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CAPILLARITY-LIMITED STEADY-STATE DENDRITIC GROWTH
PART 2- NUMERICAL RESULTS

INTRODUCTION

In this report the theory developed in Part 1 (the companion report cited on the
inside front cover) is implemented numerically. Specifically, techniques are developed for
the solution of the linearized steady-state equation (Eq. (75) in Part 1) and for the esti-
mation of Xmax, that is, the computation of X* and A** (the two subsections after Eq.
(75) in Part 1). Numerical results are presented for small supercoolings (0.01 < i\@
< 0.2), and the estimated values of Xmax are compared to previous theoretical results
[1-3] and to experiments [4-7]. A major finding is that the growth rates predicted by
the theory are significantly higher than those predicted by the Bolling-Tiller [8] and
Temkin [9] approach, which ignores the essential free-boundary nature of the dendrite
problem.

FINITE-DIFFERENCE SOLUTION OF THE LINEARIZED STEADY-STATE EQUATION

Finite-Difference Formulation

An estimate of the shape change induced by the nonisothermality, 5v(y), may be
obtained by solving Eq. (75) in Part 1 or equivalently by solving the equation

M2Wl(O) (v*) = l12(y) - Cl(y,q)v*(q) dq - C2(y,q)

X {l2(q) + 2aO) +o1312(q)] (q) + t1/2(q) }

1 + ~(y)(1
aot3/ 2 (y) t(y) 1 + (y/ao) 2

for v* and setting Av =Xv* (0 < X < Xmax) Here C1(y, q) is given by Eq. (76a) in Part 1,
namely,

q_ -[cwo(y)-woo(q)]IC1 (y,q) = dr j- G[y,z, q, woo(q)]I

+ 1 G[y, wo(y), q, wo(q)]}
2a o 1/2 (q )

Manuscript submitted October 25, 1973.



GERALD E. NASH

which, from Eqs. (39) and (40) in Part 1, can be written

C1 (y, q) = - e7T Ji e-(a+bt)1"2 ( sin OO(q) _[ 1 + 1 1
(2q(a + bt)1/2 + bt (a + bt)312J

X {(q + yt) sin Oo(q) - [wo(y) - wo(q)] cos 00(q)} 1 dt ,
/ (1 - t2)1/2

and C2 (y, q) is given by Eq. (76b) in Part 1, namely,

C2 (y,q) = q. e -[w(y)-coo(q)] G[y,wO(y),q,Wo(q)],

which, from Eq. (39) in Part 1, can be written

q - [wo (y)-w o(q) ] ~C2 (y, q) = - e I

a = q2 + y2 +

e-(a+bt)112 [(a + bt)(1 - t2 )] -1/2 dt,

[wo(y) - wo(q)] 2,

b = 2yq,

Wo(Y) = -y 2 /2aO0

Co(q) = -q 2 /2ao0

sin 0o(q) =

cos Oo(q) =

q
aoQ1/ 2(q) '

1

~1/ 2 (q) 

and ao is a function of the supercooling AE) and can be found by solving Eq. (51) in
Part 1.

The integrals occurring in Eqs. (2) and (3) cannot in general be evaluated in closed
form. The behavior of these integrals, as well as a procedure for computing them numer-
ically, is discussed in Appendix A. Sufficient to say here is that C2 (y, q) has a logarith-
mic singularity when q = y.

Equation (1) is a linear integro-differential equation of the Fredholm type and may
be solved numerically by finite-difference methods, provided that the infinite limits ap-
pearing in the integrals and the singularity associated with C2 (y, q) are treated properly.

2

(2)

where

(3)

(4)

(5)

(6a)

(6b)

(7a)

(7b)
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The infinite limits are readily dealt with by transforming the independent variable
such that the interval [ 0, 0] is mapped onto the interval [0, 1]. Thus, letting

Y
W-~ ~+y

q
1 1= . +q '

where A is an arbitrary constant,* Eq. (1) becomes

t 1I2 (w) - f C1 (wu) (1 )2 P*(u) du

C2 (WU) (1 u)2 {[t1/1(U) (+ UL)
0

(8a)

(8b)

+ a32(u)]v*(u)+ q(u)(1 -U)2 '
ao~112 (u)A I

- 1 + V(w)
ao0 3/2 (w)

y(w) = A w

q (u) = A u

t(w) = 1 + [y(w)lao] 2,

t(u) = 1 + [q(u)lao]2 ,

C1 (w, u) = C1 [y (w), q (u)],

C2 (w, U) = C 2 [y (w), q (u)] .

(1Oa)

(lOb)

(lOc)

(lOd)

(10e)

(lOf)

(Though the transformation defined by Eq. (8) does eliminate the infinite integrals in
Eq. (1), it does so only at the price of introducing an additional singularity into the prob-
lem, namely, the factor A/(1 - u)2 , which appears in the integrands in Eq. (9). However,
since it can be shown that

lim Cj(w,u) (j= 1,2)
u-1

*The selection of A is more or less dictated by experience. The values of A used in the numerical cal-
culations will be tabulated later.

3

where

(9)
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approaches zero faster than (1 - u)2 and that v*I q = = 0, the additional singularity in-
troduced by the transformation does not complicate the numerical solution.)

The logarithmic singularity in C2(w, u) can be treated by subtracting the singularity,
a technique commonly used in evaluating improper integrals [10]. Thus, adding and
subtracting the quantity

I = I C2 (WU) A1_ U)J2 {[/2 (W+ 1) + 13/w] v*(w)

q(w)(1 - w)2 } (11)

to Eq. (9) and noting (with the aid of Eq. (48) in Part 1 with X = 0, which is the iso-
thermal solution) that=([ (i + .) +aot3/2(W)] *(w)

+ q(w)(1 - w)2 AJo (w))

+ 1) + 1 v*(w) + q(w)(l -w)2

Eq. (9) becomes

M2 ° (O) (v*) =
V*(W) f1

01/2(W) f
Cl(w,uu)P*(u) du - C2 (w, U) [1 ()V V*(u)

0o

+02(U)V*'(1) - 01(w)v*(w) - 02(W)v*'(w)] du

-[01(W)V*(W) + 02(W)V*'(W)] A(

1 + (w)

ao0
3/ 2 (w)

Ci (w, u) = Cj(w, U) (A A
(1 -) 

i = 1, 2,

01(Z) = tl/2(Z) ( 2ao

02() = q (z) (1 - z) 2

aot1/2(z)A

ao0 3/2 (Z)

4

C2 (y,q) dq

v* (W)) AO, (12)

where

(13)

(14a)

(14b)

(14c)

�1/2(W)= (I i (1
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If the function 01(z)v*(z) + 02 (z)v*'(z) satisfies a Holder condition, namely,

101(u)V*(u) + 02(U)V*'(u) - 01(w)v*(w) - 02(w)v*'(w)l < CIu- wW, (15)

where C and y are constants with 0 < y < 1, then the integrand involving C2(w, U) is
zero when u = w and C2 (w, w) can be defined arbitrarily. In subsequent work we shall
assume that P*(w) is such that Eq. (15) is always satisfied.

To solve Eq. (13) numerically, the interval [0,1] is partitioned into N subintervals
[wi, wi+1 ] (i = 0, 1, 2, ... , N - 1) with wi = i/N (i = 0,1, 2. .... , N), and it is assumed that
Eq. (13) is satisfied at the points wi (i = 0,1, 2, ... , N - 1). Thus

V*(Wi) I A C-l~iuv()
___2__ - QCl(wi,u)v*(u) du

- f C2(Wi,)U)kb(U)V*(U)

+02(u)V* (-) - k1(wi)V*(w) - 02(wi)v*7(w)] du

+[01(Wi)V*(Wi + 02(ti)V*'(wi)] AE- + U (Wi) i = 0,1, ... ,N - 1.

By approximating the integrals and derivatives above by trapezoidal quadrature and cen-
tral differences respectively and assuming that the solutions approach zero as y - 0

(v*(wN) = v*(1) = 0) and that the solutions are symmetric in w (v*'(O) = 0), the follow-
ing system of simultaneous equations for v*(wi) (i = 0, 1, .. ., N) is obtained:

2 - hCj00v* - h E CojN-
W2 0

+C20j 1[0ljVj + 02j ().+- 2h

-01oVo]}- 010>o/AEi) + to 3/2 '(17a)

5
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+ C2j0 [010VO* - OVi

02i ( 2h )+ )2j ( 2h ) -ivi*
OL ~i<

+052i ;ih 1) 2e
1 + i

=0 / 

a I

i = 1,2,...,N - 1

VN = 0,

where

h = 1/N,

Vi* = v*(i/N),

ti = t(i/N),

Oki = Ok(i/N)(k= 1,2),

Ckij = Ck (i/N, j/N) (k = 1, 2),

and C2 ii is defined arbitrarily as zero. Equations (17), which can also be written in
matrix notation as

L = C

where L2 is an N + 1 by N + 1 matrix,

V0

V*~* = Vi*

p >f

6

*
Vi

I/2
~i

(17b)

(17c)

(18a)

(18b)

(18c)

(18d)

(1 8e)

(19)

(20a)

( Vi*+, - pi�-, 11 -
-02i 2h

N-1 �-

h T clijvj*
j=1

+C2ij [Oijvj*
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(1 + tO)/aOt0/2

3/2(1 + 1laOl
C = , (20b)

(1 + (N)Ia0tN

can be solved by standard methods. Selected results will be presented following the
next subsection.

Calculation of the Curvature Change

In addition to 6v the curvature change 6K(W) induced by the nonisothermality is
also of interest, particularly in the computation of t* to follow later. The curvature
change 5K(w) and its finite-difference representation can be calculated as follows. From
Part 1 the curvature change 6K(w) associated with 5v(w) is given by

6K(W) = M 1W (0) (5V) = XPWoW(0) (V*) (21)

where v* is a solution to Eq. (16) and

I (O(* - 1 d * 1 d *
( (W) dy2 [y(W)] + y(w)t(w) dy V

I[ + * v*(w)}- w 0 0. (22)
a0

2 L 2 (w)J

But from Eq. (8)

d v*[y(w)] = A v*'(w) (23a)
dy- 

and

d 2 v*[y(w) = ( -A2 ) v*"(w) 2(1 w)3 v*'() (23b)
dy2 A2 ~~~~~~A2

'(w

Therefore

?W, 1 J (1 -W)4 (1 - w)2 [i 2(1 -w)1 
(W) ) A 2 A [y(w)M(w) A ]

+2 [+ 82(w)] v (w)}, w 0 0. (24a)

7
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At the tip (w = 0), Eq. (24a) becomes (by Eq. (10) and L'H6pital's rule)

MO°(O) (V*) */(0) + - v*(O) + li.ao w-O y(w)

= 2 [A *fv(°) + a 2 V (0)] (24b)

The finite difference forms of Eqs. (24) are readily obtained by employing central
difference approximations for v*'(w) and v*"(w). Thus

K(W) = M1 W(O) (v*)

1 { (1-wi) 4 ( i-i - 2v* + vi*-1 \ (1 w) 2 1
~iL A2 ) A

_ 2(1- wi)1 (ii - + I (1 + i ) v*}, Y y(i/N) (25a)

and

(_ -) M1W0(O) (v*W =o

4) (V - V*) + 2 V* (25b)
(Ah )2 1 o2 

where the symmetry condition v*'(0) was invoked in deriving Eq. (25b).

Numerical Results

Equation (19) was solved numerically for the range of supercoolings 0.01 6 AO < 0.2.
The values of A and ao used in the numerical solutions are listed in Table 1. Representa-
tive solutions to Eq. (19) plotted as a function of y, are shown in Figs. 1 and 2 for
AE( = 0.03 and 0.07 respectively. The convergence with respect to N is good for both
supercoolings. These results are typical of the behavior of the numerical solutions over
the full range of supercoolings.*

*Additional checks on the reliability of the finite-difference procedure have been carried out for the two-
dimensional version of this problem (platelet growth) by solving the linearized equations both by finite
differences and Galerkin's method (a discussion of this method is given Mikhlin [11 1). The solutions ob-
tained by both methods agreed to within a few percent.

8



NRL REPORT 7680

14,000 -

(N=100, Ao2a')

12,000 (N=80, A=2a,)
(N=60, A=2ao)

10,000

8,000

6,000

4,000 -

2,000

0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
y

Fig. 1-Plot of v* as a function of y for ALD = 0.03

(Nr40, A=ao/2)
(N=80, A=ao/2)

2500 (N=100, A=a,/2)

(N=40, A=ao)

2000 -

1500 -

1000 I

500 I l
0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

y

Fig. 2-Plot of v* as a function of y for A() = 0.07
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Table 1
Values Used in Numerically Solving Eq. (19)

AOe I ao I A

0.01 1.73 X 10-3 4ao
0.03 6.72 X 10-3 2ao
0.05 0.0131 ao
0.07 0.0206 ao, a/2
0.1 0.0341 ao /2
0.2 0.0988 ao /6

The curvature changes associated with each of the preceding solutions were also
calculated, with the aid of Eqs. (25). The quantity -6K(W)/X, also plotted as a function
of y, is shown in Figs. 3 and 4 for AO = 0.03 and 0.07. From these results it is evident
that the effect of the nonisothermal interface conditions is to sharpen the interface in
the neighborhood of the tip and flatten it elsewhere.

0.5 x

do

I -0.5x108

-1.0X 108

0.5x1
y

Fig. 3-Plot of 8K/I as a function of y for AO = 0.03

10



NRL REPORT 7680

I lOx106_ \ 

-2.0x106 -

-3.0x106 I I / 1

0 I.OxIO-2 20x10-2 3.010-2
Y

Fig. 4-Plot of K/ A as a function of y for Ate = 0.07

ESTIMATION OF Xmax

Computation of X*

It was shown in the subsection "Xmax Estimate" in Part 1 that a rigorous upper
bound e*, on Xmax, is given by

-2 (26)
M1w0(O) ()*)Iw=oao

or from Eq. (24b)

a0 1 *(27)

a v* (°) + a P*(O)
A 2 ao

where v* = v*(w) is a solution to Eq. (16). Calculated values of X* are listed in Table 2
along with the quantity -X*Ko(O) = 27X*/ao, which is depicted graphically in Fig. 6 of
Part 1

11
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Table 2
Calculated Values of X* and 2X*/ao

AO j __*_ 2X'*/aO (2X*/ao)1AE)

0.01 3.18 X 10-7 3.68 X 10-4 0.0368
0.03 5.94 X 10-6 1.77 X 10-3 0.0589
0.05 2.18 X 10-5 3.33 X 10-3 0.0665
0.07 5.47 X 10-5 5.31 X 10-3 0.0758
0.1 1.47 X 10-4 8.62 X 10-3 0.0862
0.2 1.09 X 10-3 0.0218 0.109

It is apparent from Fig. 6 in Part 1 that the magnitude of the quantity 2X*/ao gives
at least a qualitative indication of how well X* approximates 7tmax; that is, if (2 X*/ao)/AE)
<< 1, then X* should be close to Xmax. Table 2 shows that (2X*/ao)/AO increases mono-
tonically with AE) and ranges from 0.0368 for AO = 0.01 to 0.109 for A(3 = 0.2, thus
indicating that the estimates provided by X* improve as the supercooling decreases. More-
over the values of (2X*/ao)/AO listed are relatively small compared with unity, thereby
lending some credibility to the validity of the X* estimate.

Computation of X**

In the subsection "A Second Xmax Estimate" in Part 1, it was shown that an esti-
mate A**, of Xmax could be found by finding the value of X such that the equation

X4M1WO(0) (6v) + M2WO(0) (61) = X [aOt3/2() (28)

fails to possess a solution. Here MkwO(°) (k = 1, 2) are defined implicitly in Eqs. (24)
and (13) respectively.

To calculate X** numerically, the integrals and derivatives appearing in MkL°O(°)
(k = 1, 2) are again approximated by trapezoidal quadrature and central differences respec-
tively, as was done in obtaining Eqs. (17). Then by assuming that Eq. (28) is identically
satisfied at the points wi = i/N (i= 0, 1, 2, ... , N- 1) and employing the boundary condi-
tions [6v(0)]' = 5v(1) = 0, the following system of equations is obtained for 5v(wi)
(i= 0, 1, 2, ... , N):

(X;Lj + L 2) =C (29)

where 5v and C are defined as in Eqs. (20), t2 is the same matrix which appears in Eq.
(19), L, is an N + 1 by N + 1 tridiagonal matrix with components

L100 = 2 4____ (30a)
ao2 (Ah) 2 '

12
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(Ah)2 '

L1oj = 0, j = 3, 4, ... , N.

j= L(1-wj)4

L tj (Ah)2

(1- wj)2

tjAh
1

(2yjtj

[L;;02 (1

2(1 - Wj)2 5lJ

tj(Ah )2 i

[(1- wj)4+~ I +)1- 1w)] i= 1,2,...,N- 1,

i = 0,1,..N,

i = 0,1,...,N,

- 1- Wj

- A )] il

and 6ij denotes the Kronecker delta. Since a unique solution to Eq. (29) does not exist
when

det(tL 1 + L2) = 0 , (31)

the smallest value of X satisfying condition (31) constitutes an approximation to A**.

Finding the smallest value of X which satisfies condition (31) is equivalent to finding
smallest eigenvalue of the matrix -L 1L which is a standard problem in numerical,~ 1 ;~2' 
analysis. Values of t** have been computed for 0.01 < A/) < 0.2 by the Q - R algo-
rithm [12] and are listed in Table 3, together with the corresponding values of ?*J.t

Table 3
Calculated Values of X** and Values of X)*

From Table 2

AO X** jt*__

0.01 3.62 X 10-7 3.18 X 10-7

0.03 6.82 X 10-6 5.94 X 10-6
0.05 2.5 X 10-5 2.18 X 10-5
0.07 6.23 X 10-5 5.47 X 10-5
0.1 1.71 X 10-4 1.47 X 10-4
0.2 1.25 X 10-3 1.08 X 10-3

tPursuant to the arguments presented in Part 1, Eq. (28) is expected to have no solutions when X> >**.
In other words the operator -[MewO(O)] -l 2wO(0) is expected to have a continuous spectrum. However,
since the matrix approximation to -[A0(0)] -¶M2Wo(0), namely, -LylL 2 , can have only a discrete spec-
trum, an interesting question arises: What do the solutions to Eq. (290look like when X > X**? To resolve
this question, a number of calculations were performed. In all cases the solutions were observed to be
highly oscillatory, bearing no relation to the smooth solutions found for X < X**.

13

(30b)

(30c)

L1Nj = 0,

(30d)

(30e)

(1 - Wj)2
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As can be seen from the table, X* and X** are relatively close, with X** consistently
greater than X* by a factor of approximately 1.15. This indicates that X** is also an
upper bound on 7.max- Since X* is less than 7X**, t* will be taken as the estimate for
Xmax when comparing the theory to previous theoretical results and experimental data.

COMPARISON WITH PREVIOUS THEORETICAL RESULTS

Xmax Predictions

The previous theoretical approaches to the steady-state dendritic growth problem
can be grouped into two categories: the "modified Ivantsov" approach, developed by
Sekerka et al. [1] and Glicksman and Schaefer [2], and the Bolling-Tiller [8] and
Temkin [9] approach, which was later refined by Trivedi [13]. In this subsection the
nondimensional relations between growth rate and supercooling predicted by both
theories are compared to the relation between X* and AO obtained from Eq. (27).

The relations between growth rate and supercooling obtained from each of the three
approaches are shown in Fig. 5. For small supercoolings (AO < 0.1) each theory predicts
a relation between growth rate and supercooling in the form of a power law:

Xmax = 0.057 (AG) 2 -6 5 (present results), (32a)

Xmax = 0.025 (AO)2 .65 (Trivedi [3]) , (32b)

Xmax = 0.041 (AO)221 ("modified Ivantsov" [1,2]) . (32c)

In general the "modified Ivantsov" approach predicts the highest growth rates, Trivedi's
analysis predicts the lowest growth rates, and the present approach using Eq. (27) predicts
growth rates in between. The t* - AO curve obtained from Eq. (27) approaches the
"modified Ivantsov" curve as the supercooling increases; an extrapolation together with
X* estimates for AG > 0.2 (not presented here) suggests that the two curves should
coalesce at A( - 0.3 - 0.4. Moreover the K* - A( curve, obtained from Eq. (27) is
almost exactly parallel to the curve based on Trivedi's analysis for AG < 0.1, though the
growth rates predicted by the present analysis are higher than those predicted by Trivedi's
analysis by a factor of 2.3.

The coalescence of the t* values with the "modified Ivantsov" predictions is partic-
ularly encouraging, because it can be plausibly argued on physical grounds that the "modi-
fied Ivantsov" predictions should be appropriate at high supercoolings. Moreover Glicks-
man and Schaefer [2] successfully used the "modified Ivantsov" analysis to fit their
experimental data on white phosphorus for 0.2 < AG < 1.8, with the best fit obtained
at the higher supercoolings. Similar attempts to fit these data with the refinements of
the Bolling-Tiller and Temkin approach were largely unsuccessful [14].

In view of the agreement of the X* values with the "modified Ivantsov" predictions
for AG > 0.3 - 0.4 and the appropriateness of the "modified Ivantsov" analysis for this
range of supercoolings, it is reasonable to expect the K* values to provide good estimates
of Amax for AG - 0.2. Moreover, as was indicated by Table 2, the estimates of Xmax
provided by X* should improve as the supercooling decreases. It therefore follows that

14
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Fig. 5-Plot of Xmra as a function of AEO for (1) the
Trivedi analysis [3], (2) the present analysis using
Eq. (27), and (3) the modified Ivantsov analysis [1,2]

4
x

0.01 0.1

the entire \* - AEi curve shown in Fig. 5 gives a good approximation to the ?vmax - Ad\
curve. Thus it appears that the values of Xrmax predicted by Trivedi's analysis are indeed
low.

Tip-Radius Predictions

In addition to Xmax the nondimensional dendrite tip radius a(O) - -2/K(O) at
A = Xmax is also of interest and can be estimated as follows. By definition

K(0) = Ko(O) + bK(O).

But Ko(O) = -2/ao and

SiK(O) X *MWO(O) (p*)[ 0=o = - 2 /ao,

by Eqs. (21) and (26). Therefore

K(O) : - 4 /ao, X = Xmax;

hence

15
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a(0) - a0 /2. (36)

That is, the tip radius at X = Xmax is approximately half the isothermal tip radius.*

The nondimensional tip radii predicted by Eq. (36) are shown in Fig. 6 as a function
of A(O along with the predictions of the "modified Ivantsov" analysis. The predictions
of both theories agree to within a few percent for AO < 0.6. For AO > 0.6 the predic-
tions of the two theories diverge, with the tip radii predicted by the "modified Ivantsov"
analysis significantly less than those predicted by Eq. (36). Because the "modified
Ivantsov" analysis is valid for this range of supercoolings, it is concluded that the esti-
mates of ao given by Eq. (36) (and most likely the estimates of Xmax provided by X*)
represent poor approximations for AO > 0.6. Finally, little significance should be at-
tached to the agreement of the tip radii predictions for A( < 0.3 - 0.4, since the growth
rates predicted by the "modified Ivantsov" analysis are incorrect for these supercoolings.

Q
Ca

1.0

Fig. 6-Tip radius a(0) as a function of A(E

COMPARISON WITH EXPERIMENTAL DATA

To compare theory and experiment, we assume that the steady-state solution for
X = Xmax represents the true asymptotic solution to the time-dependent dendrite growth
problem (as assumed in Part 1) and that the theory can be applied with negligible error
to materials having unequal solid and liquid thermal properties, provided that the

*In principle a more accurate estimate of a(O) could be obtained by solving Eq. (28) with X slightly less
than t*. The numerical difficulties involved in obtaining reliable numerical solutions to Eq. (28) for
X - t** however preclude such an estimate.

16
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properties of the liquid are used with the theory. The first assumption is equivalent to the
"maximum velocity" hypothesis, which is employed in virtually every theoretical treatment
of steady-state dendritic growth. The second assumption is reasonable because the tempera-
ture gradient in the solid is generally small compared with that in the liquid; that is, ge =
0(1) and gi = 0(X). Therefore the thermal properties of the solid have little influence
on the steady-state shapes and growth rates.

The theory has been compared to experimental dendritic growth data for ice, nickel,
and cobalt. The thermodynamic and transport properties of these materials are given in
Table 4.

Table 4
Thermodynamic and Transport Properties (Tm is the equilibrium melting temperature

(0C), L is the latent heat of fusion (cal/g), cQ, pQ, kQ, and aQ are the specific heat
(cal/g-0K), density (g/cm 3 ), thermal conductivity (cal/s-cm-0 K) and thermal

diffusivity (cm 2 /s) of the liquid at the melting temperature, ASf is
the entropy of fusion (cal/cm3 -0K), and -y, is the solid/liquid

interfacial free energy (erg/cm 2).)

Material Tm J L cQ pQ | kQ a ASf y wYsQ

H 20 0 79.7 1.00 1.00 0.00139* 0.00139 0.292 45t

Ni 1453 69.7t 0.176t 8.0§ 0.098*# 0.070 0.360 2551
Co 1492 63.9t 0.19t 8.0** 0.06*# 0.040 0.322 234¶

*From Ref. 15.
tFrom Ref. 16.
tFrom Ref. 17.
§ From Ref. 18.
#Estimated from high-temperature data on k, (thermal conductivity of the solid) using the relation

kQ/ks = 1/2 at Tm.
¶ From Ref. 19.

**Assumed to have the same density as Ni.

The dendritic growth rates obtained by Pruppacher [4] and Hallett [5] for ice are
shown as a function of the nondimensional supercooling AO in Fig. 7. Also shown are
the theoretical growth rates V obtained from the relation

V= 2aASLX* (37)

The agreement between theory and experiment is satisfactory for 0.02 < AO < 0.03,
with the experimental data dropping below the theoretical predictions for A® > 0.03.
The disparity at the higher supercoolings is probably due to the effects of sluggish inter-
facial molecular attachment, an effect not accounted for in the theory at present.

The dendritic growth rates obtained by Walker [6] and Colligan and Bayles [7] for
nickel and those obtained by Walker [6] for cobalt are shown in Figs. 8 and 9 along
with the theoretical growth rates calculated with Turnbull's [19] values of yQ using

17
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Fig. 8-Growth rate as a function of nondimension:
supercooling for nickel

Fig. 7-Growth rate as a function of nondimensional
supercooling for ice
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C-, ~~~~0
Fig. 9-Growth rate as a function of nondimensional oE 0Csupercooling for cobalt E O Co
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Eq. (37). The theoretical growth rates are consistently higher than those observed ex-
perimentally for both materials, with the disparity increasing with increasing supercooling.
Qualitatively it appears that the use of higher values of -yQ would improve the correlation
between theory and experiment for both materials, particularly at the smaller supercool-
ings. This finding, though by no means conclusive, is consistent with recent measurements
of -y'Q for lead [20,21] and bismuth [22]; the reported values of -YQ were higher than
Turnbull's values by factors of 2.2 and 1.5 respectively.

SUMMARY OF PART 2

Numerical results for the dendritic shape changes induced by nonisothermality were
obtained as a function of the supercooling A®). The effect of the nonisothermal interface
conditions is to increase the curvature of the interface in the neighborhood of the den-
drite tip and to flatten it elsewhere.

Upper bounds Xt* on the maximum growth rate Xrmax were computed for 0.01 <
A®) < 0.2, and it was shown that Xt* provides a good approximation to Xmax over this
range of supercoolings.

A second estimate X'** to Xrmax was computed over the aforementioned range of
supercoolings. The two estimates Xt* and X** of Xrmax are reasonably close (differing
by a maximum of 15%), with the X* values providing the better estimate to Xrmax.

19
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The X* - A®) relation takes the form of a universal power law, namely,
A* = 0.057(AO) 2 .6 5, for A®9 < 0.1. Moreover the X* - A®) curve approaches the
Xmax - A® curve obtained from the "modified Ivantsov" analysis as the supercooling
increases. The two curves essentially coalesce at A® - 0.3 - 0.4.

Estimates of the dendrite tip radii obtained with the present theory agree closely
with those predicted by the "modified Ivantsov" analysis for A®3 < 0.6.

The Kt* A® curve, when plotted on a logarithmic scale, is parallel to the Xmax - A®
curve obtained from Trivedi's analysis for AE) < 0.1; however the growth rates predicted
by the present theory are greater than those predicted by Trivedi's analysis by a factor
of 2.3.

The dendritic growth rates predicted by the theory are in qualitative agreement
with experimental data for ice, nickel, and cobalt.

Recommendations for future work include:

* further comparison of theory with experiment in the low supercooling range,
particularly for materials for which -yQ is known independently,

* generalization of the theory to include the effects of interfacial "drag" from
sluggish molecular attachment, and

* initiation of a time-dependent study of dendritic growth to verify the "maxi-
mum growth rate" hypothesis, determine the origin of dendritic side branching, and
assess the influence of side-branch growth on the tip velocity.
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Appendix A

THE BEHAVIOR OF Ci(r,s) AND C2(r,s) AS s -* r
AND NUMERICAL COMPUTATION PROCEDURES

BEHAVIOR OF C2 (r,s) AS s - r

The behavior of C2(r,s) as s - r is readily ascertained by writing C2(r,s) as

C2(rs) = s e-[Ewo(r)-WO(s)] G[r, coo(r), s, wo(s)]

= S e-e [ w (r)-wo(s)I
iT

where

S 1

-1
e-(a+bt)'1 2 [(a + bt)(1 - t2)] -1/2 dt

s e-[cjo(r)-co(s)] (I, + I2) ,
7T

a = s2 + r2 + [wo(r) - Co(s)] 2,

b = 2rs,

wo(r) = -r 2 /2ao,

(Ala)

(Alb)

(A2)

(A3)

WO(s) = -s2 /2ao,

^+1 1

J- = (a + bt)1/ 2 (1 - t2)1/2 dt,

s+1

12 =-
-1

[e-(a+bt)112 - 1] [(a + bt)(1 - t2 )] -1/2 dt,

and examining the behavior of I, and I2 as a - b.

Expanding the exponential term in I2 in a Taylor series, integrating term by term,
and employing the transformation t = cos t gives
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2 = f (2 k)! f (a + b cos ,)(
2kl)/2 d, - 0 ___ 11!Tk 0 E ~~~~~~~~(2h+ 1)! J (a + b cos ,)k d ,,

which is evidently bounded as a - b. On the other hand the integral Il can be written as

+1 1

.- = i (a + bt)1 l2 (1 - t2)1/2 dt

= f (a+ b cos )f1 /2 dt
0

where K(x) denotes the complete
the known limiting behavior [23]

elliptic integral of the first kind. However, K (x) has

lim [K(x) + ln( 1 ) .

Therefore, as s - r,

I, - n({(rs- + [64(r)2 |

(A4)

- +nI Ir-sI[I+ ()] -. I ln[ 8 r-i 
r 8r J - r l8r ~coS Oo(r)] 

Hence C2 (r, s) has a logarithmic singularity as s - r.

COMPUTATION OF C2 (r,s)

Defining 3- (a - b) 1 2 , it proves convenient to consider separately the three regions

O < j < 01

il < 3 < 12

12 > ( < 0

(region I),

(region II),

(region III) .
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In regions II and III the integral in Eq. (Ala) can be accurately evaluated by Gauss-
Chebyshev quadrature:

+1 (x) dx N
-1 (1x2) dx = 2 E f(xi),f, (lX2)1/2 Y ~i=1

(2i- 1)ir
Xi = cos 2N

where N takes the values N2 and N3 in regions II and III respectively. In region I addi-
tional accuracy is requaired due to the close proximity of the singular point. Hence in
this region Eq. (Alb) is used with Il evaluated using standard polynomial approximations
to K(x) [23] and I2 evaluated by Gauss-Chebyshev quadrature with N = N1 . The values
of 91, 132, N1 , N2 , and N3 used in the computations are listed as a function of AEO in
Table Al.

Table Al
Values Used in Computing C2 (r,s)

AE) | 1 | 2 | N 1 I N 2 I N 3

0.0-0.01 0.1 1.0 10 10 5
0.02-0.1 0.5 1.0 10 10 5
0.2-0.3 1.0 5.0 20 20 10
0.4-0.5 1.0 5.0 20 20 10

BEHAVIOR OF C1(r, s) AS s - r

The behavior of C1 (r,s) as s - r may be assessed by rewriting Eq. (2), namely,

Cl(rs) = se -[wo(r)-wo(s)] J7r fi~~~-
e-(a+bt)"

2 J sin Oo(s) _ 1

1 2s(a + bt)1/ 2 la + bt

+ 1 3/2] 1(s + rt) sin 0o(s) - [coo(s) - cwo(s)] cos O0 (s)l } I2) 1 2 dt,

(A5)

as

Cl(r,s) = r e [wo(r)w@o(s)]{A(rs)

e-(a+bt)/12 (1 - t2)y1/2 dt}

or

24
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Cl(r,s) = -f e [c)o(r)-w 0 (s)] (I3 +I4 +I5 +16)

and examining the behavior of A(r,s) and Ik(k = 3, ... , 6) as a - b. Here

+ 1

13 = A (r, s) 11 le-(a+bt)1)2 [(a + bt)-1 + (a + bt)-3 12 ] - (a + bt)-3 12

+ 2 (a + bt)-1/2 (1- t2)-1l2 dt

I4 = -B (r, s) J__

+1

-A (r, s) f
I6 = 2 f-

e-(a+bt)' 12 (1 - t2)y1/ 2 dt,

(a + bt)-3/2 (1- t2 )-1 /2 dt,

(a + bt)-1/2 (1- t2)-1/2 dt

{r2 - S2 + [w 0 (r) - wo(s)] 21 sin 0o(s) + 2s[w 0 (r) - cio(s)] cos 00(s)
, (A8)

2s

B s ) sin 00 (s)

sin 00 (s) = -co(s)]2
[1 + W0 ()]

[1 + o()1/

It is evident from Eq. (A8) that A(r,s) - 0 as r - s. However, as will be apparent
shortly, a more detailed knowledge of the asymptotic behavior of A(r,s) is required.
Hence expanding A(r, s) in a Taylor series about s = r gives

A(r,s) = 0-s) sin 0 (r) - 2s(r -is) dd sin Oo(r) + (r - s)2 + [0(r)

-co(s)] 2} sin Oo(r) - 2s(r - s) sin 00(r) - sw'(r) cos 0o(r)(r - s)2

-2s o(r)(r- s)2 d cos oO(r)) (2s)-1 + O(r- S)3

which, with the aid of Eq. (A2), reduces to

25
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A(r,s) 2 csi 2 00 (r) (r - s)2 (A9)

for s sufficiently close to r.

The limiting behavior of Ik(k = 3, ... , 6) is now readily ascertained using the meth-
ods employed in the first section of this appendix. Hence, by writing I5 and 16 as

+1

I5 = A(r,s) f (a + bt)-312 (1- t2)-1/ 2 dt
_ ~~~~~~~~-1

= A(r,s) f (a + b cos t)-3/2 dt
0

2A(r,s) E 2b ) 1/2
(a + b)1 /2 (a - b) La + b I

and

16 -A (r, s) ra 2b ~1I2
I6 - (a + b)1/2 K [(a +

where E(x) denotes the complete elliptic integral of the second kind, the limiting values
of I5 and I6 may be obtained with the aid of Eqs. (A4), (A9), and the relation [23]

lim E(x) = 1.
x -1

Thus

lim 15 = sin3 00(r) (A10)
s-r 2r 2

and

lrn 16 = lim sin3 00 (r) _ r-S2 In/ J r - sl 0 0 (All)
sir I=lms-r L43 cos3 00 (r) (r s l2r cos Oo(r))(

where the relations

lim (a + b) = (2r)2

s-r
and

a - b - (r - S)2 [1 + Cj 2(r)] = (r- s)2/cos2 Oo(r)
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as s - r were used. Moreover, by expanding the exponential term in Eq. (A7) in a Taylor
series and integrating term by term, it is readily seen that I3 is bounded as a - b. Thus,
in view of Eq. (A9),

lim I3 = 0 .
s-r

(A12)

Finally I4, which can be written as

I4 = -B (r, s) f
-1

e-(a+bt)112 (1 - t2)I/ 2 dt

7r

= -B(r,s) f e-(a+bcost)l/2 d 
0

is bounded as s -* r, with its limiting value given by

sin Oo(r) C+l
lm I4 = - -Js~r -1

e-{/2r(1+t)1/2 (1 - t2)y1/2 dt -

From the preceding discussion C1 (r, s) is bounded as r - s. In fact an expression
for C1 (r,r) is readily obtained with the aid of Eqs. (A6), (A10), (All), (A12), and
(A13). Thus

C ( ) ~sin 00 +1
C1 (r, r) = - sin 00

-1

e~lr(1+t)1I2 (1- t2)-1/2 dt + sin3 00(r)

COMPUTATION OF Cl (r, s)

It is again useful to employ the same regions used for C2 (r,s) (regions I, II, and
III). In regions II and III Eq. (A5) is used to compute Cl(r,s), with the integral evalu-
ated by an M-point Gauss-Chebyshev quadrature, where M takes the values M2 and M3
in regions II and III respectively. In region I, Cl (r, s) is computed by means of Eq. (Alb),
with the integrals appearing in I3 and I4 evaluated by an Ml -point Gauss-Chebyshev quad-
rature and I5 and I6 evaluated using polynomial approximations to K(x) and E(x) [23].
Finally Cl (r, r) is computed from Eq. (A14), with the integral evaluated by an M4 -point
Gauss-Chebshev quadrature. The values of 3, 132, M1, M2, M3, and M4 used in the com-
putations are listed in Table A2.
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Table A2
Values Used in Computing C1 (r, s)

A j 131 j 132 | M 1 I M 2 I M 3 I M4

0.0-0.1 0.1 1.0 10 10 5 5
0.02-0.1 0.5 1.0 10 10 5 30
0.2-0.3 1.0 5.0 20 20 10 60
0.4-0.5 1.0 5.0 30 30 10 100
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