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CAPILLARITY-LIMITED STEADY-STATE DENDRITIC GROWTH
PART 1-THEORETICAL DEVELOPMENT

INTRODUCTION

The growth of crystals in the form of finely branched structures known as dendrites
is frequently observed during the solidification of metals. Moreover dendritic crystal
morphologies have profound effects on the structure, strength, and corrosion of cast
materials, because the local distribution of alloying elements and impurities is to a great
extent controlled by the solidification mode. Despite its importance the kinetics of den-
dritic growth is not yet well understood, either phenomenologically or mathematically.

In principle the theoretical time evolution of the dendritic interface can be com-
pletely determined by finding solutions to the thermal and solute diffusion equations in
the solid and liquid phases such that specified initial, boundary, and interface conditions
are satisfied. In practice such an approach has yet to be undertaken, and various assump-
tions are usually made to simplify the calculations and center attention on a particular
aspect of the growth process.

The theoretical model which has received by far the most attention in the literature
is the so-called steady-state model. In this theory it is assumed that the dendrite grows
in a supercooled melt at a constant axial velocity in a shape-preserving manner, that is the
shape of the dendritic interface remains constant with time. Experimental observations in-
dicate that these conditions are approximately satisfied in the neighborhood of the dendrite
tip. It is therefore reasonable to expect the model to furnish an approximation of the aver-
age growth rate and an approximation of the dendrite shape in the neighborhood of the tip.

Although the steady-state model affords a certain degree of simplification, it also
has its disadvantages. For instance the steady-state assumptions introduce certain
mathematical uniqueness problems. In addition the treatment of such inherently time-
dependent effects as side-branch growth is naturally precluded. In spite of these short-
comings the steady-state model can yield useful information and has been examined by a
number of workers in the field.

Ivantsov [1] and later Horvay and Cahn [2] solved the equations describing the
steady-state growth of an isolated dendrite in a pure material, assuming the dendrite sur-
face to be isothermal. Ivantsov showed that for axisymmetric growth the isothermal den-
drite surface is a paraboloid of revolution. Horvay and Cahn generalized Ivantsov’s re-
sults and showed the existence of a multitude of steady-state solutions, corresponding to
families of isothermal dendrite shapes in the form of elliptic paraboloids with aspect
ratios ranging from zero (parabolic cylinder) to unity (paraboloid of revoltuion). Further-
more, for a fixed aspect ratio and supercooling, Horvay and Cahn demonstrated the
presence of a second family of solutions. These solutions exist for all growth rates and
are characterized by a constant Péclet number V/2ak,,, where V is the axial growth rate,
« is the thermal diffusivity, and k,, is the mean tip curvature.

Note: Manuscript submitted October 25, 1973.
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The nonuniqueness problems associated with the isothermal model are a consequence
of the steady-state assumptions, as mentioned previously. In fact it is conceivable that
other yet undiscovered families of isothermal solutions exist. Aside from these problems
the isothermal model has the additional serious deficiency that no mechanism is provided
for selecting the unique growth rate for a specified supercooling; that is, the relation be-
tween growth rate and supercooling is indeterminate. Since knowledge of this relation is
of prime importance for understanding the kinetics of dendritic solidification, the isother-
mal model provides an unsatisfactory description of dendritic growth.

Horvay and Cahn [2], Temkin [3], and Bolling and Tiller [4] suggested independ-
ently that the inclusion of capillarity and molecular attachment effects in the model
would force the dendritic interface to be nonisothermal, thereby providing a possible
mechanism for selecting the growth rate. A number of attempts to solve the equations
describing nonisothermal steady-state growth have appeared in the literature in recent
years [3-8]. The results of these analyses indicate that the effect of capillarity and molec-
ular attachment kinetics is to impose a limit on the admissible growth rates. These find-
ings, in conjunction with the ad hoc “maximum-growth-rate hypothesis,” were used to
obtain specific relations between growth rate and supercooling.

The preceding studies of the nonisothermal problem all employ “shape-constrained”’
solutions; that is, the shape of the dendrite is prescribed in advance. This procedure con-
siderably simplifies matters but will usually lead to incorrect results, because the dendritic
growth problem is (as are all phase-transformation problems) a free-boundary problem.
Conditions imposed at the phase boundary would overspecify the problem, unless the
shape of the phase boundary is such that a self-consistent solution can be found. The
predictions of the “shape-constrained” treatments must therefore be regarded with cir-
cumspection, and at present there is no satisfactory treatment of nonisothermal, steady-
state dendritic growth.

The main purpose of this report, along with the companion report cited on the in- .
side front cover, is to develop a theory of steady-state dendritic growth with no restric-
tions on the shape of the dendritic interface. In Part 1 (this report) a general treatment
of the free-boundary problem associated with the unconstrained growth of a crystal into
a supercooled melt is presented. This analysis, which is quite general and not necessarily
limited to dendritic growth, serves a twofold purpose. First, it leads to a set of integro-
differential equations for the shape of the growing crystal in a form convenient for num-
erical solution on currently available third-generation computers and hence sets the stage
for future time-dependent treatments of dendritic growth. Second, the theory leads to a
set of equations appropriate to steady-state dendritic growth in a way which makes the
mathematical role of the steady-state assumptions particularly clear.

The remainder of Part 1 consists of a detailed study of the steady-state equations
for the case of isotropic, capillarity-limited growth. In particular it is shown that the
steady-state equations assume a form particularly suitable for solution by successive
linearization about the known isothermal solution. Moreover solvability conditions on
the linearized equations provide a theoretical limit on the admissible growth rates.

In Part 2 (the companion report) numerical techniques are developed for the solu-
tion of the linearized equations. Numerical calculations are presented, and for small super-
coolings a universal relation between growth rate and supercooling in the form of a power

2
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law is obtained. Finally, the results of the theory are compared to previous theoretical
and experimental results.

TIME-DEPENDENT FREE-BOUNDARY PROBLEM
Formulation of the Problem

In this section we develop a theoretical treatment of the free-boundary problem
associated with the unconstrained growth of a crystal into a supercooled melt. It is con-
venient to employ a rectangular coordinate system (x1, xg, x3) moving with a known veloc- |
ity V (Fig. 1). Initially (¢ = 0) the crystal is assumed to be at a uniform temperature Ty,
which for the time being will be taken as zero, and to occupy the region D bounded by
the surface Sp. At t = 0* a perturbation is introduced into the system, causing the
crystal to grow in the melt. At any time t the crystal occupies the region D;(t) bounded
by the surface S(t); the melt occupies the complementary domain D,(¢). The problem is
to determine the time evolution of the surface S(t) and the temperatures in the crystal
and in the melt at any point P.

X3

Fig. 1—Schematic representation of a crystal growing into a supercooled melt,
The coordinate system is moving with velocity V. The domains D; and D, are
internal and external to the surface S.
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Fig. 2—A class 2 surface

For simplicity the treatment will be limited to pure materials; that is, solute diffusion
is not considered. This is not a fundamental restriction, however, and the theory can
readily be generalized to include the effects of coupled solute and thermal diffusion. The
solid/liquid interface S(t) is assumed to belong to one of two classes:

® Class 1. A surface is of class 1 if it is closed.

® Class 2. A surface is of class 2 if the surface is of infinite extent in the V direc-
tion and all lines parallel to V intersect the surface exactly once. An example of a class 2
surface is shown in Fig. 2.

Mathematically the free-boundary problem reduces to finding the temperature dis-
tributions in the crystal (T;(P, t), P € D;(t)) and in the melt (T, (P, t), P € D,(t)), together
with the phase boundary S(t), such that the following system of equations, boundary
conditions, initial conditions, and interface conditions are satisfied:

1 1 3T,
ViT,; + o V-VT; = o -5t—' ,PED(1), (1)
AT

VT, + % V-.VT, = al ,PED, (1), (2)
e

e
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T/(P, 0)=T,(P, 0)= T, =0, (32)
S(0) = 8,, (3b)
lim T,(P, t)=T,=0,PED,(t), (4)
P—oo
Ty(s, £)= Ty(s, )= T(5, Vg * un), s€S(0), (52)
k(5 1) = By, (5, ) = PL(Viy + Uin,), s ES(), (5b)

where o; and o, are the thermal diffusivities of the crystal and the melt respectively, P is
a general spatial point (x,, x5, ¥3), V is the prescribed velocity of the coordinate system,
s is a general point on the interface S(?), T is the interface temperature (a specified func-
tion of the interface shape and normal velocity), u is the velocity of a point on the inter-
face in the moving coordinate system; V,,  and u,  are the components of V and u in the
direction of the unit normal n(s) to S(t) at s, k; and k, are the thermal conductivities

of the crystal and the melt; g; and g, are the normal derivatives of the temperature fields
on the solid and liquid sides of the interface (g; = dT;/dns and g, = dT,/dn,, where d/dn;
denotes the normal derivative n(s) * V), p is the density (assumed the same in the solid
and liquid), and L is the latent heat of fusion.

Equations (1) and (2) are thermal diffusion equations in the crystal and the melt
respectively, written in the moving coordinate system; Eqgs. (3) represent the initial con-
ditions, Eq. (4) represents the far-field boundary condition (the condition that the tem-
perature in the melt must approach T, at points far from the interface S(t)), Eq. (5a)
represents the interface temperature condltlon where the form of T is determined by the
Gibbs-Thomson effect and molecular-attachment kinetics, and Eq. (bb) represents energy
conservation requirements at the interface.

“Reduction’ Procedure

The free-boundary problem defined by Eqgs. (1) through (5) can be treated effec-
tively by a generalization of the “reduction” technique developed by Kolodner [9] for
the solution of the one-dimensional Stefan problem. In this approach a set of integro-
differential equations is derived which the phase boundary S(t) and the normal derivatives
g; and g, on either side of the boundary must satisfy. In the course of the derivation
integral representations for the temperature distributions T;(P, t) and T, (P, t) are also
obtained in terms of S(t), g;, and g,. Thus the problem is solved once the integro-dif-
ferential equations for the phase boundary are solved. The principal advantage of this
method is that the shape of the phase boundary may be calculated without calculating
the temperature distributions. Moreover the integro-differential equations are in a form
convenient for numerical solution.

The “reduction” procedure, as applied to the problem at hand, can be summarized
as follows:
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1. A solution ¢;(P, t) to Eq. (1) is constructed in the domain D;(t)UD,(t) such that
condition (3a) is satisfied and

[61= lim ¢;@ 1)~ lim P t)=¢} -¢7 = -T(s, 1),

P-s . P-s
PED,(b) P& Dy(t)
do; dg; d¢; d¢;  doj
—| = i _ - i — = — - — =_g.(s. t).
dns Phins dnS Ph—tns dns dns dns gl(s, )
PED,(t) PED;(t)

2. Either ¢; or d¢; /dn, is set equal to zero. This step insures that ¢; = T, de;j/dng =
&;, and hence that ¢; = T;(P € D;(t)), where T; satisfies Eqs. (1), (3), and (5a). This

step also provides a relation between g; and S(f) in the form of an integro-differential
equation.

3. A solution ¢, (P, t) to Eq. (2) is constructed in the domain D;(t)UD,(t) such that
condition (3a) is satisfied and

[6.]1= Lim ¢,(P, t)- lLm ¢,(P, )=o) -0, =T, t),
Pogs P-s
PED,(t) PED(t)

dp| _  dd,  dg, _do; do;

ang| = S an, T S @ Ty, TEGD
PED(t) PED(t)

lim ¢e(P, t)y= TO = 0.
P
P €D,(t)

4. Either ¢ or d¢,/dn, is set equal to zero. This step insures that ¢, = T, dey [dng =

&e, and hence that ¢,(P, t) = T, (P € D,(t)), where T, satisfies Egs. (2) through (5a). This

step also provides a relation between g, and S(t) in the form of an integro-differential
equation.

5. From the system of equations consisting of the equations obtained from steps
2 and 4 and Eq. (5b), g;, g,, and S(?) are determined.

6. T;(P, t) and T, (P, t) are found by substituting g;, g,, and S(f) back into the ex-
pressions for ¢; and ¢, obtained in steps 1 and 3.
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Implementation of the Procedure and the Integro-differential Equations

The implementation of this procedure is facilitated by the introduction of particular
solutions UF (D[R] (P, t) and WF D[f](P, t) to the diffusion equation
1 1 0T;
o o

—> . .
Vsz+ = V- VTj= — T3 ,PED;(t),j=iore,

-
wl

that are analogous to single- and double-layer potentials (distributions of sources and
dipoles). These solutions are given by

t
U}:(t)[h] (P, t)= ;' 2f f _h(_q:;glm Fj(x(P), w(q), t, 7, V) dZdr, (6)
87 / 0 vY=(r) (t - T) / (Xj

t
wEOF (P, t) = 1 f f fa, ) [x(P) - w(q)] - n(q)
il gndl2Jy =(7) h 204}”/2(t—r)§/2

V - n(g) .
! ] B g

where h and f are arbitrary functions of ¢ and 7, x(P) is the position vector associated
with an arbitrary point P, Z(¢) is a class 1 or 2 surface, g is a point on 2(7) at any past
time 7, n(q) is the outward-pointing unit normal to Z(7) at point g, w(q) is the position
vector associated with the point g on 2(7),

Fi(x(P), w(q), t,7, V) = exp|- {["(P ) -W(Z;].(; _D;gP) -w(q)]
]
V V-V
+ 2, - [x(P) - w(g)} + 4 (t —7)} , (8)

and the notation qu emphasizes that the surface integral is to be taken over the points q.

The solutions UF[R] (P, t) and WEW[f](P, t) have the following propertiest :

TStrictly speaking, k(q, ), f(q, 7), and Z(¢) are required to satisfy certain smoothness conditions. Fora
discussion of this and related topics the reader is referred to Gevrey {10], Tikhonov and Samarskii [11],
Friedman [12], and Pogorzelski [13]. In this report it will be assumed that any such conditions are al-
ways satisfied.



GERALD E. NASH

1. They satisfy the diffusion equation

oT;
V2T, + 1y VT, = 1
i O(J J a] ot

at all points, except perhaps on Z(t).
2. lim UFO[R]P t)= lim UFO[R1 (@, t) = UFO*[R] (s, 1),
P-s P-os
PE D, (1) PED L)

where D;(t) is the domain interior to 2(t) and D, (t) is the domain exterior to Z(t),

UEO* [h(s, t) = ;/ f f _Me D pwis), wig), T, V)AZ,dr,  (9)
8w T(r

(t 7)3/2 1/2

and w(s) is the position vector associated with a point s on X(t) at time t.

3. lim ;n— UF(O[h](P, t) = - 1 h(s, t) + —— UE(f)*[h](s t),

P—s s
PED, (1)
. d ; 1 d .
Jm UFOWRIP, )=+ 5 his, )+ = UFOTIRIG, 0,
-+ 8
PED(2)
where
t
_4 UEO* [h]Gs, t) = - 1 J J h(g, 7) [w(s) - w(q)] - n(s)
dns 8773/2 0 Yz(r) 20[]'3/2(t—7')5/2

V- n(s)

m} F}(W(S), W(q), t, T, V) dzda. (10)
] - .

4. lim WEOIE@ =+ f(s t)+ WEO[£](s, 1),
P-s
PED (1)

lim WFO[F) (P, t)-— = f(s, )+ WFOT[f1 (s, 1),
P-s
PED;(H)
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where

t
WFOM 16 )= — f J fg, ) 4 WE) - w@)] - n(g)
J 873/2 0 Jz0) 204]'3/2(1’—7')5/2
Vv n(g) '
m} Fw(s), wia), £, 7, V) dxqdr. (11)

V fun_ (Ng*ng)
4 wre -9 gz iﬂ _wE | et e
5 gy WO 0= - PO 80 - RO —— | @)

+YFO[1@, ),

where n; and n, denote n(s)y and n(q) and where u,_and V,_denote u-n, and V-n,.
The derivation of this equation, which is not straightforward, is presented in Appendix A.
Yf(t) [f1(P, t) is also defined in Appendix A and is continuous across 2 (%), that is,

lim YFOU1® 0= lim YFOU@ 6= YFO[116, 1).
Pos P-s
PED,(t) PED ()

It is now relatively simple to construct solutions to the free-boundary problem. Us-
ing the jump properties of the potentials Uf(t)[h] (P, t) and sz(t) [f1(P, t), it is readily
verified that

~

;P t)=- WSO[T1(P, t) + UPD | g; + L Vo, +un )| @, 1), PED;(t)U D, (1),
A (12)

and
. T
(P, t) = Wf(t)[T] & t)- Uf(t) {ge + ™ (V,,q + unq)il (P, t), PED;(t)VUD,(t), (13)
e
satisfy the conditions set forth in steps 1 and 3 of the reduction procedure. It remains
to insure that ¢;(P, t) = T;(P, t), PE D;(t) and ¢.(P, t) = Te(P, t), P € D,(t).
As indicated in steps 2 and 4 of the reduction procedure,

T;(P, t)=¢;(P, t)

= - WEO[T] (2, 1) + UFO {gi b (Vg + unq)J (P, 1), PED(1), (14)
i

9
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and

T (P, t) = ¢ (P, t)

= WSO[T1(P, t) - US®) {ge + a£ (Vg + unq):| (P, t), PED,t),  (15)

e

provided either ¢; = ¢; = 0 or d¢] /dn, = d¢/dn, = 0. The conditions ¢; = ¢_ = 0 can
be written as ‘

~

05, 1) - WEO" (165, )+ USO" | g, + = (Vg +ung)| 6 )=0,  (16)

]

Do |

. . T
T(s, £) + W' [T1(s, £) - UG g, + — (Vg + unq)J (s t)=0. (7

e

|
N

Similarly the conditions d¢] /dng = d¢_/dng = 0 can be written as

1 d « T :
-5 &ils )t — Us) {gi + % “nq (s, t)

s

Tu .
+ WS {———a‘"q (n, - nq)] s, t) - YSO* [T1(s, t) = 0, (18)
(4

1 d g T
- 2 ge(s7 t) - dns Ue ge + a_e- unq (sa t)

-

Tu, .
- W {—a—q (n, - nq)} (s, )+ YSO*[T1(s, ¢) = 0. (19)

e

Equations (16), (17), and (5b) and Egs. (18), (19), and (5b) are systems of integro-
differential equations (denoted by systems I and II respectively) involving S(?), &;, and g,.
Once either system of equations is solved, the temperature distributions can be determined
from equations (14) and (15)+1.

Both systems I and II are integro-differential equations of the Volterra type and thus
may be solved numerically by ‘““marching procedures.” In particular, system II is a Volterra

{Equations (14) and (15) can also be derived using Fourier transforms. In particular, when S(¢) is closed
(class 1), the transform method affords the more direct approach, A derivation of Egs. (14) and (15)
based on Fourier transforms is presented in Appendix B.

11t has been implicitly assumed here that solutions to systems I and II exist, are unique, and are equivalent
to solutions of the original free-boundary problem. To give the theory a firm mathematical foundation,
rigorous mathematical verification of these assertions is required.

10
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system of the second kind, since the unknowns g; and g, appear outside of the integral
signs. Systems of this type have proved particularly amenable to numerical solution by
suitably modified versions of the techniques commonly used for the numerical solution of
ordinary differential equations, such as predictor-corrector methods and Runge-Kutta
methods. A comprehensive survey of these techniques as applied to integral and integro-
differential equations is given in Noble [14].

STEADY-STATE DENDRITIC GROWTH

The Steady-State Dendrite as an Asymptotic Solution
to a Class of Time-Dependent Free-Boundary Problems

We assume the existence of a class of time-dependent free-boundary problems such
that:

1. The initial domain D, is finite and bounded by the closed surface Sj,.
2. At any t < oo, D(t) is finite and S(¢) remains closed.

3. At sufficiently large ¢ there exists a region of S(t), namely, S (t), such that points
on S;(t) move at a constant velocity V; that is, S;(f) appears stationary with respect to a
coordinate system moving with velocity V.

4. 8, (t) approaches a class 2 surfaceg as t > oo,

5. The asymptotic shape of the stationary region S depends only on the thermody-
namic and transport properties of the system, and the supercooling, and is independent
of initial conditions.

The time evolution of the phase boundary S(t) characteristic of such problems is
depicted schematically in Fig. 3. The steady-state dendrite problem, as defined in this
report, is to find the asymptotic shape of the stationary region S, the growth rate V, and
the limiting temperature distributions T;(P), P € D; (Dj = lim{ o Dj(t),j= i Ore), as a
function of the thermodynamic and transport properties of the system, and the super-
cooling.

A Method for Obtaining the Asymptotic Solution

An obvious way to obtain the desired asymptotic solution is to obtain a complete
time-dependent solution in a stationary coordinate system and directly ascertain the limit-
ing behavior as t > o0, Whereas such a program is certainly possible with the aid of the
methods developed for the time-dependent free-boundary problem, we will not attempt
it here. Rather we will attempt to derive a set of equations which the asymptotic solu-
tion must satisfy by direct examination of the long-time behavior of the time-dependent
integro-differential equations.

To derive the equations describing the asymptotic solution, we consider the free-
boundary problem formulated in the preceding subsection, and suppose that the interface

11
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Fig, 3—Schematic representation of
the development of the stationary
region S. The coordinate system is
moving with velocity v. Ast— =,
S1(t)~ 8.

shape S(t), and the growth rate V associated with the stationary region S; (), has been
found in some time interval 0 < t < t*. To extend the solution to the interval

t¥ <t < oo, guitably modified versions of the integro-differential equations developed for
the time-dependent free-boundary problem can be employed. It proves to be convenient
to use System I (Egs. (5b), (16), and (17)) written in a coordinate system moving with
velocity V. Hence, with the time scale suitably shifted, S(t) is determined by solving

B, 1) - WO (21 (5, )+ USO® g4 — (Vg +ng)| (5 D)+ ¥i(s D=0, (20)
L 13

'
no| =

-~

A N T .
T(s, ) + WgO [T1(s, 1) - U g, + — (Vg + unq):\ (5, t) + Yels, £) =0, (21)

]
pof

(4

kigi(s, t) - ko8 (s, t) = PL(Vy¢ +upy), (5b)

12
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with initial conditions
T;(P, 0) = T;(P, t*),
T, P, 0)=T,(P, t*),

S(0) = S(t*),

(22a)
(22h)

(22¢)

where the terms \,bj(P, t), j =i or e, represent the contributions of the nonuniform initial
temperatures and where T;(P, t*), T, (P, t*), and S(t*) are the known temperature dis-
tributions and interface shape at time t*, We can now obtain the equations describing
the asymptotic solution by examining the behavior of Eqs. (20), (21), and (5b) as t — o,

It can be shown that

lim ¢(s, ¢) = 0.

t—> oo
Moreover, by rewriting the potentials as

WSO (1] (s, 1) = WELO" (£, 1) + WEOS1O* (T s, o),

7 T
S(H)* — 71S1(6)*
7 {gj g Vg +”nq)} (s )= U710 {gj v Vng *“nq)] (s 1)

) T
+ U}S(t) S1()* I:gj + -071- (an + unq):l (s, 1),

and taking t* large enough to insure

~

- - - T
WHO-S1OT[T] (s, 1) = UFO-51* [g,- ta Ung* unq)] (5, )~ 0,58, (%),

lim  WSLO*[T](s, t) = lim WS [T]s, t)EWjE*[%](s),

t—> o t— o
sES5(1) s€ES
T = T
: S1(t)* = 1 S*
tllm U; 10 |:gj + Ej (an + unq)il (s, )= tllm U; {gj + .OTj. an:| (s, t)
se81(t) se8§

—

i

|- T
u” [gj + — Vi, | (s)
J

13

(23)
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lim &, it is readily seen that

where ? = 1im T and ig; =
t— o
7 (24a)

t—> oo
im WSO [T, ¢) = W [T](s),
t-> o
s€ 1)
lim US(t)* g+ — (an +u, {l(s t)= US* l:g (—f— :I (s). (24b)
t—> oo J J
se84(t)

Using these results the integro-differential equations, Egs. (20), (21), and (5b),
jl (s) = (25)

T(s) + WS*[T1() - 5" |, + q} (5)=0, (26)
= PLV,,, (27)

assume the following form as t — oo
T(s) - WS [T1(s) + TF " |g; +

o I 3| R l NP

Nl'—‘ l\')ll—‘

kig;(8) = kege(5)

where US [R](s) and WS* [f1(s) (h and f being arbitrary source and dlpole distributions)

are glven by
1 h(q) =(V/2a5) (w(s)y-w(a))~(IV1/20))lw(s)-w(q)l ds,, (28)

778 * = =
OO | e - w

VIIw(s) — w(g)] * n(q)

[w(s) — w(g)] - n(q) ,
alw(s) — w(g)?

& 1
WS [f1(s) = == f @)
! m e lw(s) — w(q)|3

"~ V-n(q)
2051w(s) — w(q)

} (V22 (wis)w(@)=(VI/2zs)lwie)wia)l g (99

Equations (25), (26), and (27) are a set of integro-differential equations relating the
steady-state shape S and the growth rate V. These equations will henceforth be referred

to as the “steady-state” equations.

14
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Using a similar limiting process, integral representations for the steady-state tempera-
tures T;(P) and T,(P) may be constructed. T;(P) and T,(P) are given by

T;(P) = -W?[':F‘] (P) +(7,§ g+ &2 an} (P), PED;, (30)
| 1
. | T _
T (P)=+WSITIP) - T |2 + —— Va,| B); PED, (31)
where - ¢
3 1 h(q) ~(V/2a)* [x(P)~w(q)1~(IV]/2¢;)Ix(P)~w(q)| ;5
—.S = — —_— 7 ] q

47 |_
S

=3 P) - . - .
st[f](P):_l f(a) [x(P) — w(g)] g(q) , VIIX®) ~ w(g)] ;(Q)
IX(P) — w(q)| % |x(P) — w(q)|

V:n(q) =(V/205)+ [x(P)~w(q)]=(IV|/2¢)Ix(P)-w(q)| 5
ds,. (33
2aj|x<P)-w(q)}e a-.(33)

Nonuniqueness of the Steady-State Equations

The most prominent feature of the steady-state equations is that there are more un-
knowns than equations: three equations and four unknowns (S, V, &;» o). This implies
that the steady-state equations cannot furnish a unique asymptotic solution but can only
give compatible S—V pairs (sets of interface shapes compatible with a specified growth
rate). This behavior, which was observed in previous steady-state treatments and was dis-
cussed in the Introduction, is solely a consequence of the limit-taking procedures used in
obtaining the steady-state equations. In other words the steady-state equations provide
only a partial asymptotic solution. A complete time-dependent treatment would doubt-
less yield a unique interface shape and growth rate.

Physical Relevance of the Steady-State Problem

Solutions to the time-dependent free-boundary problem having the properties
enumerated at the beginning of this section on steady-state dendritic growth should, un-
der certain conditions, exist in a mathematical sense. On the other hand, dendritic growth
without side branching is never observed in physical systems; thus the question of the
physical relevance of the steady-state solutions arises. The point of view adopted in this
report is that solutions to the steady-state equations will furnish reasonable approximations
of the average growth rate, and of the shape of the dendrite in the neighborhood of the
tip, provided that the thermal interaction between the tip and the side branches is suf-
ficiently small. This assertion will be justified to some extent in subsequent sections of
this report.

15
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The Steady-State Equations for Equal Thermal
Properties in the Solid and Liquid

When the thermal properties are the same in the solid and liquid, it is possible to

reduce the three steady-state equations to a single equation for the interface shape. Thus,
defining

k=k, =k
c=c;=¢, (cj, where j = i or e, are the specific heats),
TS*[h)(s) = TS [h1(s) = UF " [h](s),

WS [£1(s) = WS* [£1(s) = W3 " [£1 (s),

adding BEgs. (25) and (26), and substituting Eq. (27), gives

c

- _ iV
_T+ L [7:_"] (s) = 0. (34)
_A simplified expression for the steady-state temperature in both phases T(P),
PE D; U D,, can be obtained in a similar way. Defining
TS [h1(P)= T3 [h1(P) = TP [n1(P),
WS [11®) = W5 [f1(P) = WP IF1(P),
adding Egs. (30) and (31), noting that
T,(P) = 0, P€ D,,
T,(P)=0,P€ D,
and substituting Eq. (27), gives
L
c

T(P) =

_ v, _
T {-&—‘{! (P)=0,PE€D;UD,. (35)

Equations (34) and (35) are precisely the equations obtained with the “method of
sources” [15].

16



NRL REPORT 7679

THE EQUATIONS DESCRIBING ISOTROPIC, CAPILLARITY-LIMITED,
STEADY-STATE GROWTH AND THEIR FORMAL SOLUTION

The Axisymmetric Problem

The remaining portions of this report will be concerned exclusively with steady-state,
isotropic, capillarity-limited dendritic growth. We employ a cylindrical coordinate system
(R, Z, ¥) moving with velocity V, where V is assumed to be directed in the +Z direction
along the Z axis'. The dendritic interface S is assumed to be a surface of revolution,
described by rotating the curve $2(R) about the Z axis. This assumption is consistent with
the postulated isotropic behavior. The problem is to find compatible -V pairs (V = |V|)
and the range of velocities over which steady-state solutions exist for a specified super-
cooling. For simplicity, only the case of equal thermal properties in the solid and liquid
will be considered.

The Axisymmetric Steady-State Potentials

In the theoretical development to follow, extensive use will be made of the axisym-
metric counterparts to the steady-state potentials US[h](P) and WS[h](P). Expressions
for these potentials (in nondimensional form) are readily derived from Egs. (32) and (33).
Hence

U% [h](r, 2) = Z_fr‘fo E%g%i e lZeM®lae, 2, w, w(x)) dx, (36)

T oaf@)  d

_ 1
WEL e 2) = on cos 0(x) dn,

{e—[z-w(x)]G(r, z, x, co(x))} dx, (37)

where r, z, and w are nondimensional variables related to the dimensional variables R, Z,
and 2 by

r=4o— ,2= — , W= — , (38)

h(x) and f(x) are nondimensional source and dipole distributions, U« [h](r, ) and
W« [h](r, z) are the nondimensional single- and double-layer potentials,

FStrictly speaking, dendritic growth is never isotropic, and the direction of V is selected by the anisotropic
character of the interfacial free energy and/or the molecular attachment kinetics. A complete anisotropic,
steady-state analysis should then predict compatible S-V pairs. In the present treatment (which should
properly be called a “quasi-isotropic” treatment) the anisotropy is assumed to be sufficiently weak to in-
sure that the shapes and limiting growth rates can be reasonably approximated by an analysis which ignores
the orientation dependence of the interfacial free energy. Such an analysis cannot predict the direction of
V; rather it is assumed to be preselected by the anisotropy, and the coordinate system is then rotated so
that V is parallel to the Z axis.

17
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o {r2+a2e (z-w(x)) 2+ 2112

+1
G(r, 2, x, w(x)) =f dt, (39)
[r2 +x2 + (z - w(x)? + 2] V2 (1 - £2)1/2

. ad b
an., = sin 0(x) e + cos 0(x) o) (40)
0 is the angle shown in Fig. 4, and sin 8(x) and cos 6(x) are given by
. -w'(x) . , .
sin f(x) = (primes denote differentation), (41a)
[1+w?@)]?
cos O(x) = ———1——- . (41b)

i J0 '

o(r)

F{)

Fig. 4—Generation of the nonisother-
mal solution by a normal shift of points
(¥, w(¥)) on a known class 2 surface of
revolution formed by rotating the
curve w(y) about the z axis

The jump relations associated with the axisymmetric potentials can be derived directly
from the expressions given in the list of properties on p. 8. Several of these relations will
be used in the subsequent analysis and hence are written out explicitly below:

18
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1. lim U [h](r, 2) = lim . U“[h])(, 2)= U [h](y), (42a)
(r, 2) > (v, w(¥)) (r,2)~> (v, w(¥))
(r, z)Eﬁe (r, z)eﬁi
where the point (y, w(y)) lies on the interface and
_ 17 xh(x) ;v
w * =1 [w(@)-w(x)]
0" 37 osom © Gy, w(), %, w(x) dx.  (42b)
2 Em — TeMl(r2) = - 5 hO)* o TN RIE) (432)
r, 2)- &, w() * Ny
(r, z)el_)e
and
_ d — 1 d =
lim —— T [h](, 2) =+ 5 hy) + o= T [R]©), (43b)
r2)~ @, w() &Y "y
(r, Z)Eﬁl
where
4 i 0(y) =+ cos B(y) = (43¢)
dn, S OWY) B TS0 5
4 ger 17 x4 ] e
—— T [R() = 5 J 050G in {e G(r, 2 2, w()) dx, (43d)
y 0 Yy z=w(y)
r=y
and
sin O(y) = —w0) ,cos0(y) = ! . (43e)
[1+w2) [1+w2()]*?
. = 1 =
3. lim  Wefl(h2) =+ 5 f) + W) (442)
(r, 2) > (v, w(¥))
(r,2)eD,
and
— 1 _
im W0 2) = - 5 ) WA ), (44D)
(r, 2) > (¥, w(¥))
(r, z)eﬁi
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where

=k - 1 = xh(x) d —[z-w(x)]
N0 5| e an {e Connm ) de )
Z2=wlY

The Steady-State Equation for the Dendrite Shape

For capillarity-limited growth the interface temperature T is determined from the
Gibbs-Thomson equation

78!2

T(R) = AT + s,

K(R), (46)

where AT is the supercooling (regarded as specified), v, is the solid/liquid interfacial free
energy (a constant), AS; is the entropy of fusion per unit volume, and k(R) is the total
interface curvature (the sum of the principal curvatures):

1, ,

’ = S2(R) ‘

K(R) = 2 R) L = 2K oan(R). (47)
[1+Q2@)1%2]  [[1+Q2®) "2

By introducing the nondimensional temperature ® = T¢/L and using Egs. (36), (38), and
(46), the nondimensional, axisymmetric counterpart of Eq. (34) (the steady-state equa-
tion) is readily derived. Hence

2V

A® +\k(r) = U** [ ;"} (r) = U“*[2 cos 0] (r)
= %—f xe (@M@ G (r, wr), x, wx)) dx, (48)
0

where

AQ = % AT, (49a)
w'(r)
4
K(r) = w ’(;‘) 7t ,; TR (49D)
[1+w*(r)] [1+w?=(r)]
and
nych
A= . (49¢)
20A8;L
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The term U“*[2 cos 0] (r) in Eq. (48) can be regarded physically as the temperature field
due to a distribution of latent heat sources acting at the moving interface S. Hence Eq.
(48) states that at each point on the moving interface the temperature due to latent heat
sources must equal the local equilibrium freezing temperature. This equation, together
with properly specified boundary conditions, may be used to obtain w(r) in terms of A
(equivalent to finding compatible 2~V pairs).

If A® is restricted to values less than unity (hypercooling [16] is thus excluded), the
appropriate boundary conditions are

w'(0)=0 (50a)
(from symmetry) and

lim w(r) = solution of Eq. (48) with A =0 (50b)

r— oo

(from an enthalpy balance).

The Normal-Shift Formulation

For the special case X = 0, Eq. (48) reduces to an integral equation whose solution is
given by wo(y) =~y /2a0 where aq is found from the solution of the transcendental
equation

P 4
AO = aoeaoEl (ao), El (ao) =f eg— ds (51)

This result is equivalent to that of Ivantsov [1] and Horvay and Cahn [2] for the isother-
mal dendrite problem.

In the more general case A # 0, it proves convenient to reformulate the problem
slightly by regarding the solution w(r) to Eq. (48) to be generated by shifting points (y,
&3(y)) on a known class 2 surface of revolution S (formed by rotating the curve &(y)
about the z axis) an unknown distance v(y) along the normal at (y, &(y)), as illustrated in
Fig. 4.% The problem then reduces to finding v-\ pairs which satisfy Eq. (48).

An explicit form for Eq. (48) in terms of the normal shift can be found from
geometrical considerations. Thus, using the relations

r=y +v(y)sin §(y) (52a)

w(r) = &(y) + v(y) cos B (y), (52b)

4Though it is possible to treat Eq. (48) directly, the resulting equations prove to be numerically ill behaved.
On the other hand the normal-shift formulation, though more complicated in a superficial sense, leads to
equations which are suitable for numerical solution.
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it can be shown that
K(r) =F{ (v, v(»), V'), V"' (¥)), (53)

where an explicit form for Ff" is derived in Appendix C. Also, with

x =g +v(q) sin §(q), (54a)
w(x) = &(g) +v(q) cos I(a), (54b)

dx 1 ' ' .1
g 1+v(q) (sin 6(q)) +v'(q)sin 6(q), (54c)

the integral part of Eq. (48), expressed in terms of the normal shift, is

U< (2 cos 0](r) = %J [q +v(q) sin 6(a)] {1 +v(q) [sin B(g)]" +¥'(q) sin B(q)}
0

X exp {- [&(y) +(y) cos B(y) - B(q) - v(q) cos B(q)]}
X G[y +v(y) sin 8 (), &) + v(y) cos O(»),
g +(q) sin §(q), &(q) + v(q) cos 8(q)] dg

EJ F§ (¢,5,v(), ¥(@),V'(@)) dq, (55)
0

and upon substitution of Egs. (563) and (55), Eq. (48) becomes

A® + \F® (y, »(y), V' (), 7" (¥)) = f F$ (q,y, v(),7(g),V'(9)) dq. (56)
0

If &(y) is taken such that lim_ _ (y) = wq(°), where w, denotes the isothermal
solution (A = 0), then the boundary conditions on v, corresponding to Egs. (50), become

v'(0) = 0 (from symmetry), (57a)

p(e°) = 0. (57b)
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The Operator Formulation

Equation (56), which is a nonlinear integro-differential equation in v(y), can also be
regarded as a nonlinear operator equation in a suitable Banach spacet. Thus, defining

ME WY =FE (v, v(y), v' (), v" (), (58a)
M @)= A® f F$ (a, y, v(¥), ¥(a), V(@) da, (58b)
0

where v € E® and where Ml8 and M‘;‘" are nonlinear operators with domain ESC 02[0,
]%, Eq. (56) can be written as

WS @)+ MG =N @) =0, pEES. (59)

The main advantage of this formulation, aside from the convenient shorthand notation, is
that the methods of functional analysis may be employed to ascertain the character of the
solutions as a function of A.

The Newton-Kantorovich method [17a] and the implicit-function theorem, as
formulated for nonlinear operators in a Banach space, provide particularly effective means
for obtaining the required solutions and ascertaining the range of A values over which
steady-state solutions exist. Hence we digress a moment and discuss these techniques in
some detail.

The Newton-Kantorovich Method

The Newton-Kantorovich method [17a] is one of the few methods available for ob-
taining solutions to nonlinear integral, and integro-differential, equations. Suppose P is a
nonlinear operator in a Banach space X, and further suppose that it is required to find an
element x*, x* € X, such that

Plx*)=0; (60)

1+The appropriate space for the operators considered here is C2[0, = ], that is, the collection of functions
which have continuous second derivatives and are bounded at infinity, Suitable norms for this space are

vl =max l(y)l + max |v'(y)l + max ' (y)l,
[0,°°] [O)N] [O’oc]

_ max |v(y)l, max |v'(y)l, max |»"'(y)l
vl = max{[o’w] [0, ] [0, ] }

iEz is the set in C2[0, «] whose elements both satisfy the boundary conditions, Egs. (57), and make
w(r) a single-valued function, thus insuring that the dendritic interface S is a class 2 surface.
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that is, a solution x* to the nonlinear operator equation, Eq. (60), is required. One ap-
proach to solving Eq. (60) might be to find a linear equation whose solution is in some
sense close to the solution of the nonlinear equation. Since the theory and techniques
for solving linear equations are highly developed, such an approach has considerable
potential and indeed is the idea behind the Newton-Kantorovich method.

Suppose there exists a bounded, linear operator P'(xO), such that

| P{xg + Ax) — Plxg) — P'(xo)(Ax>Il -0

lim , (61)
lAX -0 Il Azl
(Ax,xg€ X)
where llyl, ¥ € X, denotes thenorm of y. Then Eq. (61) implies that
P{x)=Plxg) + P'(xg)ox - xo) + péx =xg), x, x5 €X, (62)

where 7 is a nonlinear operator such that

| - Il
lim ——I"”ix x"") =0,
lx=xgl->0 %o

that is, In(x - x¢) = ollx - xyll. Equation (62) provides a linear approximation to the
operator P in the neighborhood of the point x, analogous to a one-term Taylor expan-
sion for scalar functions. Indeed P'(xo) is generally called the first derivative of P at x,
or the Fréchet derivative of P [17b].
If in Eq. (62) x is replaced by x*, then, since P{x*) = 0, Eq. (62) becomes
Plxg) + P'(xg){ax* - xq) + nx* —xg) = 0. (63)

Moreover, if x( is chosen sufficiently close to x*, then the term n{x* - x4) may be
neglected and Eq. (63) may be written as

Py + P'(xg){x -x0) = 0. (64)

Equation (64) is the desired linear equation; if x( is chosen sufficiently close to x*, then
the solution x; to Eq. (64) will be close to the sought-after solution x*.

To improve the approximate solution x;, the following iteration procedure is often
used:

i. A solution x is assumed and substituted into Eq. (64), which is then inverted to
obtain a new approximate solution x.

ii. The approximate solution x; is substituted for x, in Eq. (64), which is then in-
verted to obtain a new approximate solution x,.

iii. This process is repeated until satisfactory convergence is obtained.
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This procedure is the Newton-Kantorovich method, and the sequence {x,} generated by
the recursive process

P'(xp1){Dxpy=-Plx,y) (n=1,2,..), x,=~Ax,+x,.;, (65)

is known as the Newton sequence. If P'(x,-1) is well-enough behaved, and if xp is chosen
sufficiently close to x*, then by Kantorovich’s theorm [18] the Newton sequence { x,,}
converges to the exact solution x*.

In practice the evaluation of P'(x,-1) at each step is time consuming, and an alternate
approach is often used. In this approach, which is called the modified Newton-Kantorovich
method, P'(x,-1) in Eq. (65) is replaced by P'(xg). Thus the modified Newton sequence
{x,} is generated by

P'(xg){Ax,)=-Px, 1) (n=1,2,..), x,=Ax,+x,;. (66)

- Kantorovich [19] has proved that the modified Newton sequence {x,} will converge to
the exact solution x* but at a slower rate than the unmodified Newton sequence. In sub-
sequent work with Eq. (59) the modified Newton-Kantorovich procedure will be employed.

The Implicit-Function Theorem

As will be seen shortly, the problem of accessing the range of permissible A values in
Eq. (59) is equivalent to asking the following question: If P and @ are nonlinear operators
in a Banach space X such that the equation

Px) + pQlx) =0, 67

where u is a scalar parameter, x € X, has the solution X for p = i, under what conditions
will Eq. (67) fail to have a solution for 4 = 1 + A (Au small)? The answer is provided

by the implicit-function theorem for operators in a Banach space, first given by Hildebrandt
and Graves [19]. As applied to Eq. (67) the theorem gives the following result: for Au
sufficiently small a unique solution in the neighborhood of the known solution * exists

if and only if the operator L = P'(X) + HQ'(X) has a bounded inverse. Thus Eq. (67) fails
to have a solution in the neighborhood of % only if L=1 does not exist or is unbounded.
This result is of utmost importance and will be used in subsequent work to calculate the
maximum admissible steady-state growth rate consistent with a specified supercooling.

Solution of the Normal-Shift Equations
by the Boot-strap Algorithm

Because Eq. (59) contains a parameter, and because a solution for a particular value
of the parameter is known (A = 0), Eq. (59) is eminently suited to solution by a bootstrap
procedure. Thus, if solutions exist in the neighborhood of the known solution at A = 0,
they may be found by the Newton-Kantorovich method, taking as the initial guess the
solution at A = 0. Provided solutions to Eq. (59) exhibit a continuous dependence on A,
and provided A is chosen sufficiently small, the convergence of the Newton sequence is
assured. By increasing N\ and repeating this process with the last known solution serving
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as the initial guess, solutions to Eq. (59) may be found for a range of A values. An upper
bound on the range of permissible A values will be reached when solutions in the neighbor-
hood of the last known solution cease to exist, with the nonexistence condition given by
the implicit-function theorem.

An explicit formulation of the bootstrap algorithm follows:

1.Set y = r and &(y) = wy(r, A\%) (w is now regarded as a function of both r and A),
where A9 = 0 and w(r, A?) denotes the isothermal solution.

2.Set N = N=1 + AN (j = 1) and obtain a modified Newton sequence{ k(y)} (k=
0,1, 2, ...and ¥ o (¥) = 0) by solving the linear equations

NMP ()60 + MP (0)80) + NME W, )+ M§ W _y=0, k=1,2,.., (68)

for 81)] () and setting vy, (y) = VL 1(v) + svi (31) Here M"" (0) (i = 1 or 2) are the Fréchet
denvatlves of M¥ (exphc1t expressions for M £ (0) are derived in Appendix C) and AN is
to be chosen sufficiently small to insure the convergence of the sequence k

3. With v/ (y) = lim Vi (y)}, calculate w(r, N ) using the parametric relations
k—)oo

r=y +vi(y)sin8(y), (69a)
w = &(y) + vi(y) cos B (y). (69b)
4.Set y = r and B(y) = w(r, N). -

5. Examine the operator M"" 0) + )\JM"" 0) = (O) If{?ll""l (0)} does not
exist or is unbounded, then N s a.n upper bound on the range of perm1551b1e A values by
the implicit-function theorem; therefore N = A, .x and the problem is solved.

6. If {W"" (0)} is bounded, set j = j + 1 and repeat steps 2 through 5.

APPROXIMATIONS FOR SMALL VALUES OF A
Normal-Shift Estimate

The bootstrap algorithm developed in the preceding subsection constitutes a formal
exact solution to the problem and in principle can be used to calculate w-A pairs and
A ,ax Yegardless of the magnitude of \. However, if A is small in the sense that the maxi-
mum temperature change at the dendrite tip is small compared to the nominal super-
cooling A®, then it is possible to obtain accurate estimates of both the normal shifts and
A, .x Without employing the entire bootstrap procedure.

To obtain an estimate of the normal shift, it is useful to regard Eq. (59) as an opera-

tor equation of the form
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MEN, »)=0, (70)

where the operator % acts on both A and ». Setting & = wq(y, A\%) (A0 = 0), M« 0 can
be expanded about the point (vy, A?) (v, = 0) using arguments similar to those employed
in the section on the Newton-Kantorovich method. Hence, upon noting that Mg 0(0) = 0
for the isothermal solution, Eq. (70) can be written as

m‘*’o(?\, V= M500<V0) + )\OM(iJO<V0> + )\OM;"JO(VO)Q) - Vo) +M,2w0(V0)(V - V0>
+ (A =AOMY 0wy + ol - vy ll) + oA - A0)

= Mg20(0)w) + \M$ 0€0) + o(llvll) + o(N) : (71)

for (v, \) close to (vg, ). Neglecting the terms o([vl), o(A) in Eq. (71) then gives the
linear equationy

Mg20(0)(8v) = - \M 040). (72)

Provided A is sufficiently small, the solutions v to Eq. (72) should serve as reliable esti-
mates of the true normal shift v.

Physically the term M '2“0(0)<6V) in Eq. (72) represents a linear approximation to the
temperature change caused by shifting points on the isothermal interface w(y) a distance
8v(y) along the normal to wq(y) at the point (y, wy(y)). Moreover the term M$ 0¢0) is
simply the total curvature of the isothermal interface. Thus Eq. (72) states that to first
order in » and A the normal shift v(y) must be such that the change in temperature at a
point (r, w(r)) on the nonisothermal interface equals -A times the curvature of the isother-
mal interface at the corresponding point (y, wq(y)).

Equation (72), which is a linear integro-differential equation in év(y), can be ertten
out explicitly as follows. By Eq. (58a) and the expression for F“J (v, v(¥), V' (y), ¥"'(y)) in
Appendix C

1+E&(@y) (13)

M« 0(0) = F¥0(y, 0,70, 0) = ko(y) = -
1 1 » M 0 )
0053/2(3’)

where K (y) is the total curvature of the isothermal interface and Ey)=1+(y /ao)2
‘Moreover, from the expressions for the Fréchet derivatives derived in Appendix C,

M2 0(0)6v) = o) ij e-lwo(¥)-wol(e)] j_ G (v, 2, g, Wo(q))
21/2(3}) T o nq
1
+
2a0t"/2(v)

4Equation (72) may also be obtained from Eq. (68) with j = k = 1 by assuming v = O(3) and neglecting
terms of O(A2).

z=wo(y)

G(y, wo(¥), 9, wo(q))}q?iV(q) dq (74)
Continued
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- =] e lwowol@lG (y, wo(y), g, wo(a)) <1 ¥ —>
7 £%(g) \ 20

v o)+ — T [sv(q)]'\qdq, (74)
GOEB/Z(Q)} o apt2(g)

where G (y, 2z, q, wg(q)) and the operation d/dn, are defined in Egs. (39) and (40). Thus
Eq. (72) becomes :

8v(y) J”C f'” 1 < 1 )
- v, 9)év(@)dg-| C,(y,q)< | —— |1+ —
20y Jy ! 0 2 £1/2(q) 2a9

, 1+&(y)
@)t — sw))bgdg=n [ =X | (75)
agt*?(q } aot'2(q) [aosf”/z(y);,

+

where

Lwoy)- d
€, @)=+ elwol) wo(q“{dT G(y, 2 4, ©0(a))

a 2= 0(r)
1
e G(y, wp(¥), q, wp(q)) (76a)
200 1%(y) ’ °
Cy(v, q) = ﬂge'[‘*’O(y)""O(q)] G (¥, wo(¥), . wo(a)). (76b)

If A is sufficiently less than A, , the solution to Eq. (75) should provide reliable
estimates of the true normal shift. Moreover, since v is proportional to A and Eq. (75)
is linear in 6v, Eq. (75) need be solved only once for a specified value of A®; for example,
if the solution for A = 1 is denoted by v*, then 6v = Av*. Numerical techniques for ob-
taining solutions to Eq. (75) are presented in Part 2 (the companion report cited inside the
front cover), along with selected results.

A ax Estimate

Though the linearization procedure presented in the preceding subsection provides an
effective means of obtaining dv, it cannot by itself provide any information regarding
Anax- The reason for this is that N is essentially determined by the information con-
tained in the higher order terms, namely, the terms which were discarded in the lineariza-
tion process. Therefore, to estimate )\m ax» iU 18 necessary to reconsider the nonlinear
formulation.
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In this subsection we return to the original nonlinear formulation, Eq. (48), and use
certain known properties of the solutions to obtain an interpretation of A\ in terms of
conditions at the dendrite tip. Such an interpretation leads naturally to an upper bound
on A which can be evaluated explicitly by the linearization procedure discussed in the
preceding subsection. Of major importance is that the upper bound provides a good ap-
proximation to A if the temperature change at the dendrite tip is small compared to
the nominal supercooling A©.

Thus consider Eq. (48). Upon noting that the quantity A® - T« *[2 cos 0](r) is
actually the interfacial supercooling Ad(r) at a point (r, w(r)) on the interface w(r), Eq.
(48) may be written as

-k (r) = AS (7). 48")

Now suppose that a family of solutions w(r, A) is known for 0 < A < N nax- Then AS(r)
and K(r) can be readily calculated for any A <\ ___; moreover, for fixed values of r, a set
of curves of A¥ as a function of -k can be plotted with A\ acting as a parameter. The re-
sulting curves, henceforth referred to as r curves, are known to have the following proper-
ties for sufficiently small r:

1. AY = for k = Kk (r fixed).

2. lim A9 = A® (r fixed).

- —>00

A
3. E((l_g) > 0 and monotonically decreases to zero as - k > o (r fixed).
dAJ(0) dAd(r)
“dl-k(0)] T d[-k(M)]

4 (r #* 0 and « fixed).

A family of r curves is schematically shown in Fig. 5a. Each r curve can be regarded
as a representation of the right-hand side of Eq. (48), as a function of -«, for a fixed
value of r. In contrast the left-hand side of Eq. (48), when plotted as a function of -«
for various values of A < A, is represented by a single family of straight lines with slope
A for all values of r. These lines will henceforth be referred to as A lines. If now the r
curves and A lines are plotted on the same graph, then satisfaction of Eq. (48) is equivalent
to the requirement that each A line, for A < A, intersect all r curves. But from inspec-
tion of Fib. 5b it is apparent that this requirement cannot be met if A > {dAl?(O) /
d[-K(0)]} 4, Where {dAD(0)/d[-k(0)]}, .. is the slope of the r curve for r = 0 (the den-
drite tip) at the point of tangency with a A line (see Fig. 5b). Thus

\ ={dAz9(O)}
max | d[= k(0)]] pyin

This interpretation of )\m ax> though perhaps more appealing and less formal than the
previous interpretation of A in a physical sense, is no easier to apply computationally
because {dA&(O)/d[—K(O)]}min cannot be calculated without knowing the interface shape

at A namely, w(r, A However the current interpretation of A, does have the

max’ max)'

29



GERALD E. NASH

X}

A¥ —>

INCREASING r

M@~ m——— e — e ————————

TANGENCY POINT

AY —>

—K,

K —

Fig. 5—(5a) Schematic representation of a family of r curves
(bb) Schematic representation of families of r curves and A
lines. The slope of the r curve for r = 0, namely,{dA[ﬂ(O)/

d[—K(O)]}nin, at the tangency point determinesa .

advantage that a rigorous upper bound on ?\max can be calculated using information al-
ready available.

Since dA$®(0)/d[-k(0)] is positive and decreases monotonically with -k(0), it is
apparent that an upper bound A* on A___ is given by

s = _dAB(0)

AL k(0] |_(0)=-x o(0) )

?

where k((0) is the tip curvature of the isothermal interface.

The initial slope of the r curve dA$(0)/d[-k(0)]] -k (0)=-x (0Q) ? and therefore A%, is
readily determined from Eq. (75). Hence, if Eq. (75) is solve8 for A = 1 and the solution
is denoted by v*, as indicated in the preceding subsection, then for A = §A (6A small) the
corresponding normal shift 8» is given by '

ov = dAv*, (78)
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The curvature change 6x(0) = k(0) - k(0) associated with dv is by definition 6« (0) =
SAM'<0(0) < p* >l, —gor, from the results in Appendix C,
7 2 . 1,
0k (0) = SNJw*""(0) + = v*(0) + lim |—v¥'(y)| ;. (79)
0(2) y—0 y

Finally, since the associated change in the tip supercooling § A9 (0)is, from Eq. (48),

8AB(0) = - 8Nk (0) = ? , (80)
0
and, by definition,
_ dAJ(0) - lim SAB(0)
d[-«(0)] ~(0)=-x (0) SA0 6k (0) °

Eq. (77) can be written as

Ak = -2 (81)

ao{v*"(0)+ 32. v¥(0) + lim B—v*'(y)]}.

aO y—0

Equation (81) expresses A* in terms of the known parameter a¢; and a solution v*(y)
to Eq. (75) which may be found by the methods described in Part 2 (the companion re-
port). Moreover, as illustrated in Fig. 6, A* will be close to A . provided the Ad$(0)
versus -k(0) curve is approximately linear in the neighborhood of the tangency point; this
will be the case if AJ(0) at A = )\max is small compared to A®. Thus A* provides a good
approximation to A if Av.?(O)IFKmax A0 << |.

Numerical values of A* as a function of A® are presented in Part 2.

A Second ?\m ax Estimate

An acceptable approximation to the normal shift may also be obtained by imple-
menting the first step in the Newton-Kantorovich solution to Eq. (59). This approach,
which amounts to linearizing Eq. (59) with respect to v about the isothermal solution,
differs from the approach developed in the first subsection of this section in that terms
which are nonlinear in A are retained. While these terms do not greatly affect the cal-
culated normal shifts, it will be demonstrated shortly that they do retain sufficient infor-
mation from the nonlinear formulation to permit A to be estimated directly from the
linearized equations. As discussed in the first subsection of this section, this is not possible
when the linearization is performed with respect to A as well as v.

For small values of A an approximation 6v to the true normal shift » can be found
by setting & = wg and j = k = 1 in Eq. (68). Thus, upon noting that My 0(0) = 0, the
following equation for 6v is obtained:
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- —————— - ——— — — — — —
’Ta leﬂ lell
3 = “Xmax LINE"
L_ Aﬂ(o)@)FXMAX
2N/, {
f -xot -K (0) —
Fig. 6—The case A9 (0) at A = A5 << AO
M 0(0)(6) + Mg’ 0(0)(6w) = > 0(0)Bw) = - AM{ 040). (82)

Equation (82) is a linear integro-differential equation in 8v(y) and can be written out
explicitly with the aid of equations (73), (74), (76), and the following expression for
M7°0(0)(v) (derived in Appendix C):

M2 00)60 = —— J[80()]" + ——s [B0(y)] + — [1 +
)

£(y) yE(y) ag }51}(3') ,  (83)

where £(y) =1 + (y/ao)z. Hence an alternate form for Eq. (82) is

. } Bu(y)hr 220

M
£E) y&(y) a2

0

1 1
(v + —= [Bv()] + = |1+
{ £2(y) £112(y)

- = 1 1 1
-] G (@) dg - | Co(y, @) | (14 5~ | ¥ ——— | 0¥(a)
J; 1(3’ q)ov(q) dq JO 2, 4 [21/2((1) < 2a0> aoéslz(q)}

f— % et dg = [LHED ) (84)
aot%(q) aot%2(y)

Equation (84), when solved with the boundary conditions [6»(0)]" = §v(°) = 0, yields v
as a function of A.

Equation (82) differs from Eq. (72) by the term )\M'l‘*’0(0)<6v) which is O (\2). Since
for small values of A this term has only a minor effect on 8v, it is still preferable to use
Eq. (72) to calculate dv, because of its simpler structure. On the other hand it is precisely
this term which retains the information required to estimate A .

32



NRL REPORT 7679

It is well known from the theory of linear operator equations that Eq. (82) fails to
possess a solution only if for some value of A, say A**, the operator [m;f" 0(0)]~! either
does not exist or is unbounded.  But in the formulation of the bootstrap algorithm it was
shown that A =\ when [JU'® X(0)] ~1 either does not exist or is unbounded. Hence,
if A, is small, so that J1/“0(0*& M w (0), then \** should be a good estimate of \__ .

To evaluate A** numerically, a finite-difference approximation to Eq. (84) can be
formulated which results in a matrix equation for v at the set of points corresponding to
the nodes of the difference scheme. If the resulting matrix is regarded as an approximation
to the operator J)>0(0), then the condition that [M,;~0(0)] ! exists and is bounded
corresponds to the matrix having a nonzero determinent. Hence A** can be obtained by
finding the smallest value of A for which the determinent of the matrix is identically zero.
Numerical techniques for carrying out this program are developed in Part 2 (the compan-
ion report), where numerical values for A** as function of A® are presented.

SUMMARY OF PART 1

A general treatment of the time-dependent free-boundary problem associated with the
unconstrained growth of a crystal into a supercooled melt was presented. Of major im-
portance is that the analysis led to a set of integro-differential equations convenient for
solution on currently available third-generation computers.

The time-dependent treatment was used to derive the equations which describe steady-
state dendritic growth by regarding the steady-state dendrite as an asymptotic solution to a
class of time-dependent free-boundary problems. This approach is particularly illuminating
because it makes clear the reason for the existence of a multitude of solutions to the
steady-state equations.

The equations describing isotropic, capillarity-limited, steady-state dendritic growth in
pure materials were presented in a nondimensional form involving only two parameters,
namely, a parameter A (directly proportional to the growth rate V) and the nondimensional
supercooling A®, Posing the problem in this way affords considerable simplification over
the previous dimensional treatments, which generally involve four parameters (Péclet num-
ber, growth rate, supercooling, and a capillarity parameter). This formulation led directly
to a universal relation between A and A®. This relation, together with the expressions
Muax = (ViaxYse€/20LASy) and A® = cAT/L, serves to determine the appropriate relation
between V __  and AT for any pure material.

An algorithm based on the Newton-Kantorovich method and the implicit-function
theorm was developed which permits both rigorous calculation of the steady-state dendrite
shapes as a function of A and rigorous determination of A_ . as a function of A®.

An approximate method was presented which permits accurate estimation of the
shape changes induced by the nonisothermality when the supercooling at the dendrite tip
is small compared to the nominal supercooling A®.

An interpretation of A, in terms of conditions at the dendrite tip was developed.
This interpretation of A leads directly to an upper-bound estimate on )\max, which may
be evaluated explicitly with the approximate solution discussed in the preceding paragraph.
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Of major importance is that the upper bound provides an accurate approximation to 7\m
if the supercooling at the dendrite tip is small compared to AG,

ax

A second method for determining an independent estimate on 7\m ax Was presented.
In this method, which is based on a linearization of the steady-state equations about the
isothermal solution, solvability conditions on the linearized equation provide the required
estimate. As in the preceding paragraph the estimate obtained by this procedure provides
an accurate approximation to >\max if the supercooling at the dendrite tip is small com-
pared to AG.
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Appendix A
THE NORMAL DERIVATIVE OF THE DOUBLE-LAYER
POTENTIAL W7 D12, )

In principle the normal derivative of Wf(t)[f 1(P, t), namely,

E‘;is WEO[F1P, t) = n@s) - TWFOIF1R 1), s€Z(0),

for any point P not on 2(t), can be obtained by a straightforward differentiation of the
expression

t
0 Yz(n)

8r3/2 2a]:.”/2(t - 7)5/2
Vi n(q) |,
m} Fj(x(P), w(q), t, 7, V) dZ dr, (A1)
where
- [x(P) - w(g)] - [x(P) - w(q)]
FJ(X(P), W(q)a L, T, V) =expi- { 40(](t _ T)
\Y AVAAY)
" [x(®) - w(@)] + ) (t- r)} (A2)
Thus _d_(riz— sz(t)[f] (P, t) can always be written as
At~
d 1 2 [ |[x(P) - w(g)]n(q)
— wEO[F1P, t) = J J f(g, TIn(s)- V
di’ls J 8'/73/2 0 Yx(r) za?/z(t _ 7)5/2
4 Vn(@)

m} B (P, W), £, 7 V) | dZqdr
J

~t
-1 J f(a, 7) _nG)n@) (A3)
0

8n3/2 z(r) 20‘;’/2(15 - 7)%/2 Continued
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_ {[x@) - w(g)] -n(g@} L [x(P) - w(g)] *n(s)}
46212 (¢ - )T/

_ xP) - w(g)] *n(g)i[V n(s)]
4022 (t - 7)P/2

Fy(x(P), w(g), , 7, V) dZ ,d7

d fV-n(g)
—— peE LT 4)

where E%‘ UFOR](P, 1) = n(s)- VUFO[R](P, t) and where UFD[R] (P, 1) is given in Eq.
(6). §

Equation (A3), though certainly valid for any point P not on Z(t), is not in a form
suitable for use in the reduction method, because the limiting behavior of the first integral
as P - s is difficult to ascertain directly. One way to circumvent this difficulty is to ob-
tain an alternate expression for d/dn; W]?:(t) [f1(P, t) involving only integrals whose limit-
ing behavior is either known or easily determined. This approach, which has been used
with great success for one-dimensional problems,T is the approach we adopt here.

Without loss of generality w(q) may be written as
t
w(g) =w(q)l,_q +J u(g)*n(q) dr, (A4)
0

where u(q) is the relative velocity of a point ¢ on Z(7) (u(g) and n(g) are implicit func-
tions of 7). Moreover, using Eq. (A4), it is readily verified that

1 0 F}(X(P), W(Q), t 7, V) ( ) ( )
—— n ‘n(s
o o7 aJ.1/2(t - 7)32 ¢

_| 8n@)n@@)  {[x(P) - w(g)][x(P) - w(g)I} [n(s) n(q)]
203/2(¢ - 7)%/2 4082(¢ - 7)1/

+ {Ix(P) - w(@)1 - n(g)} [u(g) n(q)] [n(s)*n(q)] + (V- V)InGs) n(g)]
20(15/2 (t - 7)?/2 404].5/2 (t -7)3/2

+ IV n(@)]Tu(g) n(g)] (n(s) n(g))
20:15/2(t - 1)3/2

}F,-(x(P), w(g), t, 7, V). (A5)

LI Kolodner, Comm. Pure and Applied Math 9 (1956).
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Multiplying Eq. (A5) by 1/873/2 f(q, 7), integrating over =(r) and 7, adding and subtract-
ing the resulting term to and from Eq. (A3), and employing the definitions of
d/dn, UF®[fV-n(q)/2¢,] and Wf(f)[ fu-n(q)in(s)- n(q)}/e;] then gives the following ex-

pression’ for d/dn, wEEF1 (@, 1):

d d fV-n(q)
L0 = % pzo |1Vna)
. WZO[F) (P, 1) . Ur [ 2 J(p, £)

) sz(t)[fu-n(q)o{(n(S)-n(Q)i] P, 1)+ ijz:(t)[”(p, 1), (A6)
i

where

t F(X(P)a w(q), ¢, 7, V)
YJ?D(t)[f](p’ t) = 1 f f 27 g, 7) [n(s)-n(q)] dZ,dr
gy3/2 o Yz oT ajl/z(t_r)s/z o

+IFOIF 1P, 1) (A7)

and

t
IJ?(t)[f](P, t)= ! jj fag, 7) |- n(s)-n(g)
0 vY=(r)

g3/ a¥2(t - )"/

1
401}5/2(1‘ -7)7/2

+

({[x(P) ~w(@)]* [X(P) - w(q)]} [n(s)n(q)]

—{[x(P) - w(g)] - n(@)HI[x(P) - w(g)] -n(s)}
+{[x(P) - w(g)] - n(&)HV-n(g)](t~-17)
~{[x(P) ~ w(g)] *n(g)}V - n(s)}(t~ 1)

+ [V n(s)1(V*n(g))(t - 7)2

- (V-V)[n(s)-n()] (t - 7)2)} F(x(P), w(g), t, 7,V) dZdr.
(A8)

The limiting behavior of the first two terms in Eq. (A6) is already known (properties
3 and 4 listed on p. 8 in the main text), and it therefore remains only to consider the
term sz(t)[f] (P, t). The first term appearing in sz(t)[f] (P, t), namely,
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t F;(x(P), w(g), t, 7, V)
1 0
f f —ar{ ! }f(q, 7) [n(s)*n(q)] d24d7,
(7

8,”3/2 0 aj]./z(t _ 7.)3/2 O(]

can be rewritten in a somewhat more convenient form by using the result

0 ad
5| A@mdz, = J 5= Alg, ) dZy + f Alg, (@) n(@)(g) dZ4, (A9)
z(r) z(r) z(7)

where A is an arbitrary function of ¢ and 7, defined on Z(7), and k(q) is the total curva-
ture of the surface 2(7) at the point g. Thus applying Eq. (A9) and integrating by parts

gives
t F; (x(P), w(g), t, 7, V)
L J ar{ d }f(q, 7) [n(s)'n(g)] dZ dr

= (r) o2 (t - )3/ %

J
1 Fy(x(P), w(g), t, 7, V) |
-- f flg, DInGs) n@)t|  dz,
(0)

87(3/2 . a]?’/2(t_7.)3/2 =0 7=0
_U};(t)[fu-nm)x(q)zn(s)-n(q)} L2 {M}H ®. 1), (A10)
s oT o

But the term UZ®)[h] (P, t) is known to be continuous across Z(t) (property 2 in the
main text), and’ moreover it can be shown that the integral

qu
7=0

(g, 7)[n(s)-n(q)]

1 f E](X(P)a W(q), t3 7, V)
7=0
(0)

8m3/2 5 afm(t - 7)3/2

is also continuous across 2(¢). Hence it follows that the first term in Yz(t) [f1(P, t)is
continuous across X (t).

The second term appearing in Y]E(t)[f] (P, t), namely, Iz(t)[f] (P, t), can also be
shown to be continuous across Z(t). In fact, by transformmg the surface integral in
equation (A8) into a volume integral with the aid of the divergence theorem, it can be
shown that I Z(f) [F1(P, t) = 0, provided f is independent of g. It therefore follows that
Yz [f ] (P t) is continuous across Z(t); hence Eq. (A6) provides the required form for
dfdn, WFOf1(P, t).
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AN ALTERNATE DERIVATION OF EQS. (14) AND (15)
VIA FOURIER TRANSFORMS

Let f(P, t), P = (x4, x4, X3), be a function of the spatial point P and time ¢ which
satisfies the Dirichlet conditionst with respect to P. Then, if the integral

too ~too atoo
f f J f(P, t) dx dx,dxg

is absolutely convergent, the triple Fourier transform 7(Pg, t) = F[f(P, t)] given by
n 1 3/2 + oo +oo + o0 ] - »
f®e 1) = <§> J J J f(P, 1) XY EPO] di dxydicy (B1)

exists; moreover the inverse transform

. 3/2 [¥e pte +oo— ‘ N
f®, t) = F AP, t>1=<;217> f f f fP,, t)eIXPYEPO] gt dg,dg,
oo (B2)

may be used to recover f(P, t). Here P = (&, £y, &3), where £, &,, and &, are the trans-
form parameters and f denotes the p051t10n vector associated with P in the transform
space.

In this appendix the Fourier transform and its inverse are used to obtain integral
representations for the interior and exterior temperature distributions T;(P, t) and T, P t)
directly from the diffusion equations. Though this method proves to be somewhat more
direct than the ‘“‘reduction” procedure, it is also slightly less general, because S(¢) must be
closed to guarantee the convergence of the integrals appearing in Egs. (B1) and (B2).

THE INTERIOR PROBLEM
We consider first the interior diffusion equation

1 9T,

2
= - B
vT+alVVT aat, (B3)

T1.N. Sneddon, Fourier Transforms, New York, MeGraw Hill, 1951, Chapter 1,
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and we seek a particular solution ¢,(P, t), P € D (t) UD,(t), to Eq. (B3) which satisfies the
initial condition $,P, 0)=0 and has the followmg properties:

1.¢,(P, t)=0,PED,(1).

2. lim ¢,P, t)=T(s ).
P-s
PeDyt)
seS(t)

3. i %; P, t)=g.(s, 1)
. lim 1) =8.(s, t).
Pos dng l

s€ S(t)

Since properties 2 and 3 imply that ¢,(P, t) = TP 1), P € D,(t), then finding ¢;(P, t)
is completely equivalent to solving Eq. (B3) for the mterlor temperature d1str1but10n

TP, t).
Let ¢,(P, t) = lp,-(P, t)e"(V/21)*X(P)) Then Eq. (B3) becomes

¥, o 1 Y,
VV—E_aT' (B4)

vEy, -
(20;)?

i

Taking the Fourier transform of the left-hand side of Eq. (B4), and noting that Y;P, )=0
for PE D (t) gives

i

¥; RV
‘f{v%,-- V-V} SF(V2) - — 2 TP, 1)
(20:,)2 (2a;)2

1\3/2 2 i[x(P)-E(P,
i <_> VATP, 1) XPISEDT qv - —— (P, 1)
Dy(1) (20)*

3/2 * i
_ <1> f 0, V2P gy - YV G p
D) (2o T

1\3/2 Tw(a)»HP) T
o {e”"q oY Vg, 1) n(a)
S(t)

-n(q)} ds, (B5)

- ¥(a, Ve i[x(P)-£(P;)]
Continued

x(P)=w(q)
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(by Green’s theorem)

v-v | — 3/2
- 1812+ V2 VP, 1) + (2—1,”-> J {v)ll’,-(q, t)-n(q)
(20) S

®

- i[E(P,) n(@)] ¥(a. t)}e"lw(q)'?"’s” dsy, (B5)

where w (P t) is the transform of Y,(P, t), g is a point on the interface S(f), and w(g) is
the p051t1on vector associated with g. The Fourier transform of the right-hand side of
Eq. (B4) can be evaluated with the aid of Eq. (B1) and of the result

6_2 AP, t)ydv = J %A(P, t)ydv +J A(q, t)u(q)'n(q)qu, (B6)
Die) Dy =(t)

where D(t) is a time-dependent domain bounded by the surface Z(t), A(P, t) is an arbitrary
function of P and t, defined both in 9(¢) and on X(t), and u(q) is the relative velocity of
a point ¢ on Z(7). Thus

Y, 3/2J’ oY,

177 _ (1 1 77 ix(P) E(Py)]

g 1 <%> = = (P, t)e 0] qv
Diiy ?

3/2 N
- ai {<§1”> f Yi(P, t)e!X(P)EPp] dV}
Ol

Dyt

l

i <i> f — V¥(g, tu(a)" n(q)etIW(q) §Pp)] as,

19 — 3/2 1 o e
== 37 Vil - (2—) f — ¥;(a, Hu(g) n(g)e MDD as, . (BT)
’ s

Equating expressions (B5) and (B7) gives now the following equation for Ei(PE, t):
V-V
V(P t)+[|£|2+ }w’g, t)

O( at (zai)

1 3/2 N o

T o f {Wi(q’ t)n(q) - i[£(, ) M(a)] ¥;(g, 1)
S(t)

+ % vi(q, t)u(q)-n(q)} o ilW(a)-£(Py)] ds,. (B8)
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Equation (B8), which is simply a first-order ordinary differential equation in gb (P t)
(with P as a parameter), can be integrated by standard techniques. Hence, recalhng that

7 1\3/2 V/2aj) x(P)+i[ x(P)- £ (P
Y(P,, 1) = <2_7r) f ¢,(P, tye (V/2ei)x(Pyi[x(P)£(PY)] gy,
Dy(1)

which in turn implies
— 1 /2 . PY+i P -> P
Y(P,, 0) = > (P, 0)e(V/2ai) x(Py*i[x(P)£(Pg)] gy =g
i(2)

(since ¢.(P, 0) = 0 by Eq. (3a) in the main text, we can integrate Eq. (B8) to get

- 1\3/2 g J =1 -

‘I/i(Pg, t)= <ET'> f o Vsl/i(q, 7)°n(q) - iai[E(PE ):n(q)] ¢,-(q, 7)

_ S(r)
+¥i(a, r)u(q)-n(q)} e~ledlt 24V V/d0) )t [w(@)EB] yg 7. (BY)

With Ji(P t) now determined, V;(P, t), and hence ¢;(P, t), can be found by applying the
inversion %ormula Eq. (B2). Thus

3 +oo +co +o0 t N N
Y, (P, t)=<§];>J f J ff {a,.vw,-<q, 7)°n(q) - iy [EP, ) n(q)1¥,(g, 7)
~o0  Yeoo Yoo Y( vS(7) ’

*+ ¥(g, T)u(Q)'n(q)} elailel®+(V -V /) (2-7)

X e P w@l-¥Py) gs_drdg, dt et

t
1 1 - 1
. —_—— | VWg, T)' @)+ — Y.(g, T ‘n
87r3/2£ '(S(‘r){aillz(t'T)E;/z ’: i\q ) n(q o ‘p,(q Ju(q) (Q)ji

\l/l(q’T)
T on3/2¢s  15/2
203/2(t - 1)/

[X(P) - w(q)] .n(q)} e [x(P)-w(g)][x(P)-w(q)]/4ej(t-7)

X e V-Vt ) 4g dr, (B10)

and since

Yi(P, t) = ¢,(P, t)e(V/2ai)x(P) (Blla)
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and, by properties 2 and 3,
Ui(q, 7) = TelV/22) w(a), (B11b)
and
Viy(a, 7)-n(g) = {g * o V0 n(q)} e (V/2ai)w(a), (Bl1c)

then

) t . N
1 1 T T
oP, t) = f f — |:g-+ 5 V‘"(Q)*—“‘"(Q):I
! 87T3/2 0 s(r) Ol}/z(t _ 7.)3/2 1 20£l. Q;

A

T
- 5 [X(P) - w(q)]*n(q)rFi(x(P), w(q), ¢, 7, V) dS,dr
203/2(t - 1)5/2 :

~

= - WOIT(@, 1) + UF® [g,. + L (Ven(g) + u-n(q))} (P, t),  (B12)

where F;(x(P), w(g), t, 7, V), W [f1(P, t), and USD[h](P, t) are given by Egs. (8), and
(7), and (6), respectlvely in the main text. But ¢, P, t)= Ty(P, t), P € D(t); therefore Eq.
(B12) is precisely the same as Eq (14) in the mam text.

THE EXTERIOR PROBLEM

The treatment of the exterior problem is similar to the preceding treatment and
therefore will only be outlined. Thus a solution ¢,(P, t) P € D, ;(t)U D, (t), to the exterior
diffusion equation
oT

1 e
= (B13)

1 >
2 . _°
VTe+ V-VT eat

a, e
is constructed by transform methods such that the initial condition ¢,(P, 0) =0 is
satisfied and

1.¢,(P, t)= 0,PED,(1).

2. lim ¢, t)=0
P-—)oo
PeD,y(t)

3. lim ¢, ¢t)=T.
P—s
PeD,(t)
se S(t)
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e

4. lm ——P1)=4,.
Pos dn e
PED,(1)
s€ S(t)

The result is

6, = +WSOIT1@, 1) - U5 {ge + — [Ven(@) + u-n<q)1}» ®, 1). (B14)

e

But properties 3 and 4 imply that ¢,(P, t) = T, (P, 1), P € D,(t); therefore Eq. (B14) is
precisely the same as Eq. (15) in the main text.
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Appendix C
DETERMINATION OF EXPLICIT EXPRESSIONS FOR F“’ (v, v(¥), V'(¥), "' (),
"” (0){6v}, AND M"*’ (0)6v)

AN EXPRESSION FOR F& (y, (), v'(y), "' (%)),

Since F‘l*’ is defined as

] o) 2 W)
F (3, v(y), V' (y), "' (v)) = + ’ c1
DO OO) = s b h)

determining F¥° is tantamount to finding '(r) and w"(r) in terms of v(y), ¥'(¥), " (¥),
which in turn is essentially a problem in geometry and elementary calculus. Thus, since

r=vy +v(y)sin 5(y) (C2a)
and
w(r) = W(y) +v(y) cos §(y), (C2b)
, d dw [dr\t 5 ,
wvr=j3=5$¢é> = 12 3 v (), V()
~ d > ' N
L) +rly) =5 €08 O(y) +v'(y)cos 0(y)
= e , (C3)
1+vw)5;sm5W)+wonﬁn5W)
where
L &'(y)
sin 8(y) = - — (C4a)
1 [1+w2(y)] 2
and
o~ 1
cos O(y)= (C4b)

[1+&'2(y)] Y2
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Moreover

" d -1 & ' "
w(r)= afw = - (fw) <—> =f5 0, v(¥), v (¥), v (¥))

=ﬂ1 +v(y) % sin §(y) + ¥'(y) sin (7(y):| [

cos §(y) + " (¥) cos 5(3')] - [&'(y) +v(y) ;id; cos f(y)

" (y)+ 2 (v) < cos 0(y)

+v(y) )
' ~ ' d . «~ d2 |~
+v(y)cosO(y)| |2v'(y) v Sin 0(y) +v(y) — sin0(y)
~ - - -3
+v"(y) sin 9(3*)}} [1 +v(y) d% sin 6(y) +v'(y) sin H(y)] . (C5)
Therefore
b a 6)

F& (y, v(¥), V' (), V"' (9)) = — + - _
' [1+(F5)21%2 [y +v(y)sin O(y)] [1 + (F5)2]Y/2

AN EXPRESSION FOR M® (0)(6»)

The operator M & (0) must by definition satisfy the relation
& @) - M“J Wo) - M (vg)@w
=0 (CT

lim
153110 18w
vy, 8v e 02[0, oo ]

where v = vy + dv and vy = 0. In particular it can be shown that if Mla ) is of the form
F"J (v, (), V' (), v"(y)) then Eq. (C7) can be satisfied only by taking M"" (0){8v) as

aF% AF% AF%
~ 1 1 1
M3® (0)6v) = Sv(yy+ — [bv(y)]' + F [8v(»]".
1 G W', oieo U IR,
(C8)

Equation (C8) therefore provides a practical means of determining M~ (0)

With the aid of Egs. (C3), (C5), and (C6), it can be readily verified that Eq. (C8)

takes the form
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d2 n ~r d2 Y ~ 1 d .
—— cosO(y)-@(y) — sin (y) + D" (y) —— sin 6(y)
dyz dy2 dy

M'B (0)60) =
[1+&2(y)]3/2

~ 1 d . ~ 1 d ~
3867 (y) [dy sin 8(y) + & (¥) o cos 0(y)} cos'é(y) »

- _ . ’é
[1+&'2(y)1°/2 yz G @)sin0w)

~ ! d - ~ d ~
Leosl) 4 g &) {@ sin 0(v) + &'(y) - cos H(y)}
oo y[1+ 2]

dv(y)

d ~ d ~ ~
0 - ~ ! - ~ 1 . ~
2y 000250 g5 sin 00) + 2"0) i BO). oo i)

[1+2'2(y)]3/2 ()]

00 00) - @'0) sin OO 5000 ()
[1+&'2(y)]32

which upon application of Eq. (C4) reduces to

~ 2 o~ ! 2
M’IC'J (0)(51}) = [(") (y)] + [CO (y)] ﬁv(y) +
[1+&2)13  y2[1+&2()]

y[1+&'2(y)]

~ 1

DL O ) [ — (C10)
[1+&2()] [1+&“°W)]

For the particular case W(y) = wo(¥) = —y2 /2a4, Eq. (C10) can be further reduced. Thus

1 1 1 1
!wo = 1 ’ o
M 0(0)év) ) {[61}(3’)] * YE0) vyl + 2 {1*“ Ez(y)} 5V(y)}, (C11)

where

2
) =1+ (=
y) <a0>
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AN EXPRESSION FOR M (0)(v)

To evaluate M, 1o (0)6w), it is first necessary to introduce the one-sided Frechet
derivatives M '7""(0) and M '2“"(0) which are defined by the relations

; IMG @) - M§ wq) - ME* (0o )60
m
Isvh - 0 "6V"
vg, 5v€C2[0, ]
sv>0

(C12a)

and
. IMG @) - MG wo) - ME (o )60
Lim 16wl
1svh—> 0 v
vg, 6v € C2[0, ]
sv< 0

(C12b)

where v = v + 8v and v = 0. Then, if M°*(0) = M;%~(0), the Frechet derivative M (0)
is defined as

M3 (0) = M+ (0) = MP(0).
For operators of the form

A® - ( FS (g, v, v(¥), "(a), V'(a)) dg,
~0

it can be shown that Eqs. (C12) are satisfied by taking M’25+(0)<5V) and Mg*’ "(0)6v) as

MB*(0)6) = - bv(y) lim
? isuino YO

s§v >0

aFS OF
- lim J dv(q) + 3 7 @) [6v(g)]'( dg, (C13a)
0

16010 av(q)
s§v>0

MIE-(0)6p) = - bv(y) lim
2 510 v (y) 0

sv <0
- -aFg) N oF% 5 o
Y da.
||5ul;r—l>o J; ov@) D" g | v(@)]'[ dq (C13b)
sv <0
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which by virtue of Eqgs. (36), (37), (40), (55), and the definition of d/dn, (Eq. (43c))
can also be written as (for r = y + dv(y) sin 6(y), z = w(y) + dv(y) cos 9(y), v > 0)

MF*(0)ow) = -bv(y)  lim {di U% [2 cos 01(r, z)}
(r, 20 By *y
(r, 2)€D,
lim W& [26v cos B](r, 2)

r, 23> (3, 3()
(r,z)eD,

+ 0% H((sin 6) + % sin 5)61} + sin 5(61})’} 2 cos g:l r,2) 7,

= +50(y) cos L(y) - 8v(y) 7 T [2 cos 01(y) - v(y) cos ()
y

- WE*[28v cos 0] (y)- US™ H((sin 0y + 5— sin 5>6v +sin (7(61/)’}2 cos ](y)
(Cl4a)

by properties 1 through 3 (p. 19) and

ME-(0)é») =-8v(g)  lim d—d %8 [2 cos 0] (r, 2)
20, S My
(r,2)ED;
- lim . W 260 cos B[ (r, 2)

(r, 2> (3, S())
(r, 2) S Di

+u® H((sin g) + % sin §>6v +sin e”(bu)’}z cos é'](r, z)}

= - §v(y) cos B(y) - v(y) TS *[2 cos §1(y) +8u(y) cos B(y)

4
dn,,
- WE*[28v cos 0] (y) - U™ H((sin ) + % sin 5)61} + sin 5(61})’}2 cos g](y)
(C14b)
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by properties 1 through 3. Therefore
MB* (0)6v) = MP=(0)(6v) = MiF (0)(6v)

= - 5u(y) -d’;i uC*[2 cos 0] (y) - WE*[26v cos B](y)
y

- et l—{<(sin 6) + —2— sin 5)61} +sin 5(51))'}2 cos 5}(y). (C15)
L
A certain degree of simplification results if &(y) is chosen as wy(y) = - y2/2a0.

Thus it is knownt that the interior normal derivative of the isothermal temperature dis-
tribution, namely,

lim d—d- 7« 0[2 cos 8,1 (r, 2),
rn2)- @, o)
(r,2)eD;

is identically zero.

Hence, by Egs. (43a) and (43b),

_4

= U2 cos 041 () = - cos 0 (). (C16)

y

Substituting Eq. (C16) into Eq. (C15) then gives with the aid of Egs. (40), (41), and
(42b), and (45) the following expression for Méw0(0)<5v):

: 8 1" _ ) d
M2 0(0)(8v) = l’gy) —?f e [wo¥)-wo(@)] —— G2 ¢, wo(a)
£7%(y) 0 q z=w(y)

1
+ —
20,2 (y)

1—[“’ [woly)- 1 !
=] elwowo@l Gy, wy(y), g, wy(a)) 1+
P o Sl/z(q) 2(10

Gy, wy(¥), 9, wo(q))}qiSV(q)dq

| @)+ —L  [8w(e)1'} qdg, (C17)
aos3/2(q)} aot2(q)

where
2
y
5v) =1+ <a—\
o/
Te. P. Ivantsov, Dokl. Akad. Nauk SSSR 58 (1947) 567; G. Horvay and J. W. Cahn, Acta Met. 9 (1961) 695,
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