-to-noise ratio. This definition is
used because it reduces the complexity of the necessary calculations and has been shown [9] in the
large sample case to be equivalent to maximizing the probability of detection.
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CANTRELL AND TRUNK

Although the angular accuracy of the double delay-loop integrator was not calculated
in Ref. 6, it would be suspected that the estimator using the maximum value, while not
having a changing bias, would yield poor angular estimates. This is because its weighting
function is of the form te-t and its tail is higher than the feedback integrator's which is
e-t. To test this conjecture about the performance of the double delay-loop integrator,
a Monte Carlo simulation (described in a later part of this report) was run. The results
are shown in Fig. 1. The SD of the estimates obtained are 50 to 100% greater than the
Cramer-Rao lower bound.
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Fig. 1-Comparison of angular estimate with the Cramer-Rao
lower bound. a is the standard deviation of the estimation error
and N is the number of pulses within the 3-dB beamwidth, which
is 2f3.

In order to find a detector which is simple and yields both good detection and
estimation results, a two-pole integrator was investigated. This integrator differs from
the double delay-loop integrator by not requiring the two poles of the filter to be at
the same location.
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TWO-POLE FILTER

The proposed two-pole filter is shown in Fig. 2. The state equations are

Y(i) = oY(i-1) + rx(i),
where

° [0 2
E)=

1k,

Y(i) =

2 (i)

r = []

Fig. 2-Two-pole filter

Two inputs, which are used later in this report, are considered. The first is white
Gaussian noise whose variance is a2 . Consequently, the output of the envelope detector
is Rayleigh distributed and its variance Q(i) is (2 - 7r/2)u2, independent of i. The other
input is due to the scanning of the beam over a point target and is proportional to the
fourth power of the antenna (voltage) gain pattern for small signals; i.e.,

sin 4 (ioAO - ir)

G4(i) = (iaAO - r)4

0O

0 l i s 2er

else

a = 1.3916/3
2j3 = 3-dB beamwidth,
AO = angular increment of the scanning radar and equals 27r(TrT),

T being the scan time of the radar and r being the sampling time which is the reciprocal
of the pulse repetition rate. The number of pulses N in the 3-dB beamwidth is 2fl/AO.

3
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CANTRELL AND TRUNK

The output of the filter when excited with noise only is calculated first. The
covariances of the state variables are [12] *

P(i) = OP(i - 1)ET + rQ(i)rT

where

P(i) = Pii1i)
-P21 (0i

Pl2 (i)

P22 (')

pkj(i) = E(yk - y )(yj - y-).

Substituting Eq. (1) into Eq. (3) and setting p2 j(i) = pk .(i - 1), one obtains the steady
state solution for the covariances. The output variance of the filter is

(2 2-)a2

(4)X Ap 2 2 (i) =

[ k2 -1 2 ( 1+ k2 

independent of i.

The filter output at time i can be written as

y 2 (i) = 2i, h(j)x(i - j), (5)
j=o

where h(j) is the impulse response of the system.

The impulse response of the filter is now obtained. The filter's transfer function in
terms of the z-transform is

H(z) = Y 2 (Z) -
X(Z)

z-1

(1 - kjz-l + k2z-2) -
If the roots are complex, Eq. (6) can be written as

H(z) =
z-1

1 - 2eCwoT cos c.drz-1 + e-2tWorz-2 I

*Although the input noise source is assumed to be white Gaussian in obtaining Eq. (3) in the reference
cited, the Gaussian assumption is not required.
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where

{ [ 2 (1) ]2 21[/C~s-l 2 2 (8)

dT = cos- 1 k, (9)

0 (1 _ t2)1/2. (10)

The impulse response of the filter is then given as

h(i) = Be twoTi sin Wd iT (11)

where

__WT (12)
B si= d

______

The response of the system to the G4 (i) waveform is obtained by convolving Eq. (2)
with Eq. (11).

PARAMETER OPTIMIZATION

The optimum filter coefficients are found by using the Hooke and Jeeves (13)
direct search technique to maximize the output (S/N)o defined by

(l0=L~h(j)x(i* - i)] 2

(T)0 2
UQ

where i* is the sample at which the filter obtains its maximum value and x(i) = G4 (i).
An optimum weighting function is shown in Fig. 3 and the optimum k1 and k2 and
resulting (S/N)o for various N's are in Table 1. The S/N denoted by (S/N)opt in Table
1 refers to the S/N obtained by letting h(j) = G4(j). Comparing (S/N)o and (S/N),pt,
the optimum two-pole filter requires a 0.15-dB increase in S/N in order to provide the
same detection capability as the optimum detector; i.e., that detector which has h(j) =
G4 (j).
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WEIGHTING FUNCTION

RETURNED SIGNAL
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Fig. 3-Optimum weighting function of the two-pole filter

Table 1.
Optimum Filter Coefficients as a Function of the Number of Pulses on Target N.

6

l kl 1 k2 | (S/N)o | (S/N),ptN k1k (dB) j (dB)t

5 1.263821 0.490718 4.78 4.99
10 1.629371 0.697855 7.83 8.00
15 1.753619 0.786028 9.60 9.76
20 1.815702 0.834514 10.86 11.01
25 1.853011 0.865273 11.83 11.98
30 1.877655 0.886277 12.62 12.77
35 1.895277 0.901669 13.29 13.44
40 1.908494 0.913418 13.87 14.02
45 1.918714 0.922626 14.38 14.53
50 1.9265951 0.9297813 14.84 14.99
55 1.9334151 0.93605575 15.25 15.40
60 1.9342834 0.9367502 15.63 15.78
65 1.937274 0.9393953 15.98 16.12
70 1.9458011 0.9475199 16.30 16.45
75 1.95203 0.953459 16.60 16.75
80 1.947554 0.948961 16.88 17.03
85 1.9551646 0.95633073 17.15 17.29
90 1.960444 0.9614337 17.39 17.54
95 1.962102 0.9630165 17.63 17.77

100 1.9628717 0.96370641 17.85 18.00
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Next, an approximate expression for the coefficients k1 and k2 was found in terms
of the number of pulses N within the beamwidth. By substituting the coefficients in
Table 1 into Eqs. (8) and (9), we found that t = 0.63 and NcdT = 2.2 for all values of
N. Consequently, substituting into Eqs. (8) and (9), and solving for k, and k2, we obtain

k= 2 e 6wdTINV/rl cos (COdr/N) (14)

k2 e 2tdTIN (15)

Using k, and k2 determined from Eqs. (14) and (15), we found that the S/N was the
same as in Table 1.

PROBABILITY OF FALSE ALARM

The probability of false alarm Pf, is computed by obtaining P(y 2 > Ty) where Ty
is the threshold. Because the probability density of Y2 is untractable (Y2 being an in-
finite sum of weighted Rayleigh variables), the Pfa for a given Ty will be found by
simulation. Specifically, the importance sampling technique described in the appendix
will be used. The results of the simulation, Figs. 4 and 5, show how the normalized
threshold T /a behaves as a function of the number of pulses N on target for various
Pfa 'S.

PROBABILITY OF DETECTION

Using the threshold settings given in Figs. 4 and 5, the probability of detection PD
is also obtained by simulation. The ith envelope-detected pulse can be represented by

x(i) = V/[G2(i) + nil] 2 + 1i2 , (16)

where ni1 and ni2 are independent zero-mean Gaussian random variables with variance (2,
and G2 (i) is the returned signal from a unit-amplitude point scatterer. The midbeam S/N
is 10 log (1/2a2). The initial value of the two-pole integrator, Y2 (0), was set equal to its
average noise value and the generation of signal-plus-noise samples using Eq. (16) started
at approximately the null of the antenna beam. Specifically, the position of the first
pulse was randomized so that the angle between the maximum signal return and the
center of the antenna beam was a random variable that was uniformly distributed between
-AO/2 and +AO/2. The simulation was performed for many combinations. The number
of pulses N was set to 5, 10, 15, and 20; and for each N the midbeam S/N was varied in
decibel increments. For each of the above combinations, 2000 cases were run; the
results are summarized in Fig. 6.
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Fig. 4-Normalized threshold as a function of the
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ANGULAR ACCURACY

Two estimates of azimuth position will be considered: an estimate using a threshold-
crossing procedure and an estimate using the maximum output of the two-pole filter. Let
the first target detection (FTD) be defined as the smallest i such that

y2(i) > T (17)

where T is the detection threshold for the two-pole filter, and let the last target detec-
tion (Lr'D) be defined as the largest i such that

Y2 (i) > Tya (18)

The azimuth position of a target can be estimated by using a threshold-crossing procedure
defined by

1
0 = -(FTD + LTD)AO, (19)

2
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where AO is the angular scanning increment between successive pulses. Another possible
azimuth estimate is

60 =, / (MP), (20)

where MP is the subscript of the largest integrated output; i.e., y2(MP) ->- Y2(i) for all i.

The accuracy of the estimators was again determined by a Monte Carlo simulation.
The simulation was performed for many combinations. The number of pulses in the
beamwidth N was set equal to 15, 20, 30, 40, 60, and 100; and for each N the midbeam
SIN was set to 1, 3, 5, 7, 9, and 11 dB. For each of the above combinations, 200 cases
were run; the results are summarized in Fig. 7. Comparing these results with those

9
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given in Fig. 1, one can state that the two-pole filter yields more accurate results than
the double delay-loop integrator. Moreover, for the two-pole filter, whereas the bias
value for the threshold-crossing procedure varies between 1.003 and 1.1p as a function
of the SIN, the bias value for the maximum value estimator is 1.051 independent of the
S/N. Consequently, the maximum value estimator should be used since the bias does
not have to be estimated.

SUMMARY

Previous estimators of azimuth position had deficiencies: The moving window
requires the storage of many pulses, and the feedback integrator has a bias which has
to be estimated. The two-pole filter has been investigated and yields good detection
performance and accurate azimuth estimates. The detection performance of the two-
pole filter is only 0.15 dB less efficient than the optimal detector. The SD of the
azimuth estimate is only 15% greater than the Cramer-Rao lower bound, and the estimator
using the maximum value has a constant bias. Consequently, because of its detection
performance, angular accuracy, and simplicity of implementation, the two-pole filter
would be an excellent detector to use with scanning radars.
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Appendix
IMPORTANCE SAMPLING

The fundamental principle of the technique of importance sampling* is to modify
the probabilities that govern the outcome of the basic experiment of the simulation in
such a way that the event of interest (i.e. the false alarm) occurs more frequently. This
distortion is then compensated for by weighting each event by the ratio of the probability
that this specific event would have occurred if the true probabilities had been used in
the simulation to the probability that this same event would occur with the distorted
probabilities. Consequently, by proper choice of the distorted probabilities the number
of repetitions can be reduced greatly.

To illustrate the method, the simulation involving the two-pole filter is run for 2N
pulses, the output is noted, and the output serves as the initial value for the next run of
2N pulses. However, to obtain more events on the tail of the distribution, the original
probabilities are distorted so that more events occur on the tail. This is achieved by
making the variance of the Gaussian noise larger. The simulation is run and the proba-
bility density of Y2 is estimated by

M

P(Y2 is in the nth interval) = M j
j=1

where

[j|PT(ni1 )PT(ni2), y2 lays in the nth interval
6. = L=1 PD(nil )PD(ni2 ) otherwise.

0

nj1 and ni are the I and Q Gaussian noise components, and PT(-) and PD(-) are the true
and distorted probability densities, respectively, evaluated at the values of the noise
sequence. Because both PT(-) and PD () are Gaussian,

2N 2D2 n2-exp2
-n 2 ePL 2 a(2 a2) 2 t 2 a2) 

In generating Figs. 4 and 5, a = 1, aD varied from 1.25 a to 1.65 a for various N's, and
M = 40,000.

*F.S. Hillier and G.J. Lieberman, Introduction to Operations Research, Holden-Day, Inc., San Francisco,
1967, p. 457-459.
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