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SOLITARY OCCUPANCY FOR UNEQUAL CELL PROBABILITIES
WITH APPLICATION TO DOPPLER RADARS FOR OCEAN SURVEILLANCE

INTRODUCTION

There is a need in ocean surveillance to have information on surface ships of every
type [1, and candidates for meeting this need are the doppler radars of continuous-wave
and pulse types. A concise description of these radars is presented by Skolnik [2,31.
The doppler radar uses range, azimuth, and doppler gating to resolve ships. If more than
one ship is contained in the same range and azimuth cell (termed here the ocean-
surveillance resolution cell), then to resolve these ships they need to be separated in
doppler by an amount equal to or greater than the doppler resolution capability of the
radar. The doppler resolution capability is doubled to obtain a doppler segment that is
used in decomposing the doppler dimension into disjoint doppler cells of equal width.
The doubling accounts for the plus and minus differences needed to resolve in doppler.

The probability that a ship possesses a speed falling in one doppler cell may differ
from that probability of falling in another. For a given density of ship speeds the prob-
ability associated with each doppler cell can be computed. In general these doppler-cell
probabilities will not be equal. The problem of determining a doppler radar's capability
to resolve N ships contained in the same range and azimuth cell is therefore a problem of
calculating the probability of N ships' dopplers occupying solitary doppler cells when the
cells have unequal probabilities. This is an occupancy problem in the category of com-
binatorial theory.

In combinatorial theory the solution to the solitary occupancy problem is well known
for the case that all doppler-cell probabilities are equal [41. Tractable results are lacking
for the case that the doppler-cell probabilities are unequal [5]. The objective of this re-
port is to investigate this latter case,

The investigation is conducted in the next section. Therein the probability of re-
solving N ships (N = 2, 3, .. , ,10) contained in the same range and azimuth cell is given
as a polynomial function of N - 1 quantities. The quantities are the sum of the doppler-
cell probabilities when raised to the tth power, t = 2, 3, . . . N. With M representing the
number of doppler cells and N the number of ships (M > N, since otherwise solitary oc-
cupancy is impossible), the theory of the next section transforms the problem involving
M probabilities into a solution embracing N - 1 quantities. This transformation is very
useful when M is large compared to N. The polynomial functions of the N - 1 quantities
were obtained with the aid of the computer for N = 2, 3, ..., 10.

Note. Manuscript submitted January 3, 1974.

1



H. L. STALFORD

The third section presents an application of the theory to doppler radars performing
ocean surveillance. The obtained results are compared in the fourth section with those
calculated by means of an integration method, and an excellent agreement is received.

SOLITARY OCCUPANCY FOR UNEQUAL CELL PROBABILITIES

Problem Statement

Let there be M distinct cells with probabilities q 1, q 2 - q. of an object occupying
them. Suppose there are N distinct objects, with N < M. An object falling into the M
cells must occupy some cell. Therefore

M

N=1

Problem. Calculate the probability that the N objects occupy solitary cells when they
are allowed to fall into the M cells according to the probabilities 91, q2, . .,qM

Fox t = 1, 2, . . ,N define

M
K = L qt. (2>

i=1

Note that KR = 1. Define PN to be the probability that all N objects occupy solitary
cells and refer to PFN as the probability that at least a pair of the N objects will occupy
a common cell. Thus.

PFN = 1 - . (3)

The formulas for the probabilities 9 N and PEN, where N = 2, 3, 4 are derived in the
next two subsections. Then the probabilities PN and PFN for arbitrary N is discussed.
The approach adopted for deriving these formulas is to calculate PEN first and then ob-
tain PN from Eq. (3). These formulas are shown to be functions only of the terms 2,
K3, .- - , KN .

Solitary Occupancy When N - 2, 3

Let i be contained in the set {1, 2,... ,MT, and let C1 denote the ith cell. The
probability PO E Ci, 2 E Ci) that objects 1 and 2 are both contained in the ith cell Ci
is given by

P(ICC1 2 E 7) = q,2. (4)

Thus

2
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M

PF2 =E q,2 = K2 (5)
is 1

is the probability that the pair of objects will occupy the same cell. The probability P2
that each object occupies a solitary cell is

P2 1-K 2 - (6)

For N = 3 we fail to have solitary occupancy in the following three mutually exclu-
sive cases.

i. Objects I and 2 occupy the same cell. Oe 'oupies an cell.

ii. Objects 1 and 2 occupy separate cells. Objects 2 and 3 occupy the same cell.

iii. Objects 1 and 2 occupy separate cells. Objects 1 and 3 occupy the same cell.

The probability of case iii occurring is equal to that of case ii. The probability of case i
is equal to K2 , as obtained in Eq. (5). Thus there is need to calculate only case ii.

Let i be contained in {1, 2, . ., M}. The probability that objects 2 and 3 occupy
the Ith cell and object1 occupiesasolitary cell is 1 - I

Summing over all i, i = 1, 2, ... ,M, we obtain the probability that case ii occurs:

M
f qi,(1 - q1 ) = K2 - K3 . (7)
1=1

As a result

PF3 = K2 + 2(K 2 - K3 ) (8)

and

P3 = 1 - 3K2 + 2K3 . (9)

Solitary Occupancy When N = 4

For N = 4 we fail to have solitary occupancy in the following (4 - 1)! mutually
exclusive cases:

a. Same as case i with the addition that object 4 occunies any cell.

b. Same as case ii with the addition that object 4 occupies any cell.

c. Same as case iii with the addition that object 4 occupies any cell.

d. Objects 1, 2, and 3 occupy separate cefls. Objects and 4 occupy the samce
cell.

3



H. L. STALFORD

e. Objects 1, 2, and 3 occupy separate cells. Objects 2 and 4 occupy the
same cell.

f. Objects 1, 2, and 3 occupy separate cells. Objects 3 and 4 occupy the
same cell.

The probability that either case a, b, or c occurs is equal to P1'3 , given by Eq. (8).
The probabilities of cases d, e4 and f are equal. We therefore calculate only case d.

The probability that objects I and 4 occupy the same ith cell is given by q2. The
probability that objects 1 and 2 occupy separate cells conditioned on object 1 being lo-
cated in cell i is

M

i#1

The probability that objects 1, 2, and 3 occupy separate cells conditioned on object I
and 2 being located in cells i and j respectively is

M

k*=1

koi

Multiplying q72 times the sums in (10) and (11) and then summing over i, i = 1, 2, .fM,
gives

M

i-l 1; /k
#i k #

as the probability that case d occurs. Note that

L qk = 1 - q-` i,
k=jk:i
k _1

(12)

(13)

so that the two inner sums of (12) become

M fr

L q(1 - qj - q) = (1 - q1) L

J*i ;I*

M-2 ',2 = (1 -q)(1 -q1) -(K2-q 2 ). (14)
i= 
j#

4
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In view of Eq. (14) the sum in (12) becomes

L qi (1 - 2q, + 2qi 2 - K 2 ) = K 2 - 2K3 + 2K4 - K 2
2 . (15)

i=1

Consequently, the probability that cases d, e, or f occur is equal to 3(K2 - 2K3 + 2K4 -
K2

2 ), and the probability PF4 is given by

PF4 = PF3 + 3(K2 - 2K3 + 2K4 - K2 ). (16)

As a result

P4 = P3 - 3(K2 - 2K3 + 2K4 - K2
2) (17)

or, in view of Eq. (9),

P4 = 1-6K 2 +8K 3 -6K 4+3K 2
2 . (18)

Solitary Occupancy for Arbitrary N < M

Suppose we have N objects with N > 4. Assume that we have calculated PFN1
and therefore PN-1- Consider the following two mutually exclusive situations:

1. At least two objects out of the first N-1 objects share a cell together. The
Nth object is contained in arny cell.

II. None of the first N-1 objects share a common cell. Let i E {1, 2, ... ,N-1}.
The Nth object shares a cell with the ith object.

The probability that case I occurs is PFN -1. Observe that the probabilities of case II for
i e {1, 2, . .. ,N-1} are equal. Thus we calculate the probability for case II to occur
with i = 1. Consider the following sum defined as PE(II, N, 1):

M / ~M M / \f
PF(I N, 1) M . .. (

11=112L 11 q1 L INIT 

Ž1 241 1i3 K -iN-/ I /19)
\1341 for I <i <N-l /19)

The first sum, 12 qJ2 , states that the Nth object and the 1st object occupy the same cell.
The second sum is conditioned on the two objects 1 and N occupying the j1 th cell. It
states that the 2nd object occupies a cell separate from object 1. The third sum is con-
ditioned on objects 1 and N occupying the j th cell and the 2nd object occupying the
i2 th cell. This sum corresponds to the 3rd object occupying a cell other than those
occupied by the objects 1, 2, and N. The other sums are similar, with the last sum
being conditioned on objects 1 and N occupying the j1 th cell, object 2 occupying the
j2 th cell, ... , and the (N-2)th object occupying the jNi 2 th cell.

5
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We designate PF(II, N, i) to be the probability that case IE occurs for i = 1, 2, 4 . .
N- 1. This notation corresponds with that given in Eq. (19). The probability PF(Il, N)
that case 11 occurs for any i is

N-1
PF(1IN) = P1(IIN, A) = (N - 1)PE(IIN, 1), (20)

i11

since PFf I1,N, i) = P1'(I, N, 1) for i = 2, 3, .N . -1.

The probability PFN of failing to have solitary occupancy for all objects is

PFN = p 1 + (N - lr),1vl , 1).

Thus the probability of having solitary occupancy is

P_ = AN-P - VN - 1 1PP1IIN, AT. (22

By induction it can be verified that PN is a polynomial function of K2, K, .. . KV
Ref. 6. For example it can be shown that

P5 = I - 10K2 + 2OKg - 30K4 + 24K6( - 20K2K3 + 15K22. (23)

Note that in each of the equations (6), (9), (18), and (23) the sum total of the coeffi-
cients of the negative terms is equal to the sum total of the coefficients of the positive

A computer program has been used in Ref. 6 to derive the algebraic formulas for
P, P7, --4 PI1 . The probabilities PI1 and above can be derived by the procedure de-
scribed therein. The computer program uses prime numbers as variables for the purpose
of reducing the sum in Eq. (19) to a polynomial equation in terms of K2, K3, . , I K! -
Thus PF(II, N, 1) as a function of K2,1 3, -. . KN is substituted into Eq. (22) to obtain
PN as a functi3n of K2, K3 .. . KN. In this manner we obtain

Aa~r d-4n~r .4 A AL innr nr rr
6 = - 1- K + 4UA3 - A 4 + - ih g r 41 2

+ 40K32- 120K3K2 - 15K23 + 45K22, (24)

P7 = 1 - 21K2 + 70K3 - 210K4 + 504K5 - 840K6 + 7207

- 504K6K2 - 420K4 K3 + 630K4K2 + 2S0K32

+ nn rr V 2 - An r - 3 + 2iArzV 2Z1UflV SA 2 '*4AUf)L3 f 2 LU'6 2 Lu"2-

6
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PS = 1 - 28K2 + 112K3 - 420K4 + 1344Kb - 3360Kg

+ 5760K7 - 5040K8 + 3360K6K2 + 2688K1K3

- 4032K5 K2 + 1260142 - 3360K4K3 - 1260K4K22

+ 2520K4K2 - 11201(32K2 + 11201K2 + 1680K1K(2

- 112OK3K2 + 105K24 - 420K23 + 210122. (26)

The equations for P9 and PI 0 are tabulated in Tables 1 and 2 respectively, since they are
lengthy. To obtain P9 from Table 1 multiply the sign, the coefficient and the factor to-
g _ u n e x u _ 3e a u u n n r __ _ e s u n_ p o1d. s _ ; I i sgethler and Wilen au iu 1 resulbl ng PrvuUU('6, ulatb is,

P9 = 1 - 36K2 + 378K22 - 1260K23 + *-- (27)

making use of K, = 1. Obtaining Pi,, from Table 2 is similar. The note immediately
following Eq. (23) applies also to Eqs. (24) through (26) and to P9 and PI 0 contained
in Tables 1 and 2.

In obtaining PF(II, N, 1) as a function of K2, K3s ... , 1( one must collect (N-1)!
terms to reduce the sum of Eq. (19) to an algebraic equation in these quantities. Thus
in deriving P11 one would have the lifetime task of more than 3 million operations.
The computer performs this task in less than 30 seconds with the computer program
described in Ref. 6.

Table 1
Equation for P9

Sign Coefficient Factor sign Coefficient Factor

+ 1 K1 (=1) 15120 K4K3
_ 1 36 K2 + 15120 K4 K3K2

+ 378 K22 + 11340 K42
- 1260 K23 + 3024 15
+ 945 K24 _ 18144 K5K2
+ 1Q 1 E3 + 9072 72,29

2520 K3K2 + 24192 K5K3
+ 7560 K3K22 2 18144 K5K4
- 2520 K3K23 - 10080 K6
+ d160 K-32 + 30240 K6 K2

_ 10080 K32K2 - 20160 K 6 K3

+ 2240 K33 + 25920 K7
_ 756 K4 _ 25920 K7K2
+ 7560 K4K2 - | 45360 [K8
I j | 11340 IK4K22 + 40320 Kg

7



H. L. STALPORD

Table 2
Equation for P1 0

LCueinciens F actor -ig -Coetfticient F

+ 1 K1 (=1) + 56700 K 2
45 - 56700 K4 2K

+ 63U F22
M + 6048 1(5

_ 63150 K23 60480 KrK 2
+ 4725 K24 + 90720 (51R2

945 KO5 + 120960 Kr5K
+ 240 KS - 120960 Kf(K3K2

5040 1SK2 - 181440 K5K4
+ 25200 K3K22 + 72576 Kx2

ZDZU0 E ^ R I- ZOZUU As
+ 8400 K3 2 + 151200 K8 K2

_ 50400 K3
2 K2 7- K 75600 K6K22

+ 25200 K 2 K2 C _ 201600 Ks }

+ 22400 K13 + 151200 K(51K4
- t 1260 1(4 ¶ + 386400 ;
+ 18900 JK4K2 - 259200 K7K2

| = i JUnA3 wz T rr 9 lnnn- Y r yr
- ,J~Ultu i LVS4Lf+ OUJU a'7 A 3

+ 18900 |K4K13 - 226800 Ks
s - i 50400 (K4K13 + 226800 j 1(312(
+ 151200 K4KK2 + 403200 K4
-_ j 1 50400 K4K 3

2 {j- 362880 j K 1 0

APPLICATION TO- DOPPLER RADARS

Consider a doppler radar system which has a doppler resolution capability of d,
knots for some fixed operating frequency and some coherent integration time of process-
ing. We assume this radar system is providing surveillance of an ocean region containing
mvenrchant- .nasef as .ell oshpts of nranil i^N+naac+ T- Lvfiv. RA N rvonrttrit+ +ha la*itn+nnil

and longitudinal coordinates of a position in this ocean region. Suppose there is a ship-
ping lane several hundred nautical miles wide passing through the ocean region and con-
taining (a , , Ji). Let 0 be the angle between the shipping lane direction and the radial
direction to the radar site from the coordinate (a,, J). The coordinate (a,,l 0) is con-
tained in some ocean-surveillance resolution cell whose size is determined by the beam-
width, pulsewidth, operating frequency, and range to (a,, tN), Ref. 7 and 8. If two ships
are traveling with speeds sa and s2 in the same direction along the shipping lane and have
their positions in the ocean-surveillance resolution cell containing ("i, 1 t) then these two
sUips ae resil-_vaui in Auyjler pr-viuV1U

8
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SHIPPING

RADIAL DIRECTION
TO RADAR SITE

Fig. 1-Two ships traveling in the same ocean-surveillance
resolution cell

JS1 - S21 -> d% knots, O < O < fr/2. (28)

This follows since their speeds appear to be s, cos 0 and S2 cos 0 with respect to the
radial direction of the radar beam (Fig. 1). Two speeds viewed firom the standpoint of
the radar systems must be separated by a doppler distance of dr knots to resolve speed
ambiguities. Define dr(O) to be the doppler resolution capability of the radar as viewed
in a direction that makes an angle 0, 0 < 0 < 7r/2, with the radial line to the radar site.
Thus

d
dr () = 0 (29)

A statistical analysis of the speed of ships in the world's merchant fleets is tabulated
in Ref. 9. Rounding off all speeds to whole numbers, this reference provides the num-
ber of ships that steam at any given speed between 6 and 32 knots. These values are
presented in Table 3; they represent all types of merchant vessels of 1000 gross tons and
over-combinaUtion passenger--ad- ve f-ciiighte, 1ulk -tiier, -dU umaci-. 'PI,
number of ships in the category 1000 gross tons and over is 20,544. The cumulative
distribution function of speed is obtained from the data of Table 3 and is plotted in Fig.
2 over the speed range from 5.5 to 32.5 knots. We denote this cumulative distribution
function by fo Thus the probability that a randomly selected ship travels at a nominal
speed between the speeds s1 and S2 is If(s2 ) - f(sl)l. The density function of speed is
plotted in Fig. 3

9
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Table 3
Speed Distribution of the World's Merchant Fleets of 1000 Gross Tons and Over

(U.S. Department of Commerce, December 1971)

Nominal Speed Number Nominal Speed Number
(knots) of Ships (knots) of Ships

6
7
8
9

10
11
12
13
14
15
16
17

19

.00

D9

IV8

S- 0.8
is

.- 0.5I
Q-

0.2

00k

0,3002

2
15
68

327
1074
1307
2486
2135
3250
3543
3041
1651

701
273

20
21
22
23
24
25
26
27
28
29
30
31
32

385
181
116
63

6
4
7
3
2
I
0
2
I

NOMINAL ZFEEO IN %NUTS

Fig. 2-Cumulative distribution function (CDP) of speed for the world's
merchant fleets (obtained from Table 3)

10
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i-. 

ICX D 1

GEL

5 10 I 5 20 25 s3

NOMINAL SPEED IN KNOTS

Fig. 3-Density function of speed for the world's merchant fleets

A doppler radar can distinguish between a speed that is advancing and one that is
receding. Negative numbers will be used to denote receding ship speeds. Thus the doppler
range of the radar as viewed along a shipping lane is

[-32.5, -5.5J U [5.5, 32.5].

This doppler range can be decomposed into M disjoint doppler cells of width 2d (0),
where

M = 2(27) (30)
2dr(0IY

If the right-hand side of Eq. (30) is not an integer, then we round it off to the next
integer. The width of each cell is 2dr(O), since a ship with speed s is resolvable provided
no other ship steaming in the same ocean-surveillance resolution cell has its speed between
s - d,(0) and s + dj(O). For i = 1, 2, . . ., M/2 we denote the ith cell Ci by

Ci = [5.5 + (i - 1)dr(0), 5.5 + idr(0)]. (31)

The probability qi that a ship has an advancing speed in Ci is given by

11
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ft5.5 + idr(0)I - f[(.5 + (i - 1)d7(O)(
2

For j = (/2) + 1, (M/2) + 2, ... ,M we denote the jth cell C1 by

Cj {-5.5 - idr(O), -5.5 - (i - 1)d(O)). (33)

The probability q; that a ship has a receding speed in 9 is given by

W = f [5.5 + (j -- !)dr(0)j - f 45 + ( - I -)d(0) 34J

In writing Eqs. (31) and (33) we assumed that a ship has an equal likelihood of
steaming in either direction along the shipping lane. Note that

'toi-(MI2) A3

for i = 1, 2, . . , M/2. Therefore Eq. (2) becomes

M/2
K - 2 q/. (36)

i= 

Define for i 1, 2, M/2

= 2q (37)

A MS4 (38)
K1= 

C = {s: 5.5 + ( - Id)(0) < s11 •55 + idoj 1 (39)

AM
M 2' (40)

Note that
A

Kr - 2tAIKI (41)

The quantities 14i, C, 1, 1 - 1, 2, ... , M} when substituted into the framework of the
preceding main section lead to the probabili of resolving all ships under he condlition
that all ships are headed in the same direction of the shipping lane. Since a doppler sys-
tem distinguishes advancing ships separately from receding ships, the quantities (qj1 C1,
K,, i = 1, 2, . , M } when substituted into the theory of the preceding section lead to the
probabtility of resolvin asll shinrs lnocftd lin thpe same ocean-siruveillance resolution cel

We qualify these ideas with an example. Let d,(0) = 1.5 knots. From Eq. (30) we
have M = 18 cells. The left and right endpoints of the nine positive cels C,, C2 .. .,C

12
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Table 4
Cell Probabilities With dr(0) = 1.5 Knots

Endpoint for Cell CfIndices

Left Right

1 5.5 8.5 0.0041
2 8.5 11.5 0.1318
3 11.5 14.5 0.3831
4 14.5 17.5 0.4009
5 17.5 20.5 0.0613

U.UI (6 20.5 .a O .
7 23.5 26.5 0.0010
8 26.5 29.5 0.0003
9 29.5 32.5 0.0002

Table 5
Values of Kt With d, (d ) = 1.5 Knots

are given in Table 4. The probabilities qi are doubled (Table 4). The quantities K2 ,
K 3, . .., K7 are listed in Table 5, and the probabilities P2, P3, .. . P7 calculated using
Eqs. (6). (9). (18). (23), (24), and (25) are listed in Table 6.

The cells Ci, i = 1, 2, . . . , M/2, defined by means of Eq. (30) initiate at 5.5 knots
and continue sequentially with constant width of 2d4(0) up to 32.5 knots. This design
procedure will usually bring forth biased results, since the best probabilities are obtained
when two adjoining members of the cells meet exactly at the peak of Fig. 3 (nominal
speed = 14.7 knots) and the worst probabilities occur when one member of the cells
straddles the peak. This follows because the summit of Fig. 3 contains those speeds of
highest likelihood. It is better designing to have the cells divide the summit equally rather
than to have the entire summit contained in only one cell. Because of this, an averaging
technique is employed to obtain unbiased results. Let n be an integer greater than or
equal to 2. Define

A _ 2d(0)
n I -- I

13

Indices Kt
t

2 0.16446
3 0.03079
4 0.00596
5 0.00117
6 0.00023
7 0.00004
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Table 6
Probability of Resolving N Ships

With dr(O) = 1.5 Knots

Indices
N N

2 0.836
3 0.568 
4 0.305
5 0.125
6 0.038
7 0.008

and for each k 1,2,.., ,n translate all cells, i 1,2,, .. ,M/2, by the amount (k - 1)A:

C1(k) = Ci - (h - 1)A (43}

Additional cells are needed when the right end of the speed spectrum E 5.5, 32.51 is uncov-
ered by the translation. Then for each Ik = 1, 2, . . ., n the probabilities t N (k), with PN (k)
denoting the probabilities PN calculated for the translation (It - 1)A, are obtained using the
theory of the preceding section. Averaging these probabilities, we have

PNy -- 2'PN(k)Y (44)
k l

Since this probability is unbiased for large n (n = 4 is usually sufficient), we adopt it as
the probability of resolving N ships located in the same ocean surveillance resolution cell.
For N = 2, 3, . . t 7 this probability is calculated with n = 4 and dr() = 0.1, 0.2,..., 4.9.
The cases N = 2, 3, and 4 are tabulated out to three significant figures in Tables Ta, 7b,
and 7c respectively. From Table 7a the probability of resolving two ships is equal to
0.755 for a doppler capability of 2.5 knots. The cases N 5, 6, and 7 are plotted in
Fig. 4.

Table 7a
Probability of Resolving Two Ships

Calculated Using Eq. (44) With d(0) = 0 through 4.9 Knots

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 IY.9
0 1.000 0.988 0.976 0.965 0.953 0.942 0.93 0.19 0.908 O.89
1 0.887 0.876 O.866 0.856 0.846 0.837 0.828 0.819 0.810 0.801
2 0.793 0.785 0.777 0.769 0.762 0.755 0.748 0.741 0.735 0,729
3 0.722 0.716 0.710 0.705 0.699 0.694 O.9 0.686 O.682 0.678
4 0.675 0.671 0.668 0.665 0.662 0.658 0.655 0.652 0.649 65

14
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Table 7b
Probability of Resolving Three Ships

Table 7c
Probability of Resolving Four Ships

1 2

DOPPLER RESOLUTIUN CRPR]LITI (1KNOTS)

Fig. 4-Probability of resolving five, six, and seven ships calculated
using Eq. (44)

15

0.0 0.1 U.z 0.3i 0.4k U)0 v .U v.7 0.8O

o 1.000 0.965 0.930 0.897 0.864 0.833 0.802 0.773 0.744 0.717
1 0.690 0.665 0.640 0.617 0.594 0.573 0.552 0.532 0.513 0.496
2 0.478 0.462 0.446 0.431 0.417 0.404 0.391 0.379 0.367 0.356
3 0.345 0.335 0.325 0.315 0.306 0.298 0.290 0.283 0.276 0.271
4 0.265 0.260 0.255 0.249 0.244 0.239 0.234 0.229 0.224 0.219

Cn

r 0.7
c- D. 7 

cu D.6o

i- 0.4

0z

Z 0.

SFa 

0.0 0.1 0.2 0.3 0.4 o.5 0.6 0.7 0.8 0.9
0 1.000 0.931 0.865 0.803 0.745 0.690 0.639 0.591 0.547 0.505
1 0.467 0.431 0.397 0.366 0.338 0.312 0.288 0.265 0,245 0.226
2 0.209 0.193 0.178 0.165 0.152 0.141 0.131 0.122 0.113 0.106
3 0.099 0.092 0.086 0.081 0.076 0.072 0.068 0.065 0.062 0.059
4 0.057 0.055 0.053 0.051 0.049 0.047 0.046 0.044 0.043 0.042
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COMPARIN WITH AN INTEGRATION METh0D

A check on the results given in the previous section can be made by tediously inte-
grating over conditional probabilities. We will make such a check, maintaining the pre-
vious notation. We will first consider two ships per ocean-surveillance resolution cell and
then consider three ships.

IL ),WV blliS -aie tv&iuting Wun speeu tb '1 au a 2 , utu snips are zesoiuve prluviut

I s-1-s2 I > d, (0), {4 )

where dAO) is the doppler resolution capability of the radar. The likelihood Po(s1 ) of a
ship traveling at a speed s, is equal to the derivative of the cumulative distribution func-
tion f evaluated at sl. This derivative is the density function of speed. Thus

Po(si) = df(sl ) (48

For any given speeds Si and S2 contained in J5.5, 32.5] we define

Fis. Q2) 1, if I - I2' -< U 

0, if Is, - s2 > d7(f). (41h)

Thus si and S2 are resolvable with respect to each other (Eq. 45 holds) if and only if
F(s 1, 32) = 0-

The probability P21d2i0), s.d.] of resolving two ships that are traveling in the same
direction (s.d.), selected at random from the stockpile of merchant ships, is equal to 1
LUnluu WIAdL 1)1 £uiing. iLei"LoUw

[32.5 (32.5 df(s2) df(s1)
P 2[4(0), s.d.A] 1 - J J F(s13 2) ds d Sds 2dsl. (48)

It is convenient to let f(s) I 0 for all s < 5.5 and let f(s) = 1 for al s > 32.5. In view of
this Eq. (48) becomes

P2tdr(O), s.d.] = 1 - 5 tsl + d4()] - fts, - dr(0)]} ds ds. (4)

Then nrnI-% inhi+sr PS[A- MI v Al ic *cahiln.+nA in Ts-,h~l R wr A UI\ = n I A A n f lrni+a

These values were obtained by using an integration procedure in a computer program.

In calculating the probability of resolving two ships when each can travel in either
direction, we need to consider the following mutually exclusive cases:

16
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Table 8
Probability of Resolving Two Ships

Traveling in the Same Direction
Calculated Using Eq. (49)

Doppler
Resolution P 2 [d2 (0), s.d.]

(knots)

0.5 0.883
1.0 0.774
1.5 0.674
2.0 0.586
2.5 0.510
3.0 0.445

4.0 0.348
4.5 0.312
5.0 0.282

1. First ship is advancing, second ship is receding

2. First ship is receding, second ship is advancing
0 fln . ,.t ..t__ _
0. DBLtI blsiips ae adUVcn1C1J1g

4. Both ships are receding.

The probability of case 1 or 2 occurring is 0.5, and the probability of case 3 or 4 occur-
ring is also 0.5. So the probability P2 [La (0)] o resolving two snips is

P2 dr(0) ] = 0.5 + 0.5P2 [d (0), s.d.]. (50)

The probability p2 rd.(0)] is given in Table 9 for dr(0) = 0.5. 1.0. ...- 5.0. The agree-
ment between these results and those contained in Table 7a is excellent.

Consider three ships traveling with speeds Si, S2, and 83. We shall calculate first the
probability of resolving them when they are traveling in the same direction. Three ships
traveling in the same direction are failed to be resolved if the following three mutually
exclusive events occur:

a. I si - $2 1 < d4(0), all s 3 , (51a)

b. I Si - s Ž I > dr(0), I s3 - S1 I < d (0), (51b)

c. Is, - s2 I > dr(0), IS3 - s I > dr(0), js3 - S2 I < d,(). (5ic)

The probability of failing due to case a is given by

17
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Table 9
Probability of Resolving Two Ships

Using the Integration Method (Eq. (50))

Doppler
Resolution P2

(knots)

0.5 0.942
1.0 0.887
1.5 0.837

2.0 0.793

2.5 0.755
3.0 0.723
3.5 0.696
4.0 0.674
4,5 0.656

5.0 0.641

3 2.5 f 32 .5 is 2 ) df(s 1)

J5.5 3 F(s 1 7 s 2 ) !is dS ds 2 ds 1

= 3j {ffts + dr(0),) -fsj d(0- l }, t'dsi -

Define the function S(., .) by

S(8s, 32) = 1 - F(s 1 , S2)-

for all s, and s2 contained in 15.5, 32.51]

The probability of failing due to case b is

32.5 32s 5
S32.5s1 s2 W(s 1 , s) df(s3) dfts 2) 4Z'j ds1 ds2ds1JI+ .s f55 5.5 -d s d

In JC~5 {tEsi + dt(0fl - stts - d(0)I}{I - f1Ia, + dr(0)l

+ fts, - dr(0)]} d8( dsl.

is

(52)

(53)

(54)



NRL REPORT 7708

The probability of failing due to case c is

J- J.s j S0 s 1, 2 Ss 1 s) , is3 dfs ti(sl)
j 3,, 1 8`j" (S1, )SO xS(1 3)F(S2, SO ds ds dS s~d
5.5 5.5 5.5

r32.5 sl-dr(o)

[32.5 J5.5

J5.5 JSi+dr(C

C ~ ~ ~ ~~~~Idf(s9.) d((s1) - -I f[Be s1 ,s)] - ftS2 - d4l()]j -ds ds2 ds1

Ef i , I rr A} - t _.A df(s2) dt(s1) =
)) LS24-ar(~l- IVIV1 6211__j_ ds no-2u-I1,

'1

where B(s 1, S2) is the minimum of si - dr(O) and s2 + dr(O) and where A(sj, S2) is the
maximum of s1 + d4(0) and s2 - d,(0).

The probability P3 dA(O) s.d.I of resolving three ships traveling in the same direc-
tion is given by

PNdr(0 ), s.d.] = I - [right-hand side of Eqs. (52), (54), and (55)]. (56)

Equations (52), (54), and (55) were integrated on a computer for d4(0) = 0.5, 1.0, ...
5.0. These values were then substituted into Eq. (56) to obtain the Table 10 values.

Table 10
Probability of Resolving Three Ships

Traveling inr the Samne Direation
Calculated Using Eq. (56)

Doppler
Resolution D fA fAl

dr (O i 3 1LXr 1v b Ds.d .

(knots)

0.5 0.689
1.0 0. 45 
1.5 0.296
2.0 0.195
2.5 0.135
3.0 0.101
3.5 0.082
4.0 0.073
4.5 0.068
5.0 0.066

_______ _______ .

19
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Table 11
Probability of Resolving Three Ships

Using the Inteorntinn Meto.nd (En. (57))

Doppler Probability
Resolution of Resolving

d(0) Three Ships
(knots) p3

0.5 O335
1.0 0.694
1.5 0.580

2.0 0.488

2.5 0.416
3.0 0.359

3.R (1s2fl

4.0 0.261

4.5 0.251
5.0 0.228

Since all three ships may travel in either direction along a shipping lane, there is a
0.75 probability that two ships will travel in the same direction with the third ship travel-
ing in the opposite direction and a 0.25 probability that all three ships will travel in the
same direction. As a result the probability ps(d4(O)i of resolving three ships located in

the same ocean surveillance cell is

p3Jd,(L9)J = 0°75P2[d(0), s.d.] + 0.25Pstdr,()t s.d.]. (57)

This probability is presented in Table 11 for the doppler resolution capabilities of 4d(0)
0.5, 1.0, ... , 5.0 knots. Note the excellent agreement between Tables 7b and 11.

CONCLUSION

Theory is developed in the second section for calculating the probability of solitary
occupancy of N objects in M cells of unequal cell probabilities. It is shown that this
probability is a function of N-l quantities K2, Ks, ... , K, where Ks, t = 2, 3, .,N
is equal to the sum of the cell probabilities when raised to the tth power. Polynomial
equations are given for N 2, 3, ... , 10.

Thins theory is apiplied in tthe third oontinr to dettermine tnhe ocapaiiliy o4a rdozlelr
radar to resolve N ships contained in a single ocean-surveillance resolution cell. The re-
sulting probabilities of this combinatorial approach are presented for N - 2, 3, . ., 7
ships and the doppler resolution capability equal to 0.1, 0.2, .. , 5.0 knots.

A natural approach to calculating the probability of resolving N ships is the integra-
tion method employed in the preceding section. Using this alternate approach, the prob-
abilities of resolving N = 2, 3 ships are given for various doppler resolution capabilities.
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For NV I 3 the integrals in the approach were cumbersome to implement, not to mention
the tedious effort to derive them and the large computing time to perform the integra-
tion. Furthermore this difficulty increases exponentially as N increases. The reason for
employing the integration method in view of this difficulty is to provide an acceptable
check on the accuracy of the results given by the combinatorial approach. Importantly
the combinatorial approach is simple to implement and is an inexpensive method of ob-
taining the results in a computer program. In view of this the excellent agreement be-
tween the integration and the combinatorial methods demonstrates the utility of the
theory developed in the second section.
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