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GEOMETRIC-OPTICS THEORY FOR COHERENT SCATTERING OF MICROWAVES
FROM THE OCEAN SURFACE

INTRODUCTION

In 1961 C. I. Beard (1)} found that experimental values of the coherent reﬂé_cted‘ :
field |E/EgI'| are larger than the values given by the generally accepted theoretical formula.

E
EgT

s, = exp [-2(27)%]

for values of g = (0, sin Y)/\ greater than 0.1 radian. Here E is the average electric

field due to the “sea surface” § ,, Ej is the field due to the direct wave, I is the smooth
sea reflection coefficient, o, is the standard deviation of the sea-surface elevatlon, Y is the
grazing angle, and A is the electromagnetic wavelength (Fig. 1).

Fig. 1—Ray reflection off of a random sea surface

The expression IE/EgFISA is the Gaussian theoretical curve (sometimes called the -
“roughness factor™) first published by W. S. Ament (2) in 1953, (Ament claims: that
the result was derived by Pekeris and, independently, by MacFarlane in the 40’. ) Since
then Ament’s result has been obtained by numerous other workers. (See for example
Ref. 3.)

Manuscript submitted December 14, 1973,
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The disagreement between theory and experiment has been unresolved for over a
decade; and it has been agreed generally that theoretical models based on geometric
optics could not yield a result more powerfu! than that of Ament,

In this report we show that the coherent reflected field is given by

i._zf_f _ 2 2
- exp [-2(27g) 1, [2(278)%)

tEg $
for 0 < g < 0.3, where [;(x) is the modified Bessel function Jy(lx). We derive this
result using geometric optics, assuming a spherical wavefront incident on a Gaussian
collection § of sinusoidal surface waves. Further, 1E /EsD|3 agrees with Beard’s experi-
mental curve (Fig. 2), with 2 systematic difference in g of 10%. Besard has estimaied that
wave elevations were within 10% of their correct values.

We show how |E/E;D|84 is obtained, assuming a plane wave front incident on a
Gaussian collection &4 of horizontal strips.

BASIC ASSUMPTIONS AND DEFINITIONS

Suppose that T is an isotropic emitter of electromagnetic waves with wavelength X
situated at a distance hy above the mean sea surface and that R is an isotropic receiver
which is at a distance h; above the mean sea surface. We take the mean sea height to be
equal to zero. Suppose that the horizontal distance between T and R is d, where d is
small enough that the earth’s curvature need not be considered {Fig. 3}. We assume

EXPERIMENT
{BEARD}

\\
THEORY _3~. Bt
{AMENT) ~.
0 E T e LT
0 ot 0.2 03

(crhs'm@tk

Fig. 2--Comparison of theoretical and experimental resuits
for coherent forward scatiering

that the sea surface can be described by some collection of functions§ . To be more
specific, we assume that at any given moment the functions which we need to describe
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Fig. 3 —Geometry of ray reflection

the sea surface locally are inS . Let T’ be the image of T with respect to the tangent
line through P, a typlcal reflection point on the sea surface. Let (Any, Any - hy) be the
coordinates of T', so that the coordinates of P’ are (A7, /2, 7\172 /2). Note that when P is
on the s axis and we have specular reflection, 7, = 79 = 0, i.e., the image of T through
the s axis is at 7%(0, -hy). When we have this situation, let l,!/ be the angle TP0. It is
easy to see that d tan Y = hy + hy. We remark that we will be using two mdependent
coordinate systems, viz., the s, y system and the 1y, n system with origin T 'Note that -
the coordinates of O in the s, y system are (0, h2) in the M, Mg system

In this work we use geometric optics, that is, we assume that only waves reﬂected
from a favorable slope will reach the receiver and that the local angle of incidence will
equal the local angle of reflection. Further, we assume that all reflections occur in-the
5, ¥ plane. We also will assume that the sea surface is “slightly rough,” so that over a
long period of time the collection of points T’, the image of T = §, will form a closed
connected set which has no holes, that is, a closed simply connected reglon It Wlll also
be assumed that T, i$ an interior point of Iy.

The following definitions will be helpful:
§ =R * hy - My

2h2 - ?\172

5
I

£ = d - Ay
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o= d? ok (b + Ry)
— 21{1’8

Yo %

v = -2@cos ¢

Yo = 27 sin

Note that r, is the specular distance RT,. The distance RT' in general is r = (§3 + £§)1/2,

We will show later that under suitable conditions T; is the center of symmetry of §p
and that if {Any, Any) €4 5, then

A A
Ml eq,  |Mm
d 2

<1,

so that§ 7 is bounded away from T and R. Let R be the smallest rectangle which con-
tains§ ¢ and whose sides are parallel to the coordinate axes. Then in view of the previous
inequalities, R is a neighborhood of T, ie., the dimensions of R are small compared to

d and hy. We then are justified in expanding r in a Taylor series about 7; = 7y = O and
dropping terms higher than those of first order in 7y and n,, giving

2nr

T = 79 + ’Y]_T& + 72172 . (1)
If we define the row vector v = [y, ¥g] and let = [’%] , we can write Eq. (1) as
2nr
< ST tM- {2)

CALCULATION OF THE ELECTRIC FIELD DUE TO A SINGLE REFLECTED RAY

The electric field E due to a single reflected ray is given by

&
E = E5§|I‘Eexp (?;— z‘) exp [-(2—?—” + argl‘) f] , 3}

where I' is the complex reflection coefficient and Ey is the electric field due to the direct
wave which travels path length & given by

5 = a% + (hy - 2.
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We consider now the quantity &/r and state the following.

Observation:  If 2hg/d < 1 (< means less than or of the order of),

and
h
2 <1,
d

then
)
—_ ]
r

Proof: Using Eq. (1),

5 _ [d2 + (hy - hy)2]1/2

r [d2 + (hy + h)2]Y2 - Ap  cos § - An, sin Y

a2 + (h2 - h1)2 1/2
Exaoxand

AN Angy

1 - 1 - i
@ ¥y + hPTE ®Y  TET y + mee Y
Now
Ay Iz‘-”i <1
1 [d2 + (hy + hy)2]112 d
and
[, | < [ | < [l <
[d2 + (h, + B P12 hy + hy h,
therefore
_f_SE o d2+h%+hg—2h1h2
r d? + n? + B2 + 2hh,
However, 2hy/d < 1 and hy /d < 1 imply that 2k hy/d2 < 1, so that §/r ~ 1.
We then are justified in writing Eq. (3) approximately as |
278 27r :
E = E5IT| exp (Tt) exp [- (T + arg I‘) iJ . {4)
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It is not hard to see that " = I'(1y, 7). Since §1 C R and R is small, we will make the
simplifying assumption that I' = ['(0, 0) = I'(} in § 3. For the surfaces we consider later
the peoint (0, 0} will be the center of symmetry off ¢, so that T' = () can be viewed as
some average in 4q. Combining Egs. {2) and {3} and defining

278
= Eg|T{(y)| exp (—z—a) exp (~v,i) exp [~ arg D(¥)]

gives
E = E, exp (-iyn} . {5}

We remark that 2hy/d < 1 and hljd < 1 imply that {#; + hg}fa? < 1/2, te, tan ¥ < 1/3,
so that ¢ < 27°. Hence Eq. (5] is valid provided that

A
1ﬂ <1,
L d |
}ﬂ <1,
hy
and
¢ < 27°.

A RESULT DUE TO AMENT

Suppose & 4 is the class of functions y = H, where the sea elevation H is distributed
normally with standard deviation o and {2H| € min {hy, Ay }. This is equivalent to the
class of functions Ament used in Ref. 2, which is the class H{(s) where A “varies so slowly
with s that, in the neighborhood of each s, the surface is approximately a plane parallel
to the s axis.”* It is easy to see that for the class § 4,

*An eqawaEeﬁs way of defining the clags § A is the following:
Let Lz } be a disjoint collection of open intervals such that

s -
1

where § is 2 set of measure zero and R is the real line. Define

1 ity € };
Kfx) =
o ifx & L
Tet {Og}be a sequence of real numbers, and define a simple function
F00 = 2, aKix).
=1

Let § 4 be the class of ail simple functions {see Fig. 4},
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2H
9T= (7\ﬂ1,7\7?2)|7?1=0,n2=‘3\— ’

so that in this case R = §p a degenerate rectangle. Hence yn = ygng = —4nH (sm 1}1)/?\
so that from Eq. (5) we have ‘
4iH sin ll/)
A
H si 4nH si
(417 ?\sm \p)+ isin( :m \b)

E(H) = E, exp (

= Eo cos - (6)

The average electric field E due to the class § 4 Is given by

Hy 2
f E(H) exp( —é— i) dH
— Ho

E = =
0 2
f exp (—% H ) dH
-H, 0%

If we substitute Eq. (6) into this equation, it is easy to see that we get

H 2 :
J‘ uexp (— —;- %) cos (ﬂﬂ—H—%M)dH
o H

To evaluate these integrals, we will let Hy; - +oo . The error we make will not bé:;;_lal?ge, |
since the cosine function is bounded and the distribution tends to zero quickly when gy
is small. Performing the required integrations and noting that 1By | = |E5I'()| gives

Fig. 4—Typical simple function
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E| 270, sin ¥ 2}
[Eal* s, P {'2 ( A ) ™

Ament derived this resuit for a plane incident wave and the class & 4. We have made the
assumption that the incident wave front is spherical. However, if we are considering a
plane wave, then T = I'{{) in 47, and we have Ament’s result.

CALCULATION OF THE IMAGE DUE TO THE CLASS &

We assume now that the sea surface can be described by a Gaussian collection § of
sinusoidal waves y = H sin {{27/u)}(s + § }}, where the sea-wave peak height H> 0 is
normally distributed, u is the sea-wave wavelength, and § is the sea-wave phase, which is
distributed unifcrmly,

Let B={2aju}(s + §), and note {(Fig. 5) that the coordinates of P are {s, H sin §}.
The image ¢ is determined by the following three equations:

E{d - &) = E(hy ~ Hsinf); {8}
2wHE, cos § = pdny (N
SmH(\n, - 2)cos P = pdn, - 2H sin B} . (10)
/
# P
| . < » < ,
o N ¥ N’ S
—_—r| T e s —
et K 8 — - —
27 ©

Fig. 5—Individual sinusoidal wave showing amplitude and phase

Equation (8) is the condition that T', P, and R lie in a straight line; Eq. (2) is the con-
dition that the line through P’ and P is perpendicular o the line through 7' and T; and
Eq. {10} is the condition that the slope of ¥y = H sin § at P is equal to the siope of the
line through P’ and P.

We now state the following observation.
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Observation: If

dnsH . 2H 2h2 <1, ‘ 1)

then § 1 is approximately an ellipse and

2H 21rh2 2H
A

2nh, 1
g = {(?\nl,knz)lnf g cosbimg = (sinﬁ - 1:‘2 coswcosﬁ)} ,

where § € [0, 27}. (0 means “‘the boundary of.”)

We remark that the relations (11) are equivalent to the following:

H 2h h, + h
ar— <1, =2 <1, 1 _.2 <1, 12a
n,u d -~ d ~ (128)

K

dnsH ok
T cosf + —-smB| <1, B € [0,2n]. (12b)
Pl hy

H 2
‘2 (27r— cos ﬁ) -
M

The relations of (11) imply those of (12) since As D s/h, > 1 (for example, when
H =0, s/hy = df(hy + hy) > 1, so that certainly \/2s/h, > 1, and 2s/h, > 1; thus

H H
vz (21?7)< 1, 2= <1, K<1.
u

Relations (12) imply (11), for when § = 7/2, we have 2H/h, <1

When § = 0,

Hence we must have

or

which implies that
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Bui
H
2r— <€ 1,
i
and so
5
-— €1,
h2
a result which is not always true. Hence
47sH
<1,
hyu

Further, if we eliminate the parameter §, we have

2H\2
GLI ={{?¥m,hng}l<-—{) = n’An} .

where
B cot? cot ¥
2ﬂh2
A =
cot 1

Proof: From Eqgs. {9} and (10) respectively,

A 1
2r— cosfl = bl S S . {13}
u hz <2 _ }\ﬁﬁ)
h2
and
N 2H
L - 5 s
o — cosf = 2 "2
u Ay 2
h2 hﬁ
Eliminating }‘73‘1 fhy from these equations gives
X 2H
_'!}_2 - ..h_.. sin 8
2r— cos § = P }12 2 5
# 2n— ( L] cosff - —
u by hz
10
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Solving for An, /h, gives

H H 2H |
2(21r— cosﬁ) - — | 27— cos,B) + — ginf
o H 2
hy ( T— COS B)
H

Hence

H 2

1+ |[27— cos ] —&=K<1,

M hg

and it is clear then that
A
‘ﬁ <1
h2
Now we can write Eq. (13) as
H A 1
2n— cosf = ! s
u 2hy 1 - Z‘F_z,
2h,
and since |7\n2/2h2[ < 1, we have approximately
4drh, H
ny = ?\5 cosf3.

From Eq, (8) and (10) respectively,

A H A
il S = Hsinf + 21r—-cosﬁ(-—-—n1 -s) ,
2 jil 2
and
d - Ay
g = 1 si - h)+d.
hy + hy - 7\172( sinf - hy)

Eliminating An; from Egs. (14) and (15) gives
A H 2 H
_E?. = Hsinfl + (27r—1u cOs B) h2 - (211'—}; cos 3) s

Equation (16) can be written as -

11

(14)

(15)

(16)

Qan
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d A 1
s = ————— (Hsin - b)) (1_ ’?1) +d.
hy + hy d 1. A1,
h

h + b
hy + By
Clearly
A
el <
hy + By
and since from Eq. (14}
[Am | LZwH 2ty cos;ﬁl <1
l d I l wd | :
we can write Eq. (18] approximately as
d
§ = ————{Hsinf - ) +d

by + by

= cot (h, + Hsinf).
From Egs. {17) and (19}, we have

?mz

H 2 24
5 = Hsinfg + (2'#? 6085) hg - (21:—# 995}3) hzcotl,fz

- (21r% cos B) Heotsing.

Since
23 ﬁ)H t sl
w—gcos cot Ysin g ]Hsinﬁ
= <€ 1
[, B | &
Ir— cos f8 h2 cot ¥
e
and

12

(18)

(19)

(20}
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27— cos h
H 2 = ‘2ﬂ£(h1_+hz.) cos f
H M d
(21r~—- cos 6) h, cot ¢
M
< (21r£> (hl * h2) <1,
i} d

we can write Eq. (20) approximately as
N H
% = Hginf - (21r— cos ) hy cot ¢,
7!

and so

N, = 24 sin 8 - 2hy cot Y cosf] . | (21)
2 A u ‘

2H2
lAz_____
T (7\)

and check that it is indeed an ellipse. The family of ellipses is shown in Fig. 6, If we‘ .
let 8 = 7/2, 37/2, we obtain the interesting result that §p (Class ) N {y axis}= dp
(Class & 4), so that the major axis of the ellipse (2H/A)2 = n'An must be greater than 4H/\.

We easily can verify that

AVERAGE ELECTRIC FIELD DUE TO THE CLASS &

.

For a given H and §, the electric field due to a single reflected ray is given by Eq
(b): E = Ej exp (—iyn). We easily find that

4drH

m= = sin Y sin§ ,
50 that
AniH
E(H,6) = E, exp (- ’: sin ¢ sin ﬁ) . (22

\FNhen B = n/2, 31/2, we get Eq. (6). The physical interpretation of ym is shown in
ig. 7. N

13
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N

Fig. 6—Family of image ellipses

Fig. 7—Path length from an arbitrary point on an image
ellipse to the receiver, which determines phase

14




NRL REPORT 7705

We now define

Em = . | (23)

Equation (23) gives the average elective field due to all reflections such that T' is in
4. .

We recall that

and
$ = cot Y (hy + Hsinf),
so that

—'u—ﬁ= hycoty + Hcot Ysin + § .
2

Taking differentials in this last equation gives

7}

—df = Hcot Y cosfdf + d§ ,
27
so that
— H
dg = (—-— ~ Hcot ¢ cosﬁ)dﬁ .
2r
Hence

B=2m : u
f E{H, 3) (—*—- - Hcot ¥ cos 6)dﬁ
B=0 21]-

EH)

B=2x u
~L=o (Er' ~ Hcot y cos 6)0’6

1 pf2m Hcoty ph=2r
- — E(H, B)df -
- fﬁ | EE fﬁ

E(H, B)cosfdp .

15
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But E{H, §} is a function of sin &, so that

{‘ﬁ=2ﬂ i.l3=2’ﬁ
_)l E{H, DHeosfdi = _;' Eif, fidsinf = 0.
8=0 5=0
Hence
B=2r
8=0

B = EQJQ(E? sin \L*) . (24)

where Jy is the Bessel function of order 0. Note that u does not appear in Eq. {24}

Now let E be the average electric field due to the Gaussian collection of all sinusoidal
waves, Le.,

— =0}
E = . {25}
H=Hﬁ 1 Hﬁ
exp |-~ 5 dH
H=0 2 o5
where 2H, < min {h;, h; } and oy is the standard deviation in the peak height A

H=0

As before, we let Hy — +oo without making a large error, and on performing the required
integrations (and noting that {Ey| = {E5T'1), we obtain

[_-E__ _ exp {_(EWC‘H sin 1};)2?{9{ (211'03 sin &)2} ,
A 1 X

EgT
where In{x} is the modified Bessel function J;(ix).

16
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If 0, is the standard deviation of the sea elevation, then, since we have consit:ie;fed
sinusoidal waves, it is clear that oy =+/20;, (Fig. 8). Hence we can write = ‘

’ r

| E | [ f2ro, sin v\2 7 [ [2r0, sin ¢\Z|
o] e IR [ AT
|E6F EXPL X 0 A

a H

|

-
——

| N 7
WVE v

Fig. 8—Relationship between standard deviation in
peak height, 0, and standard deviation in elevation,
Oy for a sinusoidal wave

We remark that the use of sinusoidal surface waves is a mechanism for obtaining a rich
source of wave-height wave-slope pairs. Further, it seems that we obtain enough of ‘these

pairs distributed in the right way to describe the sea surface over a long period.o time.

To sum up we provide the following tabulation:

Table 1
Coherent Field for Various Sea-Surface/Incident-Wave Combinations
Sea Surface Incident Wave Result
Simple functions Plane Ament: IE/Ea r) 54- ‘
Simple functions Spherical Ament: IE/ES Llg " i
Sinusoidal waves Plane Ament-like: I_E—/EB | Sa. :
Sinusoidal waves Spherical E/E5Tlg o
The Ament-like result is obtained by substituting oy =/20, in
E 270, sin Y\?
EsT SA A
giving
E 270, sin Y\2
oy e [ (B2
lE.TI§. A
A
17
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‘This is justified since when the incident wave is plane, the only reflections that can occur
are off the peaks and troughs (assuming no shadowing) of the waves {Fig. 9}).

\\//

v

- s

Fig. 9—Reflection points for a plan incident wave

A RESULT DUE TQO BECKMANN

Since the completion of this work, it has been realized that another, but different,
theoretical treatment based on geomelric optics had been done previcusly by Beckmann
{43*, Beckmann’s report was undertaken to {ry o calculate theoretically the effect of
spherical-wavefront illumination for comparison with Beard’s experimental results of the
statistics of the incoherent field scatiered from a random water surface {5). In the
process of calculating the incoherent field, Beckmann also derived expressions for the
coherent field, It seems that these were not pursued at the time since the inferest was
in the statistics of the incoherent fieid. Beckmann obiained

£ ep(K}[lﬂr F2(1 3 ):]m
=i "~ expi- — g ;
EsT I, 71272
: 2
K = (10“?*5;‘1‘}’) :

whaoro - F.{1/9 ¢
{i/a

WAt 47

result from Ref. 4, Eqgs. (49}, (50), (51}, and {85). Numerical computations indicate that

y navrgo, £ mertinn We hovs svivantad thio
AL LVAY AL ‘.‘J y\rla ALLS, UL - R VAW E Y ALUAY W sl VLA VLA G Ea

]q for01 < g < 0.3.
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